JP2010258006A - Solar cell module and method of manufacturing the same - Google Patents

Solar cell module and method of manufacturing the same Download PDF

Info

Publication number
JP2010258006A
JP2010258006A JP2009102637A JP2009102637A JP2010258006A JP 2010258006 A JP2010258006 A JP 2010258006A JP 2009102637 A JP2009102637 A JP 2009102637A JP 2009102637 A JP2009102637 A JP 2009102637A JP 2010258006 A JP2010258006 A JP 2010258006A
Authority
JP
Japan
Prior art keywords
solar cell
electrode
cell module
particles
surface electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009102637A
Other languages
Japanese (ja)
Other versions
JP5446420B2 (en
Inventor
Hideaki Okumiya
秀昭 奥宮
Takahiro Fujii
貴啓 藤井
Yasuhiro Suga
保博 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2009102637A priority Critical patent/JP5446420B2/en
Priority to PCT/JP2010/054777 priority patent/WO2010122863A1/en
Priority to KR1020117024805A priority patent/KR101403077B1/en
Priority to TW099110298A priority patent/TWI482293B/en
Publication of JP2010258006A publication Critical patent/JP2010258006A/en
Application granted granted Critical
Publication of JP5446420B2 publication Critical patent/JP5446420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/322Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of solar panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell module capable of ensuring connection reliability between a surface electrode and a tab line, regardless of presence of surface irregularities or materials of the surface electrode, wherein, in the solar cell module, a plurality of solar cells are connected in series and a surface electrode of at least one solar cell is connected to the tab line. <P>SOLUTION: In the solar cell module, the plurality of solar cells are connected in series and a surface electrode of at least one solar cell is connected to the tab line. The surface electrode of the solar cell is connected to the tab line by thermo-compression bonding through a conductive adhesive layer where conductive particles distribute in binder resin composition. The conductive particles of ≥50 mass% have a major axis of 1-50 μm, a thickness of ≤5 μm, and an aspect ratio (= major axis/thickness) of 3-150. In addition, the particles are flake metal particles having hardness higher than the one of the surface electrode and the tab line. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、太陽電池セルの表面電極がタブ線と接続されてなる太陽電池モジュール、及びその製造方法に関する。   The present invention relates to a solar battery module in which a surface electrode of a solar battery cell is connected to a tab wire, and a manufacturing method thereof.

太陽電池モジュールは、複数の太陽電池セルが直列に接続されてなるものであり、その少なくとも一つの太陽電池セルの表面電極は、半田コートされたリボン状銅箔からなるタブ線と接続されている。具体的には、結晶系太陽電池モジュールにおいては、太陽電池セルの受光面に銀ペーストのスクリーン印刷により形成されたバスバー電極と、インナーリードとして機能するタブ線とがハンダリフロー処理により接続されており、薄膜系太陽電池モジュールにおいては、両端の太陽電池セルの表面電極に、電力取り出し用アウターリードとしてタブ線がハンダリフロー処理により接続されている。(特許文献1)。   The solar cell module is formed by connecting a plurality of solar cells in series, and the surface electrode of at least one of the solar cells is connected to a tab wire made of a ribbon-like copper foil coated with solder. . Specifically, in the crystalline solar cell module, the bus bar electrode formed by screen printing of silver paste on the light receiving surface of the solar cell and the tab wire functioning as an inner lead are connected by solder reflow processing. In the thin-film solar cell module, tab wires are connected to the surface electrodes of the solar cells at both ends by solder reflow processing as outer leads for extracting power. (Patent Document 1).

ところが、ハンダリフロー処理時の加熱により、太陽電池セルに反りが生じたり、タブ線と表面電極との接続部に内部応力が生じたり、その結果、場合により太陽電池セルの表面電極とタブ線との間の接続信頼性が低下するという問題があった。   However, due to the heating during the solder reflow process, the solar cell is warped or internal stress is generated at the connection between the tab wire and the surface electrode. There was a problem that the connection reliability between the two decreased.

そこで、近年、太陽電池セルの表面電極とタブ線との接続に、比較的低い温度での熱圧着処理による接続が可能な導電接着フィルムを使用することが行われるようになっている(特許文献2)。このような導電接着フィルムとしては、平均粒径が数μmオーダーの球状導電粒子を熱硬化型バインダー樹脂組成物に分散してフィルム化したものが使用されている。また、球状導電粒子としては、比較的高硬度の球状金属粒子や、比較的低硬度の金属メッキ被覆球状樹脂粒子が用いられている。   Therefore, in recent years, a conductive adhesive film that can be connected by thermocompression treatment at a relatively low temperature has been used to connect the surface electrode of the solar battery cell and the tab wire (patent document). 2). As such a conductive adhesive film, a film obtained by dispersing spherical conductive particles having an average particle size of the order of several μm in a thermosetting binder resin composition is used. In addition, as the spherical conductive particles, spherical metal particles having relatively high hardness and spherical resin particles coated with relatively low hardness are used.

特開2004−356349号公報JP 2004-356349 A 特開2008−135654号公報JP 2008-135654 A

ところで、太陽電池セルの表面電極の多くは銀ペーストを塗布・加熱することにより形成されているため、通常、表面電極の表面には数μmオーダーの凹凸が形成され、また、球状導電粒子の粒径にもバラツキがある。   By the way, since most of the surface electrodes of the solar battery cells are formed by applying and heating a silver paste, irregularities of the order of several μm are usually formed on the surface of the surface electrode, and spherical conductive particles There are also variations in diameter.

このため、導電接着フィルムに配合すべき導電粒子として、比較的高硬度の球状金属粒子を使用した場合、粒径の比較的大きな球状金属粒子が太陽電池セルの表面電極とタブ線との間に挟持されると、それよりも粒径の小さな球状金属粒子は表面電極とタブ線とに同時に接触できず、接続に寄与しないものとなり、その結果、表面電極とタブ線との間の接続信頼性が低下するという問題があった。   For this reason, when spherical metal particles having a relatively high hardness are used as the conductive particles to be blended in the conductive adhesive film, the spherical metal particles having a relatively large particle size are interposed between the surface electrode of the solar battery cell and the tab wire. When sandwiched, spherical metal particles having a smaller particle diameter cannot contact the surface electrode and the tab wire at the same time and do not contribute to the connection. As a result, the connection reliability between the surface electrode and the tab wire is reduced. There was a problem that decreased.

一方、比較的低硬度の金属メッキ被覆球状樹脂粒子を使用した場合、太陽電池セルの表面電極とタブ線との間に挟持された金属メッキ被覆球状樹脂粒子は、接続の際の熱圧着処理により扁平に潰れされるため、接続に寄与しないものは存在しないか又はあってもごく僅かであると考えられる。しかし、表面電極の材料コスト低減の点から、銀ペーストに代えてAlペーストやAl蒸着膜を適用した場合には、接続の際の熱圧着処理の際に、金属メッキ被覆球状樹脂粒子は扁平に変形するものの、Al蒸着膜の表面不動態膜が破壊されるまでには至らず、その結果、太陽電池セルの表面電極とタブ線との間の接続信頼性が低下するという問題があった。   On the other hand, when using relatively low-hardness metal-plated spherical resin particles, the metal-plated spherical resin particles sandwiched between the surface electrode of the solar cell and the tab wire are subjected to thermocompression treatment at the time of connection. There is nothing that does not contribute to the connection because it is crushed flat, or very little if any. However, from the viewpoint of reducing the material cost of the surface electrode, when an Al paste or an Al deposited film is applied instead of the silver paste, the metal-plated spherical resin particles are flattened during the thermocompression treatment at the time of connection. Although deformed, the surface passivated film of the Al deposited film was not destroyed, and as a result, there was a problem that the connection reliability between the surface electrode of the solar battery cell and the tab wire was lowered.

本発明の目的は、以上の従来の技術の課題を解決しようとするものであり、複数の太陽電池セルが直列に接続され、少なくとも一つの太陽電池セルの表面電極がタブ線と接続されている太陽電池モジュールにおいて、表面電極の表面凹凸の有無や材質によらず、表面電極とタブ線との間の接続信頼性を確保できるようにすることである。   An object of the present invention is to solve the above-described problems of the conventional technique, in which a plurality of solar cells are connected in series, and a surface electrode of at least one solar cell is connected to a tab wire. In the solar cell module, the connection reliability between the surface electrode and the tab wire can be ensured regardless of the presence or absence of the surface unevenness or the material of the surface electrode.

本発明者らは、導電接着フィルムに使用する導電粒子として、その少なくとも50質量%以上が、特定の大きさとアスペクト比とを有し、且つ表面電極とタブ線とよりも高い硬度を有するフレーク状金属粒子を使用することにより、上述の目的を達成できることを見出し、本発明を完成させた。   As the conductive particles used in the conductive adhesive film, the present inventors have a flake shape in which at least 50% by mass has a specific size and aspect ratio, and has higher hardness than the surface electrode and the tab wire. The inventors have found that the above object can be achieved by using metal particles, and have completed the present invention.

即ち、本発明は、複数の太陽電池セルが直列に接続されてなる太陽電池モジュールであって、少なくとも一つの太陽電池セルの表面電極がタブ線と接続されている太陽電池モジュールにおいて、
該太陽電池セルの表面電極とタブ線とが、バインダー樹脂組成物に導電粒子が分散してなる導電性接着層を介して熱圧着処理により接続されており、導電粒子の50質量%以上が、1〜50μmの長径と、5μm以下の厚みと、3〜150の長径/厚みのアスペクト比(=長径/厚み)とを有し、且つ第1電極、第2電極及びタブ線よりも高い硬度を有するフレーク状金属粒子であることを特徴とする太陽電池モジュールを提供する。
That is, the present invention is a solar cell module in which a plurality of solar cells are connected in series, and in the solar cell module in which the surface electrode of at least one solar cell is connected to the tab wire,
The surface electrode of the solar battery cell and the tab wire are connected by thermocompression bonding through a conductive adhesive layer in which conductive particles are dispersed in a binder resin composition, and 50% by mass or more of the conductive particles are It has a major axis of 1 to 50 μm, a thickness of 5 μm or less, and a major axis / thickness aspect ratio (= major axis / thickness) of 3 to 150, and higher hardness than the first electrode, the second electrode, and the tab wire. Provided is a solar cell module characterized by having flaky metal particles.

また、本発明は、複数の太陽電池セルが直列に接続され、少なくとも一つの太陽電池セルの表面電極がタブ線と接続されている太陽電池モジュールの製造方法において、
該太陽電池セルの表面電極上に、バインダー樹脂組成物に導電粒子が分散してなる導電性接着層を積層する工程;
該導電性接着層上に、タブ線を配置する工程; 及び
該導電性接着層上のタブ線側から熱圧着処理することにより、太陽電池セルの表面電極とタブ線とを電気的に接続する工程
を有し、
導電粒子の50質量%以上が、1〜50μmの長径と、5μm以下の厚みと、3〜150のアスペクト比(=長径/厚み)とを有し、且つ表面電極及びタブ線よりも高い硬度を有するフレーク状金属粒子であることを特徴とする太陽電池モジュールの製造方法を提供する。
Further, the present invention provides a method for manufacturing a solar cell module in which a plurality of solar cells are connected in series, and a surface electrode of at least one solar cell is connected to a tab wire.
A step of laminating a conductive adhesive layer formed by dispersing conductive particles in a binder resin composition on the surface electrode of the solar battery cell;
A step of arranging a tab wire on the conductive adhesive layer; and a thermocompression treatment from the tab wire side on the conductive adhesive layer to electrically connect the surface electrode of the solar cell and the tab wire. Having a process,
50% by mass or more of the conductive particles have a major axis of 1 to 50 μm, a thickness of 5 μm or less, and an aspect ratio (= major axis / thickness) of 3 to 150 and higher hardness than the surface electrode and the tab wire. Provided is a method for producing a solar cell module, which is characterized by having flaky metal particles.

導電接着フィルムを使用し、複数の太陽電池セルが直列に接続され、少なくとも一つの太陽電池セルの表面電極がタブ線と接続されている太陽電池モジュールにおいて、導電接着フィルムに配合する導電粒子として、その少なくとも50質量%以上が、1〜50μmの長径、5μm以下の厚さ、3〜150のアスペクト比(=長径/厚み)を有するフレーク状金属粒子を使用する。このようなフレーク状金属粒子は、その形状が扁平形状であるため、太陽電池セルの表面電極とタブ線との間に挟持されたときに互いに重なり合うことができるので、接続に関与しない導電粒子の数を無くすこと乃至は極力少なくすることができる。従って、太陽電池セルに通常利用されている電極の表面凹凸の有無に関わらず、良好な接続信頼性を確保することができる。   In the solar cell module in which the conductive adhesive film is used, a plurality of solar cells are connected in series, and the surface electrode of at least one solar cell is connected to the tab wire, as conductive particles to be blended in the conductive adhesive film, At least 50% by mass or more uses flaky metal particles having a major axis of 1 to 50 μm, a thickness of 5 μm or less, and an aspect ratio (= major axis / thickness) of 3 to 150. Since such flaky metal particles have a flat shape, they can overlap each other when sandwiched between the surface electrode of the solar battery cell and the tab wire. The number can be eliminated or reduced as much as possible. Therefore, good connection reliability can be ensured regardless of the presence or absence of surface irregularities of the electrodes normally used for solar cells.

また、このフレーク状金属粒子は、太陽電池セルの表面電極及びタブ線よりも高い硬度を有する。従って、これらの電極を形成するためにAlペーストやAl蒸着膜を使用した場合であっても、熱圧着処理の際に、アルミニウムの表面不動態膜を破壊することができ、良好な接続信頼性を確保することができる。また、エポキシ樹脂にAg粉末を混練したような硬化型Agペースト電極に対しても良好な接着性を確保することができる。   Moreover, this flaky metal particle has hardness higher than the surface electrode and tab wire | line of a photovoltaic cell. Therefore, even when Al paste or Al deposited film is used to form these electrodes, the surface passivation film of aluminum can be destroyed during the thermocompression treatment, and good connection reliability can be obtained. Can be secured. In addition, good adhesiveness can be secured even for a curable Ag paste electrode in which Ag powder is kneaded with epoxy resin.

本発明の太陽電池モジュールの概略部分断面図である。It is a general | schematic fragmentary sectional view of the solar cell module of this invention. 本発明の太陽電池モジュールの概略全体断面図である。It is a schematic whole sectional view of the solar cell module of the present invention. 本発明の太陽電池モジュールの概略上面図である。It is a schematic top view of the solar cell module of the present invention. フレーク状金属粒子の概略斜視図である。It is a schematic perspective view of a flaky metal particle.

以下、図面を参照しながら、本発明の太陽電池モジュールの一例を説明する。   Hereinafter, an example of the solar cell module of the present invention will be described with reference to the drawings.

本発明の太陽電池モジュールは、複数の太陽電池セルが直列に接続され、少なくとも一つの太陽電池セルの表面電極がタブ線と接続されているものである。   In the solar cell module of the present invention, a plurality of solar cells are connected in series, and the surface electrode of at least one solar cell is connected to a tab wire.

本発明が適用される太陽電池セルは、光電変換部として光電変換素子を有する。光電変換素子としては、単結晶型シリコン光電変換素子、多結晶型シリコン光電変換素子、微結晶シリコン光電変換素子、アモルファスシリコン型太陽電池素子をはじめとする任意のシリコン系光電変換素子の他、GaAs型やカルコバイライト型等の他の半導体化合物系の光電変換素子、色素増感太陽電池等の色素系光電変換素子等を使用することができる。これらの表面には、必要に応じてITO薄膜電極が形成されていてもよい。   The solar cell to which the present invention is applied has a photoelectric conversion element as a photoelectric conversion part. As the photoelectric conversion element, a single crystal silicon photoelectric conversion element, a polycrystalline silicon photoelectric conversion element, a microcrystalline silicon photoelectric conversion element, an arbitrary silicon photoelectric conversion element including an amorphous silicon type solar cell element, GaAs Other semiconductor compound-based photoelectric conversion elements such as a type and a calcobylite type, and dye-based photoelectric conversion elements such as a dye-sensitized solar cell can be used. An ITO thin film electrode may be formed on these surfaces as necessary.

これらの光電変換素子から構成される太陽電池セルは、薄膜系太陽電池セルとそれ以外の結晶系太陽電池セルに大別することができる。   Solar cells composed of these photoelectric conversion elements can be broadly classified into thin-film solar cells and other crystalline solar cells.

以下、結晶系太陽電池セルを使用する本発明の太陽電池モジュールの一例について説明する。   Hereinafter, an example of the solar cell module of the present invention using a crystalline solar cell will be described.

図1は、本発明の太陽電池モジュール100の概略部分断面図である。この太陽電池モジュール100は、複数の太陽電池セル50が、インターコネクターとして機能するタブ線30で直列に接続されているものである。ここで、太陽電池セル50は、光電変換素子10とその受光面に設けられた表面電極たるバスバー電極である第1電極21と、非受光面に設けられたバスバー電極である第2電極23と、光電変換素子10上で第1電極、第2電極とほぼ直交するように設けられた集電極であるフィンガー電極22、24とから構成されている。   FIG. 1 is a schematic partial sectional view of a solar cell module 100 of the present invention. In this solar cell module 100, a plurality of solar cells 50 are connected in series with tab wires 30 that function as interconnectors. Here, the solar cell 50 includes a photoelectric conversion element 10, a first electrode 21 that is a bus bar electrode that is a surface electrode provided on the light receiving surface thereof, and a second electrode 23 that is a bus bar electrode provided on a non-light receiving surface. The finger electrodes 22 and 24 that are collector electrodes provided on the photoelectric conversion element 10 so as to be substantially orthogonal to the first electrode and the second electrode.

なお、図1の太陽電池モジュール100は、通常、図2に示すように、アルミニウムなどの金属フレーム200と、ガラス、透光性プラスチックなどの透光性表面保護材201と、アルミニウム箔を樹脂フィルムで挟持した積層体などの背面保護材202とで形成される空間の中で、エチレンビニルアルコール樹脂(EVA)等の透光性封止材203で封止される。   As shown in FIG. 2, the solar cell module 100 of FIG. 1 is usually made of a metal frame 200 such as aluminum, a translucent surface protective material 201 such as glass or translucent plastic, and an aluminum foil made of a resin film. Is sealed with a light-transmitting sealing material 203 such as ethylene vinyl alcohol resin (EVA).

このような構造の本発明の太陽電池モジュールにおいては、図1に示すように、タブ線30と第1電極21及び第2電極23とが、バインダー樹脂に導電粒子が分散してなる導電性接着層40を介して熱圧着処理により接続されている。   In the solar cell module of the present invention having such a structure, as shown in FIG. 1, the tab wire 30, the first electrode 21, and the second electrode 23 are made of conductive adhesive in which conductive particles are dispersed in a binder resin. The layers 40 are connected by thermocompression treatment.

本発明においては、導電粒子として、扁平なフレーク状金属粒子を使用する。扁平なフレーク状金属粒子は、太陽電池セルの受光面の第1電極又は第2電極とタブ線との間に挟持されたときに互いに重なり合うことができ、このため、接続に関与しない導電粒子の数を無くすこと乃至は極力少なくすることができ、太陽電池セルに用いられている通常の電極の表面凹凸の有無に関わらず、良好な接続信頼性を確保することができる。   In the present invention, flat flaky metal particles are used as the conductive particles. The flat flaky metal particles can overlap each other when sandwiched between the first electrode or the second electrode of the light receiving surface of the solar battery cell and the tab wire, and therefore, the conductive particles not involved in the connection The number can be eliminated or reduced as much as possible, and good connection reliability can be ensured regardless of the presence or absence of surface irregularities of the normal electrodes used in solar cells.

フレーク状金属粒子としては、ニッケル、銀、ハンダ等の金属や合金のフレーク状金属粒子を使用することができるが、中でも、低コストと良好な導電性の点でフレーク状ニッケル粒子を好ましく使用できる。   As the flaky metal particles, flaky metal particles of metals and alloys such as nickel, silver and solder can be used. Among them, flaky nickel particles can be preferably used from the viewpoint of low cost and good conductivity. .

本発明で使用するフレーク状金属粒子は、その長径が1〜50μm、好ましくは1〜40μmであり、厚みが5μm以下、好ましくは3μm以下のものである。長径に関し、1μm未満であると接続後の導通抵抗が高くなる傾向があり、50μmを超えるとフィルム成形する場合に、フィルム塗布性に問題が生ずる傾向がある。また、厚みに関し、5μmを超えると絶縁抵抗が低くなる傾向がある。フレーク状金属粒子の長径及び厚さは、顕微鏡等による外観観察により測定される数値である。   The flaky metal particles used in the present invention have a major axis of 1 to 50 μm, preferably 1 to 40 μm, and a thickness of 5 μm or less, preferably 3 μm or less. Regarding the major axis, if it is less than 1 μm, the conduction resistance after connection tends to be high, and if it exceeds 50 μm, there is a tendency that a problem arises in film applicability when the film is formed. Moreover, when the thickness exceeds 5 μm, the insulation resistance tends to be low. The major axis and thickness of the flaky metal particles are numerical values measured by appearance observation with a microscope or the like.

更に、本発明で使用するフレーク状金属粒子は、図4に示すように、アスペクト比(即ち、長径Lを厚みTで除した数値)が3〜150、好ましくは3〜100のものである。アスペクト比に関し、150を超えると接続後の導通抵抗が高くなる傾向がある。   Furthermore, the flaky metal particles used in the present invention have an aspect ratio of 3 to 150, preferably 3 to 100, as shown in FIG. When the aspect ratio exceeds 150, the conduction resistance after connection tends to increase.

また、このフレーク状金属粒子は、太陽電池セルの受光面の第1電極、非受光面の第2電極及びタブ線よりも高い硬度を示すものである。従って、これらの電極を形成するためにAlペーストやAl蒸着膜を使用した場合であっても、熱圧着処理の際に、アルミニウムの表面不動態膜を破壊することができ、また、タブ線に食い込むことができ、良好な接続信頼性を確保することができる。   In addition, the flaky metal particles exhibit higher hardness than the first electrode on the light receiving surface of the solar battery cell, the second electrode on the non-light receiving surface, and the tab line. Therefore, even when Al paste or Al vapor deposition film is used to form these electrodes, the surface passivation film of aluminum can be destroyed during the thermocompression treatment, and the tab wire It can bite in and can ensure good connection reliability.

本発明において、導電性接着層40中の導電粒子は、上述したようなフレーク状金属粒子を、50質量%以上、好ましくは60質量%以上含有する。   In the present invention, the conductive particles in the conductive adhesive layer 40 contain flaky metal particles as described above at 50% by mass or more, preferably 60% by mass or more.

本発明で使用する導電性接着層40中の導電粒子の含有量は、少なすぎると接続信頼性が十分でなく、多すぎると接続強度が不十分となるので、好ましくは3〜30質量%、より好ましくは3〜20質量%である。   If the content of the conductive particles in the conductive adhesive layer 40 used in the present invention is too small, the connection reliability is not sufficient, and if it is too large, the connection strength becomes insufficient, preferably 3 to 30% by mass, More preferably, it is 3-20 mass%.

導電性接着層40を構成するバインダー樹脂組成物としては、従来の導電接着剤において用いられている熱硬化性のバインダー樹脂組成物の中から適宜選択して使用することができる。例えば、熱硬化型エポキシ樹脂、熱硬化型尿素樹脂、熱硬化型メラミン樹脂、熱硬化型フェノール樹脂等に、イミダゾール系硬化剤、アミン系硬化剤等の硬化剤を配合したバインダー樹脂組成物を挙げることができる。中でも、硬化後の接着強度が良好な点を考慮すると、熱硬化型エポキシ樹脂を使用したバインダー樹脂組成物を好ましく使用することができる。   As the binder resin composition constituting the conductive adhesive layer 40, it can be appropriately selected from thermosetting binder resin compositions used in conventional conductive adhesives. For example, a binder resin composition in which a curing agent such as an imidazole curing agent or an amine curing agent is blended with a thermosetting epoxy resin, a thermosetting urea resin, a thermosetting melamine resin, a thermosetting phenol resin, or the like. be able to. Especially, when the point with the favorable adhesive strength after hardening is considered, the binder resin composition using a thermosetting epoxy resin can be used preferably.

このような熱硬化型エポキシ樹脂としては、液状でも固体状でもよく、エポキシ当量が通常100〜4000程度であって、分子中に2以上のエポキシ基を有するものが好ましい。例えば、ビスフェノールA型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、エステル型エポキシ化合物、脂環型エポキシ化合物等を好ましく使用することができる。また、これらの化合物にはモノマーやオリゴマーが含まれる。   Such a thermosetting epoxy resin may be liquid or solid, and preferably has an epoxy equivalent of usually about 100 to 4000 and having two or more epoxy groups in the molecule. For example, a bisphenol A type epoxy compound, a phenol novolac type epoxy compound, a cresol novolac type epoxy compound, an ester type epoxy compound, an alicyclic epoxy compound, or the like can be preferably used. These compounds include monomers and oligomers.

本発明で使用するバインダー樹脂組成物には、必要に応じてシリカ、マイカなどの充填剤、顔料、帯電防止剤などを含有させることができる。着色料、防腐剤、ポリイソシアネート系架橋剤、シランカップリング剤なども配合することもできる。   The binder resin composition used in the present invention can contain a filler such as silica and mica, a pigment, an antistatic agent, and the like, if necessary. Coloring agents, preservatives, polyisocyanate crosslinking agents, silane coupling agents, and the like can also be blended.

また、公知の球状もしくは不定形状導電粒子を配合することもできる。フレーク状金属粒子に加えて球状導電粒子を配合すると、導通抵抗値をより安定化できるという効果や、フレーク状金属粒子の使用量を減少させて導電接着剤の製造コストを抑制できるという効果が得られる。このような球状導電粒子の大きさとしては、平均粒径が1〜10μmのものであり且つフレーク状金属粒子の長径より小さいことが好ましい。また、球状もしくは不定形状導電粒子の配合量は、フレーク状金属粒子の配合量(質量部)の0.01〜1倍であることが好ましい。   Moreover, well-known spherical or irregular-shaped electroconductive particle can also be mix | blended. When spherical conductive particles are blended in addition to the flaky metal particles, the conduction resistance value can be further stabilized, and the amount of the flaky metal particles used can be reduced to reduce the manufacturing cost of the conductive adhesive. It is done. Such spherical conductive particles preferably have an average particle diameter of 1 to 10 μm and smaller than the major axis of the flaky metal particles. Moreover, it is preferable that the compounding quantity of spherical or irregular-shaped electroconductive particle is 0.01-1 times the compounding quantity (mass part) of flaky metal particle.

本発明における導電性接着層40は、ペースト状の導電接着剤もしくはフィルム状の導電接着フィルムとして使用されるが、その溶融粘度が低すぎると仮圧着から本硬化の工程で流動してしまい接続不良や受光面へのはみ出しを起こし易い。高すぎても塗布時もしくはフィルム貼着時に不良を発生し易いので、ペーストの場合にはコーンプレート型粘度計で測定した25℃の粘度が、好ましくは50〜200Pa・s、より好ましくは50〜150Pa・sであり、フィルムの場合には、コーンプレート型粘度計で測定した最低溶融粘度が、好ましくは1×10〜1×10Pa・s、より好ましくは1×10〜5×10Pa・sである。 The conductive adhesive layer 40 in the present invention is used as a paste-like conductive adhesive or a film-like conductive adhesive film, but if its melt viscosity is too low, it will flow from the temporary compression bonding to the main curing process, resulting in poor connection. And protrusion to the light-receiving surface. Even if it is too high, defects are likely to occur at the time of application or film sticking. In the case of a paste, the viscosity at 25 ° C. measured with a cone plate viscometer is preferably 50 to 200 Pa · s, more preferably 50 to 150 Pa · s, and in the case of a film, the lowest melt viscosity measured with a cone plate viscometer is preferably 1 × 10 2 to 1 × 10 5 Pa · s, more preferably 1 × 10 3 to 5 ×. 10 4 Pa · s.

本発明において、導電性接着層40は、導電粒子を熱硬化性のバインダー樹脂組成物に常法に従って均一に分散した導電接着剤を太陽電池セルの第1電極と第2電極とに公知の塗布法により形成することができる。また、導電接着剤を剥離ベースフィルム上に成膜し、乾燥することにより得た導電接着フィルムの導電性接着層を、第1電極と第2電極とに転写することにより形成することができる。   In the present invention, the conductive adhesive layer 40 is a known coating applied to the first electrode and the second electrode of the solar cell by applying a conductive adhesive in which conductive particles are uniformly dispersed in a thermosetting binder resin composition according to a conventional method. It can be formed by the method. Moreover, it can form by transferring the conductive adhesive layer of the conductive adhesive film obtained by forming a conductive adhesive on a peeling base film and drying it to the first electrode and the second electrode.

なお、導電性接着層40の層厚は、薄すぎると充填不足となり、厚すぎると受光面にはみ出すことがあるので、好ましくは5〜50μm、より好ましくは10〜40μmである。   In addition, since the layer thickness of the conductive adhesive layer 40 is insufficient when it is too thin, and when it is too thick, the conductive adhesive layer 40 may protrude from the light receiving surface.

太陽電池セル50の受光面の第1電極21、非受光面の第2電極23としては、従来公知の太陽電池セルのバスバー電極と同様の構成とすることができる。例えば、銀ペーストやAlペーストを塗布し、加熱することにより形成されたものである。   As the 1st electrode 21 of the light-receiving surface of the photovoltaic cell 50, and the 2nd electrode 23 of a non-light-receiving surface, it can be set as the structure similar to the bus-bar electrode of a conventionally well-known solar cell. For example, it is formed by applying silver paste or Al paste and heating.

例えば、太陽電池セル50の受光面に形成される第1電極21は、入射光を遮る面積をできるだけ小さくするために、通常、約1mmの幅でライン状に形成される。第1電極21の数は、太陽電池セルのサイズや抵抗を考慮して適宜に設定される。また、同様の方法により、第1電極に対し交差するように、光電変換素子10の受光面のほぼ全域にわたって、約100μm程度の幅を有するライン状のフィンガー電極22が約2mmおきに形成される。   For example, the first electrode 21 formed on the light receiving surface of the solar battery cell 50 is usually formed in a line shape with a width of about 1 mm in order to minimize the area that blocks incident light. The number of the first electrodes 21 is appropriately set in consideration of the size and resistance of the solar battery cell. Further, by the same method, the line-shaped finger electrodes 22 having a width of about 100 μm are formed at intervals of about 2 mm over almost the entire light receiving surface of the photoelectric conversion element 10 so as to intersect the first electrode. .

また、太陽電池セル50の非受光面に形成される第2電極23及びフィンガー電極24も、受光面に形成される第1電極21及びフィンガー電極22と同様の構成とすることができる。なお、非受光面の第2電極は、入射光を考慮する必要がないため、光電変換素子10の裏面の略全面を覆うように形成してもよい。その場合にはフィンガー電極24は不要となる。   Moreover, the 2nd electrode 23 and finger electrode 24 which are formed in the non-light-receiving surface of the photovoltaic cell 50 can also be set as the structure similar to the 1st electrode 21 and finger electrode 22 which are formed in a light-receiving surface. Note that the second electrode on the non-light-receiving surface does not need to consider incident light, and may be formed so as to cover substantially the entire back surface of the photoelectric conversion element 10. In that case, the finger electrode 24 becomes unnecessary.

タブ線30としては、従来の太陽電池モジュールで使用されているタブ線を利用することができる。例えば50〜300μm厚のリボン状銅箔を好ましく使用することができる。このようなリボン状銅箔は、必要に応じて、金メッキ、銀メッキ、すずメッキ、半田メッキ等を施すことができる。   As the tab wire 30, a tab wire used in a conventional solar cell module can be used. For example, a ribbon-like copper foil having a thickness of 50 to 300 μm can be preferably used. Such a ribbon-like copper foil can be subjected to gold plating, silver plating, tin plating, solder plating, or the like, if necessary.

前述したように、第1電極、第2電極及びタブ線30はフレーク状金属粒子より柔らかいものを使用する。例えば、フレーク状金属粒子がニッケル粒子(モース硬度=3.5)である場合、第1電極、第2電極、タブ線は、それらの少なくとも表面が金(モース硬度=2.5)、銀(モース硬度=2.7)、銅(モース硬度=3.0)、アルミニウム(モース硬度=2.9)、スズ(モース硬度=3.0)等から構成することが好ましい。   As described above, the first electrode, the second electrode, and the tab wire 30 are softer than the flaky metal particles. For example, when the flaky metal particles are nickel particles (Mohs hardness = 3.5), at least the surface of the first electrode, the second electrode, and the tab wire is gold (Mohs hardness = 2.5), silver ( It is preferably composed of Mohs hardness = 2.7), copper (Mohs hardness = 3.0), aluminum (Mohs hardness = 2.9), tin (Mohs hardness = 3.0) and the like.

次に、図1の本発明の太陽電池モジュールは、以下のように製造することができる。   Next, the solar cell module of the present invention shown in FIG. 1 can be manufactured as follows.

剥離フィルム上に、所定のフレーク状金属粒子を50質量%以上含有する導電粒子をエポキシ樹脂組成物に分散させた導電接着剤を乾燥厚で10〜40μmとなるように塗布し、乾燥することにより導電接着フィルムを形成する。   On the release film, a conductive adhesive in which conductive particles containing 50% by mass or more of predetermined flaky metal particles are dispersed in an epoxy resin composition is applied to a dry thickness of 10 to 40 μm and dried. A conductive adhesive film is formed.

太陽電池セルの第1電極及び第2電極に対し、導電接着フィルムの導電性接着層を仮圧着させ、剥離フィルムを剥離することにより、第1電極及び第2電極上に導電性接着層を積層する。   The conductive adhesive layer of the conductive adhesive film is temporarily bonded to the first electrode and the second electrode of the solar battery cell, and the release film is peeled off to laminate the conductive adhesive layer on the first electrode and the second electrode. To do.

なお、導電接着剤をフィルム化することなく、ペースト状のまま、スクリーン印刷法などにより第1電極及び第2電極上に導電性接着層を形成してもよい。   In addition, you may form a conductive contact bonding layer on a 1st electrode and a 2nd electrode by screen printing etc. with a paste form, without forming a conductive adhesive into a film.

次に、太陽電池セルの受光面の第1電極と隣接する太陽電離セルの非受光面の第2電極とに、タブ線を配置し、約0.1〜5MPaで加圧しながら、30〜120℃で0.2〜10秒間加熱することにより仮貼りし、その後約0.1〜5MPaで加圧しながら、140〜200℃で10〜20秒間加熱することにより本圧着を行い、それにより複数の太陽電池セルを直列に接続する。なお、ペースト状の導電接着剤を用いた場合、仮貼り工程を省略することもできる。   Next, a tab wire is disposed between the first electrode on the light receiving surface of the solar battery cell and the second electrode on the non-light receiving surface of the adjacent solar ionization cell, and pressurizing at about 0.1 to 5 MPa. Temporarily affixing by heating at a temperature of 0.2 to 10 seconds and then pressing at about 0.1 to 5 MPa while heating at 140 to 200 ° C. for 10 to 20 seconds, thereby performing a plurality of press bonding Connect the solar cells in series. In addition, when a paste-like conductive adhesive is used, the temporary sticking step can be omitted.

次に、ガラスなどの透光性表面保護材、EVA等の封止シート、直列に接続された複数の太陽電池セル、EVA等の封止シート、背面保護材の順で積層し、真空にした後、120〜150℃で5〜20分間ラミネートする。その後、120〜150℃で30〜60分間加熱することで、完全に硬化させる。その後、端子ボックス、金属フレームをとりつけ、太陽電池モジュールを得ることができる。   Next, a light-transmitting surface protective material such as glass, a sealing sheet such as EVA, a plurality of solar cells connected in series, a sealing sheet such as EVA, and a back surface protective material were stacked in this order and evacuated. Then, it laminates at 120 to 150 ° C. for 5 to 20 minutes. Then, it hardens | cures completely by heating at 120-150 degreeC for 30-60 minutes. Then, a terminal box and a metal frame are attached, and a solar cell module can be obtained.

次に、薄膜系太陽電池セルを使用する本発明の太陽電池モジュールの一例について図3を参照しながら説明する。このような薄膜系太陽電池モジュールは、長尺の薄膜系光電変換素子を横方向に直接に接続し、その光電変換素子の電極に電力取り出し用のタブ線が接続され、必要に応じ、図2のように、樹脂封止されるものである。   Next, an example of the solar battery module of the present invention using thin film solar cells will be described with reference to FIG. In such a thin-film solar cell module, a long thin-film photoelectric conversion element is directly connected in the horizontal direction, and a tab wire for power extraction is connected to the electrode of the photoelectric conversion element. In this way, the resin is sealed.

図3の薄膜系太陽電池モジュール100は、基材38上に、薄膜光電変換素子からなる薄膜系太陽電池セル32が、直列に平面方向に配列されており、一方の末端の太陽電池セル32cの表面電極(図示せず)と、他方の末端の太陽電池セル32dの表面電極(図示せず)とに、電力取り出し用のタブ線34が、接着剤を介して接続された構造を有する。薄膜系太陽電池セル32を使用すること、太陽電池セル同士の接続にタブ線を使用しないことができる以外の構成は、図1で説明した結晶系太陽電池モジュールの場合と原則同じである。   In the thin film solar cell module 100 of FIG. 3, thin film solar cells 32 made of thin film photoelectric conversion elements are arranged in series on a substrate 38 in a planar direction, and the solar cell 32 c at one end is arranged. A tab wire 34 for taking out electric power is connected to a surface electrode (not shown) and a surface electrode (not shown) of the solar cell 32d at the other end via an adhesive. In principle, the thin-film solar cells 32 and the configuration other than the use of tab wires for connection between solar cells are the same as those of the crystalline solar cell module described in FIG.

このような薄膜系太陽電池モジュールは、一方の末端の太陽電池セル32cの表面電極(図示せず)と、他方の末端の太陽電池セル32dの表面電極(図示せず)とに、電力取り出し用のタブ線34を、図1の結晶系太陽電池モジュールで説明した接着剤を介して室温加圧もしくは低温(約30〜120℃)加圧することにより仮貼りし、比較的高温(約140〜200℃)で本圧着することにより製造することができる。   Such a thin-film solar cell module is used to extract power from the surface electrode (not shown) of the solar cell 32c at one end and the surface electrode (not shown) of the solar cell 32d at the other end. The tab wire 34 is temporarily pasted by pressing at room temperature or low temperature (about 30 to 120 ° C.) through the adhesive described in the crystalline solar cell module of FIG. 1, and relatively high temperature (about 140 to 200). (° C.).

なお、このようにして得られた太陽電池モジュールを複数個用意し、それらを直列に接続して太陽電池ストリングを作成し、更に、このような太陽電池ストリングスを複数用意し、それらを並列に接続することにより太陽電池アレイを得ることができる。   In addition, prepare a plurality of solar cell modules obtained in this way, connect them in series to create a solar cell string, further prepare a plurality of such solar cell strings, connect them in parallel By doing so, a solar cell array can be obtained.

なお、本発明で使用した導電接着剤、即ち、複数の太陽電池セルが直列に接続されてなる太陽電池モジュールの少なくとも一つの太陽電池セルの表面電極をタブ線と接続するための導電接着剤も、本発明の一部であり、その特徴は、バインダー樹脂組成物に導電粒子が分散してなるものであり、導電粒子の50質量%以上が、1〜50μmの長径と、5μm以下の厚みと、3〜150のアスペクト比(長径/厚さ)とを有し、且つ表面電極及びタブ線よりも高い硬度を有するフレーク状金属粒子であることを特徴とするものである。具体的な構成は、既に説明したとおりである。   In addition, the conductive adhesive used in the present invention, that is, the conductive adhesive for connecting the surface electrode of at least one solar battery cell of the solar battery module in which a plurality of solar battery cells are connected in series to the tab wire is also used. The conductive particles are dispersed in the binder resin composition, which is a part of the present invention. 50% by mass or more of the conductive particles have a major axis of 1 to 50 μm and a thickness of 5 μm or less. And flaky metal particles having an aspect ratio (major axis / thickness) of 3 to 150 and higher hardness than the surface electrode and the tab wire. The specific configuration is as described above.

以下、本発明の太陽電池モジュールについて、試験例及び実施例を挙げて具体的に説明するが、本発明は、下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において、適宜変更して実施することができる。   Hereinafter, the solar cell module of the present invention will be specifically described with reference to test examples and examples, but the present invention is not limited to those shown in the following examples, and the gist thereof is not changed. In the range, it can implement by changing suitably.

実施例1
(1)導電接着フィルムの作製
長径が1〜20μm、厚さ3μm以下、アスペクト比3〜50の鱗片状Ni粒子(モース硬度3.8)を50質量%以上含有する導電粒子10質量部、ビスA型エポキシ樹脂(EP828、ジャパンエポキシレジン(株))50質量部、フェノキシ樹脂(YP−50、東都化成(株))20質量部、及びイミダゾール系潜在性硬化剤(HX3941HP、旭化成(株))20質量部、更にトルエン100質量部を混合した、導電接着剤を調製した。
Example 1
(1) Production of conductive adhesive film 10 parts by mass of conductive particles containing 50 mass% or more of scaly Ni particles (Mohs hardness 3.8) having a major axis of 1 to 20 μm, a thickness of 3 μm or less, and an aspect ratio of 3 to 50; A-type epoxy resin (EP828, Japan Epoxy Resin Co., Ltd.) 50 parts by mass, phenoxy resin (YP-50, Toto Kasei Co., Ltd.) 20 parts by mass, and imidazole-based latent curing agent (HX3941HP, Asahi Kasei Co., Ltd.) A conductive adhesive was prepared by mixing 20 parts by mass and further 100 parts by mass of toluene.

得られた導電接着剤を、50μm厚の剥離処理ポリエチレンテレフタレートフィルムに25μm厚となるように塗布し、80℃のオーブン中で5分間加熱乾燥処理して成膜し、これにより導電接着フィルムを作成した。   The resulting conductive adhesive was applied to a 50 μm thick release-treated polyethylene terephthalate film to a thickness of 25 μm, and heated and dried in an oven at 80 ° C. for 5 minutes to form a conductive adhesive film. did.

(2)太陽電池モジュールモデルの作製
(2a)光電変換素子の代替物として、縦80mm、横15mm、厚さ0.7mmの大きさの以下の3種のガラス板を用意した。
(2ai)電極として、厚さ150〜200nmのインジウム−チタン複合酸化物層を設けたITOベタガラス板を用意した。ITO表面のモース硬度は4以上であった。また、電極表面のラフネスは0.2μm以下であった。
(2aii)電極として、厚さ500nmのアルミニウム蒸着膜を設けたAlベタガラス板を用意した。Al表面のモース硬度は2.9であった。また、電極表面のラフネスは0.2μm以下であった。なお、アルミニウムの表面には強固な不動態膜が形成されていた。
(2aiii)電極として、厚さ5μmのAgペースト焼成膜を設けたAgベタガラス板を用意した。Ag表面のモース硬度は2.7であった。また、電極表面のラフネスは4μm以下であった。なお、Agの表面には弱い酸化膜が形成されていた。
(2) Production of solar cell module model (2a) As an alternative to the photoelectric conversion element, the following three types of glass plates having a length of 80 mm, a width of 15 mm, and a thickness of 0.7 mm were prepared.
(2ai) An ITO solid glass plate provided with an indium-titanium composite oxide layer having a thickness of 150 to 200 nm was prepared as an electrode. The Mohs hardness of the ITO surface was 4 or more. The roughness of the electrode surface was 0.2 μm or less.
(2aii) An Al solid glass plate provided with an aluminum deposited film having a thickness of 500 nm was prepared as an electrode. The Mohs hardness of the Al surface was 2.9. The roughness of the electrode surface was 0.2 μm or less. A strong passive film was formed on the aluminum surface.
(2aiii) An Ag solid glass plate provided with a 5 μm thick Ag paste fired film was prepared as an electrode. The Mohs hardness on the Ag surface was 2.7. The roughness of the electrode surface was 4 μm or less. A weak oxide film was formed on the Ag surface.

(2b)他方、タブ線として、以下の2種のタブ線を用意した。
(2bi)150μm厚の銅箔に、SnAgCu半田ディップメッキ(メッキ厚40μm)を施した半田被覆銅リボンを用意した。表面のモース硬度は3以下であった。
(2bii)150μm厚の無垢銅リボンをタブ線として使用した。表面のモース硬度は3であった。
(2b) On the other hand, the following two types of tab lines were prepared as tab lines.
(2bi) A solder-coated copper ribbon in which SnAgCu solder dip plating (plating thickness 40 μm) was applied to a 150 μm thick copper foil was prepared. The Mohs hardness of the surface was 3 or less.
(2bii) A solid copper ribbon having a thickness of 150 μm was used as a tab wire. The Mohs hardness of the surface was 3.

(2c)導電接着フィルムの導電性接着層を、光電変換素子の代替物の電極層に対し、12箇所に熱圧着(接続面積2mm四方、180℃、3MPa、15秒)することにより太陽電池モジュールモデルを作製した。得られた太陽電池モジュールモデルについて、4端子法により最大抵抗値と最小抵抗値とを測定し、更に平均抵抗値を算出し、平行抵抗値について以下の表1に示す基準で評価した。得られた結果を表2に示す。   (2c) A solar cell module by thermally bonding the conductive adhesive layer of the conductive adhesive film to 12 locations on the electrode layer as an alternative to the photoelectric conversion element (connection area 2 mm square, 180 ° C., 3 MPa, 15 seconds) A model was created. With respect to the obtained solar cell module model, the maximum resistance value and the minimum resistance value were measured by the four-terminal method, the average resistance value was calculated, and the parallel resistance value was evaluated according to the criteria shown in Table 1 below. The obtained results are shown in Table 2.

Figure 2010258006
Figure 2010258006

実施例2
鱗片状Ni粒子として、長径が20〜40μm、厚さ3μm以下、アスペクト比50〜100の鱗片状Ni粒子(モース硬度3.8)を50質量%以上含む導電粒子を使用すること以外は、実施例1を繰り返すことにより、導電接着フィルム、太陽電池モジュールモデルを作製した。得られた太陽電池モジュールモデルについて、4端子法により最大抵抗値と最小抵抗値とを測定し、更に平均抵抗値を算出し、同様の基準で評価した。得られた結果を表2に示す。
Example 2
Implementation was performed except that conductive particles containing 50 mass% or more of flaky Ni particles (Mohs hardness 3.8) having a major axis of 20 to 40 μm, a thickness of 3 μm or less, and an aspect ratio of 50 to 100 were used as the flaky Ni particles. By repeating Example 1, a conductive adhesive film and a solar cell module model were produced. With respect to the obtained solar cell module model, the maximum resistance value and the minimum resistance value were measured by a four-terminal method, and the average resistance value was calculated and evaluated based on the same criteria. The obtained results are shown in Table 2.

実施例3
鱗片状Ni粒子として、長径が40〜50μm、厚さ3μm以下、アスペクト比100〜150の鱗片状Ni粒子(モース硬度3.8)を50質量%以上含む導電粒子を使用すること以外は、実施例1を繰り返すことにより、導電接着フィルム、太陽電池モジュールモデルを作製した。得られた太陽電池モジュールモデルについて、4端子法により最大抵抗値と最小抵抗値とを測定し、更に平均抵抗値を算出し、同様の基準で評価した。得られた結果を表2に示す。
Example 3
Implementation was performed except that conductive particles containing 50% by mass or more of flaky Ni particles having a major axis of 40 to 50 μm, a thickness of 3 μm or less, and an aspect ratio of 100 to 150 (Mohs hardness 3.8) were used as the flaky Ni particles. By repeating Example 1, a conductive adhesive film and a solar cell module model were produced. With respect to the obtained solar cell module model, the maximum resistance value and the minimum resistance value were measured by a four-terminal method, and the average resistance value was calculated and evaluated based on the same criteria. The obtained results are shown in Table 2.

比較例1
鱗片状Ni粒子に代えて、平均粒径10μmの球状Ni粒子(モース硬度3.8)を使用すること以外は、実施例1を繰り返すことにより、導電接着フィルム、太陽電池モジュールモデルを作製した。得られた太陽電池モジュールモデルについて、4端子法により最大抵抗値と最小抵抗値とを測定し、更に平均抵抗値を算出し、同様の基準で評価した。得られた結果を表2に示す。
Comparative Example 1
A conductive adhesive film and a solar cell module model were produced by repeating Example 1 except that spherical Ni particles having an average particle diameter of 10 μm (Mohs hardness 3.8) were used in place of the scale-like Ni particles. With respect to the obtained solar cell module model, the maximum resistance value and the minimum resistance value were measured by a four-terminal method, and the average resistance value was calculated and evaluated based on the same criteria. The obtained results are shown in Table 2.

比較例2
鱗片状Ni粒子に代えて、平均粒径10μmの球状半田粒子(モース硬度2以下)を使用すること以外は、実施例1を繰り返すことにより、導電接着フィルム、太陽電池モジュールモデルを作製した。得られた太陽電池モジュールモデルについて、4端子法により最大抵抗値と最小抵抗値とを測定し、更に平均抵抗値を算出し、同様の基準で評価した。得られた結果を表2に示す。


Comparative Example 2
A conductive adhesive film and a solar cell module model were produced by repeating Example 1 except that spherical solder particles having an average particle size of 10 μm (Mohs' hardness of 2 or less) were used instead of the scale-like Ni particles. With respect to the obtained solar cell module model, the maximum resistance value and the minimum resistance value were measured by a four-terminal method, and the average resistance value was calculated and evaluated based on the same criteria. The obtained results are shown in Table 2.


Figure 2010258006
Figure 2010258006

表2から分かるように、特定範囲の長径、厚さ、アスペクト比を有する扁平なフレーク状金属粒子を導電粒子として含有する導電接着フィルムを使用した実施例1〜3の太陽電池モジュールモデルにおいては、光電変換素子に通常設けられる電極材料(ITO電極、Al蒸着電極、銀ペースト電極)と、太陽電池セル同士を接続する際に通常用いられているタブ線(SnAgCu半田被覆銅リボン、無垢銅リボン)との間が、熱圧着処理により良好な信頼性を確保しつつ接続されていることがわかる。中でも、アスペクト比が3〜50、50〜100の場合が好ましいことがわかる。   As can be seen from Table 2, in the solar cell module models of Examples 1 to 3 using a conductive adhesive film containing flat flaky metal particles having a long diameter, thickness and aspect ratio in a specific range as conductive particles, Electrode materials (ITO electrodes, Al vapor deposition electrodes, silver paste electrodes) that are usually provided in photoelectric conversion elements and tab wires that are normally used when connecting solar cells (SnAgCu solder-coated copper ribbons, solid copper ribbons) It can be seen that the two are connected while ensuring good reliability by the thermocompression treatment. Especially, it turns out that the case where an aspect-ratio is 3-50 and 50-100 is preferable.

一方、扁平なフレーク状金属粒子に代えて球状の導電金属粒子の中で、比較的硬い球状Ni粒子を使用した比較例1の場合、熱圧着の際に球状Ni粒子は変形し難い。これは、比較的粒径の大きな粒子が存在するために、粒径の小さい粒子が接続に寄与できなかったためと推定される。従って、電極材料としてITOを使用したときには、導通信頼性の評価がCであったが、電極材料が比較的柔らかいAgペースト電極を使用したときには、球状Ni粒子が銀ペースト電極側にめり込むように銀ペースト電極側が変形するので、導通信頼性に問題はないことがわかる。また、表面に強固な不動態膜が形成されているアルミニウムペースト電極を使用したときにも、熱圧着の際に不動態膜を破ることができるので、導通信頼性に問題がないことがわかる。   On the other hand, in the case of Comparative Example 1 using relatively hard spherical Ni particles among spherical conductive metal particles instead of flat flaky metal particles, the spherical Ni particles are difficult to deform during thermocompression bonding. This is presumably because the particles having a relatively large particle size existed and the particles having a small particle size could not contribute to the connection. Therefore, when ITO was used as the electrode material, the conduction reliability was evaluated as C. However, when an Ag paste electrode having a relatively soft electrode material was used, the silver Ni particles were embedded in the silver paste electrode side. Since the paste electrode side is deformed, it can be seen that there is no problem in conduction reliability. In addition, even when an aluminum paste electrode having a strong passive film formed on the surface is used, it can be seen that there is no problem in conduction reliability because the passive film can be broken during thermocompression bonding.

扁平なフレーク状金属粒子に代えて球状の導電金属粒子の中で、比較的柔らかい球状ハンダ粒子を使用した比較例2の場合、熱圧着の際にそれ自体が変形するので、電極材料としてITOを使用したとき、銀ペースト電極を使用したときには、導通信頼性に問題はないことがわかる。しかし、表面に強固な不動態膜が形成されているアルミニウムペースト電極を使用したときには、熱圧着の際に不動態膜を破ることができず、導通信頼性に問題があることがわかる。   In the case of Comparative Example 2 in which relatively soft spherical solder particles are used instead of flat flaky metal particles in the case of comparatively soft spherical solder particles, ITO itself deforms during thermocompression bonding, so ITO is used as an electrode material. When used, it can be seen that there is no problem in conduction reliability when a silver paste electrode is used. However, when an aluminum paste electrode having a strong passive film formed on the surface is used, it can be seen that the passive film cannot be broken during thermocompression bonding, and there is a problem in conduction reliability.

本発明の太陽電池モジュールは、電極とタブ線との接合材料として接続導電接着フィルムを使用し、さらにそれに配合する導電粒子として、その少なくとも50質量%以上が、1〜50μmの長径、5μm以下の厚さ、3〜150のアスペクト比を有するフレーク状金属粒子を使用する。従って、太陽電池セルの電極の表面凹凸の有無に関わらず、良好な接続信頼性を確保することができる。また、このフレーク状金属粒子は、表面電極及びタブ線よりも高い硬度を有する。従って、これらの電極を形成するためにAlペーストやAl蒸着膜を使用した場合であっても、熱圧着処理の際に、アルミニウムの表面不動態膜を破壊することができ、良好な接続信頼性を確保することができる。   The solar cell module of the present invention uses a connection conductive adhesive film as a bonding material between an electrode and a tab wire, and further, as conductive particles to be blended therein, at least 50% by mass is 1-50 μm long diameter, 5 μm or less. Flaky metal particles having an aspect ratio of 3 to 150 in thickness are used. Therefore, good connection reliability can be ensured regardless of the presence or absence of surface irregularities on the electrodes of the solar battery cells. Moreover, this flaky metal particle has hardness higher than a surface electrode and a tab wire. Therefore, even when Al paste or Al deposited film is used to form these electrodes, the surface passivation film of aluminum can be destroyed during the thermocompression treatment, and good connection reliability can be obtained. Can be secured.

10 光電変換素子
21 第1電極
22、24 フィンガー電極
23 第2電極
30、34 タブ線
32 薄膜系太陽電池セル
38 基材
40 導電性接着層
50 太陽電池セル
100 太陽電池モジュール
200 金属フレーム
201 透光性表面保護材
202 背面保護材
203 透光性封止材
DESCRIPTION OF SYMBOLS 10 Photoelectric conversion element 21 1st electrode 22, 24 Finger electrode 23 2nd electrode 30, 34 Tab wire | line 32 Thin film type photovoltaic cell 38 Base material 40 Conductive adhesive layer 50 Solar cell 100 Solar cell module 200 Metal frame 201 Translucent Surface protective material 202 Back surface protective material 203 Translucent sealing material

Claims (6)

複数の太陽電池セルが直列に接続されてなる太陽電池モジュールであって、少なくとも一つの太陽電池セルの表面電極がタブ線と接続されている太陽電池モジュールにおいて、
該太陽電池セルの表面電極とタブ線とが、バインダー樹脂組成物に導電粒子が分散してなる導電性接着層を介して熱圧着処理により接続されており、導電粒子の50質量%以上が、1〜50μmの長径と、5μm以下の厚みと、3〜150のアスペクト比(長径/厚さ)とを有し、且つ第1電極、第2電極及びタブ線よりも高い硬度を有するフレーク状金属粒子であることを特徴とする太陽電池モジュール。
In a solar cell module in which a plurality of solar cells are connected in series, wherein the surface electrode of at least one solar cell is connected to the tab wire,
The surface electrode of the solar battery cell and the tab wire are connected by thermocompression bonding through a conductive adhesive layer in which conductive particles are dispersed in a binder resin composition, and 50% by mass or more of the conductive particles are A flaky metal having a major axis of 1 to 50 μm, a thickness of 5 μm or less, an aspect ratio (major axis / thickness) of 3 to 150, and a hardness higher than that of the first electrode, the second electrode and the tab wire. A solar cell module characterized by being a particle.
該フレーク状金属粒子のアスペクト比が、3〜50(但し、50を含まず)又は50〜100である請求項1記載の太陽電池モジュール。   The solar cell module according to claim 1, wherein the aspect ratio of the flaky metal particles is 3 to 50 (however, not including 50) or 50 to 100. フレーク状金属粒子が、フレーク状ニッケル粒子である請求項1又は2いずれかに記載の太陽電池モジュール。   The solar cell module according to claim 1, wherein the flaky metal particles are flaky nickel particles. 表面電極が、アルミニウムから形成されている請求項1〜3のいずれかに記載の太陽電池モジュール。   The solar cell module according to any one of claims 1 to 3, wherein the surface electrode is made of aluminum. 複数の太陽電池セルが直列に接続され、少なくとも一つの太陽電池セルの表面電極がタブ線と接続されている太陽電池モジュールの製造方法において、
該太陽電池セルの表面電極上に、バインダー樹脂組成物に導電粒子が分散してなる導電性接着層を積層する工程;
該導電性接着層上に、タブ線を配置する工程; 及び
導電性接着層上のタブ線側から熱圧着処理することにより、太陽電池セルの表面電極とタブ線とを電気的に接続する工程
を有し、
導電粒子の50質量%以上が、1〜50μmの長径と、5μm以下の厚みと、3〜150のアスペクト比(長径/厚さ)とを有し、且つ表面電極及びタブ線よりも高い硬度を有するフレーク状金属粒子であることを特徴とする太陽電池モジュールの製造方法。
In the method for manufacturing a solar cell module, in which a plurality of solar cells are connected in series and the surface electrode of at least one solar cell is connected to a tab wire,
A step of laminating a conductive adhesive layer formed by dispersing conductive particles in a binder resin composition on the surface electrode of the solar battery cell;
A step of disposing a tab wire on the conductive adhesive layer; and a step of electrically connecting the surface electrode of the solar cell and the tab wire by thermocompression treatment from the tab wire side on the conductive adhesive layer. Have
50% by mass or more of the conductive particles have a major axis of 1 to 50 μm, a thickness of 5 μm or less, an aspect ratio (major axis / thickness) of 3 to 150, and higher hardness than the surface electrode and the tab wire. A method for producing a solar cell module, comprising flaky metal particles.
複数の太陽電池セルが直列に接続されてなる太陽電池モジュールの少なくとも一つの太陽電池セルの表面電極をタブ線と接続するための導電接着剤であって、バインダー樹脂組成物に導電粒子が分散してなり、導電粒子の50質量%以上が、1〜50μmの長径と、5μm以下の厚みと、3〜150のアスペクト比(長径/厚さ)とを有し、且つ表面電極及びタブ線よりも高い硬度を有するフレーク状金属粒子であることを特徴とする導電接着剤。   A conductive adhesive for connecting a surface electrode of at least one solar battery cell of a solar battery module in which a plurality of solar battery cells are connected in series to a tab wire, wherein conductive particles are dispersed in a binder resin composition. 50% by mass or more of the conductive particles have a major axis of 1 to 50 μm, a thickness of 5 μm or less, and an aspect ratio (major axis / thickness) of 3 to 150, and more than the surface electrode and the tab wire A conductive adhesive comprising flaky metal particles having high hardness.
JP2009102637A 2009-04-21 2009-04-21 Solar cell module and manufacturing method thereof Active JP5446420B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009102637A JP5446420B2 (en) 2009-04-21 2009-04-21 Solar cell module and manufacturing method thereof
PCT/JP2010/054777 WO2010122863A1 (en) 2009-04-21 2010-03-19 Solar cell module and method for manufacturing same
KR1020117024805A KR101403077B1 (en) 2009-04-21 2010-03-19 Solar cell module and method for manufacturing same
TW099110298A TWI482293B (en) 2009-04-21 2010-04-02 Solar cell module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102637A JP5446420B2 (en) 2009-04-21 2009-04-21 Solar cell module and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013259944A Division JP5692347B2 (en) 2013-12-17 2013-12-17 Conductive adhesive

Publications (2)

Publication Number Publication Date
JP2010258006A true JP2010258006A (en) 2010-11-11
JP5446420B2 JP5446420B2 (en) 2014-03-19

Family

ID=43010986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102637A Active JP5446420B2 (en) 2009-04-21 2009-04-21 Solar cell module and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP5446420B2 (en)
KR (1) KR101403077B1 (en)
TW (1) TWI482293B (en)
WO (1) WO2010122863A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248706A (en) * 2011-05-27 2012-12-13 Sony Chemical & Information Device Corp Solar cell module, method for manufacturing the same, and tab wire for thin-film solar cell
WO2013031519A1 (en) * 2011-08-26 2013-03-07 デクセリアルズ株式会社 Solar cell conductive adhesive and connection method using same, solar cell module, and method for producing solar cell module
JP2013195142A (en) * 2012-03-16 2013-09-30 Dexerials Corp Solar cell output measuring method and solar cell output measuring tool
CN103370796A (en) * 2010-12-01 2013-10-23 迪睿合电子材料有限公司 Thin-film solar cell module and method for manufacturing thin-film solar cell module
JP2014241336A (en) * 2013-06-11 2014-12-25 日立化成株式会社 Solar battery module
KR20150032889A (en) 2012-07-10 2015-03-30 데쿠세리아루즈 가부시키가이샤 Solar cell module and manufacturing method for same
JP2020181672A (en) * 2019-04-24 2020-11-05 京セラ株式会社 Conductive adhesion sheet, method for manufacturing conductive adhesion sheet, and semiconductor device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707110B2 (en) * 2010-11-26 2015-04-22 デクセリアルズ株式会社 Conductive adhesive material, solar cell module and manufacturing method thereof
JP2012119441A (en) * 2010-11-30 2012-06-21 Sony Chemical & Information Device Corp Solar cell module and method for manufacturing the same
WO2012102077A1 (en) * 2011-01-27 2012-08-02 日立化成工業株式会社 Conductive adhesive composition, connector, and solar cell module
CN103328596A (en) * 2011-01-27 2013-09-25 日立化成株式会社 Electrically conductive adhesive composition, connector and solar cell module
US20130333744A1 (en) * 2011-01-27 2013-12-19 Hitachi Chemical Company, Ltd. Conductive binder composition, metal wire with conductive binder, bonded unit, and solar cell module
KR101211730B1 (en) * 2011-04-04 2012-12-12 엘지이노텍 주식회사 Solar cell module and manufacturing method thereof
KR101816163B1 (en) * 2011-06-14 2018-01-08 엘지전자 주식회사 Solar cell module
TW201310678A (en) * 2011-08-26 2013-03-01 Asahi Kasei E Materials Corp Method for manufacturing solar cell connecting structure
CN103258886A (en) * 2012-02-20 2013-08-21 稳懋半导体股份有限公司 Solar cell soft board modular structure and manufacturing method of solar cell soft board modular structure
KR101776395B1 (en) 2015-08-28 2017-09-08 현대자동차주식회사 Head lamp module for vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273639A (en) * 1997-03-31 1998-10-13 Kyocera Corp Electroconductive heat resistant adhesive, heater by using the same and heat roller for fixing
JP2004010828A (en) * 2002-06-10 2004-01-15 Ricoh Co Ltd Electric conductive adhesive and electronic part
JP2008004429A (en) * 2006-06-23 2008-01-10 Sumitomo Electric Ind Ltd Conductive paste, anisotropic conductive film, and manufacturing method of electronic equipment using these
WO2008026356A1 (en) * 2006-08-29 2008-03-06 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module
JP2008085225A (en) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd Solar battery module
JP2009088152A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Solar battery module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019106A (en) * 2005-07-05 2007-01-25 Kyocera Chemical Corp Conductive paste for forming electrode, and photovoltaic cell
JP2007214533A (en) * 2006-01-16 2007-08-23 Hitachi Chem Co Ltd Conductive bonding film and solar cell module
WO2007088751A1 (en) * 2006-01-31 2007-08-09 Sanyo Electric Co., Ltd. Solar battery element and solar battery module
JP2008135654A (en) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd Solar battery module
JP2009302327A (en) * 2008-06-13 2009-12-24 Sharp Corp Connection structure of wiring member, solar-battery module comprising the same, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273639A (en) * 1997-03-31 1998-10-13 Kyocera Corp Electroconductive heat resistant adhesive, heater by using the same and heat roller for fixing
JP2004010828A (en) * 2002-06-10 2004-01-15 Ricoh Co Ltd Electric conductive adhesive and electronic part
JP2008004429A (en) * 2006-06-23 2008-01-10 Sumitomo Electric Ind Ltd Conductive paste, anisotropic conductive film, and manufacturing method of electronic equipment using these
WO2008026356A1 (en) * 2006-08-29 2008-03-06 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module
JP2008085225A (en) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd Solar battery module
JP2009088152A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Solar battery module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370796A (en) * 2010-12-01 2013-10-23 迪睿合电子材料有限公司 Thin-film solar cell module and method for manufacturing thin-film solar cell module
JP2012248706A (en) * 2011-05-27 2012-12-13 Sony Chemical & Information Device Corp Solar cell module, method for manufacturing the same, and tab wire for thin-film solar cell
WO2013031519A1 (en) * 2011-08-26 2013-03-07 デクセリアルズ株式会社 Solar cell conductive adhesive and connection method using same, solar cell module, and method for producing solar cell module
JP2013195142A (en) * 2012-03-16 2013-09-30 Dexerials Corp Solar cell output measuring method and solar cell output measuring tool
KR20150032889A (en) 2012-07-10 2015-03-30 데쿠세리아루즈 가부시키가이샤 Solar cell module and manufacturing method for same
JP2014241336A (en) * 2013-06-11 2014-12-25 日立化成株式会社 Solar battery module
JP2020181672A (en) * 2019-04-24 2020-11-05 京セラ株式会社 Conductive adhesion sheet, method for manufacturing conductive adhesion sheet, and semiconductor device
JP7137895B2 (en) 2019-04-24 2022-09-15 京セラ株式会社 Conductive Adhesive Sheet, Method for Manufacturing Conductive Adhesive Sheet, and Semiconductor Device

Also Published As

Publication number Publication date
TW201044611A (en) 2010-12-16
KR101403077B1 (en) 2014-06-03
KR20120007008A (en) 2012-01-19
TWI482293B (en) 2015-04-21
WO2010122863A1 (en) 2010-10-28
JP5446420B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5446420B2 (en) Solar cell module and manufacturing method thereof
JP5415396B2 (en) Solar cell module manufacturing method and solar cell module
JP5877604B2 (en) Method for manufacturing solar cell module, solar cell module, and tab wire connection method
WO2008044696A1 (en) Solar battery cell connection method and solar battery module
JP5676944B2 (en) Solar cell module and method for manufacturing solar cell module
JP6247059B2 (en) Conductive adhesive, solar cell module, and method for manufacturing solar cell module
JP5798772B2 (en) Solar cell module, method for manufacturing solar cell module, tab wire
JP5480120B2 (en) Solar cell module, solar cell module manufacturing method, solar cell, and tab wire connection method
KR102041274B1 (en) Electrically conductive adhesive agent, solar cell module, and method for producing solar cell module
JP5759220B2 (en) Solar cell module and method for manufacturing solar cell module
WO2012099257A1 (en) Solar cell module and method of manufacturing solar cell module
JP2011222744A (en) Tab wire for connecting solar battery, connection method and solar battery module
JP5692347B2 (en) Conductive adhesive
TWI537985B (en) A conductive adhesive for a solar cell and a method of connecting the solar cell module and a solar cell module using the same
WO2012073702A1 (en) Solar cell module and production method for same
JP2016178312A (en) Conductive adhesive for solar cell, connection method using the same, solar cell module, and manufacturing method of solar cell module
JP2016001765A (en) Solar cell module and manufacturing method of the solar cell module
JP2016164984A (en) Solar cell module, method for manufacturing the same, and conductive adhesive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5446420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250