JP2010232009A - Linear member and manufacturing method of the same - Google Patents

Linear member and manufacturing method of the same Download PDF

Info

Publication number
JP2010232009A
JP2010232009A JP2009078240A JP2009078240A JP2010232009A JP 2010232009 A JP2010232009 A JP 2010232009A JP 2009078240 A JP2009078240 A JP 2009078240A JP 2009078240 A JP2009078240 A JP 2009078240A JP 2010232009 A JP2010232009 A JP 2010232009A
Authority
JP
Japan
Prior art keywords
linear member
basic body
wires
wire
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009078240A
Other languages
Japanese (ja)
Inventor
Kazumi Akatsu
和三 赤津
Masaji Ishikawa
仁二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shintec Co Ltd
Original Assignee
Shintec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shintec Co Ltd filed Critical Shintec Co Ltd
Priority to JP2009078240A priority Critical patent/JP2010232009A/en
Publication of JP2010232009A publication Critical patent/JP2010232009A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear member excellent in extensibility in a longitudinal direction, contractivity in a diametrically direction, and flexibility and resilience in a bending direction, a linear member applicable to a photoelectric conversion element in a linear form, and a manufacturing method of the same. <P>SOLUTION: The linear member is formed by spiralling a base body including an arrangement of a plurality of wires spaced in a longitudinal direction with a space inside. The linear member is manufactured in a spiralling step of spiralling the base body including the arrangement of the plurality of wires around a core with a space in an arrangement direction, a shape maintaining treatment step of performing a shape maintaining treatment on the base body after the spiralling step, and a removing step of removing the core after the shape maintaining treatment step. The base body may include a semiconductor between conductive wires. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は線状部材およびその製造方法に関し、特に長さ方向に対する伸長性、直径方向に対する収縮性、折り曲げ方向に対する屈曲性あるいは復元力に優れた線状部材、およびその製造方法に関する。また本発明は線状型の光電変換素子に適用可能な線状部材およびその製造方法に関する。 The present invention relates to a linear member and a method for manufacturing the same, and more particularly to a linear member excellent in extensibility in the length direction, shrinkability in the diameter direction, bendability or restoring force in the bending direction, and a manufacturing method thereof. The present invention also relates to a linear member applicable to a linear photoelectric conversion element and a manufacturing method thereof.

近年、ワイヤの屈曲に対する復元力を改善する目的で芯線に超弾性形状記憶合金を用いることが検討されている(例えば、特許文献1、特許文献2参照)。特許文献1には、芯線として超弾性形状記憶合金のワイヤを用い、この芯線に超弾性形状記憶合金からなるコイルを遊びを持たせて被覆するようにした線状部材が記載されている。また、特許文献2には、超弾性形状記憶合金からなる芯線の外周に金、プラチナなどの貴金属素材による微細な装飾帯を螺旋状に密に巻きつけた線状部材が記載されている。しかしながら、上記従来のワイヤでは高い伸縮性(伸長性)が期待できないことに加えて経時的な伸びを防止することは困難であった。 In recent years, it has been studied to use a superelastic shape memory alloy for the core wire for the purpose of improving the restoring force against bending of the wire (for example, see Patent Document 1 and Patent Document 2). Patent Document 1 describes a linear member in which a wire made of a superelastic shape memory alloy is used as a core wire, and a coil made of the superelastic shape memory alloy is covered on the core wire with play. Patent Document 2 describes a linear member in which a fine decorative band made of a noble metal material such as gold or platinum is spirally and densely wound around the outer periphery of a core wire made of a superelastic shape memory alloy. However, in addition to not expecting high stretchability (extensibility) with the above-mentioned conventional wires, it has been difficult to prevent elongation over time.

また近年の太陽電池では、集光構造を改善する線状型の光電変換素子が提案されている(特許文献3)。しかしながら、特許文献3の光電変換素子は屈曲等の変形自由度の高さを主張するが、屈曲等の変形に伴って光電変換素子の電極線を構成する導電線が破断したり、電極線を構成する導電線と半導体間に生じる隙間や剥離により光電変換効率の低下が生じる恐れがあった。
特開2004−89589号公報 特開2001−286313号公報 特開平10−256579号公報
In recent solar cells, a linear photoelectric conversion element that improves the light condensing structure has been proposed (Patent Document 3). However, although the photoelectric conversion element of Patent Document 3 claims a high degree of freedom of deformation such as bending, the conductive wire constituting the electrode line of the photoelectric conversion element breaks along with the deformation such as bending, There is a possibility that the photoelectric conversion efficiency may be reduced due to gaps or separation between the conductive wire and the semiconductor.
JP 2004-89589 A JP 2001-286313 A JP-A-10-256579

本発明は、このような問題点に基づきなされたものであり、引っ張り強度が大きく、長さ方向に対する伸縮性、直径方向に対する収縮性、折り曲げ方向に対する屈曲性と復元性に優れた線状部材、およびその製造方法を提供することを目的とする。
また本発明は、光電変換素子の屈曲等に伴う物理的損傷を防ぎ光電変換効率の低下を防止した線状型の光電変換素子に適用可能な線状部材およびその製造方法を提供するものである。
The present invention has been made based on such problems, a linear member having high tensile strength, excellent stretchability in the length direction, shrinkability in the diameter direction, flexibility in the bending direction, and resilience, And it aims at providing the manufacturing method.
The present invention also provides a linear member applicable to a linear type photoelectric conversion element that prevents physical damage caused by bending or the like of the photoelectric conversion element and prevents a decrease in photoelectric conversion efficiency, and a manufacturing method thereof. .

本発明の第1構成における線状部材は、複数本のワイヤを配列した基本体が、内側に空間部を有し、かつ、長さ方向に間隔を開けて螺旋巻きに形成されたことを特徴とする。
第1構成における線状部材は内側に空間部を有し、かつ、長さ方向に間隔を開けるようにしたので、螺旋の傾斜角を大きくすると共に外径を収縮して、長さ方向の間隔(隙間)がなくなるまで伸長するため、伸長性および収縮性が大幅に向上する。更に、第1構成における線状部材は内側に空間部を有するようにしたので屈曲変形が容易であることから屈曲性も向上する。
すなわち、1本のワイヤを螺旋巻きにした場合には、ワイヤの太さが細いと、伸長性には優れるが、引っ張り強度が小さくすぐに伸びきってしまい、ワイヤの太さが太いと、引っ張り強度は大きくなるが、伸長性に劣るのに対して、複数本のワイヤを配列した基本体を螺旋巻きとすれば、伸長性を得ることができると共に、引っ張り強度を大きくすることができるからである。
The linear member according to the first configuration of the present invention is characterized in that a basic body in which a plurality of wires are arranged has a space portion inside and is formed in a spiral winding with a space in the length direction. And
Since the linear member in the first configuration has a space portion on the inner side and is spaced in the length direction, the spiral inclination angle is increased and the outer diameter is shrunk to reduce the distance in the length direction. Since it stretches until there is no (gap), stretchability and shrinkage are greatly improved. Furthermore, since the linear member in the first configuration has a space portion on the inner side, it is easy to bend and deform, thereby improving the flexibility.
In other words, when one wire is spirally wound, if the wire thickness is thin, the extensibility is excellent, but the tensile strength is low and the wire stretches quickly. Although the strength is increased, it is inferior in extensibility, but if the basic body in which a plurality of wires are arranged is spirally wound, the extensibility can be obtained and the tensile strength can be increased. is there.

基本体のワイヤは特に限定されないが、ばね材、例えば、ピアノ線材、ステンレス線材、非鉄系線材により構成することで引っ張り強度が大きく、伸長性、収縮性、屈曲性あるいは復元力に優れた線状部材を得ることができる。
特に、基本体のワイヤを超弾性形状記憶合金により構成した場合、長さ方向に伸長したり、外径が収縮したり、あるいは屈曲したのちであっても、元の形状に戻る復元性をさらに向上させることができる。超弾性形状記憶合金というのは、超弾性または形状記憶効果を有する合金を言い、例えば、ニッケル・チタン合金あるいはニッケル・チタン・コバルト合金などのニッケルおよびチタンを含む合金が挙げられる。
The wire of the basic body is not particularly limited, but is composed of a spring material such as a piano wire, a stainless steel wire, and a non-ferrous wire. A member can be obtained.
In particular, when the wire of the basic body is made of a superelastic shape memory alloy, even if it is elongated in the length direction, the outer diameter contracts, or bends, it can be restored to its original shape. Can be improved. The superelastic shape memory alloy refers to an alloy having a superelasticity or a shape memory effect, and includes, for example, an alloy containing nickel and titanium such as a nickel / titanium alloy or a nickel / titanium / cobalt alloy.

本発明の第2構成では、第1構成の基本体が導電性を有するワイヤ間に半導体が介在した状態で配列されることを特徴とする。
導電性を有するワイヤ間に半導体を配置するには、導電性ワイヤ間に半導体線を配列するか、あるいは、導電性を有するワイヤの外周部に半導電層を形成することなどを採用可能である。
半導体は、導電性の高さと伸縮性を兼ね備えることが必要になるため、伸縮性を有する軟質樹脂などの有機基材を半導体化した有機半導体を採用することが好ましく、例えば、樹脂中に半導体型の単層カーボンナノチューブ(SWCNT)を分散させて線状に成形した有機半導体を採用可能である。
有機半導体とは半導体の特性を示す有機材料であり、有機p型半導体の代表的なものにペンタセンがある。ペンタセンは、真空蒸着法や塗布により簡単に有機半導体薄膜が得られる。
導電性を有するワイヤの外周部に半導電層を形成する場合の半導体としては、有機半導体をドーピングした軟質樹脂を採用可能である。有機半導体による線状の導電体の被覆は、蒸着、或いは半導体の溶融液、溶解液又はゲル状態のものを塗布することにより行なうことができる。
The second configuration of the present invention is characterized in that the basic body of the first configuration is arranged in a state where a semiconductor is interposed between conductive wires.
In order to arrange the semiconductor between the conductive wires, it is possible to arrange the semiconductor lines between the conductive wires, or to form a semiconductive layer on the outer periphery of the conductive wire. .
Since it is necessary for the semiconductor to have both high conductivity and elasticity, it is preferable to employ an organic semiconductor obtained by converting an organic base material such as a flexible resin having elasticity into a semiconductor. It is possible to adopt an organic semiconductor formed by dispersing single-walled carbon nanotubes (SWCNT) in a linear shape.
An organic semiconductor is an organic material exhibiting semiconductor characteristics, and pentacene is a typical example of an organic p-type semiconductor. With pentacene, an organic semiconductor thin film can be easily obtained by vacuum deposition or coating.
As a semiconductor in the case of forming a semiconductive layer on the outer peripheral portion of a conductive wire, a soft resin doped with an organic semiconductor can be used. The linear conductor can be coated with the organic semiconductor by vapor deposition or by applying a semiconductor melt, solution or gel.

本発明の第3構成における線状部材の製造方法では、複数本のワイヤを配列した基本体を、配列方向に間隔を開けて螺旋巻きにする螺旋巻き工程と、螺旋巻き工程ののち、基本体の形状維持処理をする形状維持処理工程とを含むことを特徴とする。螺旋巻き工程には巻芯を使用する方法と使用しない方法がある。
形状維持処理とは、螺旋巻き工程を経た基本体の螺旋巻き状態を維持するための処理である。具体的には、螺旋巻き状態の基本体を構成するワイヤ同士を軟質樹脂等で被覆して一体化、あるいは接着することで形状維持処理を行うことができる。また、基本体が金属線と熱可塑性樹脂の線材を交互に配列して基本体を構成した場合には螺旋巻き後の熱可塑性樹脂の線材を金属線と融着して接合することで形状維持処理を行うことができる。基本体を構成するワイヤの一部または全部が形状記憶合金の場合の形状維持処理工程としては、螺旋巻き状態の基本体を加熱して形状記憶合金を形状記憶処理することが出来る。
In the method for manufacturing a linear member according to the third configuration of the present invention, a basic body after a spiral winding process in which a basic body in which a plurality of wires are arranged is spirally wound at intervals in the arrangement direction is formed. And a shape maintaining process step for performing the shape maintaining process. The spiral winding process includes a method using a winding core and a method not using it.
The shape maintaining process is a process for maintaining the spiral winding state of the basic body that has undergone the spiral winding process. Specifically, the shape maintaining process can be performed by covering the wires constituting the spiral wound basic body with a soft resin or the like so as to be integrated or bonded. In addition, when the basic body is configured by alternately arranging metal wires and thermoplastic resin wires, the shape is maintained by fusing and joining the thermoplastic resin wires after spiral winding to the metal wires. Processing can be performed. As a shape maintaining treatment step when part or all of the wires constituting the basic body is a shape memory alloy, the shape memory alloy can be subjected to a shape memory process by heating the spirally wound basic body.

本発明の第4構成では、第3構成の基本体が導電性を有するワイヤ間に半導体層が介在した状態で配列されることを特徴とする。本発明の第2構成と同様の意義がある。 The fourth configuration of the present invention is characterized in that the basic body of the third configuration is arranged with a semiconductor layer interposed between conductive wires. This has the same significance as the second configuration of the present invention.

本発明の線状部材によれば、内側に空間部を有し、かつ、長さ方向に間隔を開けた状態で複数本のワイヤが配列された基本体を螺旋巻きしたので、螺旋の傾斜角を大きくすると共に外径を収縮して、間隔がなくなるまで長さ方向に伸長することができ、伸長性および収縮性を大幅に向上させることができ、かつ、引っ張り強度を大きくすることができる。更に、本発明の線状部材によれば、内側に空間部を有するようにしたので、屈曲変形が容易であり屈曲性も向上させることができる。
また本発明の線状部材の製造方法によれば、複数本のワイヤを配列した基本体を、巻芯に対して長さ方向に間隔を開けて螺旋巻きとし、形状維持処理をしたのち、巻芯を除去するようにしたので、本発明の線状部材を容易に製造することができる。
According to the linear member of the present invention, since the basic body in which a plurality of wires are arranged in a state having a space portion on the inner side and spaced in the length direction is spirally wound, the inclination angle of the spiral The outer diameter can be increased and the outer diameter can be contracted to extend in the length direction until there is no space between them, the stretchability and contractibility can be greatly improved, and the tensile strength can be increased. Furthermore, according to the linear member of the present invention, since the space portion is provided on the inner side, the bending deformation is easy and the flexibility can be improved.
Further, according to the method for manufacturing a linear member of the present invention, a basic body in which a plurality of wires are arranged is spirally wound with a space in the length direction with respect to the winding core, and after performing shape maintenance processing, Since the core is removed, the linear member of the present invention can be easily manufactured.

実施例1の線状部材を表す構成図である。3 is a configuration diagram illustrating a linear member of Example 1. FIG. 実施例1の線状部材の説明図である。3 is an explanatory diagram of a linear member of Example 1. FIG. 実施例1の線状部材の製造方法を表す説明図である。6 is an explanatory diagram illustrating a method for manufacturing the linear member of Example 1. FIG. 実施例2の線状部材を表す構成図である。6 is a configuration diagram illustrating a linear member of Example 2. FIG.

10・・線状部材
11・・ワイヤ
12・・基本体
13・・空間部
20・・線状部材
21a・・第1電極線(ワイヤ)
21b・・第2電極線(ワイヤ)
21c・・半導体線
21d・・絶縁線
22・・基本体
23・・空間部
Do1、Do1’、Do2・・外径
M・・巻芯
P1、P1’、P2・・ピッチ
S1、S1’、S2・・隙間
10. .Linear member 11 ..Wire 12 ..Basic body 13 ..Space part 20 ..Linear member 21 a ..First electrode wire (wire)
21b .. Second electrode wire (wire)
21c..Semiconductor wire 21d..Insulated wire 22..Basic body 23..Space portion Do1, Do1 ', Do2 ... Outer diameter M ... Core P1, P1', P2 ... Pitch S1, S1 ', S2 ..Gap

以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[実施例1]
図1は、実施例1に係る線状部材10の構成を表したものであり、図中(A)は正面から見た構成を表し、(B)は(A)に示したI−I線に沿った端面構造を表している。この線状部材10は、複数本のワイヤ11を配列した基本体12が螺旋巻きに形成されたものである。
[Example 1]
FIG. 1 illustrates a configuration of a linear member 10 according to the first embodiment, in which (A) illustrates a configuration viewed from the front, and (B) illustrates an II line illustrated in (A). The end surface structure along is shown. The linear member 10 is formed by spirally winding a basic body 12 in which a plurality of wires 11 are arranged.

基本体12は、中心に空間部13を有し、かつ、長さ方向に間隔S1を開けて螺旋巻きされている。 The basic body 12 has a space 13 at the center, and is spirally wound with an interval S1 in the length direction.

なお、図1における基本体12はワイヤ11を一列に配列した場合で示したが、ワイヤ11を複数列に配列してもよい。すなわち、この線状部材10は、1重の螺旋巻きでもよいが、2重以上に重ねて螺旋巻きとしてもよい。また、基本体12は、同一のワイヤ11を配列してもよいが、異なる種類または異なる太さのワイヤ11を配列するようにしてもよい。更に、基本体12において、ワイヤ11は密接して配列されていることが好ましいが、各ワイヤ11の間に若干の隙間が開いていても良い。 In addition, although the basic body 12 in FIG. 1 was shown by the case where the wires 11 were arranged in a row, the wires 11 may be arranged in a plurality of rows. That is, the linear member 10 may be a single spiral winding, or may be a spiral winding overlapping two or more. Moreover, although the same wire 11 may be arranged in the basic body 12, you may make it arrange the wire 11 of a different kind or a different thickness. Furthermore, in the basic body 12, it is preferable that the wires 11 are closely arranged, but a slight gap may be opened between the wires 11.

本実施例1の線状部材10によれば、複数本のワイヤ11が配列された基本体12を螺旋巻きに形成するようにしたので、伸長性を確保しつつ、引っ張り強度を大きくすることができる。また、螺旋巻き後における基本体12の内側に空間部13を有し、かつ、長さ方向に間隔S1を開けるようにしている。
従って、線状部材10を伸長させると、図2に示すように、外径Do1が収縮してDo1’になるとともに、間隔S1も小さくなってS1’となり、間隔S1が0になるまで長さ方向に伸長することができるため、伸長性および収縮性を大幅に向上させた線状部材10を提供できる。
更に、内側に空間部13を有するようにしたので、線状部材10の屈曲性を向上させることができる。加えて、長さ方向への伸長や外径の収縮、あるいは屈曲したのちであっても、元の形状に復元することが容易な線状部材10を提供することができる。
本実施例1の線状部材10は、例えば、図3に示すようにして製造することができる。まず、複数本のワイヤ11を配列した基本体12を、巻芯Mに対して、長さ方向に間隔S1を開けて螺旋巻きにする(螺旋巻き工程)。次いで、螺旋巻き状態の基本体12に対して所定の形状維持処理をする(形状維持処理工程)。続いて、巻芯Mを、例えば、溶剤により溶解し除去する(巻芯除去工程)。これにより、線状部材10が得られる。
複数本のワイヤ11を配列した基本体12を、巻芯Mに対して長さ方向に間隔S1を開けて螺旋巻きとし、基本体12に対して形状維持処理をしたのち、巻芯Mを除去するようにしたので、本実施例に係る線状部材10を容易に製造することができる。
実施例1における基本体12の形状維持処理については、螺旋巻き状態の基本体12を構成するワイヤ11同士を軟質樹脂等で被覆して一体化、あるいは接着などにより接合することで形状維持処理を行うことができる(図示省略)。基本体を構成するワイヤの一部または全部が形状記憶合金の場合の形状維持処理工程としては、螺旋巻き状態の基本体を加熱して形状記憶合金を形状記憶処理することが出来る。
According to the linear member 10 of the first embodiment, the basic body 12 in which a plurality of wires 11 are arranged is formed in a spiral winding, so that it is possible to increase the tensile strength while ensuring extensibility. it can. Moreover, the space part 13 is provided inside the basic body 12 after spiral winding, and the interval S1 is opened in the length direction.
Therefore, when the linear member 10 is extended, as shown in FIG. 2, the outer diameter Do1 contracts to become Do1 ′, and the interval S1 also decreases to become S1 ′, and the length until the interval S1 becomes 0 is obtained. Since it can extend in the direction, the linear member 10 with greatly improved extensibility and contractibility can be provided.
Furthermore, since the space portion 13 is provided on the inner side, the flexibility of the linear member 10 can be improved. In addition, it is possible to provide the linear member 10 that can be easily restored to the original shape even after being elongated in the length direction, contracted in outer diameter, or bent.
The linear member 10 of the first embodiment can be manufactured, for example, as shown in FIG. First, the basic body 12 in which a plurality of wires 11 are arranged is spirally wound with a space S1 in the length direction with respect to the core M (spiral winding step). Next, a predetermined shape maintaining process is performed on the spirally wound basic body 12 (shape maintaining process step). Subsequently, the core M is dissolved and removed with a solvent, for example (core removal step). Thereby, the linear member 10 is obtained.
The basic body 12 in which a plurality of wires 11 are arranged is spirally wound with a spacing S1 in the length direction with respect to the core M, and after the shape maintaining process is performed on the basic body 12, the core M is removed. Since it did it, the linear member 10 which concerns on a present Example can be manufactured easily.
About the shape maintenance process of the basic body 12 in Example 1, the shape maintenance process is carried out by covering the wires 11 constituting the spiral wound basic body 12 with a soft resin or the like, or by bonding or bonding. Can be performed (not shown). As a shape maintaining treatment step when part or all of the wires constituting the basic body is a shape memory alloy, the shape memory alloy can be subjected to a shape memory process by heating the spirally wound basic body.

[実施例2]
図4は、実施例2に係る線状部材20の構成を表したものであり、図中(A)は正面から見た構成を表し、(B)は(A)に示したI−I線に沿った端面構造を表している。
本実施例2の線状部材20は、ワイヤとしての第1電極線21aおよび第2電極線21b、半導体線21c、絶縁線21dとから基本体22を構成したものである。基本体22は、第1電極線21a、半導体線21c、第2電極線21b、絶縁線21dの順に配列している。
第1電極線21aは、例えばアルミニウムからなる導電線であり、第2電極線21bは第1電極線21aより大きな仕事関数を有する線状の導電体としている。
半導体線21cは、樹脂中に半導体特性を有する有機化合物を分散させることで導電性の高さと伸縮性を兼ね備えた線状の有機半導体を採用している。
絶縁線21dは、樹脂などからなる導電性を有しない線材としている。絶縁線21dについては、螺旋巻した状態の第1電極線21aと第2電極線21bとの導通を防止するためのものであり、必須構成要素ではない。
[Example 2]
FIG. 4 illustrates the configuration of the linear member 20 according to the second embodiment, where (A) represents the configuration viewed from the front, and (B) represents the II line shown in (A). The end surface structure along is shown.
The linear member 20 according to the second embodiment includes a basic body 22 composed of first and second electrode lines 21a and 21b, semiconductor lines 21c, and insulating lines 21d as wires. The basic body 22 is arranged in the order of the first electrode line 21a, the semiconductor line 21c, the second electrode line 21b, and the insulating line 21d.
The first electrode line 21a is a conductive line made of, for example, aluminum, and the second electrode line 21b is a linear conductor having a work function larger than that of the first electrode line 21a.
The semiconductor wire 21c employs a linear organic semiconductor having both high conductivity and stretchability by dispersing an organic compound having semiconductor characteristics in a resin.
The insulated wire 21d is a non-conductive wire made of resin or the like. The insulated wire 21d is for preventing conduction between the first electrode wire 21a and the second electrode wire 21b that are spirally wound, and is not an essential component.

本実施例2の線状部材20を伸長させると、外径Do2が収縮するとともに、間隔S2も小さくなって0になるまで長さ方向に伸長することができるため、伸長性および収縮性を大幅に向上させた線状部材20を提供できる。
また、本実施例2の線状部材20に光を照射すると、第1電極線21aと第2電極線21b間に生じる電位差により太陽電池の光電変換素子として機能する。第2電極線21bとして仕事関数が大きい金等をめっきした線状の導電体を用いれば、光電変換の効率を向上させることができる。
When the linear member 20 according to the second embodiment is extended, the outer diameter Do2 is contracted and the distance S2 is also reduced to 0 until the distance S2 is reduced. Thus, the linear member 20 improved can be provided.
Further, when the linear member 20 of the second embodiment is irradiated with light, it functions as a photoelectric conversion element of a solar cell due to a potential difference generated between the first electrode line 21a and the second electrode line 21b. If a linear conductor plated with gold or the like having a large work function is used as the second electrode line 21b, the efficiency of photoelectric conversion can be improved.

さらに、本実施例2の線状部材20では、屈曲等による変形に伴って基本体22を構成する第1電極線21a、第2電極線21bを構成する導電線が破断したり、第1電極線21aや第2電極線21bと半導体線21cとの接合部に生じる隙間や剥離による光電変換効率の低下を防止できる。
したがって、本実施例2の線状部材20は長さ方向に対する伸長性、直径方向に対する収縮性、折り曲げ方向に対する屈曲性あるいは復元力に優れた光電変換素子として機能する。
Further, in the linear member 20 of the second embodiment, the first electrode lines 21a and the second electrode lines 21b constituting the basic body 22 are broken or the first electrodes are broken by deformation due to bending or the like. It is possible to prevent a decrease in photoelectric conversion efficiency due to gaps or separation occurring at the junction between the line 21a or the second electrode line 21b and the semiconductor line 21c.
Therefore, the linear member 20 of the second embodiment functions as a photoelectric conversion element excellent in extensibility in the length direction, contractibility in the diameter direction, flexibility in the bending direction, or restoring force.

本実施例2の線状部材20は、線状であるために任意の形状を取ることができ、集光可能な光の角度が増加し、実質的に光電変換効率を向上することができる。加えて、本実施例2の線状部材20を複数並列配置すれば大面積の光電変換素子を容易に実現することができる。 Since the linear member 20 of Example 2 is linear, it can take any shape, the angle of light that can be collected is increased, and the photoelectric conversion efficiency can be substantially improved. In addition, if a plurality of the linear members 20 of the second embodiment are arranged in parallel, a large-area photoelectric conversion element can be easily realized.

本実施例2の線状部材20の伸長性等については、実施例1で説明したように伸長性および収縮性ならびに屈曲性を大幅に向上させることができる。
また、本実施例2の線状部材20の製造方法については実施例1に準じた製造工程を採用することができる。すなわち、第1電極線21aと第2電極線21bは半導体線21cとの融着あるいは接着等により接合でき、第2電極線21bに絶縁線21dを融着あるいは接着等により接合することで形状維持処理を行うことができる。
また、螺旋巻き状態の基本体22を絶縁性で光透過性を有する軟質樹脂等で被覆して一体化する場合、絶縁線21dは省略可能である(図示省略)。すなわち、螺旋巻き状態の基本体22全体が被覆されるため第1電極線21aと第2電極線21bが導通する恐れがないからである。
第1電極線21a、第2電極線21bの一方または双方が形状記憶合金の場合の形状維持処理工程としては、螺旋巻き状態の基本体を加熱することによる形状記憶処理を追加することが出来る。
About the extensibility etc. of the linear member 20 of the present Example 2, the extensibility, the contractibility, and the flexibility can be significantly improved as described in the first example.
Moreover, about the manufacturing method of the linear member 20 of the present Example 2, the manufacturing process according to Example 1 is employable. That is, the first electrode line 21a and the second electrode line 21b can be joined by fusion or adhesion with the semiconductor line 21c, and the shape is maintained by joining the insulating wire 21d to the second electrode line 21b by fusion or adhesion. Processing can be performed.
In addition, when the spirally wound basic body 22 is covered and integrated with a soft resin having an insulating property and a light transmitting property, the insulating wire 21d can be omitted (not shown). That is, since the entire spirally wound basic body 22 is covered, there is no possibility that the first electrode line 21a and the second electrode line 21b are electrically connected.
As the shape maintaining treatment step when one or both of the first electrode wire 21a and the second electrode wire 21b is a shape memory alloy, a shape memory treatment by heating the spirally wound basic body can be added.

以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。 The present invention has been described with reference to the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made.

Claims (4)

複数本のワイヤを配列した基本体が、内側に空間部を有し、かつ、長さ方向に間隔を開けて螺旋巻きに形成されたことを特徴とする線状部材。 A linear member characterized in that a basic body in which a plurality of wires are arranged has a space portion on the inside and is formed in a spiral winding with a space in the length direction. 前記基本体は、導電性を有するワイヤ間に半導体を介在させたことを特徴とする請求項1記載の線状部材。 The linear member according to claim 1, wherein the basic body includes a semiconductor interposed between conductive wires. 複数本のワイヤを配列した基本体を、配列方向に間隔を開けて螺旋巻きにする螺旋巻き工程と、
前記螺旋巻き工程ののち、前記基本体の形状維持処理をする形状維持処理工程と、
を含むことを特徴とする線状部材の製造方法。
A spiral winding process in which a basic body in which a plurality of wires are arranged is spirally wound at intervals in the arrangement direction;
After the spiral winding step, a shape maintaining process step for performing a shape maintaining process of the basic body,
The manufacturing method of the linear member characterized by including.
前記基本体は、導電性を有するワイヤ間に半導体を介在させたことを特徴とする請求項3記載の線状部材の製造方法。 4. The method of manufacturing a linear member according to claim 3, wherein the basic body includes a semiconductor interposed between conductive wires.
JP2009078240A 2009-03-27 2009-03-27 Linear member and manufacturing method of the same Withdrawn JP2010232009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078240A JP2010232009A (en) 2009-03-27 2009-03-27 Linear member and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078240A JP2010232009A (en) 2009-03-27 2009-03-27 Linear member and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2010232009A true JP2010232009A (en) 2010-10-14

Family

ID=43047649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078240A Withdrawn JP2010232009A (en) 2009-03-27 2009-03-27 Linear member and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2010232009A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253149A (en) * 2011-06-01 2012-12-20 Taiyo Kogyo Corp Shroud-like photovoltaic power generation device
JP2016539488A (en) * 2013-11-01 2016-12-15 キナルコ, インコーポレーテッドKinalco, Inc. Shape memory alloy conductor that resists plastic deformation
WO2017022124A1 (en) * 2015-08-06 2017-02-09 株式会社シンテック Method for manufacturing medical linear member
WO2017130385A1 (en) * 2016-01-29 2017-08-03 株式会社シンテック Method for producing linear medical member
KR101878031B1 (en) * 2016-05-03 2018-07-12 홍익대학교 산학협력단 Method for manufacturing stretchable wiring structures consisting of coil-shaped conductors and stretchable wiring structures manufactured thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253149A (en) * 2011-06-01 2012-12-20 Taiyo Kogyo Corp Shroud-like photovoltaic power generation device
JP2016539488A (en) * 2013-11-01 2016-12-15 キナルコ, インコーポレーテッドKinalco, Inc. Shape memory alloy conductor that resists plastic deformation
WO2017022124A1 (en) * 2015-08-06 2017-02-09 株式会社シンテック Method for manufacturing medical linear member
US20180221057A1 (en) * 2015-08-06 2018-08-09 Syntec Corporation Method for manufacturing medical linear member
US10864018B2 (en) 2015-08-06 2020-12-15 Syntec Corporation Method for manufacturing medical linear member
WO2017130385A1 (en) * 2016-01-29 2017-08-03 株式会社シンテック Method for producing linear medical member
JPWO2017130385A1 (en) * 2016-01-29 2018-11-22 株式会社シンテック Method for producing medical linear member
US10524938B2 (en) 2016-01-29 2020-01-07 Syntec Corporation Production method for medical linear member
KR101878031B1 (en) * 2016-05-03 2018-07-12 홍익대학교 산학협력단 Method for manufacturing stretchable wiring structures consisting of coil-shaped conductors and stretchable wiring structures manufactured thereof

Similar Documents

Publication Publication Date Title
US9842669B2 (en) Stretchable wire and method of fabricating the same
US9570208B2 (en) Carbon nanotube composite wire
EP2911207B1 (en) Solar cell module
JP2010232009A (en) Linear member and manufacturing method of the same
EP2290718B1 (en) Apparatus for generating electrical energy and method for manufacturing the same
CN103608945B (en) Organic Light Emitting Diode, for manufacturing the method for Organic Light Emitting Diode and there is the module of at least two Organic Light Emitting Diode
JP5445419B2 (en) Solar cell module and manufacturing method thereof
JP3323573B2 (en) Solar cell module and method of manufacturing the same
US9406864B2 (en) Nanogenerator comprising boron nitride atomic layer
JP2006059991A (en) Solar battery module and its manufacturing method
JP2016139815A (en) Structure and method of manufacturing the same
US8692442B2 (en) Polymer transducer and a connector for a transducer
JP2010177557A (en) Method of manufacturing solar battery module
US20120306319A1 (en) Nano piezoelectric device having a nanowire and method of forming the same
JP2002359048A (en) Conductor connecting method, conductor connecting structure and solar battery module having this connecting structure
US20160035907A1 (en) Solar cell module
JP2017183281A (en) Carbon nanotube wire rod and carbon nanotube wire rod connection structure
EP2175457A3 (en) Ceramic chip assembly
WO2021059570A1 (en) Nanostructure aggregate and method for manufacturing same
WO2017179412A1 (en) Conductive wire and covered conductive wire
US8895841B2 (en) Carbon nanotube based silicon photovoltaic device
US20040139998A1 (en) Thermoelectric conversion device, thermoelectric conversion device unit, and method for manufacturing thermoelectric conversion device
JP6286854B2 (en) Solar cell and solar cell module
JP5531470B2 (en) Flat cable
US11245061B2 (en) Thermoelectric device having a separate interlayer disposed between a thermoelectric leg and an electrode to reduce the contact resistance therebetween

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605