JP2010216866A - Disc-shaped rubber test piece for rubber testing machine and rubber testing machine using same - Google Patents

Disc-shaped rubber test piece for rubber testing machine and rubber testing machine using same Download PDF

Info

Publication number
JP2010216866A
JP2010216866A JP2009061513A JP2009061513A JP2010216866A JP 2010216866 A JP2010216866 A JP 2010216866A JP 2009061513 A JP2009061513 A JP 2009061513A JP 2009061513 A JP2009061513 A JP 2009061513A JP 2010216866 A JP2010216866 A JP 2010216866A
Authority
JP
Japan
Prior art keywords
test piece
testing machine
rubber
shaped rubber
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009061513A
Other languages
Japanese (ja)
Other versions
JP5297844B2 (en
Inventor
Tomohito Shibata
智史 柴田
Yusuke Kuramoto
祐輔 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009061513A priority Critical patent/JP5297844B2/en
Publication of JP2010216866A publication Critical patent/JP2010216866A/en
Application granted granted Critical
Publication of JP5297844B2 publication Critical patent/JP5297844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a disc-shaped rubber test piece for a rubber testing machine capable of faithfully reproducing the peripheral shearing force within the earthing surface produced in a tire under an actual use environment. <P>SOLUTION: The disc-shaped rubber test piece for the rubber testing machine is characterized in that the direction in the tumbling direction of the peripheral shearing force within the earthing surface, which is produced in the disc-shaped rubber test piece when the disc-shaped rubber test piece is earthed on the dummy road surface while tumbled to be freely tumbled, transfers in a negative direction from a positive direction until an earthing completion point from the earthing start point to a dummy road surface. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、より忠実にタイヤの接地状態を再現することができるゴム試験機用円盤状ゴム試験片、およびそれを用いたゴム試験機に関する。   The present invention relates to a disk-shaped rubber test piece for a rubber testing machine capable of reproducing the ground contact state of a tire more faithfully, and a rubber testing machine using the same.

従来、自動車タイヤ等のゴム製品に採用するゴム材料を開発するに際し、種々のゴム試験機を用いることにより、多岐に亘るゴムの抵抗特性の測定が行われている。こうしたゴム試験機では、試験環境を可能な限り実際の使用環境に近似させて、ゴム材料の良否をより正確に判断し得るものであることが必要である。   2. Description of the Related Art Conventionally, when developing rubber materials used for rubber products such as automobile tires, various types of rubber resistance characteristics are measured by using various rubber testing machines. In such a rubber testing machine, it is necessary to be able to judge the quality of the rubber material more accurately by approximating the test environment to the actual use environment as much as possible.

例えば、ランボーン摩耗試験機のようなゴム試験機では、相互に独立して回転する円盤状のゴム試験片と擬似路面とを円周面で規定の付加力で押し付けるとともに、両者をスリップさせることで試験片を摩耗させてその摩耗量を測定するものや、擬似路面に対して一定のスリップ率になるようにゴム試験片を回転させることで試験片に付加される摩擦力を検出し、この摩擦力とスリップ率より得られる摩擦エネルギーの値からゴム摩擦度を測定するものもある(特許文献1参照)。   For example, in a rubber testing machine such as the Lambourn Abrasion Testing Machine, a disc-shaped rubber test piece and a simulated road surface that rotate independently of each other are pressed with a specified additional force on the circumferential surface, and both are slipped. The frictional force applied to the test piece is detected by rotating the rubber test piece so that the wear amount is measured by wearing the test piece and rotating the rubber test piece so that the slip rate is constant with respect to the simulated road surface. Some measure the rubber friction from the value of the friction energy obtained from the force and the slip ratio (see Patent Document 1).

このように、これらゴム試験機は、実際にタイヤを装着して路面を走行させた際における様々な負荷に対して如何に抵抗特性を発揮し得るかを擬似評価するためのものである。したがって、ゴム試験片や擬似路面は、実際の使用環境下におけるタイヤや路面を忠実に再現し得るものであることが望まれる。   As described above, these rubber testing machines are for pseudo-evaluation of how resistance characteristics can be exhibited against various loads when tires are actually mounted and the vehicle runs on a road surface. Therefore, it is desired that the rubber test piece and the simulated road surface can faithfully reproduce the tire and the road surface under the actual use environment.

特開平11−326169号公報JP-A-11-326169

しかしながら、ランボーン摩耗試験機のような従来のゴム試験機において、ゴム試験片に発生する接地面内の周方向せん断力は、必ずしも実際の使用環境下におけるタイヤに発生する接地面内の周方向せん断力を忠実に再現し得るものではなく、得られる試験データを元にタイヤ用ゴム材料を正確に評価するには困難を伴う。   However, in a conventional rubber testing machine such as a Lambourn abrasion tester, the circumferential shear force in the ground contact surface generated in the rubber test piece is not necessarily the circumferential shear force in the ground contact surface generated in the tire in the actual use environment. The force cannot be faithfully reproduced, and it is difficult to accurately evaluate the tire rubber material based on the obtained test data.

そこで、本発明は、実際の使用環境下におけるタイヤに発生する接地面内の周方向せん断力を忠実に再現し得るゴム試験機用ゴム試験片およびこれを用いたゴム試験機を提供することを目的としている。   Thus, the present invention provides a rubber test piece for a rubber testing machine and a rubber testing machine using the same, which can faithfully reproduce the circumferential shear force in the contact surface generated in the tire in an actual use environment. It is aimed.

本発明者は、上記課題を解決すべく、ゴム試験機に採用した際、発生する接地面内の周方向せん断力の方向が特定の方向となるゴム試験片を見出し、本発明を完成させるに至った。   In order to solve the above problems, the present inventor has found a rubber test piece in which the direction of the circumferential shear force generated in the ground contact surface is a specific direction when employed in a rubber testing machine, and completes the present invention. It came.

すなわち、本発明のゴム試験機用円盤状ゴム試験片は、
転動させつつ擬似路面に接地させることにより負荷を与えられる円盤状ゴム試験片であって、
前記円盤状ゴム試験片を自由転動させたときに、前記負荷に起因して前記円盤状ゴム試験片に発生する接地面内の周方向せん断力の転動方向に対する方向が、擬似路面への接地開始点から接地終了点までに正の方向から負の方向へ移行することを特徴とする。
That is, the disc-shaped rubber test piece for the rubber testing machine of the present invention is
A disc-shaped rubber test piece that is loaded by being grounded on a simulated road surface while rolling,
When the disk-shaped rubber test piece is freely rolled, the direction of the circumferential shear force in the ground contact surface generated in the disk-shaped rubber test piece due to the load with respect to the rolling direction is changed to the simulated road surface. Transition from the positive direction to the negative direction from the grounding start point to the grounding end point is characterized.

また、前記ゴム試験機用円盤状ゴム試験片は内孔部を有し、かつ
外周面の直径Rが6〜80mm、外周面から内孔部面までの平均距離Dが1〜R−5mmであるのが望ましい。
さらに、本発明のゴム試験機は上記ゴム試験機用円盤状ゴム試験片を用いたことを特徴とし、かかるゴム試験機は摩耗試験機であってもよい。
また、前記摩耗試験機は、前記擬似路面から前記ゴム試験機用円盤状ゴム試験片への応力(トルク)を基準にして該ゴム試験機用円盤状ゴム試験片の転動を制御することにより、ゴムの摩耗特性を評価するものであってもよい。
The disk-shaped rubber test piece for a rubber testing machine has an inner hole portion, an outer peripheral surface diameter R of 6 to 80 mm, and an average distance D from the outer peripheral surface to the inner hole surface of 1 to R-5 mm. It is desirable.
Furthermore, the rubber testing machine of the present invention is characterized by using the above disk-shaped rubber test piece for a rubber testing machine, and the rubber testing machine may be an abrasion testing machine.
Further, the wear tester controls rolling of the disk-shaped rubber test piece for the rubber testing machine based on a stress (torque) from the simulated road surface to the disk-shaped rubber test piece for the rubber testing machine. In addition, the wear characteristics of rubber may be evaluated.

本発明のゴム試験機用円盤状ゴム試験片およびこれを用いたゴム試験機によれば、実際の使用環境下におけるタイヤに発生する接地面内の周方向せん断力において、その方向を忠実に再現することができるため、かかるゴム試験機から得られる測定結果を実際の使用環境に近似した、より正確なものとすることができる。   According to the disk-shaped rubber test piece for a rubber testing machine of the present invention and a rubber testing machine using the same, the direction is faithfully reproduced in the circumferential shear force in the ground contact surface generated in the tire under the actual use environment. Therefore, the measurement result obtained from such a rubber testing machine can be made more accurate by approximating the actual use environment.

本発明のゴム試験機用円盤状ゴム試験片を用いたゴム試験機の一例であるランボーン摩耗試験機の要部を示す平面図である。It is a top view which shows the principal part of the Lambourn abrasion tester which is an example of the rubber tester using the disk-shaped rubber test piece for rubber testers of this invention. タイヤを装着した車両が路面を実走行した際に発生する、接地面内の周方向せん断力を示す概略図である。It is the schematic which shows the circumferential direction shear force in a contact surface which generate | occur | produces when the vehicle equipped with the tire drive | works the road surface. 図2に示す接地面内の周方向せん断力について、タイヤの進行方向に対する方向の接地開始点から接地終了点までの変移を示す模式図である。It is a schematic diagram which shows the transition from the contact start point of the direction with respect to the advancing direction of a tire to the contact end point about the circumferential shear force in the contact surface shown in FIG. 従来のゴム試験片を用いたランボーン摩耗試験機を用いた場合における、ゴム試験片に発生する接地面内の周方向せん断力について、ゴム試験片の転動方向に対する方向の接地開始点から接地終了点までの変移を示す模式図である。With regard to the circumferential shear force in the ground contact surface generated on the rubber test piece when using a conventional Lambourn abrasion tester using a rubber test piece, the ground contact ends in the direction relative to the rolling direction of the rubber test piece. It is a schematic diagram which shows the transition to a point. 試験中における本発明のゴム試験機用円盤状ゴム試験片を示す概略図である。It is the schematic which shows the disk shaped rubber | gum test piece for rubber test machines of this invention in a test. 本発明のゴム試験機用円盤状ゴム試験片を示す側面図および正面図である。It is the side view and front view which show the disk shaped rubber | gum test piece for rubber testing machines of this invention. 実施例1および比較例1における円盤状ゴム試験片の外周面の直径R(mm)と、外周面から内孔部面までの平均距離D(mm)との関係、およびこれらと図3または図4に準じた波形における変曲点Cでの傾きとの関連性を示すグラフである。The relationship between the diameter R (mm) of the outer peripheral surface of the disk-shaped rubber test piece in Example 1 and Comparative Example 1 and the average distance D (mm) from the outer peripheral surface to the inner hole surface, and these and FIG. 4 is a graph showing the relationship with the slope at an inflection point C in a waveform conforming to FIG.

以下、本発明について詳細に説明する。
本発明のゴム試験機用円盤状ゴム試験片は、
転動させつつ擬似路面に接地させることにより負荷を与えられる円盤状ゴム試験片であって、
前記円盤状ゴム試験片を自由転動させたときに、前記負荷に起因して前記円盤状ゴム試験片に発生する接地面内の周方向せん断力の転動方向に対する方向が、擬似路面への接地開始点から接地終了点までに正の方向から負の方向へ移行することを特徴としている。
以下、本発明のゴム試験機用円盤状ゴム試験片を、単に「円盤状ゴム試験片」という。
Hereinafter, the present invention will be described in detail.
The disc-shaped rubber test piece for the rubber testing machine of the present invention,
A disc-shaped rubber test piece that is loaded by being grounded on a simulated road surface while rolling,
When the disk-shaped rubber test piece is freely rolled, the direction of the circumferential shear force in the ground contact surface generated in the disk-shaped rubber test piece due to the load with respect to the rolling direction is changed to the simulated road surface. It is characterized by a transition from the positive direction to the negative direction from the grounding start point to the grounding end point.
Hereinafter, the disk-shaped rubber test piece for a rubber testing machine of the present invention is simply referred to as “disk-shaped rubber test piece”.

上記ゴム試験機は、円盤状ゴム試験片の摩耗特性や摩擦特性などを評価するために用いられるものである。かかるゴム試験機は、砥石、研磨布、研磨紙、金属刃、板、粉砕石などから形成された擬似路面を備えており、この擬似路面に転動させている円盤状ゴム試験片を接地させながら、押圧力、回転力などの負荷を与えた際、その負荷に対する円盤状ゴム試験片の抵抗特性を測定するものである。   The rubber testing machine is used for evaluating the wear characteristics and friction characteristics of the disk-shaped rubber test piece. Such a rubber testing machine is provided with a pseudo road surface formed of a grindstone, polishing cloth, abrasive paper, metal blade, plate, crushed stone, etc., and a disk-shaped rubber test piece rolling on the pseudo road surface is grounded. However, when a load such as a pressing force or a rotational force is applied, the resistance characteristic of the disk-shaped rubber test piece against the load is measured.

上記負荷に起因して、上記円盤状ゴム試験片にはせん断力が発生する。本発明ではこのせん断力に関して接地面内の周方向せん断力に着目し、円盤状ゴム試験片の擬似路面への接地開始点から接地終了点までに、かかる接地面内の周方向せん断力の方向が、円盤状ゴム試験片の転動方向に対して正の方向から負の方向へと移行する。   Due to the load, a shearing force is generated in the disk-shaped rubber test piece. In the present invention, with regard to this shearing force, attention is paid to the circumferential shearing force in the grounding surface, and the direction of the circumferential shearing force in the grounding surface from the grounding start point to the grounding end point to the pseudo road surface of the disk-shaped rubber test piece. However, it shifts from a positive direction to a negative direction with respect to the rolling direction of the disk-shaped rubber specimen.

具体的な例として、ランボーン摩耗試験機(JIS K6264参照)を挙げて説明する。図1にランボーン摩耗試験機の要部の平面図を示す。本装置は、一端に走行路面を模擬した擬似路面(回転体の研磨ホイール)1が取り付けられた駆動軸2を備えている。駆動軸2の他端には回転駆動手段として図示しないサーボモータが連結されている。サーボモータにより、駆動軸2を介して、擬似路面1は、所定の角速度で回転される。   As a specific example, a lambone wear tester (see JIS K6264) will be described. FIG. 1 shows a plan view of the main part of the Lambourn abrasion tester. This apparatus includes a drive shaft 2 to which a pseudo road surface (rotary grinding wheel) 1 simulating a traveling road surface is attached at one end. A servo motor (not shown) is connected to the other end of the drive shaft 2 as a rotational drive means. The pseudo road surface 1 is rotated at a predetermined angular velocity by the servo motor via the drive shaft 2.

また、駆動軸2と平行に駆動軸3が延在されて配設され、駆動軸3の一方の端部には、円盤状ゴム試験片4を保持するホルダー5が設けられ、他方の端部には、上記サーボモータとは別個の、回転駆動手段としての図示しないサーボモータが連結されると共に、その中間部に、偏角許容型カップリング(自在継手)20、クラッチ6およびトルクメータ13等が設けられている。   A drive shaft 3 extends in parallel with the drive shaft 2, and a holder 5 for holding a disc-shaped rubber test piece 4 is provided at one end of the drive shaft 3, and the other end. Is connected to a servo motor (not shown) as a rotational drive means, which is separate from the servo motor described above, and at an intermediate portion thereof, an allowable deflection type coupling (universal joint) 20, a clutch 6, a torque meter 13, etc. Is provided.

ここで、ホルダー5は、駆動軸3側に設けた受けパッド5aと、この受けパッド5aに対して水平に進退変位されるクランプパッド5bからなる。これらの両パッド5a、5bは、それらの間に配置した円盤状ゴム試験片4をそれの厚み方向から所定の力で挟持して、その円盤状ゴム試験片4の周面を、擬似路面1の周面に対向させて位置させる。従って、駆動軸3の回転作動に基づき、円盤状ゴム試験片4が、両パッド5a、5bとともに、その駆動軸3と等速で回転する。   Here, the holder 5 includes a receiving pad 5a provided on the drive shaft 3 side and a clamp pad 5b that is moved forward and backward horizontally with respect to the receiving pad 5a. These two pads 5a and 5b sandwich the disc-shaped rubber test piece 4 disposed between them with a predetermined force from the thickness direction thereof, and the peripheral surface of the disc-shaped rubber test piece 4 is replaced with the simulated road surface 1 It is positioned so as to face the peripheral surface. Therefore, based on the rotational operation of the drive shaft 3, the disk-shaped rubber test piece 4 rotates at the same speed as the drive shaft 3 together with the pads 5a and 5b.

また、クラッチ6は、接続されることにより、サーボモータによる回転力を駆動軸3に伝達する。なお、クラッチ6が解除されると、サーボモータによる回転力が駆動軸3に伝達されず、円盤状ゴム試験片4が自由回転(転動)する。   Further, the clutch 6 is connected to transmit the rotational force of the servo motor to the drive shaft 3. When the clutch 6 is released, the rotational force by the servo motor is not transmitted to the drive shaft 3, and the disk-shaped rubber test piece 4 freely rotates (rolls).

駆動軸3は、可動ベース7上に取付けられている。そして、この可動ベース7は、固定ベース8上に駆動軸3の軸線と直交する方向に敷設されたガイドレール9に進退変位可能に取り付けられている。よって、駆動軸3は、駆動軸2との平行状態を維持したまま、それに接近し、また離隔変位することができる。   The drive shaft 3 is mounted on the movable base 7. The movable base 7 is attached to a guide rail 9 laid on the fixed base 8 in a direction perpendicular to the axis of the drive shaft 3 so as to be able to advance and retract. Therefore, the drive shaft 3 can approach and displace it while maintaining a parallel state with the drive shaft 2.

可動ベース7は、図示しない荷重負荷装置により移動され、これにより、擬似路面1と円盤状ゴム試験片4とが接触しながら負荷が与えられ、圧着することとなる。擬似路面1と円盤状ゴム試験片4とが圧着すると、円盤状ゴム試験片4に負荷がかかり、接地面内の周方向せん断力が発生する。なお、この接地面内の周方向せん断力に関する大きさおよび方向は、計測器(図示せず)により検出することができる。   The movable base 7 is moved by a load loading device (not shown), so that a load is applied while the simulated road surface 1 and the disk-shaped rubber test piece 4 are in contact with each other, and pressure bonding is performed. When the simulated road surface 1 and the disk-shaped rubber test piece 4 are pressure-bonded, a load is applied to the disk-shaped rubber test piece 4 and a circumferential shear force in the ground contact surface is generated. In addition, the magnitude | size and direction regarding the circumferential direction shear force in this grounding surface can be detected with a measuring device (not shown).

ここで、本発明の円盤状ゴム試験片を上記ランボーン摩耗試験機を用いた場合について、従来のゴム試験片を用いたランボーン摩耗試験機と比較しつつさらに詳細に述べる。   Here, the case where the disk-shaped rubber test piece of the present invention is used in the above-mentioned Lambourne abrasion tester will be described in more detail while comparing with the Lambourne abrasion tester using the conventional rubber test piece.

図2に示すように、一般に、タイヤ30を装着した車両が路面31を走行した際、接地面内の周方向せん断力Fが発生する。ここで、さらにこの接地面内の周方向せん断力Fについて、タイヤ30の進行方向Xに対する方向に着目し、かかる方向の接地開始点Sから接地終了点Eまでの変移を図3の模式図に示す。自由転動時では図3に示すように、接地開始点Sと接地終了点Eの間で接地面内の周方向せん断力Fの方向が変化する。すなわち、接地開始点S通過直後はタイヤ30の進行方向Xに対して徐々に正の方向への向きを強めた後、ピークを経由してその向きが徐々に減じられ、ある時点(接地開始点Sと接地終了点Eとの間における変曲点C)で負の方向に転じる。続いて負の方向への向きを強めた後、ピークを経由してまたその向きが徐々に減じられ、接地終了点Eに到達する。   As shown in FIG. 2, generally, when a vehicle equipped with a tire 30 travels on a road surface 31, a circumferential shear force F in the ground contact surface is generated. Here, with respect to the circumferential shear force F in the ground contact surface, paying attention to the direction with respect to the traveling direction X of the tire 30, the transition from the ground contact start point S to the ground contact end point E in this direction is shown in the schematic diagram of FIG. Show. At the time of free rolling, as shown in FIG. 3, the direction of the circumferential shear force F in the ground contact surface changes between the ground contact start point S and the ground contact end point E. That is, immediately after passing through the contact start point S, the direction of the tire 30 is gradually increased in the positive direction with respect to the traveling direction X, and then the direction is gradually reduced via a peak. It turns in the negative direction at the inflection point C) between S and the ground contact end point E. Subsequently, after the direction in the negative direction is strengthened, the direction is gradually decreased again through the peak, and the ground contact end point E is reached.

こうした現象は、タイヤ工学(酒井秀雄著、2004年9月28日改訂第3刷、(株)グランプリ発行、p175)にも記載されてもいるように、接地開始点Sにおいてトレッド表面41は路面31に拘束されている状態であるので変位幅c1がある程度抑制されるのに対し、ベルト層42はタイヤ30の回転に応じて移動するために変以幅c1に比べて変位幅c2が大きくなる。これら変位幅c1とc2の差異により、ベルト層42とトレッド表面41との間にせん断変形が生じるため、接地開始点Sではタイヤ30の進行方向Xに対して正の方向に接地面内の周方向せん断力Fsが発生する。また、接地終了点Eではこの現象と逆の現象が生じて、タイヤ30の進行方向Xに対して負の方向に接地面内の周方向せん断力Feが発生する。したがって、この接地面内の周方向せん断力F(FsおよびFe)について、接地開始点Sから接地終了点Eまでの経時的な変化を図示すると、上記図3に示すような波形を描くこととなる。   Such a phenomenon is described in tire engineering (Hideo Sakai, revised third edition on September 28, 2004, Grand Prix Co., Ltd., p175). Since the displacement width c1 is restrained to some extent because it is constrained to 31, the belt layer 42 moves in accordance with the rotation of the tire 30, so the displacement width c2 is larger than the variation width c1. . Because of the difference between the displacement widths c1 and c2, shear deformation occurs between the belt layer 42 and the tread surface 41. Therefore, at the contact start point S, the circumference in the contact surface in the positive direction with respect to the traveling direction X of the tire 30. Directional shear force Fs is generated. Further, a phenomenon opposite to this phenomenon occurs at the contact end point E, and a circumferential shear force Fe in the contact surface is generated in a negative direction with respect to the traveling direction X of the tire 30. Accordingly, regarding the circumferential shear force F (Fs and Fe) in the ground contact surface, if the change over time from the contact start point S to the contact end point E is illustrated, a waveform as shown in FIG. 3 is drawn. Become.

図3において明らかなように、接地開始点Sと接地終了点Eとの間における変曲点C近傍では、描かれる波形の傾きは点線tで示すように負の傾きとなる。こうした接地面内の周方向せん断力Fの方向および変移は、ゴム試験機を用いた試験環境を実際の使用環境に近似させる際、かかるせん断力の大きさに加え、走行中におけるタイヤ30に与えられる負荷を想定する上でも、またかかる負荷に対するタイヤ30の抵抗特性を評価する上でも大きな影響を及ぼすものである。   As is apparent from FIG. 3, in the vicinity of the inflection point C between the grounding start point S and the grounding end point E, the slope of the waveform to be drawn becomes a negative slope as shown by the dotted line t. The direction and transition of the circumferential shear force F in the ground contact surface are given to the tire 30 during traveling in addition to the magnitude of the shear force when the test environment using the rubber testing machine is approximated to the actual use environment. This has a great influence both on the assumption of the load to be applied and on the evaluation of the resistance characteristics of the tire 30 against the load.

従来のゴム試験片を用いたランボーン摩耗試験機を用いた場合における、擬似路面に接地されたゴム試験片に発生する接地面内の周方向せん断力Fに関して、ゴム試験片の転動方向Y(図2におけるタイヤ30の進行方向Xと同方向)に対する方向の接地開始点Sから接地終了点Eまでの変移を図4の模式図に示す。これらの試験機では、その多くが接地面内の周方向せん断力Fの方向や変移を考慮するものではないため、自由転動時の接地開始点Sと接地終了点Eの間で接地面内の周方向せん断力Fの方向は、図4に示すように変化する。すなわち、接地開始点S通過直後はゴム試験片の転動方向Yに対して徐々に負の方向への向きを強めた後、ピークを経由してその向きが徐々に減じられ、ある時点(接地開始点Sと接地終了点Eとの間における変曲点C)で正の方向に転じる。続いて正の方向への向きを強めた後、ピークを経由してまたその向きが徐々に減じられ、接地終了点Eに到達する。したがって、図3に示す波形とは異なり、接地開始点Sと接地終了点Eとの間における変曲点C近傍では、描かれる波形の傾きは点線t’で示すように正の傾きとなり、実際の使用環境下におけるタイヤに発生する周方向せん断力とは状況を異にする。   The rolling direction Y of the rubber test piece Y (with respect to the circumferential shear force F in the ground contact surface generated in the rubber test piece grounded on the simulated road surface in the case of using the conventional Lambourne abrasion tester using the rubber test piece The transition from the contact start point S to the contact end point E in the direction relative to the traveling direction X of the tire 30 in FIG. 2 is shown in the schematic diagram of FIG. Most of these test machines do not consider the direction or transition of the circumferential shear force F in the ground plane, and therefore, within the ground plane between the ground start point S and the ground end point E during free rolling. The direction of the circumferential shearing force F changes as shown in FIG. That is, immediately after passing through the ground contact point S, the direction of the rubber test piece is gradually increased in the negative direction with respect to the rolling direction Y, and then the direction is gradually reduced via a peak. It turns in the positive direction at the inflection point C) between the start point S and the ground contact end point E. Subsequently, after the direction in the positive direction is strengthened, the direction is gradually decreased again through the peak, and the ground contact end point E is reached. Therefore, unlike the waveform shown in FIG. 3, in the vicinity of the inflection point C between the grounding start point S and the grounding end point E, the slope of the waveform to be drawn becomes a positive slope as shown by the dotted line t ′. The situation is different from the circumferential shear force generated in the tire under the usage environment.

これに対し、本発明のゴム試験機用円盤状ゴム試験片を用いたランボーン摩耗試験機を例に挙げた場合、擬似路面に接地された円盤状ゴム試験片が転動した際に発生する接地面内の周方向せん断力は、図3に準じた波形、すなわち接地開始点Sと接地終了点Eとの間における変曲点C近傍で描かれる波形の傾きが負の傾きとなる波形を示す。そして、試験中における本発明のゴム試験機用円盤状ゴム試験片の概略図である図5が示すように、接地開始点Sと接地終了点Eまでの間で円盤状ゴム試験片50に発生する接地面内の周方向せん断力Fの方向が、円盤状ゴム試験片の転動方向Y(図2におけるタイヤ30の進行方向Xと同方向)に対して正の方向から負の方向へ移行する。   On the other hand, in the case of a Lambourn abrasion tester using the disk-shaped rubber test piece for the rubber test machine of the present invention, the contact generated when the disk-shaped rubber test piece grounded on the simulated road surface rolls. The circumferential shear force in the ground shows a waveform according to FIG. 3, that is, a waveform in which the slope of the waveform drawn in the vicinity of the inflection point C between the ground contact start point S and the ground contact end point E becomes a negative slope. . Then, as shown in FIG. 5 which is a schematic view of the disk-shaped rubber test piece for the rubber testing machine of the present invention during the test, the disk-shaped rubber test piece 50 is generated between the ground contact start point S and the ground contact end point E. The direction of the circumferential shearing force F in the ground contact surface shifts from a positive direction to a negative direction with respect to the rolling direction Y of the disk-shaped rubber test piece (the same direction as the traveling direction X of the tire 30 in FIG. 2). To do.

本発明のゴム試験機用円盤状ゴム試験片の形状について、具体的な例を図6の模式図に示す。かかる円盤状ゴム試験片50は略円盤状を呈しており、通常、その中央部に内孔部Hが設けられている。内孔部Hの表面形状は特に限定されず、滑らかな曲面やギア刃形状などが挙げられ、回転軸と円盤状ゴム試験片との連結部におけるスリップを低減する観点からは、ギア刃形状であるのが好ましい。   A specific example of the shape of the disk-shaped rubber test piece for the rubber testing machine of the present invention is shown in the schematic diagram of FIG. The disk-shaped rubber test piece 50 has a substantially disk shape, and usually has an inner hole H at the center thereof. The surface shape of the inner hole portion H is not particularly limited, and examples thereof include a smooth curved surface and a gear blade shape. From the viewpoint of reducing slip at the connecting portion between the rotating shaft and the disk-shaped rubber test piece, the gear blade shape is Preferably there is.

円盤状ゴム試験片50の外周面Oの直径Rは、上記図3に準じた波形を示す円盤状ゴム試験片であれば特に制限されないが、好ましくは6mm以上80mm未満である。直径Rが上記上限値を超えると、円盤状ゴム試験片50の保管数が減ぜられる傾向にあり、また円盤状ゴム試験片50を形成するゴム量が増すため、ハンドリング性が悪化するおそれがある。一方、上記下限値未満であると、円盤状ゴム試験片50全体の大きさが小さくなりすぎ、接地開始点Sから接地終了点Eまでの間で円盤状ゴム試験片50に発生する接地面内の周方向せん断力Fの方向が、正の方向から負の方向へ移行しないおそれがある。   The diameter R of the outer peripheral surface O of the disk-shaped rubber test piece 50 is not particularly limited as long as it is a disk-shaped rubber test piece showing a waveform according to FIG. 3, but is preferably 6 mm or more and less than 80 mm. If the diameter R exceeds the upper limit, the number of stored disc-shaped rubber test pieces 50 tends to be reduced, and the amount of rubber forming the disc-shaped rubber test piece 50 increases, so that the handling property may be deteriorated. is there. On the other hand, if it is less than the above lower limit value, the entire size of the disk-shaped rubber test piece 50 becomes too small, and within the ground contact surface generated in the disk-shaped rubber test piece 50 between the ground contact start point S and the ground contact end point E. The direction of the circumferential shear force F may not shift from the positive direction to the negative direction.

円盤状ゴム試験片50の外周面Oから内孔部面Iまでの平均距離Dは、上記Rと同様に、上記図3に準じた波形を示す円盤状ゴム試験片であれば特に制限されないが、好ましくは1mm以上である。また、平均距離Dは同時に直径R(mm)−5mm以下であるのが望ましい。ここで、平均距離Dとは、内孔部Hの形状に応じて、外周面Oから内孔部面Iまでの複数箇所(通常、6箇所)の最短距離を平均した値を意味する。すなわち、内孔部面Iは内孔部Hの形状に応じて様々な表面形状を呈する可能性があり、例えば、内孔部Hがギア刃形状を呈している場合、かかる形状の凹部表面の外周面Oからの最短距離と、凸部表面の外周面Oからの最短距離とを含む複数箇所の距離を測定し、これらを平均した値を意味することとなる。平均距離Dが上記上限値を超えると、円盤状ゴム試験片にトルクを与える回転軸との連結が困難になるおそれがあり、上記下限値未満であると、円盤状ゴム試験片50全体の耐久性が低下するおそれがある。   The average distance D from the outer peripheral surface O of the disk-shaped rubber test piece 50 to the inner hole surface I is not particularly limited as long as it is a disk-shaped rubber test piece showing a waveform according to FIG. It is preferably 1 mm or more. Moreover, it is desirable that the average distance D is simultaneously a diameter R (mm) −5 mm or less. Here, the average distance D means a value obtained by averaging the shortest distances at a plurality of locations (usually six locations) from the outer peripheral surface O to the inner hole surface I according to the shape of the inner hole H. That is, the inner hole surface I may have various surface shapes depending on the shape of the inner hole H. For example, when the inner hole H has a gear blade shape, It means the value obtained by measuring the distances of a plurality of locations including the shortest distance from the outer peripheral surface O and the shortest distance from the outer peripheral surface O of the convex surface, and averaging these. If the average distance D exceeds the above upper limit value, it may be difficult to connect with a rotating shaft that applies torque to the disk-shaped rubber test piece. If the average distance D is less than the above lower limit value, the durability of the entire disk-shaped rubber test piece 50 may be increased. May decrease.

円盤状ゴム試験片50の厚さWは、下限値については特に制限されないが、好ましくは5mm以上、さらに好ましくは20mm以上である。厚さWが上記下限値未満であると、円盤状ゴム試験片50自体の直進性が悪化してノイズ発生の原因となり、シグナルの検出や制御が困難となるおそれがある。上記上限値については、特に制限されない。   The thickness W of the disk-shaped rubber test piece 50 is not particularly limited as to the lower limit value, but is preferably 5 mm or more, and more preferably 20 mm or more. If the thickness W is less than the above lower limit value, the straightness of the disk-shaped rubber test piece 50 itself deteriorates, causing noise, and it may be difficult to detect and control signals. The upper limit is not particularly limited.

上述のように、本発明の円盤状ゴム試験片を用いる好ましいゴム試験機としてランボーン摩耗試験機を例示したが、かかる一般的なランボーン摩耗試験機のほか、応力制御ランボーン摩耗試験機などのランボーン摩耗試験機にも採用することができる。また、これら摩耗試験機に限らず、例えばDIN摩耗試験機、ウイリアムス摩耗試験機、アクロン摩耗試験機、ピコ摩耗試験機、テーバー摩耗試験機、NBS摩耗試験機等の摩耗試験機;ブレーキ摩擦試験機、高速加圧摩擦試験機、定応力ランボーン、定スリップランボーン等の摩擦試験機が挙げられ、特に前記擬似路面から前記ゴム試験機用円盤状ゴム試験片への応力(トルク)を基準にして該ゴム試験機用円盤状ゴム試験片の転動を制御することにより、ゴムの摩耗特性を評価する摩擦試験機が好適なものとして挙げられる。   As described above, the Lambourn wear tester has been exemplified as a preferable rubber tester using the disk-shaped rubber test piece of the present invention, but in addition to such a general Lambourn wear tester, Lambourn wear such as a stress-controlled Lambourn wear tester. It can also be used for testing machines. In addition to these wear testers, for example, DIN wear tester, Williams wear tester, Akron wear tester, pico wear tester, Taber wear tester, NBS wear tester, etc .; Brake friction tester , High-speed pressure friction tester, constant stress lambone, constant slip lambone, etc., especially, based on the stress (torque) from the simulated road surface to the rubber test piece disk rubber test piece A friction tester that evaluates the wear characteristics of rubber by controlling the rolling of the disk-shaped rubber test piece for the rubber tester is preferred.

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

[実施例1、比較例1]
図6に示す円盤状ゴム試験片50の外周面Oの直径R、円盤状ゴム試験片50の外周面Oから内孔部H面までの平均距離D、円盤状ゴム試験片50の厚さWについて、表1に示す値を有する円盤状ゴム試験片を作製し、図1に示すランボーン摩耗試験機に装着して下記に示す条件下で試験を行い、図3または図4に示すような接地面内周方向のせん断力に関する波形図を作製した。得られた波形図から接地開始点Sと接地終了点Eの間の変曲点Cでの波形の傾きを求めた。結果を表1および図7に示す。
[Example 1, Comparative Example 1]
The diameter R of the outer peripheral surface O of the disc-shaped rubber test piece 50 shown in FIG. 6, the average distance D from the outer peripheral surface O of the disc-shaped rubber test piece 50 to the inner hole H surface, the thickness W of the disc-shaped rubber test piece 50 A disc-shaped rubber test piece having the values shown in Table 1 was prepared, mounted on the lambone abrasion tester shown in FIG. 1, and tested under the conditions shown below, and contacted as shown in FIG. 3 or FIG. A waveform diagram regarding the shear force in the inner circumferential direction was prepared. The slope of the waveform at the inflection point C between the ground contact start point S and the ground contact end point E was obtained from the obtained waveform diagram. The results are shown in Table 1 and FIG.

《試験条件》
ゴム物性:100%伸長率:1.0MPa
試験機:自由転動時押し付け荷重:6kgf
"Test conditions"
Rubber physical properties: 100% elongation: 1.0 MPa
Test machine: Pushing load during free rolling: 6kgf

Figure 2010216866
Figure 2010216866

表1および図7より、従来のゴム試験機に比べ、本発明の円盤状ゴム試験機を用いたゴム試験機では、接地開始点Sと接地終了点Eとの間における変曲点C近傍で描かれる波形の傾きが負の傾きとなり、円盤状ゴム試験片に発生する接地面内の周方向せん断力の転動方向に対する方向が、擬似路面への接地開始点から接地終了点までに正の方向から負の方向へ移行していることがわかる。   As shown in Table 1 and FIG. 7, in the rubber testing machine using the disk-shaped rubber testing machine of the present invention, compared with the conventional rubber testing machine, in the vicinity of the inflection point C between the grounding start point S and the grounding end point E. The slope of the waveform drawn is negative, and the direction of the circumferential shear force in the contact surface generated in the disk-shaped rubber test piece with respect to the rolling direction is positive between the contact start point on the simulated road surface and the contact end point. It can be seen that the direction is moving in the negative direction.

1 研磨ホイール
2、3 駆動軸
4 ゴム試験片
5 ホルダー
5a 受けパッド
5b クランプパッド
6 クラッチ
7 可動ベース
8 固定ベース
9 ガイドレール
13 トルクメータ
20 偏角許容型カップリング
30 タイヤ
31 路面
41 トレッド表面
42 ベルト層
50 円盤状ゴム試験片
51 擬似路面
S 接地開始点
E 接地終了点
c1 トレッド表面41の変動幅
c2 ベルト層42の変動幅
X タイヤ進行方向
Y ゴム試験片転動方向
F 接地面内の周方向せん断力
Fs 接地開始点Sで発生する接地面内の周方向せん断力
Fe 接地終了点Eで発生する接地面内の周方向せん断力
C 接地開始点Sと接地終了点Eとの間における変曲点
t 接地開始点Sと接地終了点Eとの間における変曲点C近傍で描かれる波形の傾きを近似する線
t’ 接地開始点Sと接地終了点Eとの間における変曲点C近傍で描かれる波形の傾きを近似する線
H 円盤状ゴム試験片50の内孔部
I 円盤状ゴム試験片50の内孔部面
O 円盤状ゴム試験片50の外周面
D 円盤状ゴム試験片50の外周面Oから内孔部面Iまでの平均距離
R 円盤状ゴム試験片50の外周面Oの直径
W 円盤状ゴム試験片50の厚さ
DESCRIPTION OF SYMBOLS 1 Polishing wheel 2, 3 Drive shaft 4 Rubber test piece 5 Holder 5a Receiving pad 5b Clamp pad 6 Clutch 7 Movable base 8 Fixed base 9 Guide rail 13 Torque meter 20 Deflection type coupling 30 Tire 31 Road surface 41 Tread surface 42 Belt Layer 50 Disc-shaped rubber test piece 51 Simulated road surface S Grounding start point E Grounding end point c1 Fluctuation width of tread surface 41 c2 Fluctuation width of belt layer 42 X Tire traveling direction Y Rubber test piece rolling direction F Circumferential direction in grounding surface Shear force Fs Circumferential shear force in the ground contact surface generated at the contact start point S Fe Circumferential shear force generated in the contact surface at the contact end point E C Inflection between the contact start point S and the contact end point E Point t A line that approximates the slope of the waveform drawn in the vicinity of the inflection point C between the grounding start point S and the grounding end point E t ′ A line approximating the inclination of the waveform drawn in the vicinity of the inflection point C between the point S and the contact end point E H Inner hole portion of the disk-shaped rubber test piece 50 I Inner hole surface O of the disk-shaped rubber test piece 50 The outer peripheral surface of the disk-shaped rubber test piece 50 D The average distance from the outer peripheral surface O of the disk-shaped rubber test piece 50 to the inner hole surface I R The diameter of the outer peripheral surface O of the disk-shaped rubber test piece 50 W The disk-shaped rubber test piece 50 Thickness of

Claims (5)

転動させつつ擬似路面に接地させることにより負荷を与えられる円盤状ゴム試験片であって、
前記円盤状ゴム試験片を自由転動させたときに、前記負荷に起因して前記円盤状ゴム試験片に発生する接地面内の周方向せん断力の転動方向に対する方向が、擬似路面への接地開始点から接地終了点までに正の方向から負の方向へ移行することを特徴とするゴム試験機用円盤状ゴム試験片。
A disc-shaped rubber test piece that is loaded by being grounded on a simulated road surface while rolling,
When the disk-shaped rubber test piece is freely rolled, the direction of the circumferential shear force in the ground contact surface generated in the disk-shaped rubber test piece due to the load with respect to the rolling direction is changed to the simulated road surface. A disc-shaped rubber test piece for a rubber testing machine, wherein the test piece moves from a positive direction to a negative direction from a contact start point to a contact end point.
前記ゴム試験機用円盤状ゴム試験片が内孔部を有し、かつ
外周面の直径Rが6〜80mm、外周面から内孔部面までの平均距離Dが1〜R−5mmであることを特徴とする請求項1に記載のゴム試験機円盤状ゴム試験片。
The disc-shaped rubber test piece for a rubber testing machine has an inner hole portion, the outer peripheral surface diameter R is 6 to 80 mm, and the average distance D from the outer peripheral surface to the inner hole surface is 1 to R-5 mm. The rubber testing machine disk-shaped rubber test piece according to claim 1.
請求項1または2に記載のゴム試験機用円盤状ゴム試験片を用いたことを特徴とするゴム試験機。   A rubber testing machine using the disk-shaped rubber test piece for a rubber testing machine according to claim 1 or 2. 前記ゴム試験機が、摩耗試験機であることを特徴とする請求項3に記載のゴム試験機。   The rubber testing machine according to claim 3, wherein the rubber testing machine is an abrasion testing machine. 前記摩耗試験機が、前記擬似路面から前記ゴム試験機用円盤状ゴム試験片への応力(トルク)を基準にして該ゴム試験機用円盤状ゴム試験片の転動を制御することにより、ゴムの摩耗特性を評価することを特徴とする請求項4に記載のゴム試験機。   The wear tester controls the rolling of the disk-shaped rubber test piece for the rubber testing machine on the basis of the stress (torque) from the simulated road surface to the disk-shaped rubber test piece for the rubber testing machine. The rubber testing machine according to claim 4, wherein wear characteristics of the rubber are evaluated.
JP2009061513A 2009-03-13 2009-03-13 Disc-shaped rubber test piece for rubber testing machine and rubber testing machine using the same Expired - Fee Related JP5297844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061513A JP5297844B2 (en) 2009-03-13 2009-03-13 Disc-shaped rubber test piece for rubber testing machine and rubber testing machine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061513A JP5297844B2 (en) 2009-03-13 2009-03-13 Disc-shaped rubber test piece for rubber testing machine and rubber testing machine using the same

Publications (2)

Publication Number Publication Date
JP2010216866A true JP2010216866A (en) 2010-09-30
JP5297844B2 JP5297844B2 (en) 2013-09-25

Family

ID=42975885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061513A Expired - Fee Related JP5297844B2 (en) 2009-03-13 2009-03-13 Disc-shaped rubber test piece for rubber testing machine and rubber testing machine using the same

Country Status (1)

Country Link
JP (1) JP5297844B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2480558A (en) * 2010-05-20 2011-11-23 Ooms Nederland Holding B V Road testing apparatus
CN104006996A (en) * 2014-06-06 2014-08-27 招商局重庆交通科研设计院有限公司 Integrated test piece for accelerating polishing and abrasion of road surfaces and preparation method thereof
CN114166658A (en) * 2021-12-07 2022-03-11 长沙学院 Method for testing shearing characteristic of vertical interface between waste tire and soil
CN114166659A (en) * 2021-12-07 2022-03-11 长沙学院 Device for testing shearing characteristic of waste tire-soil vertical interface

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160227A (en) * 1997-12-02 1999-06-18 Yokohama Rubber Co Ltd:The Test piece for use in indoor friction test and test method using the test piece
JPH11326169A (en) * 1998-05-08 1999-11-26 Bridgestone Corp Method for measuring degree of rubber wear
JP2000002641A (en) * 1998-04-17 2000-01-07 Jsr Corp Abrasion testing device
JP2002036836A (en) * 2000-07-21 2002-02-06 Bridgestone Corp Estimation method of road surface friction coefficient, device therefor, and pneumatic tire
JP2003050190A (en) * 2001-08-03 2003-02-21 Bridgestone Corp Method for predicting wear-out lifetime of tire
JP2004053482A (en) * 2002-07-22 2004-02-19 Sumitomo Rubber Ind Ltd Abrasion testing method of tire
JP2005114605A (en) * 2003-10-09 2005-04-28 Yokohama Rubber Co Ltd:The Tire wear test method and tire wear testing device
JP2006047075A (en) * 2004-08-04 2006-02-16 Yokohama Rubber Co Ltd:The Abrasion test method and device for tire
JP2006242697A (en) * 2005-03-02 2006-09-14 Bridgestone Corp Abrasion test method and abrasion testing device
JP2008185475A (en) * 2007-01-30 2008-08-14 Bridgestone Corp Rubber abrasion tester, and abrasion testing method of rubber for tire tread using it

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160227A (en) * 1997-12-02 1999-06-18 Yokohama Rubber Co Ltd:The Test piece for use in indoor friction test and test method using the test piece
JP2000002641A (en) * 1998-04-17 2000-01-07 Jsr Corp Abrasion testing device
JPH11326169A (en) * 1998-05-08 1999-11-26 Bridgestone Corp Method for measuring degree of rubber wear
JP2002036836A (en) * 2000-07-21 2002-02-06 Bridgestone Corp Estimation method of road surface friction coefficient, device therefor, and pneumatic tire
JP2003050190A (en) * 2001-08-03 2003-02-21 Bridgestone Corp Method for predicting wear-out lifetime of tire
JP2004053482A (en) * 2002-07-22 2004-02-19 Sumitomo Rubber Ind Ltd Abrasion testing method of tire
JP2005114605A (en) * 2003-10-09 2005-04-28 Yokohama Rubber Co Ltd:The Tire wear test method and tire wear testing device
JP2006047075A (en) * 2004-08-04 2006-02-16 Yokohama Rubber Co Ltd:The Abrasion test method and device for tire
JP2006242697A (en) * 2005-03-02 2006-09-14 Bridgestone Corp Abrasion test method and abrasion testing device
JP2008185475A (en) * 2007-01-30 2008-08-14 Bridgestone Corp Rubber abrasion tester, and abrasion testing method of rubber for tire tread using it

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013007832; 藤川達夫: 'ゴム試料摩耗試験によるトレッド摩耗の予測' 日本ゴム協会誌 Vol.71, No.3, 199803, Page.154-160 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2480558A (en) * 2010-05-20 2011-11-23 Ooms Nederland Holding B V Road testing apparatus
US8549926B2 (en) 2010-05-20 2013-10-08 Ooms Civiel B.V. Testing apparatus
GB2480558B (en) * 2010-05-20 2017-02-08 Ooms Civiel B V Testing apparatus
CN104006996A (en) * 2014-06-06 2014-08-27 招商局重庆交通科研设计院有限公司 Integrated test piece for accelerating polishing and abrasion of road surfaces and preparation method thereof
CN114166658A (en) * 2021-12-07 2022-03-11 长沙学院 Method for testing shearing characteristic of vertical interface between waste tire and soil
CN114166659A (en) * 2021-12-07 2022-03-11 长沙学院 Device for testing shearing characteristic of waste tire-soil vertical interface
CN114166658B (en) * 2021-12-07 2024-04-12 长沙学院 Method for testing shear characteristics of vertical interface of junked tire and soil
CN114166659B (en) * 2021-12-07 2024-04-12 长沙学院 Junked tire-soil vertical interface shear characteristic testing arrangement

Also Published As

Publication number Publication date
JP5297844B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5204223B2 (en) Horizontal position control for tire tread wear test equipment.
JP5297844B2 (en) Disc-shaped rubber test piece for rubber testing machine and rubber testing machine using the same
TW480208B (en) Process for polishing semiconductor wafers using a wafer polishing machine
JP5055053B2 (en) Method for measuring the number of active abrasive grains on a conditioning disk
JP5035991B2 (en) Rubber testing machine
JP2012247301A (en) Rubber friction/abrasion characteristic testing method and rubber friction/abrasion characteristic testing apparatus
JP4717471B2 (en) Wear test method and wear test apparatus
JP5534587B2 (en) Rubber testing machine
AU2003243148B2 (en) Improvements in tire uniformity testing
KR100642992B1 (en) Apparatus for valuating wear of rubber sample for tire tread
JP2013104735A (en) Method of testing rubber wear
JP3320654B2 (en) Rubber wear measurement method
JP2014190945A (en) Method and device of testing rubber abrasion
JP3997647B2 (en) Abrasion test equipment
JP3009752B2 (en) Polishing method and polishing device
JP6045390B2 (en) Rubber abrasion test method
KR101767324B1 (en) Abrasion Tester for Testing Wear Resistance of Cured Rubber Specimen
JP2004053482A (en) Abrasion testing method of tire
JP5210928B2 (en) Method for determining the time to replace a simulated road surface of a rubber testing machine
JP4172526B2 (en) Abrasion test equipment
JP2007279062A (en) Abrasion test device
Mohajerani et al. Edge rounding of brittle materials by low velocity erosive wear
JPH02242133A (en) Test of air tire
JP3636856B2 (en) Elastic body wear test method
JP2595040B2 (en) Friction and wear testing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Ref document number: 5297844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees