JP2010214322A - Supported catalyst of platinum group metal, method of producing treated water removed of hydrogen peroxide by decomposing the same, method of producing treated water removed of dissolved oxygen, and method of washing electronic parts - Google Patents

Supported catalyst of platinum group metal, method of producing treated water removed of hydrogen peroxide by decomposing the same, method of producing treated water removed of dissolved oxygen, and method of washing electronic parts Download PDF

Info

Publication number
JP2010214322A
JP2010214322A JP2009065862A JP2009065862A JP2010214322A JP 2010214322 A JP2010214322 A JP 2010214322A JP 2009065862 A JP2009065862 A JP 2009065862A JP 2009065862 A JP2009065862 A JP 2009065862A JP 2010214322 A JP2010214322 A JP 2010214322A
Authority
JP
Japan
Prior art keywords
water
monolith
anion exchanger
platinum group
group metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009065862A
Other languages
Japanese (ja)
Other versions
JP5430983B2 (en
Inventor
Hiroshi Inoue
洋 井上
Hitoshi Takada
仁 高田
Kazushige Takahashi
一重 高橋
Hiroshi Sugawara
広 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2009065862A priority Critical patent/JP5430983B2/en
Priority to PCT/JP2010/053647 priority patent/WO2010106925A1/en
Priority to CN201080012375XA priority patent/CN102355952B/en
Priority to KR1020117020558A priority patent/KR101668132B1/en
Priority to TW099107429A priority patent/TWI476048B/en
Publication of JP2010214322A publication Critical patent/JP2010214322A/en
Application granted granted Critical
Publication of JP5430983B2 publication Critical patent/JP5430983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J35/393
    • B01J35/56
    • B01J35/635
    • B01J35/638
    • B01J35/653
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high performance catalyst capable of decomposing/removing hydrogen peroxide or of removing dissolved oxygen even if water is allowed to flow therethrough at such a high SV of higher than 2,000 h<SP>-1</SP>and even if the height of a packed bed of the catalyst is made low. <P>SOLUTION: The supported catalyst of platinum group metal includes a porous organic anion exchanger which is a continuous macroporous structure wherein the bubble-shaped macropores overlap one after another with the overlapping parts each constituting an opening of a mean diameter in a water-wet state of 30 to 300 μm, has a total pore volume of 0.5 to 5 ml/g and an anion exchanging capacity per volume in a water-wet state of 0.4 to 1.0 mg equivalent/ml, includes anion exchanging groups uniformly distributed therein, and includes nano particles of platinum group metal of a mean diameter of 1 to 100 nm supported thereby in an amount in a dry state of 0.004 to 20 wt.%, with the area of the skeleton thereof appearing on the cross section in the SEM image of a cut plane of the continuous macroporous structure (a dry structure) occupying 25 to 50% of the image area. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発電所用水や半導体製造などの精密加工洗浄用水に使用される、超純水中の過酸化水素や溶存酸素の様な酸化性物質を除去するための白金族金属担持触媒に関するものである。   The present invention relates to a platinum group metal-supported catalyst for removing oxidizing substances such as hydrogen peroxide and dissolved oxygen in ultrapure water, which are used in water for precision processing such as power plant water and semiconductor manufacturing. It is.

発電所で用いられる用水中の溶存酸素は、配管や熱交換器等の部材の腐食を引き起こすことが知られており、特に、原子力発電所の一次系及び二次系においては、溶存酸素を極力低減する必要がある。   It is known that dissolved oxygen in the water used at power plants will cause corrosion of components such as pipes and heat exchangers. In particular, dissolved oxygen is used as much as possible in the primary and secondary systems of nuclear power plants. There is a need to reduce.

また、半導体製造産業においては、不純物を高度に除去した超純水を用いてシリコンウエハの洗浄等が行われている。超純水は、一般に原水(河川水、地下水、工業用水等)中に含まれる懸濁物質や有機物の一部を前処理工程で除去した後、その処理水を一次純水系システム及び二次純水系システム(サブシステム)で順次処理することによって製造され、ウエハ洗浄を行うユースポイントに供給される。このような超純水は、不純物の定量も困難であるほどの純度を有するが、全く不純物を有していないわけではない。   In the semiconductor manufacturing industry, silicon wafers are cleaned using ultrapure water from which impurities are highly removed. Ultrapure water generally removes part of suspended matter and organic matter contained in raw water (river water, groundwater, industrial water, etc.) in the pretreatment process, and then treats the treated water with the primary pure water system and secondary pure water. Manufactured by sequential processing in an aqueous system (subsystem) and supplied to a use point for wafer cleaning. Such ultrapure water has such a purity that it is difficult to quantify the impurities, but it does not have no impurities at all.

例えば、超純水中に含まれる溶存酸素は、シリコンウエハの表面に自然酸化膜を形成する。自然酸化膜がウエハ表面に形成されると、低温でのエピタキシャルSi薄膜の成長を妨げたり、ゲート酸化膜の膜圧及び膜質の精密制御の妨げとなったり、コンタクトホールのコンタクト抵抗の増加原因となったりする。そのため、ウエハ表面の自然酸化膜の形成は、極力抑制する必要がある。   For example, dissolved oxygen contained in ultrapure water forms a natural oxide film on the surface of a silicon wafer. When a natural oxide film is formed on the wafer surface, it prevents growth of epitaxial Si thin films at low temperatures, hinders precise control of gate oxide film pressure and film quality, and causes increase in contact resistance of contact holes. It becomes. Therefore, it is necessary to suppress the formation of the natural oxide film on the wafer surface as much as possible.

そこで、超純水製造装置においては、特に一次純水系システムにおいて、脱気装置を用いて溶存酸素を低減している。この脱気装置により、二次純水系システム入り口における被処理水(一次純水)中の溶存酸素濃度は、通常、100μg/L以下にまで低減されている。更に、10μg/L以下に管理されている場合もある。   Therefore, in the ultrapure water production apparatus, particularly in the primary pure water system, dissolved oxygen is reduced by using a deaeration device. With this deaeration device, the dissolved oxygen concentration in the water to be treated (primary pure water) at the entrance of the secondary pure water system is usually reduced to 100 μg / L or less. Furthermore, it may be controlled to 10 μg / L or less.

前述した超純水の製造では、一般に、二次純水系システムに設置した紫外線酸化装置によって有機物の分解を行っている。紫外線酸化処理の過程では過酸化水素が副生するため、紫外線酸化装置の処理水中には、過酸化水素が残存しているのが一般的である。この過酸化水素は、二次純水系システムのポリッシャ工程で部分的に分解されて酸素を生成し、処理水中の溶存酸素濃度を上昇させてしまう。   In the above-described production of ultrapure water, organic substances are generally decomposed by an ultraviolet oxidizer installed in a secondary pure water system. Since hydrogen peroxide is by-produced in the process of ultraviolet oxidation, it is common that hydrogen peroxide remains in the treated water of the ultraviolet oxidation apparatus. This hydrogen peroxide is partially decomposed in the polisher process of the secondary pure water system to generate oxygen, and increase the dissolved oxygen concentration in the treated water.

そこで、紫外線酸化装置の処理水中に含まれる過酸化水素を、合成炭素系粒状吸着剤を用いて吸着除去する方法が提案されている(特開平9−29233号公報)。この方法によれば、紫外線酸化装置の処理水中に残存する過酸化水素自体を除去することから、ウエハ表面の自然酸化皮膜の形成を抑制することが可能である。しかし、この方法では、所定の過酸化水素除去率を達成するためには、多量の合成炭素系粒状吸着剤を充填した大型の吸着塔が必要であった。   Therefore, a method has been proposed in which hydrogen peroxide contained in the treated water of the ultraviolet oxidation apparatus is adsorbed and removed using a synthetic carbon-based granular adsorbent (Japanese Patent Laid-Open No. 9-29233). According to this method, it is possible to suppress the formation of a natural oxide film on the wafer surface because hydrogen peroxide itself remaining in the treated water of the ultraviolet oxidation apparatus is removed. However, this method requires a large adsorption tower filled with a large amount of a synthetic carbon-based particulate adsorbent in order to achieve a predetermined hydrogen peroxide removal rate.

また、紫外線酸化装置の処理水中に含まれる過酸化水素を、白金族金属ナノコロイド粒子を担体に担持させた触媒によって分解する方法が提案されている(特開2007−185587号公報)。   In addition, a method has been proposed in which hydrogen peroxide contained in treated water of an ultraviolet oxidation apparatus is decomposed with a catalyst in which platinum group metal nanocolloid particles are supported on a carrier (Japanese Patent Laid-Open No. 2007-185587).

特開平9−29233号公報(特許請求の範囲)JP-A-9-29233 (Claims) 特開2007−185587号公報(特許請求の範囲)JP 2007-185587 A (Claims)

しかしながら、特開2007−185587号公報に記載の触媒は、通水空間速度(SV)が100〜2000h−1と比較的低い領域でしか使用できず、SVが2000h−1を越えると、過酸化水素の分解除去が不十分になるといった欠点を有していた。 However, the catalysts described in JP-A-2007-185587, can only be used at relatively low region passing water space velocity (SV) is a 100~2000H -1, the SV exceeds 2000h -1, peroxide There was a disadvantage that the decomposition and removal of hydrogen was insufficient.

従って、本発明の目的は、SVが2000h−1を超えるような大きなSVで通水しても過酸化水素の分解除去又は溶存酸素の除去が可能であり、更に、触媒の充填層高を薄くしても過酸化水素の分解除去又は溶存酸素の除去を可能にする、高性能触媒を提供することにある。 Therefore, the object of the present invention is to allow the decomposition and removal of hydrogen peroxide or the removal of dissolved oxygen even when water is passed through a large SV with an SV exceeding 2000 h −1 , and the catalyst packed bed height is reduced. It is an object to provide a high-performance catalyst that can decompose hydrogen peroxide or remove dissolved oxygen.

かかる実情において、本発明者らは鋭意検討を行った結果、特開2002−306976号公報記載の方法で得られた比較的大きな細孔容積を有するモノリス状有機多孔質体(中間体)の存在下に、ビニルモノマーと架橋剤を、特定有機溶媒中で静置重合すれば、開口径が大きく、中間体の有機多孔質体の骨格よりも太い骨格を有する骨太のモノリス状有機多孔質体が得られること、骨太のモノリス状有機多孔質体にイオン交換基を導入すると、骨太であるが故に膨潤が大きく、従って、開口を更に大きくできることを見出した。この骨太のモノリス状有機多孔質体にアニオン交換基を導入したモノリス状有機多孔質アニオン交換体(以下、「第1のモノリスアニオン交換体」とも言う。)に平均粒子径1〜100nmの白金族金属のナノ粒子を担持した白金族金属担持触媒(以下、「第1の白金族金属担持触媒」とも言う。)は、SVが2000h−1を超えるような大きなSVで通水しても過酸化水素の分解除去又は溶存酸素の除去が可能であり、更に、触媒の充填層高を薄くしても過酸化水素の分解除去又は溶存酸素の除去が可能であることを見出し、本発明を完成するに至った。 Under such circumstances, the present inventors have conducted intensive studies, and as a result, the existence of a monolithic organic porous material (intermediate) having a relatively large pore volume obtained by the method described in JP-A-2002-306976. Below, if the vinyl monomer and the cross-linking agent are allowed to stand in a specific organic solvent, a monolithic organic porous material having a large opening diameter and a thicker skeleton than that of the intermediate organic porous material can be obtained. It was found that when an ion exchange group was introduced into a thick monolithic organic porous material, the swelling was large due to the thick bone, and therefore the opening could be further increased. A platinum group having an average particle diameter of 1 to 100 nm is added to the monolithic organic porous anion exchanger (hereinafter also referred to as “first monolithic anion exchanger”) in which an anion exchange group is introduced into the thick monolithic organic porous body. The platinum group metal supported catalyst supporting metal nanoparticles (hereinafter also referred to as “first platinum group metal supported catalyst”) is peroxidized even when water is passed through a large SV such that the SV exceeds 2000 h −1 . It is found that hydrogen can be decomposed and removed or dissolved oxygen can be removed, and that hydrogen peroxide can be decomposed and dissolved oxygen can be removed even if the catalyst packed bed height is reduced, and the present invention is completed. It came to.

また、本発明者らは鋭意検討を行った結果、特開2002−306976号公報記載の方法で得られた大きな細孔容積を有するモノリス状有機多孔質体(中間体)の存在下に、芳香族ビニルモノマーと架橋剤を、特定有機溶媒中で静置重合すれば、三次元的に連続した芳香族ビニルポリマー骨格と、その骨格相間に三次元的に連続した空孔とからなり、両相が絡み合った共連続構造の疎水性モノリスが得られること、この共連続構造のモノリスは、空孔の連続性が高くてその大きさに偏りがなく、流体透過時の圧力損失が低いこと、更にこの共連続構造の骨格が太いためイオン交換基を導入すれば、体積当りのイオン交換容量の大きなモノリス状有機多孔質イオン交換体が得られることを見出した。この共連続構造のモノリスにアニオン交換基を導入したモノリス状有機多孔質アニオン交換体(以下、「第2のモノリスアニオン交換体」とも言う。)に平均粒子径1〜100nmの白金族金属のナノ粒子を担持した白金族金属担持触媒(以下、「第2の白金族金属担持触媒」とも言う。)は、第1の白金族金属担持触媒と同様に、SVが2000h−1を超えるような大きなSVで通水しても過酸化水素の分解除去又は溶存酸素の除去が可能であり、更に、触媒の充填層高を薄くしても過酸化水素の分解除去又は溶存酸素の除去が可能であることを見出し、本発明を完成するに至った。 In addition, as a result of intensive studies, the present inventors have found that a monolith-like organic porous material (intermediate) having a large pore volume obtained by the method described in JP-A-2002-306976 has a fragrance. Group vinyl monomer and cross-linking agent are allowed to stand in a specific organic solvent to form a three-dimensionally continuous aromatic vinyl polymer skeleton and three-dimensionally continuous pores between the skeleton phases. A monolith with a co-continuous structure intertwined with each other, this monolith with a co-continuous structure has a high continuity of pores, is not biased in size, and has a low pressure loss during fluid permeation, It was found that a monolithic organic porous ion exchanger having a large ion exchange capacity per volume can be obtained by introducing an ion exchange group because the skeleton of this co-continuous structure is thick. The monolithic organic porous anion exchanger (hereinafter also referred to as “second monolith anion exchanger”) in which an anion exchange group is introduced into this co-continuous monolith is added to a platinum group metal nanoparticle having an average particle diameter of 1 to 100 nm. platinum group metal supported catalyst particles carrying (hereinafter, also referred to as "second platinum group metal supported catalyst."), as in the first platinum group metal supported catalyst, it sized to SV is greater than 2000h -1 It is possible to decompose and remove hydrogen peroxide or remove dissolved oxygen even if water is passed through the SV, and further to decompose and remove hydrogen peroxide or dissolved oxygen even if the packed bed height of the catalyst is reduced. As a result, the present invention has been completed.

すなわち、本発明(1)は、有機多孔質アニオン交換体に、平均粒子径1〜100nmの白金族金属のナノ粒子が、担持されている白金族金属担持触媒であり、
該有機多孔質アニオン交換体は、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのアニオン交換容量0.4〜1.0mg当量/mlであり、アニオン交換基が該有機多孔質アニオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%であり、
該白金族金属の担持量が、乾燥状態で0.004〜20重量%であること、
を特徴とする白金族金属担持触媒を提供するものである。
That is, the present invention (1) is a platinum group metal supported catalyst in which platinum group metal nanoparticles having an average particle diameter of 1 to 100 nm are supported on an organic porous anion exchanger,
The organic porous anion exchanger is a continuous macropore structure in which bubble-like macropores overlap each other, and the overlapping portion is an opening having an average diameter of 30 to 300 μm in a water-wet state, and has a total pore volume of 0.5 to 5 ml. / G, anion exchange capacity per volume in a wet state of water of 0.4 to 1.0 mg equivalent / ml, anion exchange groups are uniformly distributed in the organic porous anion exchanger, and the continuous In the SEM image of the cut surface of the macropore structure (dry body), the skeleton part area appearing in the cross section is 25 to 50% in the image region,
The supported amount of the platinum group metal is 0.004 to 20% by weight in a dry state;
The platinum group metal supported catalyst characterized by these is provided.

また、本発明(2)は、有機多孔質アニオン交換体に、平均粒子径1〜100nmの白金族金属のナノ粒子が、担持されている白金族金属担持触媒であり、
該有機多孔質アニオン交換体は、アニオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが水湿潤状態で1〜60μmの三次元的に連続した骨格と、その骨格間に直径が水湿潤状態で10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのアニオン交換容量が0.3〜1.0mg当量/mlであり、アニオン交換基が該有機多孔質アニオン交換体中に均一に分布しており、
該白金族金属の担持量が、乾燥状態で0.004〜20重量%であること、
を特徴とする白金族金属担持触媒を提供するものである。
The present invention (2) is a platinum group metal-supported catalyst in which platinum group metal nanoparticles having an average particle diameter of 1 to 100 nm are supported on an organic porous anion exchanger,
The organic porous anion exchanger has an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a cross-linking structural unit among all the structural units into which an anion exchange group has been introduced. A co-continuous structure comprising a three-dimensionally continuous skeleton of ˜60 μm and three-dimensionally continuous pores of 10 to 100 μm in diameter in a wet state between the skeletons, wherein the total pore volume is 0.5 to 5 ml / g, an anion exchange capacity per volume in a water-wet state is 0.3 to 1.0 mg equivalent / ml, and the anion exchange group is uniformly in the organic porous anion exchanger. Distributed,
The supported amount of the platinum group metal is 0.004 to 20% by weight in a dry state;
The platinum group metal supported catalyst characterized by these is provided.

また、本発明(3)は、本発明(1)又は(2)いずれかの白金族金属担持触媒に、過酸化水素を含有する被処理水を接触させて、該過酸化水素を含有する被処理水中の過酸化水素を分解除去することを特徴とする過酸化水素の分解処理水の製造方法を提供するものである。   In addition, the present invention (3) is a method in which the platinum group metal-supported catalyst according to the present invention (1) or (2) is contacted with water to be treated containing hydrogen peroxide, so The present invention provides a method for producing hydrogen peroxide-decomposed water, which comprises decomposing and removing hydrogen peroxide in treated water.

また、本発明(4)は、本発明(3)の過酸化水素の分解処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄することを特徴とする電子部品の洗浄方法を提供するものである。   Further, the present invention (4) is an electronic device characterized by washing an electronic component or an electronic component manufacturing instrument with treated water obtained by performing the method for producing hydrogen peroxide decomposition treated water of the present invention (3). A method for cleaning parts is provided.

また、本発明(5)は、本発明(1)又は(2)いずれかの白金族金属担持触媒の存在下で、水素と酸素を含有する被処理水中の溶存酸素とを反応させて水を生成させることにより、該酸素を含有する被処理水から溶存酸素を除去することを特徴とする溶存酸素の除去処理水の製造方法を提供するものである。   In the present invention (5), in the presence of the platinum group metal-supported catalyst according to either the present invention (1) or (2), water is reacted with dissolved oxygen in the water to be treated to contain water. The present invention provides a method for producing dissolved oxygen-removed treated water, characterized in that dissolved oxygen is removed from water to be treated containing the oxygen.

また、本発明(6)は、本発明(5)の溶存酸素の除去処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄することを特徴とする電子部品の洗浄方法を提供するものである。   Further, the present invention (6) is an electronic component characterized by washing an electronic component or an electronic component manufacturing instrument with treated water obtained by performing the method for producing dissolved oxygen removal treated water of the present invention (5). The cleaning method is provided.

本発明の白金族金属担持触媒によれば、SVが2000h−1を超えるような大きなSVで通水しても過酸化水素の分解除去又は溶存酸素の除去が可能であり、更に、触媒の充填層高を薄くしても過酸化水素の分解除去又は溶存酸素の除去が可能である。 According to the platinum group metal-supported catalyst of the present invention, hydrogen peroxide can be decomposed or dissolved oxygen can be removed even when the SV is passed through a large SV exceeding 2000 h −1. Even if the layer height is reduced, hydrogen peroxide can be decomposed or dissolved oxygen can be removed.

第1のモノリスのSEM画像である。It is a SEM image of the 1st monolith. 第1のモノリスアニオン交換体の表面における塩化物イオンの分布状態を示したEPMA画像である。It is the EPMA image which showed the distribution state of the chloride ion in the surface of a 1st monolith anion exchanger. 第1のモノリスアニオン交換体の断面(厚み)方向における塩化物イオンの分布状態を示したEPMA画像である。It is the EPMA image which showed the distribution state of the chloride ion in the cross section (thickness) direction of a 1st monolith anion exchanger. 図1のSEM画像の断面として表れる骨格部を手動転写したものである。It is a manual transfer of the skeleton part that appears as a cross section of the SEM image of FIG. 第1の白金族金属担持触媒におけるパラジウムナノ粒子の分散状態を示したTEM画像である。It is a TEM image which showed the dispersion state of the palladium nanoparticle in a 1st platinum group metal carrying | support catalyst. 第2のモノリスアニオン交換体の共連続構造を模式的に示した図である。It is the figure which showed typically the co-continuous structure of the 2nd monolith anion exchanger. 第2のモノリスのSEM画像である。It is a SEM image of the 2nd monolith. 第2のモノリスアニオン交換体の表面における塩化物イオンの分布状態を示したEPMA画像である。It is the EPMA image which showed the distribution state of the chloride ion in the surface of a 2nd monolith anion exchanger. 第2のモノリスアニオン交換体の断面(厚み)方向における塩化物イオンの分布状態を示したEPMA画像である。It is the EPMA image which showed the distribution state of the chloride ion in the cross section (thickness) direction of a 2nd monolith anion exchanger. 第2の白金族金属担持触媒におけるパラジウムナノ粒子の分散状態を示したTEM画像である。It is a TEM image which showed the dispersion state of the palladium nanoparticle in the 2nd platinum group metal carrying | support catalyst. 参考例3のモノリス(公知品)のSEM画像である。It is a SEM image of the monolith (reference product) of Reference Example 3. 第2のモノリス中間体のSEM画像である。It is a SEM image of the 2nd monolith intermediate. 本発明の電子部品の洗浄方法(I)の第一の形態例の模式的なフロー図である。It is a typical flowchart of the 1st form example of the washing | cleaning method (I) of the electronic component of this invention. 本発明の電子部品の洗浄方法(I)の第二の形態例の模式的なフロー図である。It is a typical flowchart of the 2nd form example of the washing | cleaning method (I) of the electronic component of this invention.

本発明の白金族金属担持触媒の担体として用いられる有機多孔質アニオン交換体は、「第1のモノリスアニオン交換体」又は「第2のモノリスアニオン交換体」である。本明細書中、「モノリス状有機多孔質体」を単に「モノリス」と、「モノリス状有機多孔質アニオン交換体」を単に「モノリスアニオン交換体」と、「モノリス状の有機多孔質中間体」を単に「モノリス中間体」とも言う。また、第1のモノリスアニオン交換体に白金族金属が担持された白金族金属担持触媒を、「第1の白金族金属担持触媒」と、第2のモノリスアニオン交換体に白金族金属が担持された白金族金属担持触媒を、「第2の白金族金属担持触媒」とも言う。   The organic porous anion exchanger used as the carrier of the platinum group metal supported catalyst of the present invention is a “first monolith anion exchanger” or a “second monolith anion exchanger”. In the present specification, “monolithic organic porous body” is simply “monolith”, “monolithic organic porous anion exchanger” is simply “monolith anion exchanger”, and “monolithic organic porous intermediate”. Is also simply referred to as “monolith intermediate”. Further, a platinum group metal supported catalyst in which a platinum group metal is supported on the first monolith anion exchanger is referred to as “first platinum group metal supported catalyst”, and a platinum group metal is supported on the second monolith anion exchanger. The platinum group metal supported catalyst is also referred to as “second platinum group metal supported catalyst”.

<第1のモノリスアニオン交換体の説明>
第1のモノリスアニオン交換体は、モノリスにアニオン交換基を導入することで得られるものであり、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μm、好ましくは30〜200μm、特に好ましくは40〜100μmの開口(メソポア)となる連続マクロポア構造体である。モノリスアニオン交換体の開口の平均直径は、モノリスにアニオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの開口の平均直径よりも大となる。水湿潤状態での開口の平均直径が30μm未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、水湿潤状態での開口の平均直径が大き過ぎると、被処理水とモノリスアニオン交換体および担持された白金族金属ナノ粒子との接触が不十分となり、その結果、過酸化水素分解特性又は溶存酸素の除去特性が低下してしまうため好ましくない。なお、本発明では、乾燥状態のモノリス中間体の開口の平均直径、乾燥状態のモノリスの開口の平均直径及び乾燥状態のモノリスアニオン交換体の開口の平均直径は、水銀圧入法により測定される値である。また、水湿潤状態のモノリスアニオン交換体の開口の平均直径は、乾燥状態のモノリスアニオン交換体の開口の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態のモノリスアニオン交換体の直径がx1(mm)であり、その水湿潤状態のモノリスアニオン交換体を乾燥させ、得られる乾燥状態のモノリスアニオン交換体の直径がy1(mm)であり、この乾燥状態のモノリスアニオン交換体を水銀圧入法により測定したときの開口の平均直径がz1(μm)であったとすると、水湿潤状態のモノリスアニオン交換体の開口の平均直径(μm)は、次式「水湿潤状態のモノリスアニオン交換体の開口の平均直径(μm)=z1×(x1/y1)」で算出される。また、アニオン交換基導入前の乾燥状態のモノリスの開口の平均直径、及びその乾燥状態のモノリスにアニオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの開口の平均直径に、膨潤率を乗じて、水湿潤状態のモノリスアニオン交換体の開口の平均直径を算出することもできる。
<Description of the first monolith anion exchanger>
The first monolith anion exchanger is obtained by introducing an anion exchange group into the monolith, in which bubble-like macropores overlap each other, and the overlapping portion has an average diameter of 30 to 300 μm, preferably 30 when wet. A continuous macropore structure having an opening (mesopore) of ˜200 μm, particularly preferably 40˜100 μm. The average diameter of the opening of the monolith anion exchanger is larger than the average diameter of the opening of the monolith because the entire monolith swells when an anion exchange group is introduced into the monolith. If the average diameter of the openings in the water-wet state is less than 30 μm, the pressure loss at the time of passing water increases, which is not preferable. If the average diameter of the openings in the water-wet state is too large, the water to be treated and the monolith The contact between the anion exchanger and the supported platinum group metal nanoparticles becomes insufficient, and as a result, the hydrogen peroxide decomposition characteristics or the dissolved oxygen removal characteristics deteriorate, which is not preferable. In the present invention, the average diameter of the opening of the monolith intermediate in the dry state, the average diameter of the opening of the monolith in the dry state, and the average diameter of the opening of the monolith anion exchanger in the dry state are values measured by a mercury intrusion method. It is. Further, the average diameter of the openings of the monolith anion exchanger in the wet state is a value calculated by multiplying the average diameter of the openings of the monolith anion exchanger in the dry state by the swelling rate. Specifically, the diameter of the monolith anion exchanger in the water wet state is x1 (mm), the monolith anion exchanger in the water wet state is dried, and the diameter of the resulting monolith anion exchanger in the dry state is y1 ( mm), and the average diameter of the opening of the monolith anion exchanger in the dry state measured by the mercury intrusion method is z1 (μm), the average diameter of the opening of the monolith anion exchanger in the water wet state ( μm) is calculated by the following formula “average diameter (μm) = z1 × (x1 / y1) of the opening of the monolith anion exchanger in a wet state of water”. In addition, the average diameter of the opening of the dry monolith before the introduction of the anion exchange group and the swelling ratio of the monolith anion exchanger in the water wet state relative to the dry monolith when the anion exchange group is introduced into the dry monolith are known. In this case, the average diameter of the opening of the monolith anion exchanger in the wet state can be calculated by multiplying the average diameter of the opening of the monolith in the dry state by the swelling ratio.

第1のモノリスアニオン交換体において、連続マクロポア構造体の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中、25〜50%、好ましくは25〜45%である。断面に表れる骨格部面積が、画像領域中、25%未満であると、細い骨格となり、機械的強度が低下して、特に高流速で通水した際にモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水とモノリスアニオン交換体およびそれに担持された白金族金属ナノ粒子との接触効率が低下し、触媒効果が低下するため好ましくなく、50%を超えると、骨格が太くなり過ぎ、通水時の圧力損失が増大するため好ましくない。なお、特開2002−306976号公報記載のモノリスは、実際には水に対する油相部の配合比を多くして骨格部分を太くしても、共通の開口を確保するためには配合比に限界があり、断面に表れる骨格部面積の最大値は画像領域中、25%を超えることはできない。   In the SEM image of the cut surface of the continuous macropore structure in the first monolith anion exchanger, the skeleton part area appearing in the cross section is 25 to 50%, preferably 25 to 45% in the image region. When the area of the skeletal part appearing in the cross section is less than 25% in the image region, the skeleton becomes a thin skeleton, the mechanical strength is lowered, and the monolith anion exchanger is greatly deformed particularly when water is passed at a high flow rate. Therefore, it is not preferable. Furthermore, the contact efficiency between the water to be treated and the monolith anion exchanger and the platinum group metal nanoparticles supported thereon is lowered, and the catalytic effect is lowered, which is not preferable. If it exceeds 50%, the skeleton becomes too thick, and the This is not preferable because the pressure loss during water increases. In addition, the monolith described in JP-A-2002-306976 is actually limited to the blending ratio in order to ensure a common opening even if the blending ratio of the oil phase part with respect to water is increased and the skeleton portion is thickened. The maximum value of the skeleton part area appearing in the cross section cannot exceed 25% in the image region.

SEM画像を得るための条件は、切断面の断面に表れる骨格部が鮮明に表れる条件であればよく、例えば倍率100〜600、写真領域が約150mm×100mmである。SEM観察は、主観を排除したモノリスの任意の切断面の任意の箇所で撮影された切断箇所や撮影箇所が異なる3枚以上、好ましくは5枚以上の画像で行うのがよい。切断されるモノリスは、電子顕微鏡に供するため、乾燥状態のものである。SEM画像における切断面の骨格部を図1及び図4を参照して説明する。また、図4は、図1のSEM写真の断面として表れる骨格部を転写したものである。図1及び図4中、概ね不定形状で且つ断面で表れるものは本発明の「断面に表れる骨格部(符号12)」であり、図1に表れる円形の孔は開口(メソポア)であり、また、比較的大きな曲率や曲面のものはマクロポア(図4中の符号13)である。図4の断面に表れる骨格部面積は、矩形状画像領域11中、28%である。このように、骨格部は明確に判断できる。   The conditions for obtaining the SEM image may be any conditions as long as the skeleton part that appears in the cross section of the cut surface appears clearly. For example, the magnification is 100 to 600, and the photographic area is about 150 mm × 100 mm. The SEM observation is preferably performed on three or more images, preferably five or more images, taken at arbitrary locations on an arbitrary cut surface of the monolith excluding subjectivity and at different locations. The monolith to be cut is in a dry state for use in an electron microscope. The skeleton part of the cut surface in the SEM image will be described with reference to FIGS. FIG. 4 is a transcribed skeleton that appears as a cross section of the SEM photograph of FIG. In FIGS. 1 and 4, what is generally indeterminate in shape and shown in cross section is the “skeleton portion (reference numeral 12)” in the present invention, the circular hole shown in FIG. 1 is an opening (mesopore), and A relatively large curvature or curved surface is a macropore (reference numeral 13 in FIG. 4). The skeleton part area appearing in the cross section of FIG. 4 is 28% in the rectangular image region 11. Thus, the skeleton can be clearly determined.

SEM画像において、切断面の断面に表れる骨格部の面積の測定方法としては、特に制限されず、当該骨格部を公知のコンピューター処理などを行い特定した後、コンピューターなどによる自動計算又は手動計算による算出方法が挙げられる。手動計算としては、不定形状物を、四角形、三角形、円形又は台形などの集合物に置き換え、それらを積層して面積を求める方法が挙げられる。   In the SEM image, the method for measuring the area of the skeletal part appearing in the cross section of the cut surface is not particularly limited, and after specifying the skeleton part by performing known computer processing, etc., calculation by automatic calculation or manual calculation by a computer or the like A method is mentioned. The manual calculation includes a method in which an indefinite shape is replaced with an aggregate such as a quadrangle, a triangle, a circle, or a trapezoid, and the areas are obtained by stacking them.

また、第1のモノリスアニオン交換体の全細孔容積は、0.5〜5ml/g、好ましくは0.8〜4ml/gである。全細孔容積が0.5ml/g未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過流体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、機械的強度が低下して、特に高流速で通水した際にモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水とモノリスアニオン交換体およびそれに担持された白金族金属ナノ粒子との接触効率が低下するため、触媒効果も低下してしまうため好ましくない。なお、本発明では、モノリス(モノリス中間体、モノリス、モノリスアニオン交換体)の全細孔容積は、水銀圧入法により測定される値である。また、モノリス(モノリス中間体、モノリス、モノリスアニオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。   The total pore volume of the first monolith anion exchanger is 0.5 to 5 ml / g, preferably 0.8 to 4 ml / g. If the total pore volume is less than 0.5 ml / g, the pressure loss during water flow will increase, which is not preferable. Further, the amount of permeated fluid per unit cross-sectional area decreases, and the processing capacity decreases. Therefore, it is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the mechanical strength decreases, and the monolith anion exchanger is greatly deformed particularly when water is passed at a high flow rate. Furthermore, since the contact efficiency between the water to be treated, the monolith anion exchanger and the platinum group metal nanoparticles supported thereon is lowered, the catalytic effect is also lowered, which is not preferable. In the present invention, the total pore volume of the monolith (monolith intermediate, monolith, monolith anion exchanger) is a value measured by a mercury intrusion method. In addition, the total pore volume of the monolith (monolith intermediate, monolith, monolith anion exchanger) is the same both in the dry state and in the water wet state.

なお、第1のモノリスアニオン交換体に水を透過させた際の圧力損失は、これを1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.001〜0.1MPa/m・LVの範囲、特に0.005〜0.05MPa/m・LVであることが好ましい。   In addition, the pressure loss at the time of making water permeate | transmit the 1st monolith anion exchanger is the pressure loss at the time of water-flowing at the water velocity (LV) of 1 m / h to the column packed with this 1m (henceforth, " In this case, it is preferably in the range of 0.001 to 0.1 MPa / m · LV, particularly 0.005 to 0.05 MPa / m · LV.

第1のモノリスアニオン交換体は、水湿潤状態での体積当りのアニオン交換容量が0.4〜1.0mg当量/mlである。特開2002−306976号に記載されているような本発明とは異なる連続マクロポア構造を有する従来型のモノリス状有機多孔質アニオン交換体では、実用的に要求される低い圧力損失を達成するために、開口径を大きくすると、全細孔容積もそれに伴って大きくなってしまうため、体積当りのアニオン交換容量が低下する、体積当りの交換容量を増加させるために全細孔容積を小さくしていくと、開口径が小さくなってしまうため圧力損失が増加するといった欠点を有していた。それに対して、第1のモノリスアニオン交換体は、開口径を更に大きくすると共に、連続マクロポア構造体の骨格を太くする(骨格の壁部を厚くする)ことができるため、圧力損失を低く押さえたままで体積当りのアニオン交換容量を飛躍的に大きくすることができる。体積当りのアニオン交換容量が0.4mg当量/ml未満であると、体積当りの白金族金属のナノ粒子担持量が低下してしまうため好ましくない。一方、体積当りのアニオン交換容量が1.0mg当量/mlを超えると、通水時の圧力損失が増大してしまうため好ましくない。なお、第1のモノリスアニオン交換体の重量当りのアニオン交換容量は特に限定されないが、アニオン交換基が多孔質体の表面及び骨格内部にまで均一に導入しているため、3.5〜4.5mg当量/gである。なお、イオン交換基が表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。   The first monolith anion exchanger has an anion exchange capacity per volume of 0.4 to 1.0 mg equivalent / ml in a water-wet state. In the conventional monolithic organic porous anion exchanger having a continuous macropore structure different from the present invention as described in JP-A-2002-306976, in order to achieve a low pressure loss that is practically required, When the opening diameter is increased, the total pore volume also increases accordingly, so the anion exchange capacity per volume decreases, and the total pore volume is decreased to increase the exchange capacity per volume. In addition, since the opening diameter is reduced, the pressure loss increases. In contrast, the first monolith anion exchanger can further increase the opening diameter and thicken the skeleton of the continuous macropore structure (thicken the skeleton wall), so that the pressure loss can be kept low. The anion exchange capacity per volume can be dramatically increased. If the anion exchange capacity per volume is less than 0.4 mg equivalent / ml, the amount of platinum group metal nanoparticles supported per volume will be unfavorable. On the other hand, if the anion exchange capacity per volume exceeds 1.0 mg equivalent / ml, the pressure loss at the time of passing water increases, which is not preferable. The anion exchange capacity per weight of the first monolith anion exchanger is not particularly limited. However, since the anion exchange groups are uniformly introduced to the surface of the porous body and the inside of the skeleton, the anion exchange capacity is 3.5-4. 5 mg equivalent / g. Note that the ion exchange capacity of the porous body in which the ion exchange group is introduced only on the surface cannot be determined unconditionally depending on the kind of the porous body or the ion exchange group, but is at most 500 μg equivalent / g.

第1のモノリスアニオン交換体において、連続マクロポア構造体の骨格を構成する材料は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜10モル%、好適には0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、10モル%を越えると、アニオン交換基の導入が困難になる場合があるため好ましくない。該ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等の芳香族ビニルポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー等の架橋重合体が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続マクロポア構造形成の容易さ、アニオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい材料として挙げられる。   In the first monolith anion exchanger, the material constituting the skeleton of the continuous macropore structure is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 10 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all structural units constituting the polymer material. It is preferable. If the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 10 mol%, it may be difficult to introduce an anion exchange group. The type of the polymer material is not particularly limited, and examples thereof include aromatic vinyl polymers such as polystyrene, poly (α-methylstyrene), polyvinyl toluene, polyvinyl benzyl chloride, polyvinyl biphenyl, and polyvinyl naphthalene; polyolefins such as polyethylene and polypropylene; Poly (halogenated polyolefin) such as vinyl chloride and polytetrafluoroethylene; Nitrile-based polymer such as polyacrylonitrile; Cross-linking weight of (meth) acrylic polymer such as polymethyl methacrylate, polyglycidyl methacrylate, and polyethyl acrylate Coalescence is mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, the cross-linking weight of the aromatic vinyl polymer is easy due to the ease of forming a continuous macropore structure, the ease of introducing an anion exchange group and the high mechanical strength, and the high stability to acids or alkalis. A styrene-divinylbenzene copolymer and a vinylbenzyl chloride-divinylbenzene copolymer are particularly preferable materials.

第1のモノリスアニオン交換体のアニオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基や、第三スルホニウム基、ホスホニウム基等が挙げられる。   Examples of the anion exchange group of the first monolith anion exchanger include a quaternary ammonium group such as a trimethylammonium group, a triethylammonium group, a tributylammonium group, a dimethylhydroxyethylammonium group, a dimethylhydroxypropylammonium group, and a methyldihydroxyethylammonium group. , Tertiary sulfonium group, phosphonium group and the like.

第1のモノリスアニオン交換体において、導入されたアニオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。ここで言う「アニオン交換基が均一に分布している」とは、アニオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。アニオン交換基の分布状況は、対アニオンを塩化物イオン、臭化物イオンなどにイオン交換した後、EPMAを用いることで、比較的簡単に確認される。また、アニオン交換基が、モノリスの表面のみならず、多孔質体の骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。   In the first monolith anion exchanger, the introduced anion exchange groups are uniformly distributed not only on the surface of the porous body but also inside the skeleton of the porous body. Here, “anion exchange groups are uniformly distributed” means that the distribution of anion exchange groups is uniformly distributed on the surface and inside the skeleton in the order of at least μm. The distribution of anion exchange groups can be confirmed relatively easily by using EPMA after ion exchange of the counter anion with chloride ion, bromide ion or the like. In addition, if the anion exchange groups are uniformly distributed not only on the surface of the monolith but also within the skeleton of the porous body, the physical and chemical properties of the surface and the interior can be made uniform, so that the swelling and shrinking The durability against is improved.

(第1のモノリスアニオン交換体の製造方法)
第1のモノリスアニオン交換体は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜16ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体(モノリス中間体)を得るI工程、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下に重合を行い、モノリス中間体の骨格より太い骨格を有する骨太有機多孔質体を得るIII工程、該III工程で得られた骨太有機多孔質体にアニオン交換基を導入するIV工程、を行うことにより得られる。
(Method for producing first monolith anion exchanger)
The first monolith anion exchanger prepares a water-in-oil emulsion by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion-exchange groups, and then polymerizes the water-in-oil emulsion. Step I for obtaining a monolithic organic porous intermediate (monolith intermediate) having a continuous macropore structure with a total pore volume of 5 to 16 ml / g, a vinyl monomer, a cross-link having at least two vinyl groups in one molecule Agent, the vinyl monomer and the crosslinking agent dissolve, but the polymer produced by polymerization of the vinyl monomer does not dissolve the organic solvent and the polymerization initiator II step II, the mixture obtained in step II is left standing, And polymerizing in the presence of the monolith intermediate obtained in the step I to obtain a thick organic porous body having a skeleton thicker than the skeleton of the monolith intermediate II Step IV the step of introducing an anion exchange group boned organic porous body obtained in the step III, obtained by performing.

第1のモノリスアニオン交換体の製造方法において、I工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。   In the first method for producing a monolith anion exchanger, the step I may be performed according to the method described in JP-A-2002-306976.

I工程のモノリス中間体の製造において、イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの好適なものとしては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜10モル%、好ましくは0.3〜5モル%とすることが、後の工程でアニオン交換基量を定量的に導入できるため好ましい。   In the production of the monolith intermediate of step I, the oil-soluble monomer that does not contain an ion exchange group includes, for example, an ion exchange group such as a carboxylic acid group, a sulfonic acid group, and a quaternary ammonium group, and is soluble in water. Low and lipophilic monomers may be mentioned. Preferable examples of these monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene, ethylene, propylene, isobutene, butadiene, ethylene glycol dimethacrylate, and the like. These monomers can be used singly or in combination of two or more. However, a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and the content thereof is 0.3 to 10 mol% in the total oil-soluble monomer, preferably 0.3 to 5 mol% is preferable because the amount of anion exchange groups can be quantitatively introduced in the subsequent step.

界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は一種単独又は二種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。   The surfactant is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when an oil-soluble monomer containing no ion exchange group and water are mixed, and sorbitan monooleate, Nonionic surfactants such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene sorbitan monooleate; potassium oleate Anionic surfactants such as sodium dodecylbenzenesulfonate and dioctyl sodium sulfosuccinate; cationic surfactants such as distearyldimethylammonium chloride; amphoteric surfactants such as lauryldimethylbetaine can be used . These surfactants can be used singly or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the surfactant added may vary depending on the type of oil-soluble monomer and the size of the target emulsion particles (macropores), but it cannot be generally stated, but the total amount of oil-soluble monomer and surfactant Can be selected within a range of about 2 to 70%.

また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、アゾビスシクロヘキサンニトリル、アゾビスシクロヘキサンカルボニトリル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム、テトラメチルチウラムジスルフィド等が挙げられる。   In Step I, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, azobisisobutyronitrile, azobisdimethylvaleronitrile, azobiscyclohexanenitrile, azobiscyclohexanecarbonitrile, benzoyl peroxide, persulfate Examples include potassium, ammonium persulfate, hydrogen peroxide-ferrous chloride, sodium persulfate-sodium acid sulfite, and tetramethylthiuram disulfide.

イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。   The mixing method for mixing the oil-soluble monomer not containing an ion exchange group, a surfactant, water, and a polymerization initiator to form a water-in-oil emulsion is not particularly limited. Method of mixing at once, oil-soluble monomer, surfactant and oil-soluble polymerization initiator oil-soluble component and water or water-soluble polymerization initiator water-soluble component separately and uniformly dissolved, A method of mixing the components can be used. There is no particular limitation on the mixing apparatus for forming the emulsion, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate apparatus may be selected to obtain the desired emulsion particle size. Moreover, there is no restriction | limiting in particular about mixing conditions, The stirring rotation speed and stirring time which can obtain the target emulsion particle size can be set arbitrarily.

I工程で得られるモノリス中間体は、連続マクロポア構造を有する。これを重合系に共存させると、モノリス中間体の構造を型として骨太の骨格を有する多孔構造が形成される。また、モノリス中間体は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜10モル%、好ましくは0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。特に、全細孔容積が10〜16ml/gと大きい場合には、連続マクロポア構造を維持するため、架橋構造単位を2モル%以上含有していることが好ましい。一方、10モル%を越えると、アニオン交換基の導入が困難になる場合があるため好ましくない。   The monolith intermediate obtained in Step I has a continuous macropore structure. When this coexists in the polymerization system, a porous structure having a thick skeleton with the structure of the monolith intermediate as a mold is formed. The monolith intermediate is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 10 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all the structural units constituting the polymer material. Is preferred. When the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. In particular, when the total pore volume is as large as 10 to 16 ml / g, in order to maintain a continuous macropore structure, it is preferable to contain 2 mol% or more of cross-linked structural units. On the other hand, if it exceeds 10 mol%, it may be difficult to introduce an anion exchange group, which is not preferable.

モノリス中間体のポリマー材料の種類としては、特に制限はなく、前述のモノリスのポリマー材料と同じものが挙げられる。これにより、モノリス中間体の骨格に同様のポリマーを形成して、骨格を太らせ均一な骨格構造のモノリスを得ることができる。   The type of the polymer material of the monolith intermediate is not particularly limited, and examples thereof include the same materials as the monolith polymer material described above. Thereby, the same polymer can be formed in the skeleton of the monolith intermediate, and the skeleton can be thickened to obtain a monolith having a uniform skeleton structure.

モノリス中間体の全細孔容積は、5〜16ml/g、好適には6〜16ml/gである。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの全細孔容積が小さくなりすぎ、流体透過時の圧力損失が大きくなるため好ましくない。一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が連続マクロポア構造から逸脱するため好ましくない。モノリス中間体の全細孔容積を上記数値範囲とするには、モノマーと水の比を、概ね1:5〜1:20とすればよい。   The total pore volume of the monolith intermediate is 5 to 16 ml / g, preferably 6 to 16 ml / g. If the total pore volume is too small, the total pore volume of the monolith obtained after polymerizing the vinyl monomer becomes too small, and the pressure loss during fluid permeation increases, which is not preferable. On the other hand, if the total pore volume is too large, the structure of the monolith obtained after polymerizing the vinyl monomer deviates from the continuous macropore structure, which is not preferable. In order to make the total pore volume of the monolith intermediate within the above numerical range, the ratio of the monomer and water may be about 1: 5 to 1:20.

また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で20〜200μmである。乾燥状態での開口の平均直径が20μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、通水時の圧力損失が大きくなってしまうため好ましくない。一方、200μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、被処理水とモノリスアニオン交換体との接触が不十分となり、その結果、過酸化水素分解特性又は溶存酸素除去特性が低下してしまうため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。   Moreover, the average diameter of the opening (mesopore) which is an overlap part of a macropore and a macropore is 20-200 micrometers in a monolith intermediate body in a dry state. If the average diameter of the openings in the dry state is less than 20 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer is reduced, and the pressure loss during water passage is increased, which is not preferable. On the other hand, if it exceeds 200 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, and the contact between the water to be treated and the monolith anion exchanger becomes insufficient. Or, the dissolved oxygen removing property is not preferable. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.

II工程は、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。   Step II consists of a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent and a polymerization initiator that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer. A step of preparing a mixture of In addition, there is no order of I process and II process, II process may be performed after I process, and I process may be performed after II process.

II工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等の芳香族ビニルモノマーである。   The vinyl monomer used in step II is not particularly limited as long as it is a lipophilic vinyl monomer containing a polymerizable vinyl group in the molecule and having high solubility in an organic solvent, but is allowed to coexist in the polymerization system. It is preferred to select a vinyl monomer that produces the same or similar polymer material as the monolith intermediate. Specific examples of these vinyl monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl and vinyl naphthalene; α-olefins such as ethylene, propylene, 1-butene and isobutene; Diene monomers such as butadiene, isoprene and chloroprene; halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl such as vinyl acetate and vinyl propionate Esters: methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-methacrylic acid 2- Hexyl, cyclohexyl methacrylate, benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. These monomers can be used singly or in combination of two or more. The vinyl monomer suitably used in the present invention is an aromatic vinyl monomer such as styrene or vinyl benzyl chloride.

これらビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で3〜50倍、好ましくは4〜40倍である。ビニルモノマー添加量が多孔質体に対して3倍未満であると、生成したモノリスの骨格(モノリス骨格の壁部の厚み)を太くできず、アニオン交換基導入後の体積当りのアニオン交換容量が小さくなってしまうため好ましくない。一方、ビニルモノマー添加量が50倍を超えると、開口径が小さくなり、通水時の圧力損失が大きくなってしまうため好ましくない。   The added amount of these vinyl monomers is 3 to 50 times, preferably 4 to 40 times, by weight with respect to the monolith intermediate coexisting at the time of polymerization. If the amount of vinyl monomer added is less than 3 times that of the porous material, the resulting monolith skeleton (the thickness of the monolith skeleton wall) cannot be increased, and the anion exchange capacity per volume after the introduction of anion exchange groups is reduced. Since it becomes small, it is not preferable. On the other hand, if the amount of vinyl monomer added exceeds 50 times, the opening diameter becomes small, and the pressure loss during water passage becomes large, which is not preferable.

II工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、一種単独又は二種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量に対して0.3〜10モル%、特に0.3〜5モル%であることが好ましい。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、10モル%を越えると、アニオン交換基の導入量が減少してしまう場合があるため好ましくない。なお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体の架橋密度とほぼ等しくなるように用いることが好ましい。両者の使用量があまりに大きくかけ離れると、生成したモノリス中で架橋密度分布の偏りが生じ、アニオン交換基導入反応時にクラックが生じやすくなる。   As the crosslinking agent used in step II, a crosslinking agent containing at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis. The amount of the crosslinking agent used is preferably from 0.3 to 10 mol%, particularly preferably from 0.3 to 5 mol%, based on the total amount of the vinyl monomer and the crosslinking agent. When the amount of the crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. On the other hand, if it exceeds 10 mol%, the amount of introduced anion exchange groups may decrease, which is not preferable. In addition, it is preferable to use the said crosslinking agent usage-amount so that it may become substantially equal to the crosslinking density of the monolith intermediate body coexisted at the time of vinyl monomer / crosslinking agent polymerization. If the amounts used of both are too large, the crosslink density distribution will be biased in the produced monolith, and cracks are likely to occur during the anion exchange group introduction reaction.

II工程で用いられる有機溶媒は、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、エチレングリコール、プロピレングリコール、テトラメチレングリコール、グリセリン等のアルコール類;ジエチルエーテル、エチレングリコールジメチルエーテル、セロソルブ、メチルセロソルブ、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記ビニルモノマーの濃度が30〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱してビニルモノマー濃度が30重量%未満となると、重合速度が低下したり、重合後のモノリス構造が本発明の範囲から逸脱してしまうため好ましくない。一方、ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。   The organic solvent used in Step II is an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer. In other words, it is a poor solvent for the polymer formed by polymerization of the vinyl monomer. . Since the organic solvent varies greatly depending on the type of vinyl monomer, it is difficult to list general specific examples. For example, when the vinyl monomer is styrene, the organic solvent includes methanol, ethanol, propanol, butanol, Alcohols such as hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, ethylene glycol, propylene glycol, tetramethylene glycol, glycerin; diethyl ether, ethylene glycol dimethyl ether, cellosolve, methyl cellosolve, butyl cellosolve, polyethylene glycol, polypropylene Chain (poly) ethers such as glycol and polytetramethylene glycol; hexane, heptane, octane, isooctane, decane, dode Chain saturated hydrocarbons such as down, ethyl acetate, isopropyl acetate, cellosolve acetate, esters such as ethyl propionate. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the vinyl monomer is 30 to 80% by weight. If the amount of the organic solvent used deviates from the above range and the vinyl monomer concentration is less than 30% by weight, the polymerization rate is lowered, or the monolith structure after polymerization deviates from the range of the present invention. On the other hand, if the vinyl monomer concentration exceeds 80% by weight, the polymerization may run away, which is not preferable.

重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。   As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide and the like. The amount of the polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but can be used in a range of about 0.01 to 5% with respect to the total amount of vinyl monomer and crosslinking agent.

III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下に重合を行い、該モノリス中間体の骨格より太い骨格を有する骨太のモノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明のように上記重合系に連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の骨太のモノリスが得られる。その理由は詳細には解明されていないが、モノリス中間体が存在しない場合は、重合により生じた架橋重合体が粒子状に析出・沈殿することで粒子凝集構造が形成されるのに対し、重合系に多孔質体(中間体)が存在すると、ビニルモノマー及び架橋剤が液相から多孔質体(中間体)の骨格部に吸着又は分配され、多孔質体(中間体)中で重合が進行して骨太骨格のモノリスが得られると考えられる。なお、開口径は重合の進行により狭められるが、モノリス中間体の全細孔容積が大きいため、例え骨格が骨太になっても適度な大きさの開口径が得られる。   In step III, the mixture obtained in step II is allowed to stand and polymerize in the presence of the monolith intermediate obtained in step I to obtain a thick monolith having a skeleton thicker than the skeleton of the monolith intermediate. It is a process to obtain. The monolith intermediate used in the step III plays a very important role in creating the monolith having the novel structure of the present invention. As disclosed in JP-A-7-501140 and the like, when a vinyl monomer and a crosslinking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic porous material is obtained. The body is obtained. On the other hand, when a monolith intermediate having a continuous macropore structure is present in the polymerization system as in the present invention, the structure of the monolith after polymerization changes dramatically, the particle aggregation structure disappears, and the above-mentioned thick monolith is lost. Is obtained. The reason for this has not been elucidated in detail, but in the absence of a monolith intermediate, the cross-linked polymer produced by polymerization precipitates and precipitates in the form of particles, while a particle aggregate structure is formed. When a porous body (intermediate) is present in the system, the vinyl monomer and the crosslinking agent are adsorbed or distributed from the liquid phase to the skeleton of the porous body (intermediate), and polymerization proceeds in the porous body (intermediate). Thus, it is considered that a monolith having a thick bone skeleton can be obtained. Although the opening diameter is narrowed by the progress of the polymerization, since the total pore volume of the monolith intermediate is large, an appropriate opening diameter can be obtained even if the skeleton becomes thick.

反応容器の内容積は、モノリス中間体を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体が隙間無く入るもののいずれであってもよい。このうち、重合後の骨太のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。
III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、ビニルモノマーの添加量が重量で3〜50倍、好ましくは4〜40倍となるように配合するのが好適である。これにより、適度な開口径を有しつつ、骨太の骨格を有するモノリスを得ることができる。反応容器中、混合物中のビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。
The internal volume of the reaction vessel is not particularly limited as long as it is large enough to allow the monolith intermediate to exist in the reaction vessel. When the monolith intermediate is placed in the reaction vessel, there is a gap around the monolith in plan view. Or a monolith intermediate in the reaction vessel with no gap. Of these, the thick monolith after polymerization is not pressed from the inner wall of the container and enters the reaction container without any gap, and the monolith is not distorted, and the reaction raw materials are not wasted and efficient. Even when the internal volume of the reaction vessel is large and there are gaps around the monolith after polymerization, the vinyl monomer and the crosslinking agent are adsorbed and distributed on the monolith intermediate, so the gaps in the reaction vessel A particle aggregate structure is not generated in the portion.
In step III, the monolith intermediate is placed in a reaction vessel impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in Step II and the monolith intermediate is 3 to 50 times by weight, preferably 4 to 40 times by weight, relative to the monolith intermediate. It is suitable to mix. Thereby, it is possible to obtain a monolith having a thick skeleton while having an appropriate opening diameter. In the reaction vessel, the vinyl monomer and the crosslinking agent in the mixture are adsorbed and distributed on the skeleton of the monolith intermediate that has been allowed to stand, and polymerization proceeds in the skeleton of the monolith intermediate.

重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択される。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間加熱重合させればよい。加熱重合により、モノリス中間体の骨格に吸着、分配したビニルモノマーと架橋剤が該骨格内で重合し、該骨格を太らせる。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して骨太のモノリスを得る。   Various polymerization conditions are selected depending on the type of monomer and the type of initiator. For example, when 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, etc. are used as initiators In a sealed container under an inert atmosphere, heat polymerization may be performed at 30 to 100 ° C. for 1 to 48 hours. By heat polymerization, the vinyl monomer adsorbed and distributed on the skeleton of the monolith intermediate and the cross-linking agent are polymerized in the skeleton to thicken the skeleton. After completion of the polymerization, the contents are taken out and extracted with a solvent such as acetone for the purpose of removing unreacted vinyl monomer and organic solvent to obtain a thick monolith.

次に、上記の方法によりモノリスを製造した後、アニオン交換基を導入する方法が、得られるモノリスアニオン交換体の多孔構造を厳密にコントロールできる点で好ましい。   Next, after producing a monolith by the above method, a method of introducing an anion exchange group is preferred in that the porous structure of the resulting monolith anion exchanger can be strictly controlled.

上記モノリスにアニオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、四級アンモニウム基を導入する方法としては、モノリスがスチレン−ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;モノリスに、均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。これらの方法のうち、四級アンモニウム基を導入する方法としては、スチレン−ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリスを製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基や、第三スルホニウム基、ホスホニウム基等が挙げられる。   There is no restriction | limiting in particular as a method of introduce | transducing an anion exchange group into the said monolith, Well-known methods, such as a polymer reaction and graft polymerization, can be used. For example, as a method of introducing a quaternary ammonium group, if the monolith is a styrene-divinylbenzene copolymer or the like, a method of introducing a chloromethyl group with chloromethyl methyl ether or the like and then reacting with a tertiary amine; A method in which chloromethylstyrene and divinylbenzene are produced by copolymerization and reacted with a tertiary amine; N, N, N-trimethylammonium is introduced into the monolith by introducing radical initiation groups and chain transfer groups uniformly into the skeleton surface and inside the skeleton. Examples include a method of graft polymerization of ethyl acrylate and N, N, N-trimethylammoniumpropylacrylamide; a method of grafting glycidyl methacrylate in the same manner and then introducing a quaternary ammonium group by functional group conversion. Among these methods, as a method for introducing a quaternary ammonium group, a method in which a chloromethyl group is introduced into a styrene-divinylbenzene copolymer with chloromethyl methyl ether and then reacted with a tertiary amine, or chloromethyl styrene. A method of producing a monolith by copolymerization with divinylbenzene and reacting with a tertiary amine is preferable in that the ion exchange groups can be introduced uniformly and quantitatively. Examples of ion exchange groups to be introduced include quaternary ammonium groups such as trimethylammonium group, triethylammonium group, tributylammonium group, dimethylhydroxyethylammonium group, dimethylhydroxypropylammonium group, methyldihydroxyethylammonium group, and tertiary sulfonium. Group, phosphonium group and the like.

第1のモノリスアニオン交換体は、骨太のモノリスにアニオン交換基が導入されるため、例えば骨太モノリスの1.4〜1.9倍のように大きく膨潤する。すなわち、特開2002−306976記載の従来のモノリスにイオン交換基が導入されたものよりも膨潤度が遥かに大きい。このため、骨太モノリスの開口径が小さいものであっても、モノリスイオン交換体の開口径は概ね、上記倍率で大きくなる。また、開口径が膨潤で大きくなっても全細孔容積は変化しない。従って、第1のモノリスイオン交換体は、開口径が格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。   The first monolith anion exchanger swells greatly, for example, 1.4 to 1.9 times that of the thick monolith, since an anion exchange group is introduced into the thick monolith. That is, the degree of swelling is much greater than that obtained by introducing an ion exchange group into a conventional monolith described in JP-A-2002-306976. For this reason, even if the opening diameter of the thick monolith is small, the opening diameter of the monolith ion exchanger generally increases at the above magnification. In addition, the total pore volume does not change even when the opening diameter increases due to swelling. Therefore, the first monolith ion exchanger has a high mechanical strength because it has a thick bone skeleton despite the remarkably large opening diameter.

<第2のモノリスアニオン交換体の説明>
第2のモノリスアニオン交換体は、アニオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる平均太さが水湿潤状態で1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量が0.3〜1.0mg当量/mlであり、アニオン交換基が該多孔質イオン交換体中に均一に分布している。
<Description of Second Monolith Anion Exchanger>
The second monolith anion exchanger has an average thickness composed of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a crosslinked structural unit in all the structural units into which an anion exchange group has been introduced. A co-continuous structure comprising a three-dimensionally continuous skeleton of 1 to 60 μm and three-dimensionally continuous pores having an average diameter of 10 to 100 μm in a wet state between the skeletons. The volume is 0.5 to 5 ml / g, the ion exchange capacity per volume under water wet condition is 0.3 to 1.0 mg equivalent / ml, and the anion exchange group is uniform in the porous ion exchanger. Is distributed.

第2のモノリスアニオン交換体は、アニオン交換基が導入された平均太さが水湿潤状態で1〜60μm、好ましくは3〜58μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μm、好ましくは15〜90μm、特に好ましくは20〜80μmの三次元的に連続した空孔とからなる共連続構造体である。すなわち、共連続構造は図6の模式図に示すように、連続する骨格相1と連続する空孔相2とが絡み合ってそれぞれが共に3次元的に連続する構造10である。この連続した空孔2は、従来の連続気泡型モノリスや粒子凝集型モノリスに比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なイオンの吸着挙動を達成できる。また、骨格が太いため機械的強度が高い。   The second monolith anion exchanger has a three-dimensionally continuous skeleton having an average thickness of 1 to 60 μm, preferably 3 to 58 μm in an wet state in which an anion exchange group is introduced, and an average diameter between the skeletons. A co-continuous structure composed of three-dimensionally continuous pores of 10 to 100 μm, preferably 15 to 90 μm, particularly preferably 20 to 80 μm in a wet state. That is, as shown in the schematic diagram of FIG. 6, the co-continuous structure is a structure 10 in which a continuous skeleton phase 1 and a continuous vacancy phase 2 are intertwined and each of them is three-dimensionally continuous. The continuous vacancies 2 have higher continuity of the vacancies than the conventional open-cell monolith and particle aggregation monolith, and the size of the vacancies 2 is not biased. Therefore, an extremely uniform ion adsorption behavior can be achieved. Moreover, since the skeleton is thick, the mechanical strength is high.

第2のモノリスアニオン交換体の骨格の太さ及び空孔の直径は、モノリスにアニオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの骨格の太さ及び空孔の直径よりも大となる。この連続した空孔は、従来の連続気泡型モノリス状有機多孔質アニオン交換体や粒子凝集型モノリス状有機多孔質アニオン交換体に比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なアニオンの吸着挙動を達成できる。三次元的に連続した空孔の平均直径が水湿潤状態で10μm未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、100μmを超えると、被処理水と有機多孔質アニオン交換体との接触が不十分となり、その結果、被処理水中の過酸化水素の分解又は溶存酸素の除去が不十分となるため好ましくない。また、骨格の平均太さが水湿潤状態で1μm未満であると、体積当りのアニオン交換容量が低下するといった欠点のほか、機械的強度が低下して、特に高流速で通水した際にモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水とモノリスアニオン交換体との接触効率が低下し、触媒効果が低下するため好ましくない。一方、骨格の太さが60μmを越えると、骨格が太くなり過ぎ、通水時の圧力損失が増大するため好ましくない。   The skeleton thickness and pore diameter of the second monolith anion exchanger are larger than the monolith skeleton thickness and pore diameter because the entire monolith swells when an anion exchange group is introduced into the monolith. It becomes. These continuous pores have higher continuity of the pores than the conventional open-cell type monolithic organic porous anion exchanger and particle aggregation type monolithic organic porous anion exchanger, and the size thereof is not biased. Therefore, an extremely uniform anion adsorption behavior can be achieved. If the average diameter of the three-dimensionally continuous pores is less than 10 μm in a water-wet state, it is not preferable because the pressure loss at the time of water flow increases, and if it exceeds 100 μm, the water to be treated and the organic porous anion The contact with the exchanger becomes insufficient, and as a result, decomposition of hydrogen peroxide in the water to be treated or removal of dissolved oxygen becomes insufficient, which is not preferable. In addition, when the average thickness of the skeleton is less than 1 μm in a wet state, the anion exchange capacity per volume is reduced, and the mechanical strength is reduced. This is not preferable because the anion exchanger is greatly deformed. Furthermore, the contact efficiency between the water to be treated and the monolith anion exchanger is lowered, and the catalytic effect is lowered. On the other hand, if the thickness of the skeleton exceeds 60 μm, the skeleton becomes too thick and pressure loss during water passage increases, which is not preferable.

上記連続構造体の空孔の水湿潤状態での平均直径は、水銀圧入法で測定した乾燥状態のモノリスアニオン交換体の空孔の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態のモノリスアニオン交換体の直径がx2(mm)であり、その水湿潤状態のモノリスアニオン交換体を乾燥させ、得られる乾燥状態のモノリスアニオン交換体の直径がy2(mm)であり、この乾燥状態のモノリスアニオン交換体を水銀圧入法により測定したときの空孔の平均直径がz2(μm)であったとすると、モノリスアニオン交換体の空孔の水湿潤状態での平均直径(μm)は、次式「水湿潤状態のモノリスアニオン交換体の空孔の平均直径(μm)=z2×(x2/y2)」で算出される。また、アニオン交換基導入前の乾燥状態のモノリスの空孔の平均直径、及びその乾燥状態のモノリスにアニオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの空孔の平均直径に、膨潤率を乗じて、水湿潤状態のモノリスアニオン交換体の空孔の平均直径を算出することもできる。また、上記連続構造体の骨格の水湿潤状態での平均太さは、乾燥状態のモノリスアニオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態のモノリスアニオン交換体の直径がx3(mm)であり、その水湿潤状態のモノリスアニオン交換体を乾燥させ、得られる乾燥状態のモノリスアニオン交換体の直径がy3(mm)であり、この乾燥状態のモノリスアニオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値がz3(μm)であったとすると、水湿潤状態のモノリスアニオン交換体の連続構造体の骨格の平均太さ(μm)は、次式「水湿潤状態のモノリスアニオン交換体の連続構造体の骨格の平均太さ(μm)=z3×(x3/y3)」で算出される。また、アニオン交換基導入前の乾燥状態のモノリスの骨格の平均太さ、及びその乾燥状態のモノリスにアニオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの骨格の平均太さに、膨潤率を乗じて、水湿潤状態のモノリスアニオン交換体の骨格の平均太さを算出することもできる。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。   The average diameter of the pores of the continuous structure in the water-wet state is a value calculated by multiplying the average diameter of the pores of the monolith anion exchanger in the dry state measured by the mercury intrusion method and the swelling ratio. Specifically, the water-wet monolith anion exchanger has a diameter of x2 (mm), the water-wet monolith anion exchanger is dried, and the resulting dried monolith anion exchanger has a diameter y2 ( mm), and the average diameter of the pores when the dried monolith anion exchanger was measured by mercury porosimetry was z2 (μm), the pores of the monolith anion exchanger in the water-wet state The average diameter (μm) is calculated by the following formula: “average diameter of pores of monolith anion exchanger in water wet state (μm) = z2 × (x2 / y2)”. In addition, the average diameter of the pores of the dried monolith before introduction of the anion exchange group, and the swelling ratio of the monolith anion exchanger in the water wet state relative to the dried monolith when the anion exchange group is introduced into the dried monolith If it is known, the average diameter of the pores of the monolith anion exchanger in the water wet state can be calculated by multiplying the average diameter of the pores of the monolith in the dry state by the swelling rate. The average thickness of the skeleton of the continuous structure in the water-wet state is obtained by performing SEM observation of the monolith anion exchanger in a dry state at least three times, and measuring the thickness of the skeleton in the obtained image. It is a value calculated by multiplying the average value by the swelling rate. Specifically, the water-wet monolith anion exchanger has a diameter of x3 (mm), the water-wet monolith anion exchanger is dried, and the resulting dry monolith anion exchanger has a diameter of y3 ( SEM observation of the dried monolith anion exchanger at least three times, and the thickness of the skeleton in the obtained image was measured, and the average value was z3 (μm). The average thickness (μm) of the skeleton of the continuous structure of the monolith anion exchanger in the wet state is expressed by the following formula: “average thickness of the skeleton of the continuous structure of the monolith anion exchanger in the wet state of water (μm) = z3 × ( x3 / y3) ". In addition, the average thickness of the skeleton of the dried monolith before introduction of the anion exchange group, and the swelling ratio of the monolith anion exchanger in the water wet state relative to the dried monolith when the anion exchange group is introduced into the dried monolith If it is known, the average thickness of the skeleton of the monolith anion exchanger in the wet state can be calculated by multiplying the average thickness of the skeleton of the monolith in the dry state by the swelling rate. The skeleton has a rod-like shape and a circular cross-sectional shape, but may have a cross-section with a different diameter such as an elliptical cross-sectional shape. The thickness in this case is the average of the minor axis and the major axis.

また、第2のモノリスアニオン交換体の全細孔容積は、0.5〜5ml/gである。全細孔容積が0.5ml/g未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過水量が小さくなり、処理水量が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当りのアニオン交換容量が低下し、白金族金属ナノ粒子の担持量も低下し触媒効果が低下するため好ましくない。また、機械的強度が低下して、特に高流速で通水した際にモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水とモノリスアニオン交換体との接触効率が低下するため、過酸化水素分解効果又は溶存酸素除去効果も低下してしまうため好ましくない。三次元的に連続した空孔の大きさ及び全細孔容積が上記範囲にあれば、被処理水との接触が極めて均一で接触面積も大きく、かつ低圧力損失下での通水が可能となる。なお、モノリス(モノリス中間体、モノリス、モノリスアニオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。   The total pore volume of the second monolith anion exchanger is 0.5 to 5 ml / g. If the total pore volume is less than 0.5 ml / g, the pressure loss at the time of water flow is increased, which is not preferable. Further, the amount of permeated water per unit cross-sectional area is decreased, and the amount of treated water is decreased. Therefore, it is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the anion exchange capacity per volume decreases, the amount of platinum group metal nanoparticles supported decreases, and the catalytic effect decreases. Further, the mechanical strength is lowered, and the monolith anion exchanger is greatly deformed particularly when water is passed at a high flow rate, which is not preferable. Furthermore, since the contact efficiency between the water to be treated and the monolith anion exchanger is lowered, the hydrogen peroxide decomposition effect or the dissolved oxygen removal effect is also lowered, which is not preferable. If the three-dimensional continuous pore size and total pore volume are within the above ranges, the contact with the water to be treated is extremely uniform, the contact area is large, and water can flow through under low pressure loss. Become. Note that the total pore volume of the monolith (monolith intermediate, monolith, monolith anion exchanger) is the same in both the dry state and the water wet state.

なお、第2のモノリスアニオン交換体に水を透過させた際の圧力損失は、多孔質体を1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.001〜0.5MPa/m・LVの範囲、特に0.005〜0.1MPa/m・LVである。   The pressure loss when water is permeated through the second monolith anion exchanger is the pressure loss when water is passed through a column filled with 1 m of a porous material at a water flow rate (LV) of 1 m / h (hereinafter referred to as “pressure loss”). , “Differential pressure coefficient”), the range is 0.001 to 0.5 MPa / m · LV, particularly 0.005 to 0.1 MPa / m · LV.

第2のモノリスアニオン交換体において、共連続構造体の骨格を構成する材料は、全構成単位中、0.3〜5モル%、好ましくは0.5〜3.0モル%の架橋構造単位を含んでいる芳香族ビニルポリマーであり疎水性である。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、5モル%を越えると、多孔質体の構造が共連続構造から逸脱しやすくなる。該芳香族ビニルポリマーの種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、共連続構造形成の容易さ、アニオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい。   In the second monolith anion exchanger, the material constituting the skeleton of the co-continuous structure is 0.3 to 5 mol%, preferably 0.5 to 3.0 mol% of the crosslinked structural unit in all the structural units. It is an aromatic vinyl polymer containing and is hydrophobic. If the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 5 mol%, the structure of the porous body tends to deviate from the bicontinuous structure. There is no restriction | limiting in particular in the kind of this aromatic vinyl polymer, For example, a polystyrene, poly ((alpha) -methylstyrene), polyvinyl toluene, polyvinyl benzyl chloride, polyvinyl biphenyl, polyvinyl naphthalene etc. are mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, a styrene-divinylbenzene copolymer is obtained because of the ease of forming a co-continuous structure, the ease of introducing an anion exchange group, the high mechanical strength, and the high stability to acids or alkalis. And vinylbenzyl chloride-divinylbenzene copolymer is preferred.

第2のモノリスアニオン交換体は、水湿潤状態での体積当りのアニオン交換容量が0.3〜1.0mg当量/mlのイオン交換容量を有する。特開2002−306976号に記載されているような本発明とは異なる連続マクロポア構造を有する従来型のモノリス状有機多孔質イオン交換体では、実用的に要求される低い圧力損失を達成するために、開口径を大きくすると、全細孔容積もそれに伴って大きくなってしまうため、体積当りのイオン交換容量が低下する、体積当りの交換容量を増加させるために全細孔容積を小さくしていくと、開口径が小さくなってしまうため圧力損失が増加するといった欠点を有していた。それに対して、本発明の第2のモノリスアニオン交換体は、三次元的に連続した空孔の連続性や均一性が高いため、全細孔容積を低下させても圧力損失はさほど増加しない。そのため、圧力損失を低く押さえたままで体積当りのアニオン交換容量を飛躍的に大きくすることができる。体積当りのアニオン交換容量が0.3mg当量/ml未満であると、体積当りの白金族金属のナノ粒子担持量が低下してしまうため好ましくない。一方、体積当りのアニオン交換容量が1.0mg当量/mlを超えると、通水時の圧力損失が増大してしまうため好ましくない。なお、第2のモノリスアニオン交換体の乾燥状態における重量当りのアニオン交換容量は特に限定されないが、イオン交換基が多孔質体の骨格表面及び骨格内部にまで均一に導入しているため、3.5〜4.5mg当量/gである。なお、イオン交換基が骨格表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。   The second monolith anion exchanger has an ion exchange capacity of 0.3 to 1.0 mg equivalent / ml of anion exchange capacity per volume in a wet state of water. In the conventional monolithic organic porous ion exchanger having a continuous macropore structure different from the present invention as described in JP-A-2002-306976, in order to achieve a low pressure loss that is practically required, When the opening diameter is increased, the total pore volume is increased accordingly, so that the ion exchange capacity per volume is decreased, and the total pore volume is decreased in order to increase the exchange capacity per volume. In addition, since the opening diameter is reduced, the pressure loss increases. On the other hand, the second monolith anion exchanger of the present invention has high continuity and uniformity of three-dimensionally continuous pores, so that the pressure loss does not increase so much even if the total pore volume is reduced. Therefore, the anion exchange capacity per volume can be dramatically increased while keeping the pressure loss low. If the anion exchange capacity per volume is less than 0.3 mg equivalent / ml, the amount of platinum group metal nanoparticles supported per volume will be unfavorable. On the other hand, if the anion exchange capacity per volume exceeds 1.0 mg equivalent / ml, the pressure loss at the time of passing water increases, which is not preferable. In addition, the anion exchange capacity per weight in the dry state of the second monolith anion exchanger is not particularly limited. However, since the ion exchange groups are uniformly introduced to the skeleton surface and inside the skeleton of the porous body. 5-4.5 mg equivalent / g. The ion exchange capacity of a porous body in which ion exchange groups are introduced only on the surface of the skeleton cannot be determined unconditionally depending on the kind of the porous body or ion exchange groups, but is at most 500 μg equivalent / g.

第2のモノリスアニオン交換体におけるアニオン交換基としては、第1のモノリスアニオン交換体におけるアニオン交換基と同様であり、その説明を省略する。第2のモノリスアニオン交換体において、導入されたアニオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。均一分布の定義は、第1のモノリスアニオン交換体の均一分布の定義と同じである。   The anion exchange group in the second monolith anion exchanger is the same as the anion exchange group in the first monolith anion exchanger, and the description thereof is omitted. In the second monolith anion exchanger, the introduced anion exchange groups are uniformly distributed not only on the surface of the porous body but also inside the skeleton of the porous body. The definition of the uniform distribution is the same as the definition of the uniform distribution of the first monolith anion exchanger.

(第2のモノリスアニオン交換体の製造方法)
第2のモノリスアニオン交換体は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つI工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、共連続構造体を得るIII工程、該III工程で得られた共連続構造体にアニオン交換基を導入するIV工程を行うことで得られる。
(Method for producing second monolith anion exchanger)
The second monolith anion exchanger prepares a water-in-oil emulsion by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion-exchange groups, and then polymerizes the water-in-oil emulsion. Step I to obtain a monolithic organic porous intermediate having a continuous macropore structure having a total pore volume of more than 16 ml / g and 30 ml / g or less, an aromatic vinyl monomer, and at least two or more vinyl groups in one molecule From an organic solvent and a polymerization initiator in which 0.3 to 5 mol% of the cross-linking agent, aromatic vinyl monomer and cross-linking agent dissolve but the polymer formed by polymerization of the aromatic vinyl monomer does not dissolve in the total oil-soluble monomer having Polymerization is carried out in the presence of the monolithic organic porous intermediate obtained in Step I, while allowing the mixture obtained in Step II and Step II to stand. Obtained by performing a co-continuous structure III to obtain a, IV introducing an anion exchange group to the resulting co-continuous structure in the step III.

第2のモノリスアニオン交換体におけるモノリス中間体を得るI工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。   What is necessary is just to perform the I process of obtaining the monolith intermediate body in a 2nd monolith anion exchanger based on the method of Unexamined-Japanese-Patent No. 2002-306976.

すなわち、I工程において、イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーの中で、好適なものとしては、芳香族ビニルモノマーであり、例えばスチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜5モル%、好ましくは0.3〜3モル%とすることが、共連続構造の形成に有利となるため好ましい。   That is, in the step I, as the oil-soluble monomer not containing an ion exchange group, for example, it does not contain an ion exchange group such as a carboxylic acid group, a sulfonic acid group, and a quaternary ammonium group, has low solubility in water, and is lipophilic. These monomers are mentioned. Specific examples of these monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl and vinyl naphthalene; α-olefins such as ethylene, propylene, 1-butene and isobutene; butadiene Diene monomers such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl esters such as vinyl acetate and vinyl propionate Methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethyl methacrylate Sill, cyclohexyl methacrylate, benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. Among these monomers, preferred are aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene and the like. These monomers can be used singly or in combination of two or more. However, a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and its content is 0.3 to 5 mol%, preferably 0.3 to the total oil-soluble monomer. 3 mol% is preferable because it is advantageous for forming a co-continuous structure.

界面活性剤は、第1のモノリスアニオン交換体のI工程で使用する界面活性剤と同様であり、その説明を省略する。   The surfactant is the same as the surfactant used in Step I of the first monolith anion exchanger, and the description thereof is omitted.

また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム等が挙げられる。   In Step I, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2 , 2′-azobis (2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis ( 4-cyanovaleric acid), 1,1'-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide, hydrogen peroxide-ferrous chloride Sodium persulfate-sodium acid sodium sulfite and the like.

イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、第1のモノリスアニオン交換体のI工程における混合方法と同様であり、その説明を省略する。   As a mixing method when an oil-soluble monomer not containing an ion exchange group, a surfactant, water, and a polymerization initiator are mixed to form a water-in-oil emulsion, the first monolith anion exchanger in Step I is used. This is the same as the mixing method, and the description thereof is omitted.

第2のモノリスアニオン交換体の製造方法において、I工程で得られるモノリス中間体は、架橋構造を有する有機ポリマー材料、好適には芳香族ビニルポリマーである。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜5モル%、好ましくは0.3〜3モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。一方、5モル%を超えると、モノリスの構造が共連続構造を逸脱し易くなるため好ましくない。特に、全細孔容積が16〜20ml/gと本発明の中では小さい場合には、共連続構造を形成させるため、架橋構造単位は3モル%未満とすることが好ましい。   In the second method for producing a monolith anion exchanger, the monolith intermediate obtained in the step I is an organic polymer material having a crosslinked structure, preferably an aromatic vinyl polymer. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 5 mol%, preferably 0.3 to 3 mol% of crosslinked structural units with respect to all structural units constituting the polymer material. Is preferred. When the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 5 mol%, the structure of the monolith tends to deviate from the co-continuous structure, which is not preferable. In particular, when the total pore volume is as small as 16 to 20 ml / g in the present invention, in order to form a co-continuous structure, the cross-linking structural unit is preferably less than 3 mol%.

モノリス中間体のポリマー材料の種類は、第1のモノリスアニオン交換体のモノリス中間体のポリマー材料の種類と同様であり、その説明を省略する。   The type of the polymer material of the monolith intermediate is the same as the type of the polymer material of the monolith intermediate of the first monolith anion exchanger, and the description thereof is omitted.

モノリス中間体の全細孔容積は、16ml/gを超え、30ml/g以下、好適には16ml/gを超え、25ml/g以下である。すなわち、このモノリス中間体は、基本的には連続マクロポア構造ではあるが、マクロポアとマクロポアの重なり部分である開口(メソポア)が格段に大きいため、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に限りなく近い構造を有している。これを重合系に共存させると、モノリス中間体の構造を型として共連続構造の多孔質体が形成される。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が共連続構造から連続マクロポア構造に変化してしまうため好ましくなく、一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの機械的強度が低下したり、体積当たりのアニオン交換容量が低下してしまうため好ましくない。モノリス中間体の全細孔容積を第2のモノリスアニオン交換体の特定の範囲とするには、モノマーと水の比を、概ね1:20〜1:40とすればよい。   The total pore volume of the monolith intermediate is greater than 16 ml / g and not greater than 30 ml / g, preferably greater than 16 ml / g and not greater than 25 ml / g. In other words, this monolith intermediate basically has a continuous macropore structure, but the opening (mesopore) that is the overlapping part of the macropore and the macropore is remarkably large, so that the skeleton constituting the monolith structure is primary from the two-dimensional wall surface. It has a structure as close as possible to the original rod-like skeleton. When this coexists in the polymerization system, a porous body having a co-continuous structure is formed using the structure of the monolith intermediate as a mold. If the total pore volume is too small, the structure of the monolith obtained after polymerizing the vinyl monomer is not preferable because it changes from a co-continuous structure to a continuous macropore structure. On the other hand, if the total pore volume is too large, This is not preferable because the mechanical strength of the monolith obtained after polymerizing the vinyl monomer is lowered and the anion exchange capacity per volume is lowered. In order to make the total pore volume of the monolith intermediate within a specific range of the second monolith anion exchanger, the ratio of monomer to water may be about 1:20 to 1:40.

また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で5〜100μmである。開口の平均直径が乾燥状態で5μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。一方、100μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、被処理水とモノリスアニオン交換体との接触が不十分となり、その結果、過酸化水素分解特性又は溶存酸素除去特性が低下してしまうため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。   Moreover, the average diameter of the opening (mesopore) which is an overlap part of a macropore and a macropore is a monolith intermediate body is 5-100 micrometers in a dry state. When the average diameter of the openings is less than 5 μm in the dry state, the opening diameter of the monolith obtained after polymerizing the vinyl monomer is reduced, and the pressure loss during fluid permeation is increased, which is not preferable. On the other hand, if it exceeds 100 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, resulting in insufficient contact between the water to be treated and the monolith anion exchanger, resulting in hydrogen peroxide decomposition characteristics. Or, the dissolved oxygen removing property is not preferable. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.

第2のモノリスアニオン交換体の製造方法において、II工程は、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。   In the second method for producing a monolith anion exchanger, the step II includes 0.3 to 5 mol% of a crosslinking agent in an aromatic vinyl monomer and a total oil-soluble monomer having at least two or more vinyl groups in one molecule. This is a step of preparing a mixture comprising an organic solvent and a polymerization initiator that dissolves the aromatic vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the aromatic vinyl monomer. In addition, there is no order of I process and II process, II process may be performed after I process, and I process may be performed after II process.

第2のモノリスアニオン交換体の製造方法において、II工程で用いられる芳香族ビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性の芳香族ビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。本発明で好適に用いられる芳香族ビニルモノマーは、スチレン、ビニルベンジルクロライド等である。   In the second method for producing a monolith anion exchanger, the aromatic vinyl monomer used in step II includes a lipophilic aromatic vinyl monomer that contains a polymerizable vinyl group in the molecule and has high solubility in an organic solvent. If it is, there is no particular limitation, but it is preferable to select a vinyl monomer that produces the same or similar polymer material as the monolith intermediate coexisting in the polymerization system. Specific examples of these vinyl monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl, vinyl naphthalene and the like. These monomers can be used singly or in combination of two or more. Aromatic vinyl monomers preferably used in the present invention are styrene, vinyl benzyl chloride and the like.

これら芳香族ビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で5〜50倍、好ましくは5〜40倍である。芳香族ビニルモノマー添加量がモノリス中間体に対して5倍未満であると、棒状骨格を太くできずアニオン交換基導入後の体積当りのアニオン交換容量が小さくなってしまうため好ましくない。一方、芳香族ビニルモノマー添加量が50倍を超えると、連続空孔の径が小さくなり、通水時の圧力損失が大きくなってしまうため好ましくない。   The amount of these aromatic vinyl monomers added is 5 to 50 times, preferably 5 to 40 times, by weight with respect to the monolith intermediate coexisting during polymerization. If the amount of the aromatic vinyl monomer added is less than 5 times that of the monolith intermediate, the rod-like skeleton cannot be made thick, and the anion exchange capacity per volume after the introduction of the anion exchange group becomes small. On the other hand, if the amount of the aromatic vinyl monomer added exceeds 50 times, the diameter of the continuous pores becomes small and the pressure loss during water passage becomes large, which is not preferable.

II工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、一種単独又は二種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量(全油溶性モノマー)に対して0.3〜5モル%、特に0.3〜3モル%である。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくなく、一方、多過ぎると、アニオン交換基の定量的導入が困難になる場合があるため好ましくない。なお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体の架橋密度とほぼ等しくなるように用いることが好ましい。両者の使用量があまりに大きくかけ離れると、生成したモノリス中で架橋密度分布の偏りが生じ、アニオン交換基導入反応時にクラックが生じやすくなる。   As the crosslinking agent used in step II, a crosslinking agent containing at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis. The amount of the crosslinking agent used is 0.3 to 5 mol%, particularly 0.3 to 3 mol%, based on the total amount of vinyl monomer and crosslinking agent (total oil-soluble monomer). When the amount of the crosslinking agent used is less than 0.3 mol%, it is not preferable because the mechanical strength of the monolith is insufficient. On the other hand, when the amount is too large, it may be difficult to quantitatively introduce the anion exchange group. . In addition, it is preferable to use the said crosslinking agent usage-amount so that it may become substantially equal to the crosslinking density of the monolith intermediate body coexisted at the time of vinyl monomer / crosslinking agent polymerization. If the amounts used of both are too large, the crosslink density distribution will be biased in the produced monolith, and cracks are likely to occur during the anion exchange group introduction reaction.

II工程で用いられる有機溶媒は、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、芳香族ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、芳香族ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、芳香族ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、プロピレングリコール、テトラメチレングリコール等のアルコール類;ジエチルエーテル、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記芳香族ビニルモノマーの濃度が30〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱して芳香族ビニルモノマー濃度が30重量%未満となると、重合速度が低下したり、重合後のモノリス構造が本発明の範囲から逸脱してしまうため好ましくない。一方、芳香族ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。   The organic solvent used in step II is an organic solvent that dissolves the aromatic vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the aromatic vinyl monomer, in other words, is formed by polymerization of the aromatic vinyl monomer. It is a poor solvent for polymers. Since the organic solvent varies greatly depending on the type of the aromatic vinyl monomer, it is difficult to list general specific examples. For example, when the aromatic vinyl monomer is styrene, the organic solvent includes methanol, ethanol, Alcohols such as propanol, butanol, hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, propylene glycol, tetramethylene glycol; chain structures such as diethyl ether, butyl cellosolve, polyethylene glycol, polypropylene glycol, polytetramethylene glycol (Poly) ethers; chain saturated hydrocarbons such as hexane, heptane, octane, isooctane, decane, dodecane; ethyl acetate, isopropyl acetate, cellosolve acetate, propionic acid Examples include esters such as ethyl. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the aromatic vinyl monomer is 30 to 80% by weight. If the amount of the organic solvent used deviates from the above range and the aromatic vinyl monomer concentration becomes less than 30% by weight, the polymerization rate is lowered, or the monolith structure after polymerization deviates from the scope of the present invention, which is not preferable. On the other hand, if the concentration of the aromatic vinyl monomer exceeds 80% by weight, the polymerization may run away, which is not preferable.

重合開始剤は、第1のモノリスアニオン交換体のII工程で用いる重合開始剤と同様であり、その説明を省略する。   The polymerization initiator is the same as the polymerization initiator used in Step II of the first monolith anion exchanger, and the description thereof is omitted.

第2のモノリスアニオン交換体の製造方法において、III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下に重合を行い、該モノリス中間体の連続マクロポア構造を共連続構造に変化させ、共連続構造のモノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明の第2のモノリスのように上記重合系に特定の連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の共連続構造のモノリスが得られる。その理由は詳細には解明されていないが、モノリス中間体が存在しない場合は、重合により生じた架橋重合体が粒子状に析出・沈殿することで粒子凝集構造が形成されるのに対し、重合系に全細孔容積が大きな多孔質体(中間体)が存在すると、ビニルモノマー及び架橋剤が液相から多孔質体の骨格部に吸着又は分配され、多孔質体中で重合が進行し、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に変化して共連続構造を有するモノリス状有機多孔質体が形成されると考えられる。   In the second method for producing a monolith anion exchanger, in the step III, the mixture obtained in the step II is allowed to stand and the polymerization is carried out in the presence of the monolith intermediate obtained in the step I. This is a process of obtaining a monolith having a co-continuous structure by changing the continuous macropore structure of the body into a co-continuous structure. The monolith intermediate used in the step III plays a very important role in creating the monolith having the novel structure of the present invention. As disclosed in JP-A-7-501140 and the like, when a vinyl monomer and a crosslinking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic porous material is obtained. The body is obtained. On the other hand, when a monolith intermediate having a specific continuous macropore structure is present in the polymerization system as in the second monolith of the present invention, the structure of the monolith after the polymerization changes dramatically and the particle aggregation structure disappears. Thus, a monolith having the above-described bicontinuous structure can be obtained. The reason for this has not been elucidated in detail, but in the absence of a monolith intermediate, the cross-linked polymer produced by polymerization precipitates and precipitates in the form of particles, while a particle aggregate structure is formed. When a porous body (intermediate) having a large total pore volume is present in the system, the vinyl monomer and the crosslinking agent are adsorbed or distributed from the liquid phase to the skeleton of the porous body, and polymerization proceeds in the porous body. It is considered that the skeleton constituting the monolith structure is changed from a two-dimensional wall surface to a one-dimensional rod-like skeleton to form a monolithic organic porous body having a co-continuous structure.

反応容器の内容積は、第1のモノリスアニオン交換体の反応容器の内容積の説明と同様であり、その説明を省略する。   The internal volume of the reaction vessel is the same as the description of the internal volume of the reaction vessel of the first monolith anion exchanger, and the description thereof is omitted.

III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、芳香族ビニルモノマーの添加量が重量で5〜50倍、好ましくは5〜40倍となるように配合するのが好適である。これにより、適度な大きさの空孔が三次元的に連続し、且つ骨太の骨格が3次元的に連続する共連続構造のモノリスを得ることができる。反応容器中、混合物中の芳香族ビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。   In step III, the monolith intermediate is placed in a reaction vessel impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in Step II and the monolith intermediate is 5 to 50 times, preferably 5 to 40 times the weight of the aromatic vinyl monomer added to the monolith intermediate. It is preferable to blend them as described above. Thereby, it is possible to obtain a monolith having a co-continuous structure in which pores of an appropriate size are three-dimensionally continuous and a thick skeleton is three-dimensionally continuous. In the reaction vessel, the aromatic vinyl monomer and the cross-linking agent in the mixture are adsorbed and distributed on the skeleton of the monolith intermediate that is allowed to stand, and polymerization proceeds in the skeleton of the monolith intermediate.

共連続構造を有するモノリスの基本構造は、平均太さが乾燥状態で0.8〜40μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で8〜80μmの三次元的に連続した空孔が配置された構造である。上記三次元的に連続した空孔の乾燥状態の平均直径は、水銀圧入法により細孔分布曲線を測定し、細孔分布曲線の極大値として得ることができる。乾燥状態のモノリスの骨格の太さは、SEM観察を少なくとも3回行い、得られた画像中の骨格の平均太さを測定して算出すればよい。また、共連続構造を有するモノリスは、0.5〜5ml/gの全細孔容積を有する。   The basic structure of the monolith having a co-continuous structure is a three-dimensional structure in which the average thickness is 0.8 to 40 μm in a dry state and an average diameter between the skeletons is 8 to 80 μm in a dry state. In this structure, continuous holes are arranged. The average diameter of the three-dimensionally continuous pores in the dry state can be obtained as a maximum value of the pore distribution curve by measuring the pore distribution curve by a mercury intrusion method. The thickness of the skeleton of the dried monolith may be calculated by performing SEM observation at least three times and measuring the average thickness of the skeleton in the obtained image. A monolith having a co-continuous structure has a total pore volume of 0.5 to 5 ml / g.

重合条件は、第1のモノリスアニオン交換体のIII工程の重合条件の説明と同様であり、その説明を省略する。   The polymerization conditions are the same as the description of the polymerization conditions in step III of the first monolith anion exchanger, and the description thereof is omitted.

IV工程において、共連続構造を有するモノリスにアニオン交換基を導入する方法は、第1のモノリスアニオン交換体における、モノリスにアニオン交換基を導入する方法と同様であり、その説明を省略する。   In the step IV, the method for introducing an anion exchange group into a monolith having a co-continuous structure is the same as the method for introducing an anion exchange group into the monolith in the first monolith anion exchanger, and the description thereof is omitted.

第2のモノリスアニオン交換体は、共連続構造のモノリスにアニオン交換基が導入されるため、例えばモノリスの1.4〜1.9倍に大きく膨潤する。また、空孔径が膨潤で大きくなっても全細孔容積は変化しない。従って、第2のモノリスアニオン交換体は、3次元的に連続する空孔の大きさが格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。また、骨格が太いため、水湿潤状態での体積当りのアニオン交換容量を大きくでき、更に、被処理水を低圧、大流量で長期間通水することが可能である。   The second monolith anion exchanger swells greatly to 1.4 to 1.9 times that of the monolith, for example, because an anion exchange group is introduced into the bilithic monolith. Further, the total pore volume does not change even if the pore diameter becomes larger due to swelling. Therefore, the second monolith anion exchanger has a high mechanical strength because it has a thick bone skeleton, although the size of three-dimensionally continuous pores is remarkably large. Further, since the skeleton is thick, the anion exchange capacity per volume in a water-wet state can be increased, and furthermore, the water to be treated can be passed for a long time at a low pressure and a large flow rate.

<第1の白金族金属担持触媒及び第2の白金族金属担持触媒>
本発明の第1の白金族金属担持触媒は、第1のモノリスアニオン交換体に、白金族金属のナノ粒子が担持されている白金族金属担持触媒である。また、本発明の第2の白金族金属担持触媒は、第2のモノリスアニオン交換体に、白金族金属のナノ粒子が担持されている白金族金属担持触媒である。
<First platinum group metal supported catalyst and second platinum group metal supported catalyst>
The first platinum group metal-supported catalyst of the present invention is a platinum group metal-supported catalyst in which platinum group metal nanoparticles are supported on a first monolith anion exchanger. The second platinum group metal supported catalyst of the present invention is a platinum group metal supported catalyst in which platinum group metal nanoparticles are supported on the second monolith anion exchanger.

本発明に係る白金族金属とは、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金である。これらの白金族金属は、一種類を単独で用いても、二種類以上の金属を組み合わせて用いても良く、更に、二種類以上の金属を合金として用いても良い。これらの中で、白金、パラジウム、白金/パラジウム合金は触媒活性が高く、好適に用いられる。   The platinum group metal according to the present invention is ruthenium, rhodium, palladium, osmium, iridium, or platinum. These platinum group metals may be used alone or in combination of two or more metals, and more than one metal may be used as an alloy. Among these, platinum, palladium, and platinum / palladium alloys have high catalytic activity and are preferably used.

本発明に係る白金族金属のナノ粒子の平均粒子径は、1〜100nmであり、好ましくは1〜50nm、更に好ましくは1〜20nmである。平均粒子径が1nm未満であると、ナノ粒子が担体から脱離する可能性が高くなるため好ましくなく、一方、平均粒子径が100nmを超えると、金属の単位質量当たりの表面積が少なくなり触媒効果が効率的に得られなくなるため好ましくない。なお、ナノ粒子の平均粒子径が上記範囲内の場合、表面プラズモン共鳴によりナノ粒子は強く着色するため、目視によっても確認可能である。   The average particle diameter of the platinum group metal nanoparticles according to the present invention is 1 to 100 nm, preferably 1 to 50 nm, and more preferably 1 to 20 nm. If the average particle size is less than 1 nm, the possibility that the nanoparticles are detached from the carrier increases, which is not preferable. On the other hand, if the average particle size exceeds 100 nm, the surface area per unit mass of the metal is reduced and the catalytic effect is reduced. Is not preferred because it cannot be obtained efficiently. When the average particle diameter of the nanoparticles is within the above range, the nanoparticles are strongly colored by surface plasmon resonance and can be confirmed by visual observation.

乾燥状態の第1の白金族金属担持触媒中の白金族金属ナノ粒子の担持量((白金族金属ナノ粒子/乾燥状態の第1の白金族金属担持触媒)×100)は、0.004〜20重量%、好ましくは0.005〜15重量%である。また、乾燥状態の第2の白金族金属担持触媒中の白金族金属ナノ粒子の担持量((白金族金属ナノ粒子/乾燥状態の第2の白金族金属担持触媒)×100)は、0.004〜20重量%、好ましくは0.005〜15重量%である。白金族金属ナノ粒子の担持量が0.004重量%未満であると、過酸化水素分解効果又は溶存酸素の除去効果が不十分になるため好ましくない。一方、白金族金属ナノ粒子の担時量が20重量%を超えると、水中への金属溶出が認められるようになるため好ましくない。   The amount of platinum group metal nanoparticles supported in the first platinum group metal supported catalyst in the dry state ((platinum group metal nanoparticles / first platinum group metal supported catalyst in the dry state) × 100) is 0.004 to 20% by weight, preferably 0.005 to 15% by weight. The amount of platinum group metal nanoparticles supported in the second platinum group metal supported catalyst in the dry state ((platinum group metal nanoparticles / second platinum group metal supported catalyst in the dry state) × 100) is 0.00. 004 to 20% by weight, preferably 0.005 to 15% by weight. If the supported amount of platinum group metal nanoparticles is less than 0.004% by weight, the effect of decomposing hydrogen peroxide or the effect of removing dissolved oxygen becomes insufficient. On the other hand, when the amount of platinum group metal nanoparticles is more than 20% by weight, metal elution into water is observed, which is not preferable.

第1の白金族金属担持触媒及び第2の白金族金属担持触媒の製造方法には特に制約はなく、公知の方法により、第1のモノリスアニオン交換体又は第2のモノリスアニオン交換体に、白金族金属のナノ粒子を担持させることにより、第1の白金族金属担持触媒又は第2の白金族金属担持触媒を得ることができる。例えば、乾燥状態の第1のモノリスアニオン交換体又は第2のモノリスアニオン交換体を塩化パラジウムの塩酸水溶液に浸漬し、塩化パラジウム酸アニオンをイオン交換によりモノリスアニオン交換体に吸着させ、次いで、還元剤と接触させてパラジウム金属ナノ粒子を第1のモノリスアニオン交換体又は第2のモノリスアニオン交換体に担持する方法や、第1のモノリスアニオン交換体又は第2のモノリスアニオン交換体をカラムに充填し、塩化パラジウムの塩酸水溶液を通液して塩化パラジウム酸アニオンをイオン交換により第1のモノリスアニオン交換体又は第2のモノリスアニオン交換体に吸着させ、次いで、還元剤を通液してパラジウム金属ナノ粒子を第1のモノリスアニオン交換体又は第2のモノリスアニオン交換体に担持する方法等が挙げられる。用いられる還元剤にも特に制約はなく、メタノール、エタノール、イソプロパノール等のアルコールや、ギ酸、シュウ酸、クエン酸、アスコルビン酸等のカルボン酸、アセトン、メチルエチルケトン等のケトン、ホルムアルデヒドやアセトアルデヒド等のアルデヒド、水素化ホウ素ナトリウム、ヒドラジン等が挙げられる。   There are no particular restrictions on the method for producing the first platinum group metal-supported catalyst and the second platinum group metal-supported catalyst, and platinum is added to the first monolith anion exchanger or the second monolith anion exchanger by a known method. The first platinum group metal-supported catalyst or the second platinum group metal-supported catalyst can be obtained by supporting the group metal nanoparticles. For example, the first monolith anion exchanger or the second monolith anion exchanger in a dry state is immersed in an aqueous hydrochloric acid solution of palladium chloride, the chloropalladate anion is adsorbed on the monolith anion exchanger by ion exchange, and then the reducing agent A method in which the palladium metal nanoparticles are supported on the first monolith anion exchanger or the second monolith anion exchanger by contacting with the first monolith anion exchanger, or the column is packed with the first monolith anion exchanger or the second monolith anion exchanger. Then, a hydrochloric acid aqueous solution of palladium chloride is passed through and the chloropalladate anion is adsorbed on the first monolith anion exchanger or the second monolith anion exchanger by ion exchange, and then a reducing agent is passed through the palladium metal nanoparticle. The particles are supported on the first monolith anion exchanger or the second monolith anion exchanger Law, and the like. There are no particular restrictions on the reducing agent used, alcohols such as methanol, ethanol and isopropanol, carboxylic acids such as formic acid, oxalic acid, citric acid and ascorbic acid, ketones such as acetone and methyl ethyl ketone, aldehydes such as formaldehyde and acetaldehyde, Examples thereof include sodium borohydride and hydrazine.

第1の白金族金属担持触媒において、白金族金属ナノ粒子の担体である第1のモノリスアニオン交換体のイオン形は、白金族金属ナノ粒子を担持した後は、通常、塩化物形のような塩形となる。本発明では、このような塩形のものを、過酸化水素分解用又は溶存酸素除去用の触媒として用いても良い。また、第1の白金族金属担持触媒は、これに限定されるものではなく、第1のモノリスアニオン交換体のイオン形を、OH形に再生したものであっても良い。そして、これらのうち、第1のモノリスアニオン交換体のイオン形がOH形であることが、高い触媒効果が得られるため好ましい。また、同様に、第2の白金族金属担持触媒において、白金族金属ナノ粒子の担体である第2のモノリスアニオン交換体のイオン形は、白金族金属ナノ粒子を担持した後は、通常、塩化物形のような塩形となる。本発明では、このような塩形のものを、過酸化水素分解用又は溶存酸素除去用の触媒として用いても良い。また、第2の白金族金属担持触媒は、これに限定されるものではなく、第2のモノリスアニオン交換体のイオン形を、OH形に再生したものであっても良い。そして、これらのうち、第2のモノリスアニオン交換体のイオン形がOH形であることが、高い触媒効果が得られるため好ましい。白金族金属ナノ粒子を担持した後のモノリスアニオン交換体のOH形への再生方法には特に制限はなく、水酸化ナトリウム水溶液を通液する等の公知の方法を用いればよい。   In the first platinum group metal-supported catalyst, the ionic form of the first monolith anion exchanger, which is the carrier of the platinum group metal nanoparticles, is usually in the form of chloride after the platinum group metal nanoparticles are supported. It becomes salt form. In the present invention, such a salt form may be used as a catalyst for decomposing hydrogen peroxide or removing dissolved oxygen. In addition, the first platinum group metal supported catalyst is not limited to this, and the ion form of the first monolith anion exchanger may be regenerated to OH form. Of these, the ionic form of the first monolith anion exchanger is preferably OH form, since a high catalytic effect is obtained. Similarly, in the second platinum group metal-supported catalyst, the ionic form of the second monolith anion exchanger, which is the carrier of the platinum group metal nanoparticles, is usually chlorinated after the platinum group metal nanoparticles are supported. It becomes a salt form like a physical form. In the present invention, such a salt form may be used as a catalyst for decomposing hydrogen peroxide or removing dissolved oxygen. In addition, the second platinum group metal supported catalyst is not limited to this, and the ion form of the second monolith anion exchanger may be regenerated to OH form. Of these, the ionic form of the second monolith anion exchanger is preferably OH form, because a high catalytic effect is obtained. The method for regenerating the monolith anion exchanger after supporting the platinum group metal nanoparticles to the OH form is not particularly limited, and a known method such as passing a sodium hydroxide aqueous solution may be used.

<本発明の過酸化水素の分解処理水の製造方法>
本発明の過酸化水素の分解処理水の製造方法は、第1の白金族金属担持触媒又は第2の白金族金属担持触媒に、過酸化水素を含有する被処理水を接触させて、過酸化水素を含有する被処理水中の過酸化水素を分解除去する過酸化水素の分解処理水の製造方法である。なお、以下では、第1の白金族金属担持触媒及び第2の白金族金属担持触媒を総称して、本発明の白金族金属担持触媒とも記載する。
<Method for Producing Hydrogen Peroxide Decomposition Treatment Water>
In the method for producing hydrogen peroxide decomposition treated water according to the present invention, the first platinum group metal-supported catalyst or the second platinum group metal-supported catalyst is brought into contact with the treated water containing hydrogen peroxide, and then the peroxide is oxidized. This is a method for producing hydrogen peroxide decomposition treated water by decomposing and removing hydrogen peroxide in water to be treated containing hydrogen. Hereinafter, the first platinum group metal supported catalyst and the second platinum group metal supported catalyst are collectively referred to as the platinum group metal supported catalyst of the present invention.

過酸化水素を含有する被処理水は、過酸化水素を含有するものであれば、特に制限されず、例えば、半導体製造等の電子部品の製造及び電子部品の製造器具を洗浄するための超純水の製造において、その中の種々の工程により生じる水が挙げられ、具体的には、水中の有機物を分解するための紫外線酸化処理工程を行った後の水が挙げられる。また、過酸化水素を含有する被処理水としては、他には、用廃水系に過酸化水素を添加し、酸化、還元、殺菌、洗浄を行った処理液又は処理水やこれらの処理液又は処理水を用いて処理を行った後の廃液又は排水が挙げられる。例えば、半導体製造工程から排出される過酸化水素を含む洗浄排水、半導体製造工程から排出される有機物を含む洗浄排水を超純水として回収再利用するために、過酸化水素の存在下に紫外線を照射し有機物を酸化分解して得られる処理水、フェントン試薬を用いて有機物を分解して得られる処理水、逆浸透膜、限外ろ過膜等を過酸化水素で殺菌又は洗浄した後の排水、6価クロムを含有する排水を過酸化水素で還元処理して得られる処理水等が挙げられる。   The water to be treated containing hydrogen peroxide is not particularly limited as long as it contains hydrogen peroxide. For example, ultrapure water used for manufacturing electronic components such as semiconductor manufacturing and for cleaning electronic device manufacturing equipment. In the production of water, water generated by various processes therein can be mentioned, and specifically, water after performing an ultraviolet oxidation process for decomposing organic substances in the water. In addition, as the water to be treated containing hydrogen peroxide, in addition to the treatment liquid or treatment water obtained by adding hydrogen peroxide to the waste water system, and performing oxidation, reduction, sterilization and washing, these treatment liquids or The waste liquid or waste water after processing using treated water is mentioned. For example, in order to collect and reuse cleaning wastewater containing hydrogen peroxide discharged from the semiconductor manufacturing process and cleaning wastewater containing organic matter discharged from the semiconductor manufacturing process as ultrapure water, ultraviolet rays are used in the presence of hydrogen peroxide. Treated water obtained by oxidative decomposition of organic matter by irradiation, treated water obtained by decomposing organic matter using Fenton reagent, reverse osmosis membrane, waste water after sterilizing or washing ultrafiltration membrane with hydrogen peroxide, Examples thereof include treated water obtained by reducing wastewater containing hexavalent chromium with hydrogen peroxide.

過酸化水素を含有する被処理水中の過酸化水素濃度は、特に制限されないが、通常、0.01〜100mg/Lである。超純水製造のサブシステムでは、通常、過酸化水素濃度は、10〜50μg/Lである。過酸化水素濃度が100mg/Lを超えると、母体であるモノリスアニオン交換体の劣化が進み易い。   The concentration of hydrogen peroxide in the water to be treated containing hydrogen peroxide is not particularly limited, but is usually 0.01 to 100 mg / L. In the ultrapure water production subsystem, the hydrogen peroxide concentration is typically 10-50 μg / L. When the hydrogen peroxide concentration exceeds 100 mg / L, deterioration of the base monolith anion exchanger tends to proceed.

本発明の白金族金属担持触媒に、過酸化水素を含有する被処理水を接触させる方法としては、特に制限されず、例えば、触媒充填塔に、本発明の白金族金属担持触媒を充填し、触媒充填塔に、過酸化水素を含有する被処理液を供給することにより、本発明の白金族金属担持触媒に、過酸化水素を含有する被処理水を通液する方法等が挙げられる。   The method for bringing the water to be treated containing hydrogen peroxide into contact with the platinum group metal supported catalyst of the present invention is not particularly limited. For example, the catalyst packed tower is packed with the platinum group metal supported catalyst of the present invention, Examples include a method of supplying water to be treated containing hydrogen peroxide to the platinum group metal-supported catalyst of the present invention by supplying the liquid to be treated containing hydrogen peroxide to the catalyst packed tower.

上記方法の場合、本発明の白金族金属担持触媒に、過酸化水素を含有する被処理水を、SV=2000〜20000h−1、好ましくはSV=5000〜10000h−1で通水することができる。本発明の白金族金属担持触媒を用いると、SVが2000h−1を超えるような大きなSVで被処理水を通水しても、過酸化水素の分解除去が可能である。更に、SVが10000h−1であっても、本発明の白金族金属担持触媒を用いると、過酸化水素の分解が可能であり、本発明の白金族金属担持触媒は、粒子状アニオン交換樹脂に白金族金属ナノ粒子を担持した従来の担持触媒の処理限界を大きく上回る、卓越した性能を示す。本発明の白金族金属担持触媒への過酸化水素を含有する被処理水の通水速度は、特に制限されないが、好ましくはSV=2000〜20000h−1、特に好ましくはSV=5000〜10000h−1である。なお、本発明の白金族金属担持触媒は、過酸化水素分解能力が著しく高いため、あえて通水速度をSV=2000h−1未満の領域とする必要はないが、通水速度をSV=2000h−1未満の領域としてもよく、通水速度をSV=2000h−1未満の領域とした場合も、本発明の白金族金属担持触媒は、優れた過酸化水素分解能力を発揮する。一方、SVが20000h−1を超えると、通水差圧が大きくなり過ぎる傾向にある。 In the case of the above method, water to be treated containing hydrogen peroxide can be passed through the platinum group metal supported catalyst of the present invention at SV = 2000-20000h −1 , preferably SV = 5000-10000h −1. . When the platinum group metal-supported catalyst of the present invention is used, hydrogen peroxide can be decomposed and removed even when the water to be treated is passed with a large SV such that the SV exceeds 2000 h- 1 . Furthermore, even if SV is 10000h- 1 , if the platinum group metal-supported catalyst of the present invention is used, hydrogen peroxide can be decomposed, and the platinum group metal-supported catalyst of the present invention can be used as a particulate anion exchange resin. It shows outstanding performance that far exceeds the processing limit of conventional supported catalysts supporting platinum group metal nanoparticles. The flow rate of the water to be treated containing hydrogen peroxide to the platinum group metal supported catalyst of the present invention is not particularly limited, but is preferably SV = 2000 to 20000 h −1 , particularly preferably SV = 5000 to 10000 h −1. It is. In addition, since the platinum group metal supported catalyst of the present invention has a remarkably high hydrogen peroxide decomposition ability, it is not necessary to dare to set the water flow rate to an area below SV = 2000 h −1, but the water flow rate is set to SV = 2000 h −. It may be less than one region, even if the water flow rate was region below SV = 2000h -1, platinum group metal supported catalyst of the present invention exhibits excellent hydrogen peroxide decomposition ability. On the other hand, when SV exceeds 20000 h −1 , the water flow differential pressure tends to be too large.

更に、本発明の白金族金属担持触媒は、過酸化水素分解能力が著しく高いため、触媒の充填層高を薄くしても過酸化水素の分解除去が可能である。   Furthermore, since the platinum group metal-supported catalyst of the present invention has a remarkably high hydrogen peroxide decomposition ability, hydrogen peroxide can be decomposed and removed even if the packed bed height of the catalyst is reduced.

本発明の過酸化水素の分解処理水の製造方法を行い得られる処理水中の過酸化水素濃度は、1μg/L以下であることが好ましい。   It is preferable that the hydrogen peroxide concentration in the treated water obtained by the method for producing hydrogen peroxide-decomposed treated water of the present invention is 1 μg / L or less.

本発明の電子部品の洗浄方法(I)は、本発明の過酸化水素の分解処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄する電子部品の洗浄方法である。   The electronic component cleaning method (I) of the present invention is an electronic component cleaning method of cleaning an electronic component or an electronic component manufacturing instrument with treated water obtained by performing the method for producing hydrogen peroxide decomposition treated water of the present invention. It is.

本発明の電子部品の洗浄方法(I)の形態例について、図13及び図14を参照して説明する。図13は、本発明の電子部品の洗浄方法(I)の第一の形態例の模式的なフロー図であり、図14は、本発明の電子部品の洗浄方法(I)の第二の形態例の模式的なフロー図である。   An example of the electronic component cleaning method (I) according to the present invention will be described with reference to FIGS. FIG. 13 is a schematic flow diagram of the first embodiment of the electronic component cleaning method (I) of the present invention, and FIG. 14 is the second embodiment of the electronic component cleaning method (I) of the present invention. It is a typical flowchart of an example.

図13に示すように、本発明の電子部品の洗浄方法(I)の第一の形態例は、オゾンを含有する水(以下、オゾン含有水とも記載する。)に被洗浄物を接触させて、被洗浄物を洗浄するための第1工程21と、水素を含有する水(以下、水素含有水とも記載する。)に被洗浄物を接触させて、500kHz以上の振動を与えながら被洗浄物を洗浄する第2工程22と、フッ化水素酸及び過酸化水素を含有する水に被洗浄物を接触させて、被洗浄物を洗浄するための第3工程23と、水素含有水に被洗浄物を接触させて、500kHz以上の振動を与えながら被洗浄物を洗浄する第4工程24と、を有する。   As shown in FIG. 13, in the first embodiment of the electronic component cleaning method (I) of the present invention, an object to be cleaned is brought into contact with water containing ozone (hereinafter also referred to as ozone-containing water). The object to be cleaned is brought into contact with the first step 21 for cleaning the object to be cleaned and water containing hydrogen (hereinafter also referred to as hydrogen-containing water), and vibrations of 500 kHz or more are applied. A second process 22 for cleaning the object, a third process 23 for cleaning the object to be cleaned by bringing the object to be cleaned into contact with water containing hydrofluoric acid and hydrogen peroxide, and a process for cleaning the hydrogen-containing water. And a fourth step 24 for cleaning the object to be cleaned while bringing the object into contact with each other and applying a vibration of 500 kHz or more.

第1工程21に供給される洗浄水は、超純水32にオゾンを溶解させて調製されたオゾン含有水である。そして、超純水は、その製造工程で、紫外線酸化処理等がされているので、過酸化水素を含有している。そこで、本発明の電子部品の洗浄方法(I)の第一の形態例では、超純水32にオゾン33を溶解させる前に、超純水32を被処理水として本発明の過酸化水素の分解処理水の製造方法を行う過酸化水素除去工程25を行い、得られた処理水にオゾン33を溶解させて、第1工程21の洗浄水として供給する。   The cleaning water supplied to the first step 21 is ozone-containing water prepared by dissolving ozone in the ultrapure water 32. And the ultrapure water contains hydrogen peroxide because it has been subjected to an ultraviolet oxidation process or the like in its manufacturing process. Therefore, in the first embodiment of the electronic component cleaning method (I) of the present invention, before the ozone 33 is dissolved in the ultrapure water 32, the ultrapure water 32 is used as water to be treated. A hydrogen peroxide removal step 25 that performs a method for producing decomposition treated water is performed, ozone 33 is dissolved in the obtained treated water, and supplied as cleaning water in the first step 21.

また、第2工程22に供給される洗浄水は、超純水32に水素を溶解させて調製された水素含有水である。そこで、本発明の電子部品の洗浄方法(I)の第一の形態例では、超純水32に水素34を溶解させる前に、超純水32を被処理水として本発明の過酸化水素の分解処理水の製造方法を行う過酸化水素除去工程26を行い、得られた処理水に水素34を溶解させて、第2工程22の洗浄水として供給する。本発明の電子部品の洗浄方法(I)の第一の形態例では、第4工程24も同様に、超純水32に水素36を溶解させる前に、超純水32を被処理水として本発明の過酸化水素の分解処理水の製造方法を行う過酸化水素除去工程28を行い、得られた処理水に水素36を溶解させて、第4工程24の洗浄水として供給する。なお、水素34又は36を溶解させる時期は、過酸化水素除去工程26又は28の前段であってもよい。   The cleaning water supplied to the second step 22 is hydrogen-containing water prepared by dissolving hydrogen in the ultrapure water 32. Therefore, in the first embodiment of the electronic component cleaning method (I) of the present invention, before the hydrogen 34 is dissolved in the ultrapure water 32, the ultrapure water 32 is used as water to be treated. A hydrogen peroxide removing step 26 that performs a method for producing decomposition treated water is performed, and hydrogen 34 is dissolved in the obtained treated water and supplied as cleaning water in the second step 22. In the first embodiment of the electronic component cleaning method (I) of the present invention, in the fourth step 24 as well, before the hydrogen 36 is dissolved in the ultrapure water 32, the ultrapure water 32 is used as the water to be treated. The hydrogen peroxide removal step 28 in which the method for producing hydrogen peroxide decomposition treatment water according to the invention is carried out, hydrogen 36 is dissolved in the obtained treated water, and supplied as cleaning water in the fourth step 24. It should be noted that the hydrogen 34 or 36 may be dissolved before the hydrogen peroxide removing step 26 or 28.

また、本発明の電子部品の洗浄方法(I)の第一の形態例では、超純水32を被処理水として本発明の過酸化水素の分解処理水の製造方法を行う過酸化水素除去工程27を行い、得られた処理水にフッ化水素酸及び過酸化水素35を溶解させ、得られたフッ化水素酸及び過酸化水素を含有する水を、第3工程23の洗浄水として供給することもできる。   Further, in the first embodiment of the electronic component cleaning method (I) of the present invention, the hydrogen peroxide removing step of performing the method for producing hydrogen peroxide decomposition treated water of the present invention using ultrapure water 32 as water to be treated. 27, hydrofluoric acid and hydrogen peroxide 35 are dissolved in the treated water obtained, and the water containing the obtained hydrofluoric acid and hydrogen peroxide is supplied as cleaning water in the third step 23. You can also.

そして、洗浄前の電子部品20aを被洗浄物として、第1工程21〜第4工程24を順に行い、洗浄後の電子部品30aを得る。   And the electronic component 20a before washing | cleaning is made into a to-be-cleaned object, the 1st process 21-the 4th process 24 are performed in order, and the electronic component 30a after washing | cleaning is obtained.

図14に示すように、本発明の電子部品の洗浄方法(I)の第二の形態例は、硫酸及び過酸化水素を含有する液に被洗浄物を接触させて、被洗浄物を洗浄するための第1工程41と、超純水でリンスする第2工程42と、フッ化水素酸を含有する水(希フッ酸)に被洗浄物を接触させて、被洗浄物を洗浄するための第3工程43と、超純水でリンスする第4工程44と、アンモニア及び過酸化水素を含有する水に被洗浄物を接触させて、被洗浄物を洗浄するための第5工程45と、超純水でリンスする第6工程46と、加熱した超純水に被洗浄物を接触させて、被洗浄物を洗浄するための第7工程47と、超純水でリンスする第8工程48と、塩酸及び過酸化水素を含有する水に被洗浄物を接触させて、被洗浄物を洗浄するための第9工程49と、超純水でリンスする第10工程50と、フッ化水素酸を含有する水(希フッ酸)に被洗浄物を接触させて、被洗浄物を洗浄するための第11工程51と、超純水でリンスする第12工程52と、を有する。   As shown in FIG. 14, in the second embodiment of the electronic component cleaning method (I) of the present invention, the object to be cleaned is brought into contact with a liquid containing sulfuric acid and hydrogen peroxide to clean the object to be cleaned. The first step 41 for cleaning, the second step 42 for rinsing with ultrapure water, and the object to be cleaned in contact with water containing hydrofluoric acid (dilute hydrofluoric acid) for cleaning the object to be cleaned A third step 43, a fourth step 44 for rinsing with ultrapure water, a fifth step 45 for cleaning the object to be cleaned by contacting the object to be cleaned with water containing ammonia and hydrogen peroxide, A sixth step 46 for rinsing with ultrapure water, a seventh step 47 for bringing the object to be cleaned into contact with the heated ultrapure water and cleaning the object to be cleaned, and an eighth step 48 for rinsing with ultrapure water And a ninth step 4 for cleaning the cleaning object by bringing the cleaning object into contact with water containing hydrochloric acid and hydrogen peroxide. A tenth process 50 for rinsing with ultrapure water, an eleventh process 51 for cleaning the object to be cleaned by bringing the object to be cleaned into contact with water containing hydrofluoric acid (dilute hydrofluoric acid), And a twelfth step 52 of rinsing with ultrapure water.

図14中の第3、5、9及び11工程に供給される洗浄水63、65、69及び71は、超純水に各工程で必要な薬剤を溶解させた水である。そこで、本発明の電子部品の洗浄方法(I)の第二の形態例では、図13に示す本発明の電子部品の洗浄方法(I)の第一の形態例と同様に、超純水に各工程で必要な薬剤を溶解させる前に、超純水を被処理水として本発明の過酸化水素の分解処理水の製造方法を行う過酸化水素除去工程を行い、得られた処理水に各工程で必要な薬剤を溶解させて、各工程の洗浄水(洗浄液)として供給する。   Washing water 63, 65, 69 and 71 supplied to the third, fifth, ninth and eleventh steps in FIG. 14 is water obtained by dissolving a chemical necessary for each step in ultrapure water. Therefore, in the second embodiment of the electronic component cleaning method (I) of the present invention, as in the first embodiment of the electronic component cleaning method (I) of the present invention shown in FIG. Before dissolving the necessary chemicals in each step, a hydrogen peroxide removal step is performed in which the method for producing hydrogen peroxide decomposition treatment water of the present invention is performed using ultrapure water as water to be treated. The chemicals required in the process are dissolved and supplied as cleaning water (cleaning liquid) for each process.

また、図14中の第2、4、6、7、8、10及び12工程に供給される洗浄水62、64、66、67、68、70及び72は、超純水である。そこで、本発明の電子部品の洗浄方法(I)の第二の形態例では、超純水を被処理水として本発明の過酸化水素の分解処理水の製造方法を行う過酸化水素除去工程を行い、得られた処理水を、各工程の洗浄水として供給する。   Further, the cleaning water 62, 64, 66, 67, 68, 70 and 72 supplied to the second, fourth, sixth, seventh, eighth, tenth and twelfth steps in FIG. 14 are ultrapure water. Therefore, in the second embodiment of the electronic component cleaning method (I) of the present invention, a hydrogen peroxide removal step is performed in which the method for producing hydrogen peroxide decomposition treated water of the present invention is performed using ultrapure water as the treated water. The treated water obtained is supplied as cleaning water for each step.

そして、洗浄前の電子部品20bを被洗浄物として、第1工程41〜第12工程52を順に行い、洗浄後の電子部品30bを得る。   Then, using the electronic component 20b before cleaning as an object to be cleaned, the first step 41 to the twelfth step 52 are sequentially performed to obtain the electronic component 30b after cleaning.

なお、上記のように、本発明において、本発明の過酸化水素の分解処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄するとは、本発明の過酸化水素の分解処理水の製造方法を行った直後の処理水で、電子部品又は電子部品の製造器具を洗浄するということだけではなく、電子部品又は電子部品の製造器具の洗浄に用いられる超純水を製造する工程のいずれか1箇所又は2箇所以上で、本発明の過酸化水素の分解処理水の製造方法を行い、超純水の製造工程の全工程を行って得られる超純水で、電子部品又は電子部品の製造器具を洗浄するということを意味する。   As described above, in the present invention, washing an electronic component or an electronic component manufacturing instrument with treated water obtained by performing the method for producing hydrogen peroxide-decomposed treated water of the present invention means that the peroxidation of the present invention is used. Ultrapure water used for cleaning electronic components or electronic component manufacturing equipment as well as cleaning electronic components or electronic component manufacturing equipment with treated water immediately after the hydrogen decomposition treatment water manufacturing method is performed. In any one or two or more of the steps of producing the hydrogen peroxide decomposition treatment water production method of the present invention, ultrapure water obtained by performing all steps of the ultrapure water production step, It means that an electronic component or an electronic component manufacturing apparatus is cleaned.

<本発明の溶存酸素の除去処理水の製造方法>
本発明の溶存酸素の除去処理水の製造方法は、第1の白金族金属担持触媒又は第2の白金族金属担持触媒の存在下で、酸素を含有する被処理水中の溶存酸素と水素とを反応させて水を生成させることにより、酸素を含有する被処理水から溶存酸素を除去する溶存酸素の除去処理水の製造方法である。
<Method for Producing Dissolved Oxygen Removal Water of the Present Invention>
The method for producing treated water for removing dissolved oxygen according to the present invention comprises dissolving dissolved oxygen and hydrogen in treated water containing oxygen in the presence of the first platinum group metal-supported catalyst or the second platinum group metal-supported catalyst. This is a method for producing dissolved oxygen-removed treated water in which dissolved oxygen is removed from water to be treated containing oxygen by reacting to produce water.

酸素を含有する被処理水は、酸素を含有するものであれば、特に制限されず、例えば、半導体製造等の電子部品の製造及び電子部品の製造器具等を洗浄するための超純水の製造に用いられる原水又はその製造工程中の種々の水等が挙げられ、具体的には、超純水製造サブシステムの循環水、例えば、紫外線酸化装置の出口水等が挙げられる。また、溶存酸素を含有する被処理水としては、他には、発電所で用いられる用水、各種工場で用いられるボイラー水や冷却水等が挙げられる。   The water to be treated containing oxygen is not particularly limited as long as it contains oxygen. For example, the manufacture of electronic parts such as semiconductor manufacturing and the manufacture of ultrapure water for cleaning electronic parts manufacturing equipment, etc. The raw water used in the production process or various kinds of water in the production process thereof, specifically, circulating water of the ultrapure water production subsystem, for example, the outlet water of the ultraviolet oxidizer. Other examples of water to be treated containing dissolved oxygen include water used at power plants, boiler water and cooling water used at various factories.

酸素を含有する被処理水中の溶存酸素濃度は、特に制限されないが、通常、0.01〜10mg/Lである。   Although the dissolved oxygen concentration in the to-be-treated water containing oxygen is not particularly limited, it is usually 0.01 to 10 mg / L.

溶存酸素と反応させる水素の量は、特に制限されないが、酸素濃度の1倍当量〜10倍当量、好ましくは1.1倍当量〜5倍当量である。   The amount of hydrogen reacted with dissolved oxygen is not particularly limited, but is 1 to 10 equivalents, preferably 1.1 to 5 equivalents of the oxygen concentration.

本発明の白金族金属担持触媒の存在下で、酸素を含有する被処理水中の溶存酸素と水素を反応させる方法としては、特に制限されず、例えば、触媒充填塔に、本発明の白金族金属担持触媒を充填し、触媒充填塔に、酸素を含有する被処理液を供給すると共に、被処理液の供給管内に、水素ガスを注入することにより、本発明の白金族金属担持触媒に、溶存水素と溶存酸素を含有する被処理水とを通液する方法等が挙げられる。   The method for reacting dissolved oxygen and hydrogen in the water to be treated containing oxygen in the presence of the platinum group metal supported catalyst of the present invention is not particularly limited. For example, the platinum group metal of the present invention is added to a catalyst packed tower. The supported catalyst is packed, and the treatment liquid containing oxygen is supplied to the catalyst packed tower, and hydrogen gas is injected into the supply pipe of the treatment liquid to dissolve in the platinum group metal supported catalyst of the present invention. Examples include a method of passing hydrogen and water to be treated containing dissolved oxygen.

上記の方法の場合、本発明の白金族金属担持触媒に、酸素を含有する被処理水を、SV=2000〜20000h−1、好ましくはSV=5000〜10000h−1で通水することができる。本発明の白金族金属担持触媒を用いると、SVが2000h−1を超えるような大きなSVで被処理水を通水しても、溶存酸素の除去が可能である。更に、SVが10000h−1であっても、本発明の白金族金属担持触媒を用いると、溶存酸素の除去が可能であり、本発明の白金族金属担持触媒は、粒子状アニオン交換樹脂に白金族金属ナノ粒子を担持した従来の担持触媒の処理限界を大きく上回る、卓越した性能を示す。本発明の白金族金属担持触媒への酸素を含有する被処理水の通水速度は、特に制限されないが、好ましくはSV=2000〜20000h−1、特に好ましくはSV=5000〜10000h−1である。なお、本発明の白金族金属担持触媒は、溶存酸素除去能力が著しく高いため、粒子状アニオン交換樹脂に白金族金属ナノ粒子を担持した従来の担持触媒の処理限界を大きく上回る通水速度で、被処理水を通水しても、被処理水中の溶存酸素を分解することができる。 In the case of said method, the to-be-processed water containing oxygen can be made to flow into the platinum group metal carrying | support catalyst of this invention by SV = 2000-20000h < -1 >, Preferably SV = 5000-10000h- 1 . When the platinum group metal-supported catalyst of the present invention is used, dissolved oxygen can be removed even when the water to be treated is passed through with a large SV such that SV exceeds 2000 h- 1 . Furthermore, even if SV is 10000h- 1 , if the platinum group metal-supported catalyst of the present invention is used, dissolved oxygen can be removed. The platinum group metal-supported catalyst of the present invention can be used as a particulate anion exchange resin. Excellent performance, far exceeding the processing limit of conventional supported catalysts supporting group metal nanoparticles. The flow rate of the water to be treated containing oxygen to the platinum group metal supported catalyst of the present invention is not particularly limited, but is preferably SV = 2000 to 20000 h −1 , particularly preferably SV = 5000 to 10000 h −1 . . In addition, since the platinum group metal supported catalyst of the present invention has a remarkably high dissolved oxygen removal capability, the water flow rate greatly exceeds the processing limit of the conventional supported catalyst in which platinum group metal nanoparticles are supported on the particulate anion exchange resin. Even if the water to be treated is passed, dissolved oxygen in the water to be treated can be decomposed.

更に、本発明の白金族金属担持触媒は、溶存酸素除去能力が著しく高いため、触媒の充填層高を薄くしても溶存酸素の除去が可能である。   Furthermore, since the platinum group metal supported catalyst of the present invention has a remarkably high dissolved oxygen removing ability, it is possible to remove dissolved oxygen even if the packed bed height of the catalyst is made thin.

本発明の溶存酸素の除去処理水の製造方法を行い得られる処理水中の溶存酸素濃度は、10μg/L以下であることが好ましい。   It is preferable that the dissolved oxygen concentration in the treated water obtained by performing the method for producing treated water for removing dissolved oxygen of the present invention is 10 μg / L or less.

本発明の電子部品の洗浄方法(II)は、本発明の溶存酸素の除去処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄する電子部品の洗浄方法である。   The electronic component cleaning method (II) of the present invention is an electronic component cleaning method of cleaning an electronic component or an electronic component manufacturing instrument with treated water obtained by performing the dissolved oxygen removal treated water manufacturing method of the present invention. is there.

空気中の酸素は水中に溶存酸素として溶け込む。溶存酸素は超純水中の不純物として管理され、前述のように、超純水製造装置の二次純水系システム入り口における被処理水(一次純水)中の溶存酸素濃度は、通常、100μg/L以下にまで低減されている。更に、10μg/L以下に管理されている場合もある。そして、超純水中の溶存酸素濃度は、10μg/L以下、更には1μg/L以下に管理されている場合もある。一方、超純水の製造工程では、紫外線酸化処理等により発生した過酸化水素が分解する際に酸素が生じる。そこで、本発明の電子部品の洗浄方法(II)の形態例では、本発明の溶存酸素の除去処理水の製造方法を行う溶存酸素除去工程を行い、得られた処理水を、電子部品の洗浄方法の各工程に供給される洗浄水(洗浄液)又はその調製用の超純水とする。   Oxygen in the air dissolves in water as dissolved oxygen. Dissolved oxygen is managed as impurities in ultrapure water. As described above, the dissolved oxygen concentration in the treated water (primary pure water) at the secondary pure water system entrance of the ultrapure water production apparatus is usually 100 μg / It is reduced to L or less. Furthermore, it may be controlled to 10 μg / L or less. And the dissolved oxygen concentration in ultrapure water may be controlled to 10 μg / L or less, and further to 1 μg / L or less. On the other hand, in the production process of ultrapure water, oxygen is generated when hydrogen peroxide generated by ultraviolet oxidation or the like is decomposed. Therefore, in the embodiment of the electronic component cleaning method (II) of the present invention, the dissolved oxygen removal step is performed in which the dissolved oxygen removal treatment water production method of the present invention is performed, and the resulting treated water is washed with the electronic components. The cleaning water (cleaning liquid) supplied to each step of the method or ultrapure water for its preparation is used.

本発明の電子部品の洗浄方法(II)の第一の形態例は、図13中の過酸化水素除去工程25、26、27及び28を、超純水32を被処理水として本発明の溶存酸素の除去処理水の製造方法を行う溶存酸素除去工程に代えたものである。そして、洗浄前の電子部品20aを被洗浄物として、第1工程21〜第4工程24を順に行い、洗浄後の電子部品30aを得る。   The first embodiment of the electronic component cleaning method (II) of the present invention uses the hydrogen peroxide removal steps 25, 26, 27 and 28 in FIG. It replaces the dissolved oxygen removal process which performs the manufacturing method of the removal water of oxygen removal. And the electronic component 20a before washing | cleaning is made into a to-be-cleaned object, the 1st process 21-the 4th process 24 are performed in order, and the electronic component 30a after washing | cleaning is obtained.

本発明の電子部品の洗浄方法(II)の第二の形態例は、図14中の第3、5、9及び11工程に供給される洗浄水(洗浄液)63、65、69及び71を、超純水を被処理水として本発明の溶存酸素の除去処理水の製造方法を行う溶存酸素除去工程を行い、得られた処理水に各工程で必要な薬剤を溶解させることにより調製し、また、図14中の第2、4、6、7、8、10及び12工程に供給される洗浄水62、64、66、67、68、70及び72を、超純水を被処理水として本発明の溶存酸素の除去処理水の製造方法を行う溶存酸素除去工程を行うことにより得るものである。そして、洗浄前の電子部品20bを被洗浄物として、第1工程41〜第12工程52を順に行い、洗浄後の電子部品30bを得る。   In the second embodiment of the electronic component cleaning method (II) of the present invention, cleaning water (cleaning liquid) 63, 65, 69 and 71 supplied to the third, fifth, ninth and eleventh steps in FIG. Prepared by performing a dissolved oxygen removal step in which the method for producing treated water for removing dissolved oxygen of the present invention is performed using ultrapure water as treated water, and dissolving the necessary chemicals in each step in the obtained treated water, and The cleaning water 62, 64, 66, 67, 68, 70 and 72 supplied to the second, fourth, sixth, seventh, eighth, tenth and twelfth steps in FIG. It is obtained by performing the dissolved oxygen removal process which performs the manufacturing method of the removal water of the dissolved oxygen removal process of the invention. Then, using the electronic component 20b before cleaning as an object to be cleaned, the first step 41 to the twelfth step 52 are sequentially performed to obtain the electronic component 30b after cleaning.

なお、上記のように、本発明において、本発明の溶存酸素の除去処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄するとは、本発明の溶存酸素の除去処理水の製造方法を行った直後の処理水で、電子部品又は電子部品の製造器具を洗浄するということだけではなく、電子部品又は電子部品の製造器具の洗浄に用いられる超純水を製造する工程のいずれか1箇所又は2箇所以上で、本発明の溶存酸素の除去処理水の製造方法を行い、超純水の製造工程の全工程を行って得られる超純水で、電子部品又は電子部品の製造器具を洗浄するということを意味する。   As described above, in the present invention, washing an electronic component or an electronic component manufacturing instrument with treated water obtained by performing the method for producing dissolved oxygen removal treated water of the present invention means that the dissolved oxygen of the present invention is used. Produces ultra-pure water used for cleaning electronic components or electronic component manufacturing equipment, as well as cleaning electronic components or electronic component manufacturing equipment with treated water immediately after the removal treatment water manufacturing method is performed. In any one or two or more of the steps to be performed, the method for producing dissolved oxygen removal treated water of the present invention is performed, and the ultrapure water obtained by performing all steps of the ultrapure water production step This means that the electronic component manufacturing equipment is cleaned.

(実施例)
次に、実施例を挙げて本発明を具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
(Example)
Next, the present invention will be specifically described by way of examples, but this is merely an example and does not limit the present invention.

<第1のモノリスアニオン交換体の製造(参考例1)>
(I工程;モノリス中間体の製造)
スチレン19.9g、ジビニルベンゼン0.4g、ソルビタンモノオレエート(以下SMOと略す)1.0gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物をTHF1.8mlを含有する180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。水銀圧入法により測定した該モノリス中間体のマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は56μm、全細孔容積は7.5ml/gであった。
<Production of first monolith anion exchanger (Reference Example 1)>
(Step I; production of monolith intermediate)
19.9 g of styrene, 0.4 g of divinylbenzene, 1.0 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water containing 1.8 ml of THF, and a vacuum stirring defoaming mixer which is a planetary stirring device. (EM Co., Ltd.) was used and stirred under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. The average diameter of the openings (mesopores) where the macropores and macropores of the monolith intermediate were measured by mercury porosimetry was 56 μm, and the total pore volume was 7.5 ml / g.

(モノリスの製造)
次いで、スチレン49.0g、ジビニルベンゼン1.0g、1-デカノール50g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.5gを混合し、均一に溶解させた(II工程)。次に上記モノリス中間体を外径70mm、厚さ約20mmの円盤状に切断して、7.6g分取した。分取したモノリス中間体を内径90mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of monoliths)
Next, 49.0 g of styrene, 1.0 g of divinylbenzene, 50 g of 1-decanol, and 0.5 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). Next, the monolith intermediate was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 20 mm, and 7.6 g was collected. The separated monolith intermediate is put in a reaction vessel having an inner diameter of 90 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察した結果を図1に示す。図1のSEM画像は、モノリスを任意の位置で切断して得た切断面の任意の位置における画像である。図1から明らかなように、当該モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格が、参考例3の公知品のSEM画像(図11)と比べて遥かに太く、また、骨格を構成する壁部の厚みが厚いものであった。   FIG. 1 shows the result of observing the internal structure of the monolith (dry body) containing 1.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer obtained by SEM as described above. The SEM image in FIG. 1 is an image at an arbitrary position on a cut surface obtained by cutting a monolith at an arbitrary position. As is clear from FIG. 1, the monolith has a continuous macropore structure, and the skeleton constituting the continuous macropore structure is much thicker than the SEM image of the known product of Reference Example 3 (FIG. 11). Moreover, the thickness of the wall part which comprises frame | skeleton was thick.

次ぎに、得られたモノリスを主観を排除して上記位置とは異なる位置で切断して得たSEM画像2点、都合3点から壁部の厚みと断面に表れる骨格部面積を測定した。壁部の厚みは1つのSEM写真から得た8点の平均であり、骨格部面積は画像解析により求めた。なお、壁部は前述の定義のものである。また、骨格部面積は3つのSEM画像の平均で示した。この結果、壁部の平均厚みは30μm、断面で表れる骨格部面積はSEM画像中28%であった。また、水銀圧入法により測定した当該モノリスの開口の平均直径は31μm、全細孔容積は2.2ml/gであった。   Next, the thickness of the wall part and the area of the skeleton part appearing in the cross section were measured from two SEM images obtained by cutting the obtained monolith at a position different from the above position, excluding the subjectivity, and three convenient points. The wall thickness was an average of 8 points obtained from one SEM photograph, and the skeleton area was determined by image analysis. The wall portion has the above definition. Moreover, the skeleton part area was shown by the average of three SEM images. As a result, the average thickness of the wall portion was 30 μm, and the area of the skeleton portion represented by the cross section was 28% in the SEM image. Moreover, the average diameter of the opening of the monolith measured by mercury porosimetry was 31 μm, and the total pore volume was 2.2 ml / g.

(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、外径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃、5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。
(Production of monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropwise addition, the temperature was raised and reacted at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolith, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated.

得られたモノリスアニオン交換体の反応前後の膨潤率は1.7倍であり、体積当りのアニオン交換容量は、水湿潤状態で0.60mg当量/mlであった。水湿潤状態でのモノリスアニオン交換体の開口の平均直径を、モノリスの値と水湿潤状態のモノリスアニオン交換体の膨潤率から見積もったところ54μmであり、モノリスと同様の方法で求めた骨格を構成する壁部の平均厚みは50μm、骨格部面積はSEM写真の写真領域中28%、全細孔容積は、2.2ml/gであった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.017MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。更に、該モノリスアニオン交換体のフッ化物イオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは25mmであり、市販の強塩基性アニオン交換樹脂であるアンバーライトIRA402BL(ロームアンドハース社製)の値(165mm)に比べて、圧倒的に短かった。   The swelling ratio of the obtained monolith anion exchanger before and after the reaction was 1.7 times, and the anion exchange capacity per volume was 0.60 mg equivalent / ml in a water wet state. The average diameter of the opening of the monolith anion exchanger in the water wet state was estimated to be 54 μm from the value of the monolith and the swelling ratio of the monolith anion exchanger in the water wet state, and constituted the skeleton obtained by the same method as the monolith. The average wall thickness was 50 μm, the skeleton area was 28% in the photographic region of the SEM photograph, and the total pore volume was 2.2 ml / g. The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.017 MPa / m · LV, which is a lower pressure loss than that required for practical use. It was. Furthermore, when the ion exchange zone length regarding the fluoride ion of the monolith anion exchanger was measured, the ion exchange zone length at LV = 20 m / h was 25 mm, which is a commercially available strong base anion exchange resin. Compared with the value (165 mm) of IRA402BL (Rohm and Haas), it was overwhelmingly short.

次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、モノリスアニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩化物イオンの分布状態を観察した。モノリスアニオン交換体の表面における塩化物イオンの分布状態を図2に、骨格断面における塩化物イオンの分布状態を図3に示すが、塩化物イオンはモノリスアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がモノリスアニオン交換体中に均一に導入されていることが確認できた。なお、図3において、骨格下部の塩化物イオン濃度が骨格上部のそれに比べて、見かけ上高くなっているが、これは切断時に断面の平面性が十分ではなく、骨格下部が骨格上部より盛り上がった状態で切断されたためであり、塩化物イオンの分布は、実質的には均一である。   Next, in order to confirm the distribution state of the quaternary ammonium group in the monolith anion exchanger, the monolith anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chloride ions was observed by EPMA. . FIG. 2 shows the distribution state of chloride ions on the surface of the monolith anion exchanger, and FIG. 3 shows the distribution state of chloride ions in the skeleton cross section. It was uniformly distributed inside, and it was confirmed that quaternary ammonium groups were uniformly introduced into the monolith anion exchanger. In FIG. 3, the chloride ion concentration in the lower part of the skeleton is apparently higher than that in the upper part of the skeleton, but this is not sufficiently flat in the cross section during cutting, and the lower part of the skeleton is raised from the upper part of the skeleton. This is because the distribution of chloride ions is substantially uniform.

<第2のモノリスアニオン交換体の製造(参考例2)>
(I工程;モノリス中間体の製造)
スチレン5.29g、ジビニルベンゼン0.28g、ソルビタンモノオレエート(以下SMOと略す)1.39gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを速やかに反応容器に移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、メタノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。このようにして得られたモノリス中間体(乾燥体)の内部構造をSEM画像(図12)により観察したところ、隣接する2つのマクロポアを区画する壁部は極めて細く棒状であるものの、連続気泡構造を有しており、水銀圧入法により測定したマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は70μm、全細孔容積は17.8ml/gであった。
<Production of Second Monolith Anion Exchanger (Reference Example 2)>
(Step I; production of monolith intermediate)
5.29 g of styrene, 0.28 g of divinylbenzene, 1.39 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture was added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Co.) as a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. This emulsion was quickly transferred to a reaction vessel and allowed to polymerize at 60 ° C. for 24 hours in a static state after sealing. After completion of the polymerization, the content was taken out, extracted with methanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. When the internal structure of the monolith intermediate (dry body) obtained in this way was observed with an SEM image (FIG. 12), the wall portion separating two adjacent macropores was extremely thin and rod-shaped, but the open cell structure The average diameter of the opening (mesopore) where the macropore overlaps with the macropore measured by the mercury intrusion method was 70 μm, and the total pore volume was 17.8 ml / g.

(モノリスの製造)
次いで、スチレン39.2g、ジビニルベンゼン0.8g、1-デカノール60g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8gを混合し、均一に溶解させた(II工程)。次に上記モノリス中間体を直径70mm、厚さ約30mmの円盤状に切断して2.4gを分取した。分取したモノリス中間体を内径75mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約60mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of monoliths)
Next, 39.2 g of styrene, 0.8 g of divinylbenzene, 60 g of 1-decanol, and 0.8 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). Next, the monolith intermediate was cut into a disk shape having a diameter of 70 mm and a thickness of about 30 mm to obtain 2.4 g. The separated monolith intermediate is placed in a reaction vessel having an inner diameter of 75 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolithic contents having a thickness of about 60 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察した結果を図7に示す。図7から明らかなように、当該モノリスは骨格及び空孔はそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。また、SEM画像から測定した骨格の太さは8μmであった。また、水銀圧入法により測定した当該モノリスの三次元的に連続した空孔の平均直径は18μm、全細孔容積は2.0ml/gであった。   FIG. 7 shows the result of observing the internal structure of the monolith (dry body) containing 1.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer obtained by SEM. As is clear from FIG. 7, the monolith has a co-continuous structure in which the skeleton and the pores are three-dimensionally continuous and both phases are intertwined. Moreover, the thickness of the skeleton measured from the SEM image was 8 μm. Moreover, the average diameter of the three-dimensionally continuous pores of the monolith measured by the mercury intrusion method was 18 μm, and the total pore volume was 2.0 ml / g.

(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、直径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃で5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。
(Production of monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having a diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropping, the temperature was raised and the reaction was carried out at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolith, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated.

得られたモノリスアニオン交換体の反応前後の膨潤率は1.6倍であり、体積当りのアニオン交換容量は水湿潤状態で0.44mg当量/mlであった。水湿潤状態でのモノリスイオン交換体の連続空孔の平均直径を、モノリスの値と水湿潤状態のモノリスアニオン交換体の膨潤率から見積もったところ29μmであり、骨格の平均太さは13μm、全細孔容積は、2.0ml/gであった。   The swelling ratio of the obtained monolith anion exchanger before and after the reaction was 1.6 times, and the anion exchange capacity per volume was 0.44 mg equivalent / ml in a water-wet state. The average diameter of the continuous pores of the monolith ion exchanger in the water wet state was estimated from the value of the monolith and the swelling ratio of the monolith anion exchanger in the water wet state to be 29 μm, and the average thickness of the skeleton was 13 μm. The pore volume was 2.0 ml / g.

また、水を透過させた際の圧力損失の指標である差圧係数は0.040MPa/m・LVであり、実用上支障のない低い圧力損失であった。更に、該モノリスアニオン交換体のフッ化物イオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは22mmであり、市販の強塩基性アニオン交換樹脂であるアンバーライトIRA402BL(ロームアンドハース社製)の値(165mm)に比べて圧倒的に短かった。   Further, the differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.040 MPa / m · LV, which is a low pressure loss that does not cause any practical problems. Furthermore, when the ion exchange zone length regarding the fluoride ion of the monolith anion exchanger was measured, the ion exchange zone length at LV = 20 m / h was 22 mm, and amberlite which is a commercially available strong basic anion exchange resin. It was overwhelmingly shorter than the value (165 mm) of IRA402BL (made by Rohm and Haas).

次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、モノリスアニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩化物イオンの分布状態を観察した。モノリスアニオン交換体の表面における塩化物イオンの分布状態を図8に、骨格断面における塩化物イオンの分布状態を図9に示すが、塩化物イオンはモノリスアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がモノリスアニオン交換体中に均一に導入されていることが確認できた。なお、図9において、骨格周辺部の塩化物イオン濃度が骨格中心部のそれに比べて、見かけ上高くなっているが、これは切断時に断面の平面性が十分ではなく、骨格周辺部が内部より盛り上がった状態で切断されたためであり、塩化物イオンの分布は、実質的には均一である。   Next, in order to confirm the distribution state of the quaternary ammonium group in the monolith anion exchanger, the monolith anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chloride ions was observed by EPMA. . FIG. 8 shows the distribution state of chloride ions on the surface of the monolith anion exchanger, and FIG. 9 shows the distribution state of chloride ions on the cross section of the skeleton. It was uniformly distributed inside, and it was confirmed that quaternary ammonium groups were uniformly introduced into the monolith anion exchanger. In FIG. 9, the chloride ion concentration in the peripheral part of the skeleton is apparently higher than that in the central part of the skeleton, but this is not sufficient in cross-sectional flatness at the time of cutting. It is because it cut | disconnected in the raised state, and the distribution of a chloride ion is substantially uniform.

参考例3
(連続マクロポア構造を有するモノリス状有機多孔質体(公知品)の製造)
特開2002−306976号記載の製造方法に準拠して連続マクロポア構造を有するモノリス状有機多孔質体を製造した。すなわち、スチレン19.2g、ジビニルベンゼン1.0g、SMO1.0gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス状有機多孔質体を製造した。
Reference example 3
(Manufacture of monolithic organic porous material having a continuous macropore structure (known product))
A monolithic organic porous body having a continuous macropore structure was produced according to the production method described in JP-A-2002-306976. That is, 19.2 g of styrene, 1.0 g of divinylbenzene, 1.0 g of SMO and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Corp.) which is a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolithic organic porous body having a continuous macropore structure.

このようにして得られた、スチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.3モル%含有したモノリスの内部構造を、SEMにより観察した結果を図11に示す。図11から明らかなように、当該モノリスは連続マクロポア構造を有しているが、連続マクロポア構造体の骨格を構成する壁部の厚みは参考例1(図1)に比べて薄かった。当該モノリスのSEM画像から測定した壁部の平均厚みは5μm、骨格部面積はSEM画像領域中10%であった。また、水銀圧入法により測定した当該モノリスの開口の平均直径は29μm、全細孔容積は、8.6ml/gであった。   FIG. 11 shows the result of observing the internal structure of the monolith thus obtained containing 3.3 mol% of a cross-linking component made of a styrene / divinylbenzene copolymer by SEM. As is clear from FIG. 11, the monolith has a continuous macropore structure, but the thickness of the wall portion constituting the skeleton of the continuous macropore structure was thinner than that of Reference Example 1 (FIG. 1). The average thickness of the wall part measured from the SEM image of the monolith was 5 μm, and the skeleton part area was 10% in the SEM image region. Moreover, the average diameter of the opening of the said monolith measured by the mercury intrusion method was 29 micrometers, and the total pore volume was 8.6 ml / g.

実施例1
(第1の白金族金属担持触媒の調製)
参考例1のモノリスアニオン交換体(第1のモノリスアニオン交換体)をCl形にイオン交換した後、水湿潤状態で円柱状に切り出し、減圧乾燥した。乾燥後のモノリスアニオン交換体の重量は、1.2gであった。この乾燥状態のモノリスアニオン交換体を、塩化パラジウム270mgを溶解した希塩酸に24時間浸漬し、塩化パラジウム酸形にイオン交換した。浸漬終了後、モノリスアニオン交換体を純水で数回洗浄し、ヒドラジン水溶液中に24時間浸漬して還元処理を行った。塩化パラジウム酸形モノリスアニオン交換体が茶色であったのに対し、還元処理終了後のモノリスアニオン交換体は黒色に着色しており、パラジウムナノ粒子の生成が示唆された。このようにして得られた第1のパラジウムナノ粒子担持触媒aを数回純水で洗浄し、乾燥した。
Example 1
(Preparation of first platinum group metal supported catalyst)
The monolith anion exchanger (first monolith anion exchanger) of Reference Example 1 was ion-exchanged into Cl form, cut into a cylindrical shape in a water-wet state, and dried under reduced pressure. The weight of the monolith anion exchanger after drying was 1.2 g. This dried monolith anion exchanger was immersed for 24 hours in dilute hydrochloric acid in which 270 mg of palladium chloride was dissolved, and ion-exchanged into the palladium chloride acid form. After completion of the immersion, the monolith anion exchanger was washed several times with pure water, and immersed in an aqueous hydrazine solution for 24 hours for reduction treatment. The chloropalladium acid form monolith anion exchanger was brown, whereas the monolith anion exchanger after the reduction treatment was colored black, suggesting the formation of palladium nanoparticles. The first palladium nanoparticle-supported catalyst a thus obtained was washed several times with pure water and dried.

乾燥状態の第1のパラジウムナノ粒子担持触媒aに担持されたパラジウムナノ粒子の担持量は、10.9重量%であった。担持されたパラジウムナノ粒子の平均粒子径を測定するため、透過型電子顕微鏡(TEM)観察を行った。得られたTEM画像を図5に示す。パラジウムナノ粒子の平均粒子径は、5nmであった。乾燥状態のパラジウムナノ粒子担持触媒aを内径10mmのカラムに充填し、水酸化ナトリウム水溶液を通液して担体であるモノリスアニオン交換体をOH形とし、過酸化水素分解特性の評価に用いた。第1のパラジウムナノ粒子担持触媒aの充填層高は11mmであった。このとき、水湿潤状態の樹脂体積に対するパラジウムナノ粒子の担持量は、9.7g−Pd/L−R(パラジウムナノ粒子担持触媒1L当たりに担持されているパラジウム重量)であった。   The amount of palladium nanoparticles supported on the first palladium nanoparticle-supported catalyst a in the dry state was 10.9% by weight. In order to measure the average particle diameter of the supported palladium nanoparticles, observation with a transmission electron microscope (TEM) was performed. The obtained TEM image is shown in FIG. The average particle diameter of the palladium nanoparticles was 5 nm. A palladium nanoparticle-supported catalyst a in a dry state was packed in a column having an inner diameter of 10 mm, and an aqueous sodium hydroxide solution was passed through to convert the monolith anion exchanger as a carrier into OH form, which was used for evaluation of hydrogen peroxide decomposition characteristics. The packed bed height of the first palladium nanoparticle-supported catalyst a was 11 mm. At this time, the supported amount of palladium nanoparticles with respect to the water-wet resin volume was 9.7 g-Pd / LR (weight of palladium supported per 1 L of the palladium nanoparticle-supported catalyst).

(触媒の評価)
内径10mmのカラムに充填した上記第1のパラジウムナノ粒子担持触媒aに、過酸化水素15〜30μg/Lを含む超純水をSV=5000h−1にて27時間下向流で通水し、カラム出口で試料水を採水し過酸化水素濃度を測定した。その結果、カラム出口で採水した試料水中の過酸化水素濃度は1μg/L未満であり、過酸化水素は分解除去されていた。次に、SVを10000h−1とし、同様の処理を行った。カラム出口で採水した試料水中の過酸化水素濃度は、SVが10000h−1と非常に速く、触媒の充填層高が11mmと薄いにもかかわらず、1μg/L未満であり、過酸化水素は分解除去されていた。
(Evaluation of catalyst)
Ultrapure water containing hydrogen peroxide 15 to 30 μg / L was passed through the first palladium nanoparticle-supported catalyst a packed in a column having an inner diameter of 10 mm at SV = 5000 h −1 for 27 hours in a downward flow, Sample water was collected at the column outlet and the hydrogen peroxide concentration was measured. As a result, the hydrogen peroxide concentration in the sample water collected at the column outlet was less than 1 μg / L, and the hydrogen peroxide was decomposed and removed. Next, the SV was set to 10,000 h −1 and the same processing was performed. The hydrogen peroxide concentration in the sample water sampled at the column outlet is very fast as SV is 10000 h −1 and the packed bed height of the catalyst is as thin as 11 mm, which is less than 1 μg / L. It was disassembled and removed.

実施例2
(第2の白金族金属担持触媒の調製)
触媒担体として、参考例1のモノリスアニオン交換体(第1のモノリスアニオン交換体)に代えて参考例2のモノリスアニオン交換体(第2のモノリスアニオン交換体)を用いたこと、及び、切り出したモノリスアニオン交換体の乾燥時重量を1.2gとすることに代えて1.4gとすることを除いて、実施例1と同様の方法で参考例2のモノリスアニオン交換体(第2のモノリスアニオン交換体)にパラジウムナノ粒子を担持し、第2のパラジウムナノ粒子担持触媒aを得た。
Example 2
(Preparation of second platinum group metal supported catalyst)
As the catalyst carrier, the monolith anion exchanger (second monolith anion exchanger) of Reference Example 2 was used in place of the monolith anion exchanger (first monolith anion exchanger) of Reference Example 1 and was cut out. The monolith anion exchanger (second monolith anion) of Reference Example 2 was prepared in the same manner as in Example 1, except that the dry weight of the monolith anion exchanger was changed to 1.4 g instead of 1.2 g. The palladium nanoparticles were supported on the exchanger to obtain a second palladium nanoparticle-supported catalyst a.

得られた乾燥状態の第2のパラジウムナノ粒子担持触媒aに担持されたパラジウムナノ粒子の担持量は、9.8重量%であった。担持されたパラジウムナノ粒子の平均粒子径を測定するため、透過型電子顕微鏡(TEM)観察を行った。得られたTEM画像を図10に示す。パラジウムナノ粒子の平均粒子径は、3nmであった。乾燥状態の第2のパラジウムナノ粒子担持触媒を内径10mmのカラムに充填し、水酸化ナトリウム水溶液を通液して担体であるモノリスアニオン交換体をOH形とし、過酸化水素分解特性の評価に用いた。触媒の充填層高は13mmであった。このとき、水湿潤状態の樹脂体積に対するパラジウムナノ粒子の担持量は、8.7g−Pd/L−Rであった。   The amount of palladium nanoparticles supported on the obtained second palladium nanoparticle-supported catalyst a in a dry state was 9.8% by weight. In order to measure the average particle diameter of the supported palladium nanoparticles, observation with a transmission electron microscope (TEM) was performed. The obtained TEM image is shown in FIG. The average particle diameter of the palladium nanoparticles was 3 nm. A column with a diameter of 10 mm is packed with a second palladium nanoparticle-supported catalyst in a dry state, and an aqueous sodium hydroxide solution is passed through to convert the monolith anion exchanger as a carrier into OH form, which is used for evaluation of hydrogen peroxide decomposition characteristics. It was. The packed bed height of the catalyst was 13 mm. At this time, the supported amount of palladium nanoparticles with respect to the resin volume in a water-wet state was 8.7 g-Pd / LR.

(触媒の評価)
触媒として、第1のパラジウムナノ粒子担持触媒に代えて第2のパラジウムナノ粒子担持触媒aを用いたことを除いて、実施例1と同様の方法で第2のパラジウムナノ粒子担持触媒aの過酸化水素分解効果を評価した。その結果、SV=5000h−1および10000h−1で超純水を通水したいずれの場合でも、カラム出口で採水した試料水中の過酸化水素濃度は1μg/L未満であり、過酸化水素は分解除去されていた。
(Evaluation of catalyst)
Except that the second palladium nanoparticle-supported catalyst a was used in place of the first palladium nanoparticle-supported catalyst as the catalyst, the excess of the second palladium nanoparticle-supported catalyst a was the same as in Example 1. The hydrogen oxide decomposition effect was evaluated. As a result, in either case that passed through the ultra-pure water at SV = 5000h -1 and 10000h -1, the hydrogen peroxide concentration of the sample water and water sampling in the column outlet is less than 1 [mu] g / L, hydrogen peroxide It was disassembled and removed.

実施例3
切り出した第1のモノリスアニオン交換体の乾燥時重量を1.2gとすること代えて1.7gとすること、及び塩化パラジウム270mgを溶解することに代えて塩化パラジウムを2.5mg溶解することを除いて、実施例1と同様の方法で参考例1のモノリスアニオン交換体(第1のモノリスアニオン交換体)にパラジウムナノ粒子を担持し、第1のパラジウムナノ粒子担持触媒bを得た。
Example 3
The weight of dried first monolith anion exchanger is changed to 1.2 g instead of 1.7 g, and 2.5 mg of palladium chloride is dissolved instead of dissolving 270 mg of palladium chloride. Except for the above, palladium nanoparticles were supported on the monolith anion exchanger of Reference Example 1 (first monolith anion exchanger) in the same manner as in Example 1 to obtain a first palladium nanoparticle-supported catalyst b.

得られた乾燥状態の第1のパラジウムナノ粒子担持触媒bに担持されたパラジウムナノ粒子の担持量は、0.05重量%であった。乾燥状態の第1のパラジウムナノ粒子担持触媒bを内径10mmのカラムに充填し、水酸化ナトリウム水溶液を通液して担体であるモノリスアニオン交換体をOH形とし、過酸化水素分解特性の評価に用いた。触媒の充填層高は19mmであった。このとき、水湿潤状態の樹脂体積に対するパラジウムナノ粒子の担持量は、0.07g−Pd/L−Rであった。   The amount of palladium nanoparticles supported on the obtained first palladium nanoparticle-supported catalyst b in a dry state was 0.05% by weight. For the evaluation of hydrogen peroxide decomposition characteristics, the first palladium nanoparticle-supported catalyst b in a dry state is packed in a column having an inner diameter of 10 mm, and an aqueous sodium hydroxide solution is passed to form a monolith anion exchanger as a carrier in OH form. Using. The packed bed height of the catalyst was 19 mm. At this time, the supported amount of palladium nanoparticles with respect to the water-wet resin volume was 0.07 g-Pd / LR.

(触媒の評価)
触媒として、第1のパラジウムナノ粒子担持触媒aに代えて第1のパラジウムナノ粒子担持触媒bを用いたことを除いて、実施例1と同様の方法で第1のパラジウムナノ粒子担持触媒bの過酸化水素分解効果を評価した。SV=5000h−1で通水した場合、カラム出口で採水した試料水中の過酸化水素濃度は1μg/L未満であり、過酸化水素は分解除去されていた。次にSVを10000h−1とし同様の処理を行った。カラム出口で採水した試料水中の過酸化水素濃度は1.7μg/Lであり、パラジウムナノ粒子の担持量が0.07g−Pd/L−Rと非常に低いのにもかかわらず、過酸化水素分解効果の高い結果が得られた。
(Evaluation of catalyst)
As the catalyst, the first palladium nanoparticle-supported catalyst b was prepared in the same manner as in Example 1 except that the first palladium nanoparticle-supported catalyst b was used instead of the first palladium nanoparticle-supported catalyst a. The hydrogen peroxide decomposition effect was evaluated. When water was passed at SV = 5000 h −1 , the hydrogen peroxide concentration in the sample water collected at the column outlet was less than 1 μg / L, and the hydrogen peroxide was decomposed and removed. Next, the SV was set to 10,000 h −1 and the same processing was performed. Although the concentration of hydrogen peroxide in the sample water collected at the column outlet is 1.7 μg / L, the amount of palladium nanoparticles supported is extremely low, 0.07 g-Pd / LR, and thus the peroxide is oxidized. The result with high hydrogenolysis effect was obtained.

比較例1
水分保有能力がOH形基準において60〜70%であり、ゲル形である粒子状の強塩基アニオン交換樹脂(I型)に公知の方法でパラジウムナノ粒子を担持し、パラジウムナノ粒子担持粒状イオン交換樹脂触媒を得た。Cl形の粒子状アニオン交換樹脂を塩化パラジウムの塩酸水溶液に浸漬し、水洗後に、ヒドラジン水溶液で還元処理を行った。水酸化ナトリウム水溶液を通液して粒子状のアニオン交換樹脂をOH形とし、過酸化水素分解特性の評価に用いた。このとき、パラジウムナノ粒子担持量は、乾燥状態で0.4重量%、水湿潤状態で970mg−Pd/L−Rであった。このパラジウムを担持したOH形の粒子状イオン交換樹脂を内径25mmのカラムに40mL(層高80mm)充填して実施例1と同じ方法で過酸化水素低減の実験を行った。
Comparative Example 1
Moisture retention capacity is 60 to 70% on the basis of OH form, and palladium nanoparticle is supported by a known method on particulate strong base anion exchange resin (type I) in gel form, and palladium ion supported particulate ion exchange A resin catalyst was obtained. The Cl-type particulate anion exchange resin was immersed in an aqueous hydrochloric acid solution of palladium chloride, washed with water, and then reduced with an aqueous hydrazine solution. An aqueous sodium hydroxide solution was passed through to convert the particulate anion exchange resin into OH form, which was used for evaluation of hydrogen peroxide decomposition characteristics. At this time, the supported amount of palladium nanoparticles was 0.4% by weight in a dry state and 970 mg-Pd / LR in a water-wet state. An OH-type particulate ion exchange resin carrying palladium was packed in a column with an inner diameter of 25 mm in 40 mL (layer height 80 mm), and an experiment for reducing hydrogen peroxide was conducted in the same manner as in Example 1.

(触媒の評価)
触媒として、第1のパラジウムナノ粒子担持触媒aに代えて上記パラジウムナノ粒子担持粒状イオン交換樹脂触媒を用いたこと、及び、超純水をSV=1500h−1および2500h−1で通水したことを除いて、実施例1と同様の方法でパラジウムナノ粒子担持粒状イオン交換樹脂触媒の過酸化水素分解効果を評価した。その結果、カラム出口で採水した試料水中の過酸化水素濃度はそれぞれ1μg/L未満、1.6μg/Lであった。SV=1500h−1においては過酸化水素は1μg/L未満となったが、SVを2500h−1に上げると、過酸化水素は処理水中にリークした。このように、従来技術である粒子状アニオン交換樹脂にパラジウムナノ粒子を担持した触媒では、実施例よりも遅いSV、厚い触媒充填層高といった過酸化水素を除去しやすい条件を設定しても、SV=2500h−1では過酸化水素がリークした。
(Evaluation of catalyst)
As the catalyst, the palladium nanoparticle-supported granular ion exchange resin catalyst was used in place of the first palladium nanoparticle-supported catalyst a, and ultrapure water was passed at SV = 1500 h −1 and 2500 h −1. In the same manner as in Example 1, the hydrogen peroxide decomposition effect of the palladium nanoparticle-supported granular ion exchange resin catalyst was evaluated. As a result, the hydrogen peroxide concentrations in the sample water collected at the column outlet were less than 1 μg / L and 1.6 μg / L, respectively. At SV = 1500 h −1 , hydrogen peroxide was less than 1 μg / L, but when SV was increased to 2500 h −1 , hydrogen peroxide leaked into the treated water. In this way, in the catalyst in which palladium nanoparticles are supported on the particulate anion exchange resin that is the prior art, even if the conditions for easily removing hydrogen peroxide such as SV slower than the example and the high catalyst packed bed height are set, At SV = 2500 h −1 , hydrogen peroxide leaked.

比較例2
パラジウムナノ粒子を担持させず、参考例1のモノリスアニオン交換体(第1のモノリスアニオン交換体)のみを用いて、実施例1と同様の方法でSV=10000h−1における過酸化水素分解効果を評価した。その結果、過酸化水素の分解効果は認められなかった。
Comparative Example 2
Using only the monolith anion exchanger of Reference Example 1 (first monolith anion exchanger) without supporting palladium nanoparticles, the hydrogen peroxide decomposition effect at SV = 10000 h −1 was obtained in the same manner as in Example 1. evaluated. As a result, the decomposition effect of hydrogen peroxide was not recognized.

<第1のモノリスアニオン交換体に係るモノリスの製造(参考例4〜13)>
(モノリスの製造)
スチレンの使用量、架橋剤の種類と使用量、有機溶媒の種類と使用量、スチレン及びジビニルベンゼン含浸重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、参考例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。なお、参考例4〜13のSEM画像(不図示)及び表2から、参考例4〜13のモノリスの開口の平均直径は22〜70μmと大きく、骨格を構成する壁部の平均厚みも25〜50μmと厚く、骨格部面積はSEM画像領域中26〜44%と骨太のモノリスであった。なお、表1中、仕込み欄は左から順に、II工程で用いたビニルモノマー、架橋剤、I工程で得られたモノリス中間体、II工程で用いた有機溶媒を示す。なお、以下の表に示すメソポアの直径、壁面の厚み、骨格の直径(太さ)、及び空孔の直径は、平均値である。
<Production of monolith according to first monolith anion exchanger (Reference Examples 4 to 13)>
(Manufacture of monoliths)
Table 1 shows the amount of styrene used, the type and amount of crosslinking agent, the type and amount of organic solvent, the porous structure of the monolith intermediate coexisting during styrene and divinylbenzene impregnation polymerization, the crosslinking density and the amount used. A monolith was produced in the same manner as in Reference Example 1 except for the change. The results are shown in Tables 1 and 2. In addition, from the SEM images (not shown) of Reference Examples 4 to 13 and Table 2, the average diameter of the openings of the monoliths of Reference Examples 4 to 13 is as large as 22 to 70 μm, and the average thickness of the wall portion constituting the skeleton is also 25 to 25 mm. It was as thick as 50 μm, and the skeletal area was 26-44% in the SEM image area, and it was a monolith of bone. In Table 1, the preparation column shows, in order from the left, the vinyl monomer used in Step II, the crosslinking agent, the monolith intermediate obtained in Step I, and the organic solvent used in Step II. The mesopore diameter, wall thickness, skeleton diameter (thickness), and pore diameter shown in the following table are average values.

<第1のモノリスアニオン交換体の製造(参考例14)>
(モノリスの製造)
スチレンの使用量、架橋剤の使用量、有機溶媒の使用量を表1に示す配合量に変更した以外は、参考例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。参考例14のモノリスはマクロポアとマクロポアの重なり部分の開口の平均直径は38μmと大きく、骨格を構成する壁部の平均厚みも25μmと壁部の厚い有機多孔質体が得られた。
<Production of first monolith anion exchanger (Reference Example 14)>
(Manufacture of monoliths)
A monolith was produced in the same manner as in Reference Example 1 except that the amount of styrene used, the amount of crosslinking agent used, and the amount of organic solvent used were changed to the amounts shown in Table 1. The results are shown in Tables 1 and 2. In the monolith of Reference Example 14, an organic porous body having a thick wall portion with an average diameter of the opening of the overlapping portion of the macropores as large as 38 μm and an average thickness of the wall portion constituting the skeleton of 25 μm was obtained.

(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、外径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃、5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。
(Production of monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropwise addition, the temperature was raised and reacted at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolith, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated.

得られたモノリスアニオン交換体の反応前後の膨潤率は1.6倍であり、体積当りのアニオン交換容量は、水湿潤状態で0.56mg当量/mlであった。水湿潤状態でのモノリスアニオン交換体の開口の平均直径を、モノリスの値と水湿潤状態のモノリスアニオン交換体の膨潤率から見積もったところ61μmであり、モノリスと同様の方法で求めた骨格を構成する壁部の平均厚みは40μm、骨格部面積はSEM写真の写真領域中26%、全細孔容積は、2.9ml/gであった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.020MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。   The swelling ratio of the obtained monolith anion exchanger before and after the reaction was 1.6 times, and the anion exchange capacity per volume was 0.56 mg equivalent / ml in a water-wet state. The average diameter of the opening of the monolith anion exchanger in the water wet state was estimated from the value of the monolith and the swelling ratio of the monolith anion exchanger in the water wet state, and was 61 μm, and constituted the skeleton obtained by the same method as the monolith. The average wall thickness was 40 μm, the skeleton area was 26% in the photographic region of the SEM photograph, and the total pore volume was 2.9 ml / g. The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.020 MPa / m · LV, which is a lower pressure loss than that required for practical use. It was.

次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、モノリスアニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩化物イオンの分布状態を観察した。その結果、塩化物イオンはモノリスアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がモノリスアニオン交換体中に均一に導入されていることが確認できた。   Next, in order to confirm the distribution state of the quaternary ammonium group in the monolith anion exchanger, the monolith anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chloride ions was observed by EPMA. . As a result, it was confirmed that the chloride ions were uniformly distributed not only on the skeleton surface of the monolith anion exchanger but also inside the skeleton, and the quaternary ammonium groups were uniformly introduced into the monolith anion exchanger. It was.

<第2のモノリスアニオン交換体の製造(参考例15)>
(I工程;モノリス中間体の製造)
スチレン5.4g、ジビニルベンゼン0.17g、ソルビタンモノオレエート(以下SMOと略す)1.4gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを速やかに反応容器に移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、メタノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。このようにして得られたモノリス中間体(乾燥体)の内部構造をSEM画像(不図示)により観察したところ、隣接する2つのマクロポアを区画する壁部は極めて細く棒状であるものの、連続気泡構造を有しており、水銀圧入法により測定したマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は70μm、全細孔容積は21.0ml/gであった。
<Production of Second Monolith Anion Exchanger (Reference Example 15)>
(Step I; production of monolith intermediate)
5.4 g of styrene, 0.17 g of divinylbenzene, 1.4 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture was added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Co.) as a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. This emulsion was quickly transferred to a reaction vessel and allowed to polymerize at 60 ° C. for 24 hours in a static state after sealing. After completion of the polymerization, the content was taken out, extracted with methanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. The internal structure of the monolith intermediate (dry body) thus obtained was observed by SEM images (not shown), and the wall part that divides two adjacent macropores was extremely thin and rod-shaped, but the open-cell structure The average diameter of the openings (mesopores) where the macropores overlap with each other as measured by the mercury intrusion method was 70 μm, and the total pore volume was 21.0 ml / g.

(共連続構造モノリスの製造)
次いで、スチレン76.0g、ジビニルベンゼン4.0g、1-デカノール120g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8gを混合し、均一に溶解させた(II工程)。次に上記モノリス中間体を直径70mm、厚さ約40mmの円盤状に切断して4.1gを分取した。分取したモノリス中間体を内径75mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約60mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of monocontinuous monolith)
Subsequently, 76.0 g of styrene, 4.0 g of divinylbenzene, 120 g of 1-decanol, and 0.8 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). Next, the monolith intermediate was cut into a disk shape having a diameter of 70 mm and a thickness of about 40 mm to fractionate 4.1 g. The separated monolith intermediate is placed in a reaction vessel having an inner diameter of 75 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolithic contents having a thickness of about 60 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.2モル%含有したモノリス(乾燥体)の内部構造をSEMにより観察したところ、当該モノリスは骨格及び空孔はそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。また、SEM画像から測定した骨格の平均太さは10μmであった。また、水銀圧入法により測定した当該モノリスの三次元的に連続した空孔の平均直径は17μm、全細孔容積は2.9ml/gであった。その結果を表3及び4にまとめて示す。表4中、骨格の太さは骨格の平均直径で表した。   When the internal structure of the monolith (dry body) containing 3.2 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer obtained in this way was observed by SEM, the monolith had a skeleton and pores, respectively. It was a three-dimensional continuous structure with both phases intertwined. Moreover, the average thickness of the skeleton measured from the SEM image was 10 μm. Further, the average diameter of the three-dimensionally continuous pores of the monolith measured by mercury porosimetry was 17 μm, and the total pore volume was 2.9 ml / g. The results are summarized in Tables 3 and 4. In Table 4, the thickness of the skeleton is represented by the average diameter of the skeleton.

(共連続気泡構造を有するモノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、直径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃で5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。
(Production of monolith anion exchanger having a co-open cell structure)
The monolith produced by the above method was cut into a disk shape having a diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropping, the temperature was raised and the reaction was carried out at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolith, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated.

得られたモノリスアニオン交換体の反応前後の膨潤率は1.5倍であり、体積当りのアニオン交換容量は水湿潤状態で0.54mg当量/mlであった。水湿潤状態でのモノリスイオン交換体の連続空孔の平均直径を、モノリスの値と水湿潤状態のモノリスアニオン交換体の膨潤率から見積もったところ26μmであり、骨格の平均太さは15μm、全細孔容積は、2.9ml/gであった。   The swelling ratio of the obtained monolith anion exchanger before and after the reaction was 1.5 times, and the anion exchange capacity per volume was 0.54 mg equivalent / ml in a water-wet state. The average diameter of the continuous pores of the monolithic ion exchanger in the water wet state was estimated from the value of the monolith and the swelling ratio of the monolith anion exchanger in the water wet state, and was 26 μm, the average thickness of the skeleton was 15 μm, The pore volume was 2.9 ml / g.

また、水を透過させた際の圧力損失の指標である差圧係数は0.045MPa/m・LVであり、実用上支障のない低い圧力損失であった。更に、該モノリスアニオン交換体のフッ化物イオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは20mmであり、市販の強塩基性アニオン交換樹脂であるアンバーライトIRA402BL(ロームアンドハース社製)の値(165mm)に比べて圧倒的に短いばかりでなく、従来の連続気泡構造を有するモノリス状多孔質アニオン交換体の値に比べても短かった。その結果を表5まとめて示す。また、得られた共連続構造を有するモノリスアニオン交換体の内部構造はSEM画像(不図示)により観察した。   Further, the differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.045 MPa / m · LV, which is a low pressure loss that does not impede practical use. Furthermore, when the ion exchange zone length regarding the fluoride ion of the monolith anion exchanger was measured, the ion exchange zone length at LV = 20 m / h was 20 mm, and amberlite which is a commercially available strong basic anion exchange resin. In addition to being overwhelmingly shorter than the value of IRA402BL (Rohm and Haas) (165 mm), it was also shorter than the value of a monolithic porous anion exchanger having a conventional open cell structure. The results are summarized in Table 5. Moreover, the internal structure of the obtained monolith anion exchanger having a co-continuous structure was observed by an SEM image (not shown).

次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、モノリスアニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩化物イオンの分布状態を観察した。その結果、塩化物イオンはモノリスアニオン交換体の表面のみならず、内部にも均一に分布しており、四級アンモニウム基がモノリスアニオン交換体中に均一に導入されていることが確認できた。   Next, in order to confirm the distribution state of the quaternary ammonium group in the monolith anion exchanger, the monolith anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chloride ions was observed by EPMA. . As a result, it was confirmed that chloride ions were uniformly distributed not only on the surface of the monolith anion exchanger but also inside, and that quaternary ammonium groups were uniformly introduced into the monolith anion exchanger.

<第2のモノリスアニオン交換体の製造(参考例16及び17)>
(共連続構造を有するモノリスの製造)
スチレンの使用量、架橋剤の使用量、有機溶媒の使用量、スチレン及びジビニルベンゼン含浸重合時に共存させるモノリス中間体の多孔構造、架橋密度及び使用量を表3に示す配合量に変更した以外は、参考例15と同様の方法で共連続構造を有するモノリスを製造した。モノリス(乾燥体)の内部構造をSEMにより観察したところ(不図示)、当該モノリスは骨格及び空孔はそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。その結果を表3及び表4に示す。
<Production of Second Monolith Anion Exchanger (Reference Examples 16 and 17)>
(Manufacture of monolith with co-continuous structure)
Except for changing the amount of styrene used, the amount of crosslinking agent used, the amount of organic solvent used, the porous structure of the monolith intermediate coexisting during styrene and divinylbenzene impregnation polymerization, the crosslinking density and the amount used as shown in Table 3. A monolith having a co-continuous structure was produced in the same manner as in Reference Example 15. When the internal structure of the monolith (dried body) was observed by SEM (not shown), the monolith had a co-continuous structure in which the skeleton and the vacancies were each three-dimensionally continuous and the two phases were intertwined. The results are shown in Tables 3 and 4.

なお、上記参考例4〜13及び参考例16〜17で得られたモノリスには、公知の方法を適宜適用することで、例えば、参考例1又は参考例2に示す方法で、アニオン交換基を導入することができる。また、参考例4〜13及び参考例16〜17で得られたモノリスにアニオン交換基が導入されたモノリスアニオン交換体並びに参考例14及び参考例15で得られたモノリスアニオン交換体には、公知の方法を適宜適用することで、例えば、実施例1又は実施例2に示す方法で、白金族金属ナノ粒子を担持することができる。   The monoliths obtained in Reference Examples 4 to 13 and Reference Examples 16 to 17 can be prepared by appropriately applying a known method, for example, by the method shown in Reference Example 1 or Reference Example 2, with an anion exchange group. Can be introduced. Further, the monolith anion exchanger obtained by introducing an anion exchange group into the monoliths obtained in Reference Examples 4 to 13 and Reference Examples 16 to 17 and the monolith anion exchanger obtained in Reference Examples 14 and 15 are known. By appropriately applying the above method, for example, the platinum group metal nanoparticles can be supported by the method shown in Example 1 or Example 2.

実施例4
塩化パラジウム270mgを溶解することに代えて塩化パラジウムを190mg溶解することを除いて、実施例1と同様の方法で参考例1のモノリスアニオン交換体(第1のモノリスアニオン交換体)にパラジウムナノ粒子を担持し、第1のパラジウムナノ粒子担持触媒cを得た。
Example 4
Palladium nanoparticles were added to the monolith anion exchanger (first monolith anion exchanger) of Reference Example 1 in the same manner as in Example 1 except that 190 mg of palladium chloride was dissolved instead of 270 mg of palladium chloride. To obtain a first palladium nanoparticle-supported catalyst c.

乾燥状態の第1のパラジウムナノ粒子担持触媒cに担持されたパラジウムナノ粒子の担持量は、7.4重量%であった。乾燥状態の第1のパラジウムナノ粒子担持触媒cを内径10mmのカラムに充填し、溶存酸素除去特性の評価に用いた。触媒の充填層高は20mmであった。このとき、水湿潤状態の樹脂体積に対するパラジウムナノ粒子の担持量は、10.5g−Pd/L−Rであった。   The amount of palladium nanoparticles supported on the first palladium nanoparticle-supported catalyst c in the dry state was 7.4% by weight. The first palladium nanoparticle-supported catalyst c in a dry state was packed in a column having an inner diameter of 10 mm and used for evaluation of dissolved oxygen removal characteristics. The packed bed height of the catalyst was 20 mm. At this time, the supported amount of palladium nanoparticles with respect to the water-wet resin volume was 10.5 g-Pd / LR.

(触媒の評価)
内径10mmのカラムに充填した上記第1のパラジウムナノ粒子担持触媒cに、溶存酸素濃度32μg/L且つ溶存水素濃度11μg/Lに調整した超純水をSV=7500h−1にて通水し、カラム出口の処理水中の溶存酸素濃度が安定するまで測定を行なった。その結果、カラム出口の溶存酸素濃度は3.8μg/Lに低減していた。
(Evaluation of catalyst)
Ultrapure water adjusted to a dissolved oxygen concentration of 32 μg / L and a dissolved hydrogen concentration of 11 μg / L was passed through the first palladium nanoparticle-supported catalyst c packed in a column having an inner diameter of 10 mm at SV = 7500 h −1 . The measurement was performed until the dissolved oxygen concentration in the treated water at the column outlet was stabilized. As a result, the dissolved oxygen concentration at the column outlet was reduced to 3.8 μg / L.

(比較例3)
水分保有能力がOH形基準において60〜70%でありゲル形である粒子状の強塩基性アニオン交換樹脂(Cl形)にパラジウムを水潤状態で910mg−Pd/L−R担持させたCl形触媒樹脂を作製した。このCl形触媒樹脂を上記内径10mmのカラムに充填層高360mmで、SV430の流速で通水した以外は、実施例4と同様の方法で触媒評価を行った。その結果、処理水が安定した時点でのカラム出口溶存酸素濃度は4.1μg/Lであった。
実施例4と比較例3における評価結果を表5にまとめた。
(Comparative Example 3)
Cl form in which 910 mg-Pd / LR is supported on palladium in a wet state on a particulate strongly basic anion exchange resin (Cl form) having a moisture retention capacity of 60 to 70% on the basis of OH form. A catalyst resin was prepared. Catalyst evaluation was performed in the same manner as in Example 4 except that this Cl-type catalyst resin was passed through the column having an inner diameter of 10 mm with a packed bed height of 360 mm and a flow rate of SV430. As a result, the dissolved oxygen concentration at the column outlet when the treated water was stabilized was 4.1 μg / L.
The evaluation results in Example 4 and Comparative Example 3 are summarized in Table 5.

実施例4は、SV7500と非常に高流速であり、且つ、担持したパラジウム金属触媒の質量あたりの通水流速においても実施例4の方が比較例3に比べ多いにも関わらず、比較例3と同程度の溶存酸素濃度の処理水が得られた。このことから、本発明の白金族金属担持触媒を用いれば、高流速で低樹脂層高においても効果的な溶存酸素除去が可能であるため、触媒使用量の低減、装置の小型化と共に溶出物の低減が図れる。   Example 4 has a very high flow rate with SV7500, and even though the flow rate of water per mass of the supported palladium metal catalyst is higher in Example 4 than in Comparative Example 3, Comparative Example 3 As a result, treated water with a dissolved oxygen concentration of about the same level was obtained. Therefore, if the platinum group metal supported catalyst of the present invention is used, it is possible to effectively remove dissolved oxygen even at a high flow rate and a low resin layer height. Can be reduced.

1 骨格相
2 空孔相
10 モノリス
11 画像領域
12 断面で表れる骨格部
13 マクロポア
DESCRIPTION OF SYMBOLS 1 Skeletal phase 2 Pore phase 10 Monolith 11 Image area 12 Skeletal part shown in cross section 13 Macropore

Claims (10)

有機多孔質アニオン交換体に、平均粒子径1〜100nmの白金族金属のナノ粒子が、担持されている白金族金属担持触媒であり、
該有機多孔質アニオン交換体は、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのアニオン交換容量0.4〜1.0mg当量/mlであり、アニオン交換基が該有機多孔質アニオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%であり、
該白金族金属の担持量が、乾燥状態で0.004〜20重量%であること、
を特徴とする白金族金属担持触媒。
A platinum group metal-supported catalyst in which platinum group metal nanoparticles having an average particle diameter of 1 to 100 nm are supported on an organic porous anion exchanger,
The organic porous anion exchanger is a continuous macropore structure in which bubble-like macropores overlap each other, and the overlapping portion is an opening having an average diameter of 30 to 300 μm in a water-wet state, and has a total pore volume of 0.5 to 5 ml. / G, anion exchange capacity per volume in a wet state of water of 0.4 to 1.0 mg equivalent / ml, anion exchange groups are uniformly distributed in the organic porous anion exchanger, and the continuous In the SEM image of the cut surface of the macropore structure (dry body), the skeleton part area appearing in the cross section is 25 to 50% in the image region,
The supported amount of the platinum group metal is 0.004 to 20% by weight in a dry state;
A platinum group metal supported catalyst.
有機多孔質アニオン交換体に、平均粒子径1〜100nmの白金族金属のナノ粒子が、担持されている白金族金属担持触媒であり、
該有機多孔質アニオン交換体は、アニオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる平均太さが水湿潤状態で1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのアニオン交換容量が0.3〜1.0mg当量/mlであり、アニオン交換基が該有機多孔質アニオン交換体中に均一に分布しており、
該白金族金属の担持量が、乾燥状態で0.004〜20重量%であること、
を特徴とする白金族金属担持触媒。
A platinum group metal-supported catalyst in which platinum group metal nanoparticles having an average particle diameter of 1 to 100 nm are supported on an organic porous anion exchanger,
The organic porous anion exchanger has an average thickness composed of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a crosslinked structural unit among all the structural units into which an anion exchange group has been introduced. A co-continuous structure comprising a three-dimensionally continuous skeleton of 1 to 60 μm and three-dimensionally continuous pores having an average diameter of 10 to 100 μm in a wet state between the skeletons. The volume is 0.5 to 5 ml / g, the anion exchange capacity per volume under water wet condition is 0.3 to 1.0 mg equivalent / ml, and the anion exchange group is contained in the organic porous anion exchanger. Evenly distributed,
The supported amount of the platinum group metal is 0.004 to 20% by weight in a dry state;
A platinum group metal supported catalyst.
請求項1又は2いずれか1項記載の白金族金属担持触媒に、過酸化水素を含有する被処理水を接触させて、該過酸化水素を含有する被処理水中の過酸化水素を分解除去することを特徴とする過酸化水素の分解処理水の製造方法。   The platinum group metal-supported catalyst according to claim 1 or 2 is brought into contact with water to be treated containing hydrogen peroxide to decompose and remove hydrogen peroxide in the water to be treated containing hydrogen peroxide. A method for producing hydrogen peroxide decomposition-treated water. 前記有機多孔質アニオン交換体が、OH形であることを特徴とする請求項3記載の過酸化水素の分解処理水の製造方法。   4. The method for producing hydrogen peroxide decomposition treated water according to claim 3, wherein the organic porous anion exchanger is in OH form. 前記白金族金属担持触媒に、前記過酸化水素を含有する被処理水を、SV=2000〜20000h−1で接触させることを特徴とする請求項3又は4いずれか1項記載の過酸化水素の分解処理水の製造方法。 5. The hydrogen peroxide-containing catalyst according to claim 3, wherein water to be treated containing the hydrogen peroxide is brought into contact with the platinum group metal-supported catalyst at SV = 2000 to 20000 h −1 . A method for producing cracked water. 請求項3〜5いずれか1項記載の過酸化水素の分解処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄することを特徴とする電子部品の洗浄方法。   An electronic component cleaning method, comprising: cleaning an electronic component or an electronic component manufacturing apparatus with treated water obtained by performing the method for producing hydrogen peroxide decomposition treated water according to any one of claims 3 to 5. . 請求項1又は2いずれか1項記載の白金族金属担持触媒の存在下で、水素と酸素を含有する被処理水中の溶存酸素とを反応させて水を生成させることにより、該酸素を含有する被処理水から溶存酸素を除去することを特徴とする溶存酸素の除去処理水の製造方法。   In the presence of the platinum group metal-supported catalyst according to claim 1 or 2, the oxygen is contained by reacting hydrogen with dissolved oxygen in the water to be treated containing oxygen to produce water. A method for producing dissolved oxygen-removed treated water, wherein dissolved oxygen is removed from water to be treated. 前記有機多孔質アニオン交換体が、OH形であることを特徴とする請求項7記載の溶存酸素の除去処理水の製造方法。   The method for producing treated water for removing dissolved oxygen according to claim 7, wherein the organic porous anion exchanger is in OH form. 前記白金族金属担持触媒に、前記酸素を含有する被処理水を、SV=2000〜20000h−1で接触させることを特徴とする請求項7又は8いずれか1項記載の溶存酸素の除去処理水の製造方法。 The treated water containing oxygen is brought into contact with the platinum group metal-supported catalyst at SV = 2000 to 20000 h −1 , and the dissolved oxygen-removed treated water according to claim 7 or 8. Manufacturing method. 請求項7〜9いずれか1項記載の溶存酸素の除去処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄することを特徴とする電子部品の洗浄方法。   An electronic component cleaning method, comprising: cleaning an electronic component or an electronic component manufacturing instrument with treated water obtained by performing the dissolved oxygen removal treated water manufacturing method according to any one of claims 7 to 9.
JP2009065862A 2009-03-18 2009-03-18 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components Active JP5430983B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009065862A JP5430983B2 (en) 2009-03-18 2009-03-18 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
PCT/JP2010/053647 WO2010106925A1 (en) 2009-03-18 2010-03-05 Catalyst with supported platinum-group metal, process for producing water in which hydrogen peroxide has been decomposed, process for producing water from which dissolved oxygen has been removed, and method of cleaning electronic part
CN201080012375XA CN102355952B (en) 2009-03-18 2010-03-05 Catalyst with supported platinum-group metal, process for producing water in which hydrogen peroxide has been decomposed, process for producing water from which dissolved oxygen has been removed, and method of cleaning electronic part
KR1020117020558A KR101668132B1 (en) 2009-03-18 2010-03-05 Catalyst with supported platinum-group metal, process for producing water in which hydrogen peroxide has been decomposed, process for producing water from which dissolved oxygen has been removed, and method of cleaning electronic part
TW099107429A TWI476048B (en) 2009-03-18 2010-03-15 Platinum metal-supported catalyst, hydrogen peroxide decomposition method, dissolved oxygen removal method, and electronic part washing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009065862A JP5430983B2 (en) 2009-03-18 2009-03-18 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components

Publications (2)

Publication Number Publication Date
JP2010214322A true JP2010214322A (en) 2010-09-30
JP5430983B2 JP5430983B2 (en) 2014-03-05

Family

ID=42739588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065862A Active JP5430983B2 (en) 2009-03-18 2009-03-18 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components

Country Status (5)

Country Link
JP (1) JP5430983B2 (en)
KR (1) KR101668132B1 (en)
CN (1) CN102355952B (en)
TW (1) TWI476048B (en)
WO (1) WO2010106925A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240642A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing dissolved oxygen-removed water, apparatus for manufacturing dissolved oxygen-removed water, dissolved oxygen treatment tank, method of manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, and method of cleaning electronic components
JP2010259989A (en) * 2009-05-01 2010-11-18 Japan Organo Co Ltd Platinum-group metal supported catalyst, method of producing treated water with hydrogen peroxide composed, method of producing treated with dissolved oxygen removed and method of cleaning electronic part
JP2012061455A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Platinum group metal-supported catalyst, method for producing the same, method for producing hydrogen peroxide-decomposed water, and method for producing dissolved oxygen-removed water
JP2013208557A (en) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd Method for treating organic matter-containing water
JP2014030821A (en) * 2012-07-10 2014-02-20 Japan Organo Co Ltd Platinum group metal supported contact dehydrogenation catalyst and contact dehydrogenation method
JP2014030820A (en) * 2012-07-10 2014-02-20 Japan Organo Co Ltd Platinum group metal supported catalyst and reactor
WO2017010277A1 (en) * 2015-07-10 2017-01-19 株式会社武蔵野化学研究所 Method for producing organic acid ester-based liquid, and method for producing resist solvent for manufacturing electronic components or rinse agent for manufacturing electronic components
JP2021007900A (en) * 2019-06-28 2021-01-28 オルガノ株式会社 Monolithic organic porous ion exchanger

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5349540B2 (en) * 2010-06-30 2013-11-20 ローム アンド ハース カンパニー Process for producing heterogeneous catalysts
JP5871652B2 (en) * 2012-02-23 2016-03-01 オルガノ株式会社 Method for removing dissolved oxygen in alcohol, alcohol supply device and cleaning liquid supply device
JP5943744B2 (en) * 2012-07-10 2016-07-05 オルガノ株式会社 Carbon-carbon bond forming method and platinum group metal supported catalyst for carbon-carbon bond forming reaction
KR101469734B1 (en) * 2013-12-04 2014-12-05 군산대학교산학협력단 Catalyst for synthesis of hydrogen peroxide, method for preparing the same, and method for synthesizing hydrogen peroxide using the same
JP6178461B2 (en) * 2016-05-24 2017-08-09 オルガノ株式会社 Carbon-carbon bond formation method
JP6819175B2 (en) * 2016-09-20 2021-01-27 栗田工業株式会社 Diluting chemical manufacturing equipment and diluting chemical manufacturing method
JP6752693B2 (en) * 2016-11-18 2020-09-09 オルガノ株式会社 Water treatment method and equipment
CN106654310A (en) * 2016-12-12 2017-05-10 成都育芽科技有限公司 High-activity high-stability catalyst for fuel cell and preparation method of catalyst
JP2018159334A (en) * 2017-03-23 2018-10-11 日本碍子株式会社 Exhaust emission control device
JP6590964B2 (en) * 2018-01-31 2019-10-16 オルガノ株式会社 Hydrogen peroxide concentration measuring system and measuring method
CN111111742B (en) * 2019-12-24 2021-06-18 太原理工大学 Catalyst, preparation method thereof and method for removing dissolved oxygen in water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220560A (en) * 1996-02-14 1997-08-26 Nomura Micro Sci Co Ltd Ultrapure water making apparatus
JPH11277059A (en) * 1998-03-27 1999-10-12 Japan Organo Co Ltd Production of pure water with reduced oxidative substance and apparatus for producing ultrapure water
JP2002306976A (en) * 2001-04-13 2002-10-22 Japan Organo Co Ltd Porous ion exchanger, deionizing module using the same, and electrical device for producing deionized water
JP2005023265A (en) * 2003-07-01 2005-01-27 Japan Organo Co Ltd Method for producing aminated organic porous material
JP2007185587A (en) * 2006-01-12 2007-07-26 Kurita Water Ind Ltd Method and device for removing hydrogen peroxide
JP2008093606A (en) * 2006-10-13 2008-04-24 Kurita Water Ind Ltd Method and apparatus for removing oxygen dissolved in water and catalyst for remvoing oxygen dissolved in water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256647B2 (en) 1995-07-19 2002-02-12 オルガノ株式会社 Method for removing hydrogen peroxide in water to be treated and water treatment apparatus
JP3966501B2 (en) * 2002-03-18 2007-08-29 オルガノ株式会社 Ultrapure water production equipment
JP5290603B2 (en) * 2007-05-28 2013-09-18 オルガノ株式会社 Particle aggregation type monolithic organic porous body, method for producing the same, particle aggregation type monolithic organic porous ion exchanger, and chemical filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220560A (en) * 1996-02-14 1997-08-26 Nomura Micro Sci Co Ltd Ultrapure water making apparatus
JPH11277059A (en) * 1998-03-27 1999-10-12 Japan Organo Co Ltd Production of pure water with reduced oxidative substance and apparatus for producing ultrapure water
JP2002306976A (en) * 2001-04-13 2002-10-22 Japan Organo Co Ltd Porous ion exchanger, deionizing module using the same, and electrical device for producing deionized water
JP2005023265A (en) * 2003-07-01 2005-01-27 Japan Organo Co Ltd Method for producing aminated organic porous material
JP2007185587A (en) * 2006-01-12 2007-07-26 Kurita Water Ind Ltd Method and device for removing hydrogen peroxide
JP2008093606A (en) * 2006-10-13 2008-04-24 Kurita Water Ind Ltd Method and apparatus for removing oxygen dissolved in water and catalyst for remvoing oxygen dissolved in water

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240642A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing dissolved oxygen-removed water, apparatus for manufacturing dissolved oxygen-removed water, dissolved oxygen treatment tank, method of manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, and method of cleaning electronic components
JP2010259989A (en) * 2009-05-01 2010-11-18 Japan Organo Co Ltd Platinum-group metal supported catalyst, method of producing treated water with hydrogen peroxide composed, method of producing treated with dissolved oxygen removed and method of cleaning electronic part
JP2012061455A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Platinum group metal-supported catalyst, method for producing the same, method for producing hydrogen peroxide-decomposed water, and method for producing dissolved oxygen-removed water
JP2013208557A (en) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd Method for treating organic matter-containing water
JP2014030821A (en) * 2012-07-10 2014-02-20 Japan Organo Co Ltd Platinum group metal supported contact dehydrogenation catalyst and contact dehydrogenation method
JP2014030820A (en) * 2012-07-10 2014-02-20 Japan Organo Co Ltd Platinum group metal supported catalyst and reactor
WO2017010277A1 (en) * 2015-07-10 2017-01-19 株式会社武蔵野化学研究所 Method for producing organic acid ester-based liquid, and method for producing resist solvent for manufacturing electronic components or rinse agent for manufacturing electronic components
JPWO2017010277A1 (en) * 2015-07-10 2017-07-20 株式会社武蔵野化学研究所 Manufacturing method of organic acid ester liquid, and manufacturing method of resist solvent for electronic component manufacturing or rinsing liquid for electronic component manufacturing
US10632456B2 (en) 2015-07-10 2020-04-28 Musashino Chemical Laboratory, Ltd. Process for producing organic acid ester-type liquid, and process for producing solvent of resist for producing electronic part or rinsing liquid for producing electronic parts
JP2021007900A (en) * 2019-06-28 2021-01-28 オルガノ株式会社 Monolithic organic porous ion exchanger
JP7336898B2 (en) 2019-06-28 2023-09-01 オルガノ株式会社 Monolithic organic porous ion exchanger

Also Published As

Publication number Publication date
CN102355952A (en) 2012-02-15
JP5430983B2 (en) 2014-03-05
WO2010106925A1 (en) 2010-09-23
KR101668132B1 (en) 2016-10-20
TWI476048B (en) 2015-03-11
KR20110133559A (en) 2011-12-13
TW201038326A (en) 2010-11-01
CN102355952B (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5430983B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5329463B2 (en) Production method for hydrogen peroxide decomposition treated water, production apparatus for hydrogen peroxide decomposition treated water, treatment tank, production method for ultra pure water, production apparatus for ultra pure water, production method for hydrogen dissolved water, production apparatus for hydrogen dissolved water , Ozone-dissolved water manufacturing method, ozone-dissolved water manufacturing apparatus, and electronic component cleaning method
JP5231300B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5231299B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5019471B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5604143B2 (en) Dissolved oxygen-removed water production method, dissolved oxygen-removed water production device, dissolved oxygen treatment tank, ultrapure water production method, hydrogen-dissolved water production method, hydrogen-dissolved water production device, and electronic component cleaning method
JP5698813B2 (en) Ultrapure water production equipment
JP3852926B2 (en) Organic porous body having selective boron adsorption capacity, boron removal module and ultrapure water production apparatus using the same
TWI758266B (en) Method of refining organic solvent
JP5116724B2 (en) Ultrapure water production equipment
JP5685632B2 (en) Ion adsorption module and water treatment method
JP5421689B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5525754B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP6178461B2 (en) Carbon-carbon bond formation method
JP5465463B2 (en) Ion adsorption module and water treatment method
JP5431196B2 (en) Electric deionized water production apparatus and operation method thereof
JP5567958B2 (en) Method for producing platinum group metal supported catalyst
JP2019195763A (en) Liquid purification cartridge, and method of purifying liquid
JP7477374B2 (en) Method for changing ion type of monolithic organic porous anion exchanger and method for producing monolithic organic porous anion exchanger
JP6433577B2 (en) Manufacturing method of organic acid ester liquid, and manufacturing method of resist solvent for electronic component manufacturing or rinsing liquid for electronic component manufacturing
TW202208061A (en) Method for changing ionic form of anion exchanger, and method for producing anion exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5430983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250