JP5019471B2 - Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter - Google Patents

Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter Download PDF

Info

Publication number
JP5019471B2
JP5019471B2 JP2008081731A JP2008081731A JP5019471B2 JP 5019471 B2 JP5019471 B2 JP 5019471B2 JP 2008081731 A JP2008081731 A JP 2008081731A JP 2008081731 A JP2008081731 A JP 2008081731A JP 5019471 B2 JP5019471 B2 JP 5019471B2
Authority
JP
Japan
Prior art keywords
organic porous
monolith
ion exchange
water
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008081731A
Other languages
Japanese (ja)
Other versions
JP2009062512A (en
Inventor
洋 井上
彰 中村
仁 高田
聡 近藤
弘次 山中
寛之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2008081731A priority Critical patent/JP5019471B2/en
Publication of JP2009062512A publication Critical patent/JP2009062512A/en
Application granted granted Critical
Publication of JP5019471B2 publication Critical patent/JP5019471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monolith organic porous body being chemically stable, having high mechanical strength and low pressure loss when a fluid passes through the porous body and capable of being used as an absorbent having large adsorption capacity or an ion exchanger having large ion exchange volume per volume and a monolith ion exchanger and to provide a method for producing the ion exchanger and to provide a chemical filter. <P>SOLUTION: The monolith organic porous body is characterized in that the porous body has a continuous macropore structure having &ge;1 mm thickness and 0.5-5 ml/g whole pore volume in which foam-shaped macropores overlaps each other and the overlap part becomes an opening having a 20-200 &mu;m average diameter and a skeleton section area which appears in cross section is 25-50% in a photographic region in SEM photograph of a cut surface of the continuous macropore structure. The monolith ion exchanger is obtained by introducing an ion exchange group into the monolith organic porous body. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、吸着剤や脱イオン水製造装置等に用いられるイオン交換体として有用な骨太の骨格を有する連続マクロポア構造のモノリス状有機多孔質体、骨太の骨格を有する連続マクロポア構造のモノリス状有機多孔質イオン交換体、それらの製造方法及びケミカルフィルターに関するものである。   The present invention relates to a monolithic organic porous body having a continuous macropore structure having a thick bone skeleton, and a monolithic organic having a continuous macropore structure having a bone skeleton, useful as an ion exchanger used in an adsorbent, a deionized water production apparatus, and the like. The present invention relates to porous ion exchangers, production methods thereof, and chemical filters.

特開2002−306976号には、イオン交換基を含まない油溶性モノマー、界面活性剤、水及び必要に応じて重合開始剤とを混合し、油中水滴型エマルジョンを得、これを重合させて、連続マクロポア構造のモノリス状有機多孔質体を得る製造方法が開示されている。上記方法で得られる有機多孔質体やそれにイオン交換基を導入した有機多孔質イオン交換体は、吸着剤、クロマトグラフィー用充填剤および脱イオン水製造装置等に用いられるイオン交換体として有用である。   In JP-A-2002-306976, an oil-soluble monomer not containing an ion exchange group, a surfactant, water and a polymerization initiator as necessary are mixed to obtain a water-in-oil emulsion, which is polymerized. A production method for obtaining a monolithic organic porous body having a continuous macropore structure is disclosed. The organic porous material obtained by the above method and the organic porous ion exchanger into which an ion exchange group is introduced are useful as an ion exchanger used in an adsorbent, a chromatography filler, a deionized water production apparatus, and the like. .

しかし、該有機多孔質イオン交換体は、全細孔容積を低下させて水湿潤状態での体積当りのイオン交換容量を大きくすると共通の開口となるメソポアが著しく小さくなり、更に全細孔容積を低下させていくと共通の開口が消失するといったその構造上の制約から、実用的に要求される低い圧力損失を達成しようとすると体積当りのイオン交換容量が低下する、体積当りの交換容量を増加させていくと圧力損失が増加するといった欠点を有していた。   However, in the organic porous ion exchanger, when the total pore volume is reduced to increase the ion exchange capacity per volume in a water-wet state, the mesopores that become common openings are remarkably reduced, and the total pore volume is further reduced. Due to the structural limitation that the common opening disappears as it is reduced, the ion exchange capacity per volume decreases when trying to achieve the practically required low pressure loss, and the exchange capacity per volume increases. As a result, the pressure loss increased.

同様に、上述の方法で得られたモノリス状有機多孔質体や有機多孔質イオン交換体においては、切断面における骨格部面積が25%以上になることは理論上、不可能であった。その理由は、該有機多孔質イオン交換体の中間体である連続マクロポア構造のモノリス状有機多孔質体が油中水滴型エマルジョンを経由して製造される点にある。連続マクロポア構造を形成させるためには、油中水滴型エマルジョン中の水滴が互いに接触する必要があり、そのため、水滴の体積分率は75%以上に限定される。油中水滴型エマルジョンの静置重合により得られるモノリス状有機多孔質体は該エマルジョンの構造が固定化された形態をとるため、その空隙率は75%以上であり、該有機多孔質体の切断面の開口率も75%以上となる。よって、切断面の骨格部面積は25%未満であり、本製造法を採用する限り、切断面の骨格部面積の向上は望めない。   Similarly, in the monolithic organic porous material and organic porous ion exchanger obtained by the above-described method, it was theoretically impossible to increase the skeleton part area at the cut surface to 25% or more. The reason is that a monolithic organic porous body having a continuous macropore structure, which is an intermediate of the organic porous ion exchanger, is produced via a water-in-oil emulsion. In order to form a continuous macropore structure, it is necessary for the water droplets in the water-in-oil emulsion to contact each other, so that the volume fraction of the water droplets is limited to 75% or more. Since the monolithic organic porous material obtained by static polymerization of the water-in-oil emulsion has a structure in which the structure of the emulsion is fixed, the porosity is 75% or more, and the organic porous material is cut. The aperture ratio of the surface is 75% or more. Therefore, the skeleton part area of the cut surface is less than 25%, and as long as this production method is adopted, improvement of the skeleton part area of the cut surface cannot be expected.

一方、上記連続マクロポア構造以外の構造を有するモノリス状有機多孔質体やモノリス状有機多孔質イオン交換体としては、粒子凝集型構造を有する多孔質体が特表平7−501140号等に開示されている。しかし、この方法で得られた多孔質体は連続した空孔が最大でも約2μmと小さく、低圧で大流量の処理を行うことが要求される工業規模の脱イオン水製造装置等に用いることはできなかった。更に、粒子凝集型構造を有する多孔質体は機械的強度が低く、所望の大きさに切り出してカラムやセルに充填する際に破損しやすい等、ハンドリング性に劣るものであった。   On the other hand, as monolithic organic porous bodies and monolithic organic porous ion exchangers having a structure other than the above-described continuous macropore structure, porous bodies having a particle aggregation type structure are disclosed in JP 7-501140 A and the like. ing. However, the porous body obtained by this method has a continuous pore as small as about 2 μm at the maximum, and it can be used for an industrial scale deionized water production apparatus or the like which requires a high flow rate treatment at a low pressure. could not. Furthermore, the porous body having a particle aggregation type structure has low mechanical strength, and is inferior in handling properties, such as being easily damaged when cut into a desired size and packed in a column or cell.

このため、化学的に安定で機械的強度が高く、かつ体積当りのイオン交換容量が大きく、連続した空孔が大きくて水や気体等の流体を透過させた際の圧力損失が低いモノリス状有機多孔質イオン交換体の開発が望まれていた。また、特開2004−321930号公報には、連続気泡構造のモノリス状有機多孔質イオン交換体を吸着層として用いるケミカルフィルターが開示されている。このケミカルフィルターによれば、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、ガス状汚染物質が超微量であっても除去可能なものである。しかしながら、従来にも増してガス状汚染物質の吸着除去能力の高いケミカルフィルターの開発が望まれていた。
特開2002−306976号(請求項1、段落番号0017) 特表平7−501140号 特開2004−321930号公報(請求項1)
For this reason, it is a monolithic organic material that is chemically stable, has high mechanical strength, has a large ion exchange capacity per volume, has large continuous pores, and has a low pressure loss when a fluid such as water or gas is permeated. Development of a porous ion exchanger has been desired. Japanese Patent Application Laid-Open No. 2004-321930 discloses a chemical filter using a monolithic organic porous ion exchanger having an open cell structure as an adsorption layer. According to this chemical filter, the ability to adsorb and remove gaseous pollutants can be maintained even if the gas permeation rate is high, and even if the amount of gaseous pollutants is extremely small, it can be removed. However, it has been desired to develop a chemical filter having a higher ability to adsorb and remove gaseous pollutants than ever before.
JP 2002-306976 (Claim 1, paragraph 0017) Special table hei 7-501140 JP 2004-321930 A (Claim 1)

従って、本発明の目的は、上記従来の技術の問題点を解決したものであって、化学的に安定で機械的強度が高く、流体透過時の圧力損失が低く、吸着容量の大きな吸着剤や、化学的に安定で機械的強度が高く、流体透過時の圧力損失が低く、体積当りのイオン交換容量の大きなイオン交換体として用いることのできる連続マクロポア構造を有するモノリス状有機多孔質体、連続マクロポア構造を有するモノリス状有機多孔質イオン交換体及びそれらの製造方法を提供することにある。また、本発明の他の目的は、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、ガス状汚染物質が超微量であっても除去可能なケミカルフィルターを提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and it is chemically stable, has high mechanical strength, has low pressure loss during fluid permeation, and has a large adsorption capacity. Monolithic organic porous material having a continuous macropore structure, which can be used as an ion exchanger having a high chemical exchange, a high chemical strength, a high mechanical strength, a low pressure loss during fluid permeation, and a large ion exchange capacity per volume, An object of the present invention is to provide a monolithic organic porous ion exchanger having a macropore structure and a production method thereof. Another object of the present invention is to provide a chemical filter that can retain the adsorption and removal ability of gaseous pollutants even when the gas permeation rate is high, and can be removed even if the amount of gaseous pollutants is extremely small. is there.

かかる実情において、本発明者らは鋭意検討を行った結果、特開2002−306976号公報記載の方法で得られた比較的大きな細孔容積を有するモノリス状有機多孔質体(中間体)の存在下に、ビニルモノマーと架橋剤を、特定有機溶媒中で静置重合すれば、開口径が大きく、中間体の有機多孔質体の骨格よりも太い骨格を有する骨太のモノリスが得られること、骨太のモノリスにイオン交換基を導入すると、骨太であるが故に膨潤が大きく、従って、開口を更に大きくできること、骨太のモノリスやそれにイオン交換基を導入したモノリスイオン交換体は、吸着やイオン交換が迅速かつ均一であるばかりでなく、体積当りの吸着容量やイオン交換容量が大きい、開口の平均直径が大きいため圧力損失が格段に小さい、連続マクロポア構造を維持しているため機械的強度が高く、ハンドリング性に優れ、更に気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、ガス状汚染物質が超微量であっても除去可能である等、従来のモノリス状有機多孔質体やモノリス状有機多孔質イオン交換体が達成できなかった、優れた特性を兼備していることなどを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive studies, and as a result, the existence of a monolithic organic porous material (intermediate) having a relatively large pore volume obtained by the method described in JP-A-2002-306976. Below, if the vinyl monomer and the crosslinking agent are allowed to stand in a specific organic solvent, a monolith having a large opening diameter and a thicker skeleton than that of the intermediate organic porous material can be obtained. When the ion exchange group is introduced into the monolith, the swelling is large because it is thick. Therefore, the opening can be further increased, and the monolith with a thick monolith and the ion exchange group into which the ion exchange group is introduced can quickly adsorb and exchange ions. It is not only uniform, but also has a large adsorption capacity and ion exchange capacity per volume, and a large average diameter of the opening, so that the pressure loss is remarkably small. High mechanical strength, excellent handleability, and even when the gas permeation rate is high, the adsorption and removal ability of gaseous pollutants can be maintained. Even if the amount of gaseous pollutants is extremely small, it can be removed. Thus, the present inventors have found that the conventional monolithic organic porous material and monolithic organic porous ion exchanger could not be achieved, and that they have excellent characteristics, and thus completed the present invention.

すなわち、本発明は、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径20〜200μmの開口となる連続マクロポア構造体であり、厚み1mm以上、全細孔容積0.5〜5ml/g、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%であることを特徴とするモノリス状有機多孔質体を提供するものである。   That is, the present invention is a continuous macropore structure in which bubble-shaped macropores overlap each other, and the overlapping portion becomes an opening having an average diameter of 20 to 200 μm, and has a thickness of 1 mm or more and a total pore volume of 0.5 to 5 ml / g. In addition, in the SEM image of the cut surface of the continuous macropore structure (dry body), a skeleton part area that appears in the cross section is 25 to 50% in the image region, and provides a monolithic organic porous body It is.

また、本発明は、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径20〜200μmの開口となる連続マクロポア構造体であり、厚み1mm以上、全細孔容積0.5〜5ml/gであって、下記工程;
イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜16ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、
ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、
II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、該有機多孔質中間体の骨格より太い骨格を有する骨太有機多孔質体を得るIII工程、を行うことで得られるモノリス状有機多孔質体を提供するものである。
Further, the present invention is a continuous macropore structure in which bubble-shaped macropores overlap each other, and the overlapping portion is an opening having an average diameter of 20 to 200 μm, and has a thickness of 1 mm or more and a total pore volume of 0.5 to 5 ml / g. And the following steps;
A water-in-oil emulsion is prepared by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion exchange groups, and then the water-in-oil emulsion is polymerized to give a total pore volume of 5-16 ml / g, a monolithic organic porous intermediate having a continuous macropore structure,
A mixture comprising a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, and a polymerization initiator. Step II to prepare,
The mixture obtained in Step II is allowed to stand and polymerized in the presence of the monolithic organic porous intermediate obtained in Step I, and the bone thicker having a skeleton thicker than the skeleton of the organic porous intermediate. The present invention provides a monolithic organic porous body obtained by performing the III step of obtaining an organic porous body.

また、本発明は、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径30〜300μmの開口となる連続マクロポア構造体であり、厚み1mm以上、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4mg当量/ml以上であり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%であることを特徴とするモノリス状有機多孔質イオン交換体を提供するものである。   Further, the present invention is a continuous macropore structure in which bubble-shaped macropores overlap each other, and the overlapping portion becomes an opening having an average diameter of 30 to 300 μm, and has a thickness of 1 mm or more and a total pore volume of 0.5 to 5 ml / g, The ion exchange capacity per volume in a water-wet state is 0.4 mg equivalent / ml or more, the ion exchange groups are uniformly distributed in the porous ion exchanger, and the continuous macropore structure (dried body) In the SEM image of the cut surface, a monolithic organic porous ion exchanger is provided in which the skeleton part area appearing in the cross section is 25 to 50% in the image region.

また、本発明は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜16ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、
ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、
II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、該有機多孔質中間体の骨格より太い骨格を有する骨太有機多孔質体を得るIII工程、を行うことを特徴とするモノリス状有機多孔質体の製造方法を提供するものである。
The present invention also provides a water-in-oil emulsion by stirring a mixture of an oil-soluble monomer that does not contain an ion exchange group, a surfactant, and water, and then polymerizes the water-in-oil emulsion to form all pores. Step I for obtaining a monolithic organic porous intermediate having a continuous macropore structure with a volume of 5 to 16 ml / g,
A mixture comprising a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, and a polymerization initiator. Step II to prepare,
The mixture obtained in Step II is allowed to stand and polymerized in the presence of the monolithic organic porous intermediate obtained in Step I, and the bone thicker having a skeleton thicker than the skeleton of the organic porous intermediate. The present invention provides a method for producing a monolithic organic porous body characterized by performing the step III of obtaining an organic porous body.

また、本発明は、前記モノリス状有機多孔質体の製造方法におけるI〜III工程に加えて、更に、該III工程で得られた骨太有機多孔質体にイオン交換基を導入するIV工程、を行うことを特徴とするモノリス状有機多孔質イオン交換体の製造方法を提供するものである。   In addition to the steps I to III in the method for producing a monolithic organic porous body, the present invention further includes an IV step for introducing an ion exchange group into the thick organic porous body obtained in the step III. The present invention provides a method for producing a monolithic organic porous ion exchanger.

また、本発明は、前記モノリス状有機多孔質体を吸着層として用いることを特徴とするケミカルフィルターを提供するものである。   The present invention also provides a chemical filter using the monolithic organic porous material as an adsorption layer.

また、本発明は、前記モノリス状有機多孔質イオン交換体を吸着層として用いることを特徴とするケミカルフィルターを提供するものである。   The present invention also provides a chemical filter characterized in that the monolithic organic porous ion exchanger is used as an adsorption layer.

本発明のモノリスは、マクロポアとマクロポアの重なり部分である開口径が大きいため、低圧、大流量の処理が可能であり、更に連続マクロポア構造体の骨格が骨太で且つ骨格を構成する壁部の厚みも大きいため、吸着容量にも優れている。したがって、従来用いられてきた合成吸着剤を代替可能であるばかりでなく、その優れた吸着特性を生かして、合成吸着剤では対応できなかった微量成分の吸着除去等新しい用途分野への応用が可能となる。また、本発明のモノリスイオン交換体は、機械的強度が高く、水湿潤状態での体積当りのイオン交換容量が大きく、かつ共通の開口径も格段に大きいため、被処理水を低圧、大流量で長期間通水することが可能であり、2床3塔式純水製造装置や電気式脱イオン水製造装置に充填して好適に用いることができる。また、本発明のケミカルフィルターは、吸着層として用いる細孔容積や比表面積が格段に大きく、その表面や内部にイオン交換基が高密度に導入されているため、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、また、ガス状汚染物質が超微量であっても除去可能である。   The monolith of the present invention has a large opening diameter, which is an overlap portion between the macropores and can handle low pressures and large flow rates. Further, the continuous macropore structure has a thick skeleton and the thickness of the walls constituting the skeleton. Therefore, the adsorption capacity is also excellent. Therefore, not only can the synthetic adsorbents used in the past be replaced, but it can also be applied to new application fields such as adsorption removal of trace components that could not be handled by synthetic adsorbents by taking advantage of its excellent adsorption characteristics. It becomes. In addition, the monolith ion exchanger of the present invention has high mechanical strength, a large ion exchange capacity per volume in a water-wet state, and a large common opening diameter. It can be used for a long period of time, and can be suitably used by filling it into a two-bed three-column pure water production apparatus or an electric deionized water production apparatus. In addition, the chemical filter of the present invention has a remarkably large pore volume and specific surface area used as an adsorption layer, and ion exchange groups are introduced at a high density on the surface and inside thereof. The ability to adsorb and remove gaseous pollutants can be maintained, and even gaseous trace contaminants can be removed.

本明細書中、「モノリス状有機多孔質体」を単に「モノリス」と、「モノリス状有機多孔質イオン交換体」を単に「モノリスイオン交換体」と、「モノリス状の有機多孔質中間体」を単に「モノリス中間体」とも言う。   In the present specification, “monolithic organic porous body” is simply “monolith”, “monolithic organic porous ion exchanger” is simply “monolith ion exchanger”, and “monolithic organic porous intermediate”. Is also simply referred to as “monolith intermediate”.

(モノリスの説明)
本発明のモノリスの基本構造は、気泡状のマクロポア同士が重なり合い、この重なる部分が共通の開口(メソポア)となる連続マクロポア構造であり、開口の平均直径が20〜200μm、好ましくは20〜150μm、特に20〜100μmであり、該マクロポアと該開口で形成される気泡内が流路となる。連続マクロポア構造は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。開口の平均直径が20μm未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、開口の平均直径が大き過ぎると、流体とモノリスとの接触が不十分となり、その結果、吸着特性が低下してしまうため好ましくない。上記メソポアの平均直径は、水銀圧入法により得られた細孔分布曲線の極大値を指すものである。なお、特開2002−306976号公報には、モノリスの共通の開口は1〜1000μmと記載されているが、全細孔容積5ml/g以下の細孔容積の小さなモノリスについては、油中水滴型エマルジョン中の水滴の量を少なくする必要があるため共通の開口は小さくなり、実質的に開口の平均径20μm以上のものは製造できない。
(Description of monolith)
The basic structure of the monolith of the present invention is a continuous macropore structure in which bubble-shaped macropores overlap each other, and this overlapping portion forms a common opening (mesopore), and the average diameter of the openings is 20 to 200 μm, preferably 20 to 150 μm, In particular, the thickness is 20 to 100 μm, and the inside of the bubbles formed by the macropores and the openings is the flow path. The continuous macropore structure is preferably a uniform structure having the same macropore size and aperture diameter, but is not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do. If the average diameter of the openings is less than 20 μm, the pressure loss at the time of fluid permeation increases, which is not preferable. If the average diameter of the openings is too large, the contact between the fluid and the monolith becomes insufficient, resulting in adsorption. This is not preferable because the characteristics deteriorate. The average diameter of the mesopores refers to the maximum value of the pore distribution curve obtained by the mercury intrusion method. In JP-A-2002-306976, the common opening of monoliths is described as 1 to 1000 μm. For monoliths having a small pore volume of a total pore volume of 5 ml / g or less, a water-in-oil type is used. Since it is necessary to reduce the amount of water droplets in the emulsion, the common opening becomes small, and it is practically impossible to produce an opening having an average diameter of 20 μm or more.

本発明のモノリスは、開口径が大きく、骨格が太いという斬新な構造を有する。当該骨太骨格の構造は、連続マクロポア構造体(乾燥体)を切断した面のSEM(走査型電子顕微鏡による二次電子像)画像で確認することができる。モノリスの切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中、25〜50%、好ましくは25〜45%である。断面に表れる骨格部面積が、画像領域中、25%未満であると、細い骨格となり、体積当りの吸着容量が低下してしまうため好ましくなく、50%を超えると、骨格が太くなり過ぎ、吸着特性の均一性が失われるため好ましくない。なお、特開2002−306976号公報記載のモノリスは、実際には水に対する油相部の配合比を多くして骨格部分を太くしても、共通の開口を確保するためには配合比に限界があり、断面に表れる骨格部面積の最大値は画像領域中、25%を超えることはできない。   The monolith of the present invention has a novel structure with a large opening diameter and a thick skeleton. The structure of the thick bone skeleton can be confirmed by an SEM (secondary electron image by a scanning electron microscope) image of a surface obtained by cutting a continuous macropore structure (dry body). In the SEM image of the cut surface of the monolith, the skeleton part area appearing in the cross section is 25 to 50%, preferably 25 to 45% in the image region. If the area of the skeleton part appearing in the cross section is less than 25% in the image area, a thin skeleton is formed, and the adsorption capacity per volume is reduced. This is not preferable, and if it exceeds 50%, the skeleton becomes too thick and adsorbed. Since the uniformity of characteristics is lost, it is not preferable. In addition, the monolith described in JP-A-2002-306976 is actually limited to the blending ratio in order to ensure a common opening even if the blending ratio of the oil phase part with respect to water is increased and the skeleton portion is thickened. The maximum value of the skeleton part area appearing in the cross section cannot exceed 25% in the image region.

SEM画像を得るための条件は、切断面の断面に表れる骨格部が鮮明に表れる条件であればよく、例えば倍率100〜600、写真領域が約150mm×100mmである。SEM観察は、主観を排除したモノリスの任意の切断面の任意の箇所で撮影された切断箇所や撮影箇所が異なる3枚以上、好ましくは5枚以上の画像で行なうのがよい。切断されるモノリスは、電子顕微鏡に供するため、乾燥状態のものである。SEM画像における切断面の骨格部を図1及び図7を参照して説明する。また、図7は、図1のSEM写真の断面として表れる骨格部を転写したものである。図1及び図7中、概ね不定形状で且つ断面で表れるものは本発明の「断面に表れる骨格部(符号12)」であり、図1に表れる円形の孔は開口(メソポア)であり、また、比較的大きな曲率や曲面のものはマクロポア(図7中の符号13)である。図7の断面に表れる骨格部面積は、矩形状の写真領域11中、28%である。このように、骨格部は明確に判断できる。   The conditions for obtaining the SEM image may be any conditions as long as the skeleton part that appears in the cross section of the cut surface appears clearly. For example, the magnification is 100 to 600, and the photographic area is about 150 mm × 100 mm. SEM observation is preferably performed on three or more images, preferably five or more images, taken at arbitrary locations on an arbitrary cut surface of the monolith excluding subjectivity and at different locations. The monolith to be cut is in a dry state for use in an electron microscope. The skeleton part of the cut surface in the SEM image will be described with reference to FIGS. Further, FIG. 7 is a transcribed skeleton that appears as a cross section of the SEM photograph of FIG. 1 and FIG. 7, what is generally indeterminate in shape and shown in cross section is the “skeleton part (reference numeral 12)” in the present invention, and the circular hole shown in FIG. 1 is an opening (mesopore). A relatively large curvature or curved surface is a macropore (reference numeral 13 in FIG. 7). The skeleton part area shown in the cross section of FIG. 7 is 28% in the rectangular photographic region 11. Thus, the skeleton can be clearly determined.

SEM写真において、切断面の断面に表れる骨格部の面積の測定方法としては、特に制限されず、当該骨格部を公知のコンピューター処理などを行い特定した後、コンピューターなどによる自動計算又は手動計算による算出方法が挙げられる。手動計算としては、不定形状物を、四角形、三角形、円形又は台形などの集合物に置き換え、それらを積層して面積を求める方法が挙げられる。   In the SEM photograph, the method for measuring the area of the skeletal part appearing in the cross section of the cut surface is not particularly limited, and after specifying the skeleton part by performing known computer processing, etc., calculation by automatic calculation or manual calculation by a computer or the like A method is mentioned. The manual calculation includes a method in which an indefinite shape is replaced with an aggregate such as a quadrangle, a triangle, a circle, or a trapezoid, and the areas are obtained by stacking them.

また、本発明のモノリスは、連続マクロポア構造体の骨格を構成する壁部の厚みは概ね20〜200μmである。壁部の厚みは、隣接する2つのマクロポアを区画する壁であって、該2つのマクロポアの中心を結ぶ線(図7のX−X線)が切断する部分の厚み(図7のd、d)を言う。従って、例えば隣接する3つ以上のマクロポアで囲まれる柱部は本発明の壁部ではない。形成される壁部の厚みが20μm未満であると、体積当りの吸着容量が低下してしまうため好ましくなく、200μmを超えると、吸着特性の均一性が失われるため好ましくない。上記有機多孔質体の壁部の厚みも、切断面の骨格部と同様に、SEM観察を少なくとも3回行い、得られた画像中の5点以上を採って、求めることが好ましい。なお、特開2002−306976号公報記載のモノリスは、前述の如く、W/O型エマルジョン形成の制約から、全細孔容積5ml/g以下の場合、最大でせいぜい10μmである。 In the monolith of the present invention, the wall portion constituting the skeleton of the continuous macropore structure has a thickness of about 20 to 200 μm. The thickness of the wall portion is a wall that partitions two adjacent macropores, and is a thickness (d 1 , d 1 in FIG. 7) where a line (XX line in FIG. 7) connecting the centers of the two macropores is cut. say d 2). Therefore, for example, a pillar portion surrounded by three or more adjacent macropores is not a wall portion of the present invention. If the thickness of the wall portion to be formed is less than 20 μm, the adsorption capacity per volume is lowered, which is not preferable, and if it exceeds 200 μm, the uniformity of the adsorption characteristics is lost, which is not preferable. The thickness of the wall of the organic porous body is preferably determined by performing SEM observation at least three times and taking five or more points in the obtained image, similarly to the skeleton of the cut surface. As described above, the monolith described in JP-A-2002-306976 has a maximum pore size of 10 μm at the maximum when the total pore volume is 5 ml / g or less due to the limitation of the W / O emulsion formation.

また、本発明のモノリスは、0.5〜5ml/g、好適には0.8〜4ml/gの全細孔容積を有するものである。全細孔容積が小さ過ぎると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過流体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が大き過ぎると、体積当りの吸着容量が低下してしまうため好ましくない。本発明のモノリスは、開口の平均直径及び全細孔容積が上記範囲にあり、且つ骨太の骨格であるため、これを吸着剤として用いた場合、流体との接触面積が大きく、かつ流体の円滑な流通が可能となるため、優れた性能が発揮できる。   The monolith of the present invention has a total pore volume of 0.5 to 5 ml / g, preferably 0.8 to 4 ml / g. If the total pore volume is too small, the pressure loss at the time of fluid permeation increases, which is not preferable. Further, the amount of permeated fluid per unit cross-sectional area decreases, and the processing capacity decreases. On the other hand, if the total pore volume is too large, the adsorption capacity per volume decreases, which is not preferable. Since the monolith of the present invention has an average diameter and total pore volume of the openings in the above ranges and is a thick skeleton, when this is used as an adsorbent, the contact area with the fluid is large and the fluid is smooth. Excellent distribution can be achieved.

なお、モノリスに水を透過させた際の圧力損失は、多孔質体を1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.005〜0.1MPa/m・LVの範囲、特に0.005〜0.05MPa/m・LVであることが好ましい。   The pressure loss when water is allowed to permeate through the monolith is the pressure loss when water is passed through a column filled with 1 m of a porous body at a water flow velocity (LV) of 1 m / h (hereinafter referred to as “differential pressure coefficient”). In other words, it is preferably in the range of 0.005 to 0.1 MPa / m · LV, particularly 0.005 to 0.05 MPa / m · LV.

本発明のモノリスにおいて、連続マクロポア構造体の骨格を構成する材料は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜50モル%、好適には0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、50モル%を越えると、多孔質体の脆化が進行し、柔軟性が失われるため好ましくなく、特に、イオン交換体の場合にはイオン交換基導入量が減少してしまうため好ましくない。該ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等の芳香族ビニルポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー等の架橋重合体が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続マクロポア構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸・アルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい材料として挙げられる。   In the monolith of the present invention, the material constituting the skeleton of the continuous macropore structure is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 50 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all structural units constituting the polymer material. It is preferable. If the cross-linking structural unit is less than 0.3 mol%, it is not preferable because the mechanical strength is insufficient. On the other hand, if it exceeds 50 mol%, embrittlement of the porous body proceeds and flexibility is lost. In particular, in the case of an ion exchanger, the amount of ion exchange groups introduced is decreased, which is not preferable. The type of the polymer material is not particularly limited, and examples thereof include aromatic vinyl polymers such as polystyrene, poly (α-methylstyrene), polyvinyl toluene, polyvinyl benzyl chloride, polyvinyl biphenyl, and polyvinyl naphthalene; polyolefins such as polyethylene and polypropylene; Poly (halogenated polyolefin) such as vinyl chloride and polytetrafluoroethylene; Nitrile-based polymer such as polyacrylonitrile; Cross-linking weight of (meth) acrylic polymer such as polymethyl methacrylate, polyglycidyl methacrylate, and polyethyl acrylate Coalesce is mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, the cross-linking weight of the aromatic vinyl polymer is high due to the ease of forming a continuous macropore structure, the ease of introducing ion-exchange groups and the high mechanical strength, and the high stability to acids and alkalis. A styrene-divinylbenzene copolymer and a vinylbenzyl chloride-divinylbenzene copolymer are particularly preferable materials.

本発明のモノリスは、その厚みが1mm以上であり、膜状の多孔質体とは区別される。厚みが1mm未満であると、多孔質体一枚当りの吸着容量が極端に低下してしまうため好ましくない。該モノリスの厚みは、好適には3mm〜1000mmである。また、本発明のモノリスは、骨格が太いため、機械的強度が高い。   The monolith of the present invention has a thickness of 1 mm or more, and is distinguished from a membrane-like porous body. If the thickness is less than 1 mm, the adsorption capacity per porous body is extremely lowered, which is not preferable. The thickness of the monolith is preferably 3 mm to 1000 mm. In addition, the monolith of the present invention has high mechanical strength because of its thick skeleton.

本発明のモノリスを吸着剤として使用する場合、例えば、円筒型カラムや角型カラムに、該モノリスを当該カラムに挿入できる形状に切り出したものを吸着剤として充填し、これにベンゼン、トルエン、フェノール、パラフィン等の疎水性物質を含有する被処理水を通水させれば、該吸着剤に前記疎水性物質が効率よく吸着される。   When the monolith of the present invention is used as an adsorbent, for example, a cylindrical column or a square column is filled with the monolith cut into a shape that can be inserted into the column as an adsorbent, and this is filled with benzene, toluene, phenol. If the water to be treated containing a hydrophobic substance such as paraffin is allowed to flow, the hydrophobic substance is efficiently adsorbed to the adsorbent.

(モノリスイオン交換体の説明)
次ぎに、本発明のモノリスイオン交換体について説明する。モノリスイオン交換体において、モノリスと同一構成要素については説明を省略し、異なる点について主に説明する。モノリスイオン交換体は、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径30〜300μm、好ましくは30〜200μm、特に35〜150μmの開口(メソポア)となる連続マクロポア構造体である。モノリスイオン交換体の開口の平均直径は、モノリスにイオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの開口の平均直径よりも大となる。開口の平均直径が30μm未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、開口の平均直径が大き過ぎると、流体とモノリスイオン交換体との接触が不十分となり、その結果、イオン交換特性が低下してしまうため好ましくない。上記開口の平均直径は、イオン交換基導入前の多孔質体の平均直径に、イオン交換基導入前後の多孔質体の膨潤率を乗じて算出した値を指す。
(Description of monolith ion exchanger)
Next, the monolith ion exchanger of the present invention will be described. In the monolith ion exchanger, the description of the same components as those of the monolith is omitted, and different points are mainly described. The monolith ion exchanger is a continuous macropore structure in which bubble-shaped macropores overlap each other, and the overlapping portion becomes an opening (mesopore) having an average diameter of 30 to 300 μm, preferably 30 to 200 μm, particularly 35 to 150 μm. The average diameter of the opening of the monolith ion exchanger is larger than the average diameter of the opening of the monolith because the entire monolith swells when an ion exchange group is introduced into the monolith. If the average diameter of the openings is less than 30 μm, the pressure loss at the time of fluid permeation increases, which is not preferable. If the average diameter of the openings is too large, the contact between the fluid and the monolith ion exchanger becomes insufficient. As a result, the ion exchange characteristics deteriorate, which is not preferable. The average diameter of the openings refers to a value calculated by multiplying the average diameter of the porous body before introducing the ion exchange group by the swelling rate of the porous body before and after introducing the ion exchange group.

モノリスイオン交換体において、連続マクロポア構造体の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中、25〜50%、好ましくは25〜45%である。断面に表れる骨格部面積が、画像領域中、25%未満であると、細い骨格となり、体積当りのイオン交換容量が低下してしまうため好ましくなく、50%を超えると、骨格が太くなり過ぎ、イオン交換特性の均一性が失われるため好ましくない。骨格部の特定方法及び測定方法はモノリスと同様である。   In the monolith ion exchanger, in the SEM image of the cut surface of the continuous macropore structure, the skeleton part area appearing in the cross section is 25 to 50%, preferably 25 to 45% in the image region. If the area of the skeleton part appearing in the cross section is less than 25% in the image region, it becomes a thin skeleton, which is not preferable because the ion exchange capacity per volume decreases, and if it exceeds 50%, the skeleton becomes too thick. Since the uniformity of ion exchange characteristics is lost, it is not preferable. The identification method and measurement method of the skeleton are the same as those of the monolith.

モノリスイオン交換体は、連続マクロポア構造体の骨格を構成する壁部の厚みは概ね30〜300μmである。壁部の厚みが30μm未満であると、体積当りのイオン交換容量が低下してしまうため好ましくなく、300μmを超えると、イオン交換特性の均一性が失われるため好ましくない。モノリスイオン交換体の壁部の定義及び測定方法などは、モノリスと同様である。   In the monolith ion exchanger, the thickness of the wall constituting the skeleton of the continuous macropore structure is approximately 30 to 300 μm. If the thickness of the wall is less than 30 μm, the ion exchange capacity per volume is lowered, which is not preferable, and if it exceeds 300 μm, the uniformity of the ion exchange characteristics is lost. The definition and measurement method of the wall of the monolith ion exchanger are the same as those of the monolith.

また、モノリスイオン交換体の全細孔容積は、モノリスの全細孔容積と同様である。すなわち、モノリスにイオン交換基を導入することで膨潤し開口径が大きくなっても、骨格部が太るため全細孔容積はほとんど変化しない。全細孔容積が0.5ml/g未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過流体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当りのイオン交換容量が低下してしまうため好ましくない。   The total pore volume of the monolith ion exchanger is the same as the total pore volume of the monolith. That is, even when the ion exchange group is introduced into the monolith and swells to increase the opening diameter, the total pore volume hardly changes because the skeleton is thick. If the total pore volume is less than 0.5 ml / g, the pressure loss at the time of fluid permeation increases, which is not preferable. Further, the amount of permeated fluid per unit cross-sectional area decreases, and the processing capacity decreases. Therefore, it is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the ion exchange capacity per volume decreases, which is not preferable.

なお、モノリスイオン交換体に水を透過させた際の圧力損失は、モノリスに水を透過させた際の圧力損失と同様である。   Note that the pressure loss when water is permeated through the monolith ion exchanger is the same as the pressure loss when water is permeated through the monolith.

本発明のモノリスイオン交換体は、水湿潤状態での体積当りのイオン交換容量が0.4mg当量/ml以上、好ましくは0.4〜1.8mg当量/mlのイオン交換容量を有する。特開2002−306976号に記載されているような本発明とは異なる連続マクロポア構造を有する従来型のモノリス状有機多孔質イオン交換体では、実用的に要求される低い圧力損失を達成するために、開口径を大きくすると、全細孔容積もそれに伴って大きくなってしまうため、体積当りのイオン交換容量が低下する、体積当りの交換容量を増加させるために全細孔容積を小さくしていくと、開口径が小さくなってしまうため圧力損失が増加するといった欠点を有していた。それに対して、本発明のモノリスイオン交換体は、開口径を更に大きくすると共に、連続マクロポア構造体の骨格を太くする(骨格の壁部を厚くする)ことができるため、圧力損失を低く押さえたままで体積当りのイオン交換容量を飛躍的に大きくすることができる。体積当りのイオン交換容量が0.4mg当量/ml未満であると、破過までに処理できるイオンを含んだ水の量、即ち脱イオン水の製造能力が低下してしまうため好ましくない。なお、本発明のモノリスイオン交換体の重量当りのイオン交換容量は特に限定されないが、イオン交換基が多孔質体の表面及び骨格内部にまで均一に導入しているため、3〜5mg当量/gである。なお、イオン交換基が表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。   The monolith ion exchanger of the present invention has an ion exchange capacity per volume in a water-wet state of 0.4 mg equivalent / ml or more, preferably 0.4 to 1.8 mg equivalent / ml. In the conventional monolithic organic porous ion exchanger having a continuous macropore structure different from the present invention as described in JP-A-2002-306976, in order to achieve a low pressure loss that is practically required, When the opening diameter is increased, the total pore volume is increased accordingly, so that the ion exchange capacity per volume is decreased, and the total pore volume is decreased to increase the exchange capacity per volume. In addition, since the opening diameter is reduced, the pressure loss increases. On the other hand, the monolith ion exchanger of the present invention can further increase the opening diameter and thicken the skeleton of the continuous macropore structure (thicken the skeleton wall), so that the pressure loss is kept low. It is possible to dramatically increase the ion exchange capacity per volume. If the ion exchange capacity per volume is less than 0.4 mg equivalent / ml, the amount of water containing ions that can be processed before breakthrough, that is, the ability to produce deionized water is not preferred. The ion exchange capacity per weight of the monolith ion exchanger of the present invention is not particularly limited. However, since the ion exchange groups are uniformly introduced to the surface of the porous body and the inside of the skeleton, 3 to 5 mg equivalent / g It is. The ion exchange capacity of a porous body in which ion exchange groups are introduced only on the surface cannot be determined unconditionally depending on the type of the porous body or ion exchange groups, but is at most 500 μg equivalent / g.

本発明のモノリスに導入するイオン交換基としては、スルホン酸基、カルボン酸基、イミノ二酢酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基;アミノリン酸基、スルホベタイン等の両性イオン交換基が挙げられる。   Examples of the ion exchange group introduced into the monolith of the present invention include cation exchange groups such as a sulfonic acid group, a carboxylic acid group, an iminodiacetic acid group, a phosphoric acid group, and a phosphoric ester group; a quaternary ammonium group, a tertiary amino group, Examples include anion exchange groups such as secondary amino group, primary amino group, polyethyleneimine group, tertiary sulfonium group, and phosphonium group; amphoteric ion exchange groups such as aminophosphate group and sulfobetaine.

本発明のモノリスイオン交換体において、導入されたイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMA等を用いることで、比較的簡単に確認することができる。また、イオン交換基が、モノリスの表面のみならず、多孔質体の骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。   In the monolith ion exchanger of the present invention, the introduced ion exchange groups are uniformly distributed not only on the surface of the porous body but also within the skeleton of the porous body. Here, “ion exchange groups are uniformly distributed” means that the distribution of ion exchange groups is uniformly distributed on the surface and inside the skeleton in the order of at least μm. The distribution of ion exchange groups can be confirmed relatively easily by using EPMA or the like. In addition, if the ion exchange groups are uniformly distributed not only on the surface of the monolith but also within the skeleton of the porous body, the physical and chemical properties of the surface and the interior can be made uniform, so that the swelling and shrinkage can be achieved. The durability against is improved.

本発明のモノリスは、上記I工程〜III工程を行なうことにより得られる。本発明のモノリスの製造方法において、I工程は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜16ml/gの連続マクロポア構造のモノリス中間体を得る工程である。このモノリス中間体を得るI工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。   The monolith of the present invention can be obtained by performing the above steps I to III. In the method for producing a monolith according to the present invention, step I comprises preparing a water-in-oil emulsion by stirring a mixture of an oil-soluble monomer not containing an ion exchange group, a surfactant and water, and then a water-in-oil emulsion. To obtain a monolith intermediate having a continuous macropore structure with a total pore volume of 5 to 16 ml / g. The step I for obtaining the monolith intermediate may be performed according to the method described in JP-A-2002-306976.

(モノリス中間体の製造方法)
イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの好適なものとしては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜50モル%、好ましくは0.3〜5モル%とすることが、後の工程でイオン交換基量を多く導入するに際して必要な機械的強度が得られる点で好ましい。
(Method for producing monolith intermediate)
Examples of the oil-soluble monomer that does not contain an ion exchange group include an oleophilic monomer that does not contain an ion exchange group such as a carboxylic acid group, a sulfonic acid group, and a quaternary ammonium group, has low solubility in water. Preferable examples of these monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene, ethylene, propylene, isobutene, butadiene, ethylene glycol dimethacrylate, and the like. These monomers can be used alone or in combination of two or more. However, a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and the content thereof is 0.3 to 50 mol%, preferably 0.3 to the total oil-soluble monomer. 5 mol% is preferable in that the mechanical strength necessary for introducing a large amount of ion-exchange groups in a later step can be obtained.

界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は1種単独又は2種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。   The surfactant is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when an oil-soluble monomer containing no ion exchange group and water are mixed, and sorbitan monooleate, Nonionic surfactants such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene sorbitan monooleate; potassium oleate Anionic surfactants such as sodium dodecylbenzenesulfonate and dioctyl sodium sulfosuccinate; cationic surfactants such as distearyldimethylammonium chloride; amphoteric surfactants such as lauryldimethylbetaine can be used . These surfactants can be used alone or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the surfactant added may vary depending on the type of oil-soluble monomer and the size of the target emulsion particles (macropores), but it cannot be generally stated, but the total amount of oil-soluble monomer and surfactant Can be selected within a range of about 2 to 70%.

また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、アゾビスイソブチロニトリル、アゾビスシクロヘキサンニトリル、アゾビスシクロヘキサンカルボニトリル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム、テトラメチルチウラムジスルフィド等が挙げられる。   In Step I, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, azobisisobutyronitrile, azobiscyclohexanenitrile, azobiscyclohexanecarbonitrile, benzoyl peroxide, potassium persulfate, ammonium persulfate, Examples thereof include hydrogen oxide-ferrous chloride, sodium persulfate-sodium acid sulfite, and tetramethylthiuram disulfide.

イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。   The mixing method for mixing the oil-soluble monomer not containing an ion exchange group, a surfactant, water, and a polymerization initiator to form a water-in-oil emulsion is not particularly limited. Method of mixing at once, oil-soluble monomer, surfactant and oil-soluble polymerization initiator oil-soluble component and water or water-soluble polymerization initiator water-soluble component separately and uniformly dissolved, A method of mixing the components can be used. There is no particular limitation on the mixing apparatus for forming the emulsion, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate apparatus may be selected to obtain the desired emulsion particle size. Moreover, there is no restriction | limiting in particular about mixing conditions, The stirring rotation speed and stirring time which can obtain the target emulsion particle size can be set arbitrarily.

I工程で得られるモノリス中間体は、連続マクロポア構造を有する。これを重合系に共存させると、モノリス中間体の構造を鋳型として骨太の骨格を有する多孔構造が形成される。また、モノリス中間体は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜50モル%、好ましくは0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。特に、全細孔容積が10〜16ml/gと大きい場合には、連続マクロポア構造を維持するため、架橋構造単位を2モル%以上含有していることが好ましい。一方、50モル%を越えると、多孔質体の脆化が進行し、柔軟性が失われるため好ましくない。   The monolith intermediate obtained in Step I has a continuous macropore structure. When this coexists in the polymerization system, a porous structure having a thick skeleton is formed using the structure of the monolith intermediate as a template. The monolith intermediate is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 50 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all the structural units constituting the polymer material. Is preferred. When the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. In particular, when the total pore volume is as large as 10 to 16 ml / g, in order to maintain a continuous macropore structure, it is preferable to contain 2 mol% or more of cross-linked structural units. On the other hand, if it exceeds 50 mol%, the porous body becomes brittle and the flexibility is lost.

モノリス中間体のポリマー材料の種類としては、特に制限はなく、前述のモノリスのポリマー材料と同じものが挙げられる。これにより、モノリス中間体の骨格に同様のポリマーを形成して、骨格を太らせ均一な骨格構造のモノリスを得ることができる。   The type of the polymer material of the monolith intermediate is not particularly limited, and examples thereof include the same materials as the monolith polymer material described above. Thereby, the same polymer can be formed in the skeleton of the monolith intermediate, and the skeleton can be thickened to obtain a monolith having a uniform skeleton structure.

モノリス中間体の全細孔容積は、5〜16ml/g、好適には6〜16ml/gである。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの全細孔容積が小さくなりすぎ、流体透過時の圧力損失が大きくなるため好ましくない。一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が連続マクロポア構造から逸脱するため好ましくない。モノリス中間体の全細孔容積を上記数値範囲とするには、モノマーと水の比を、概ね1:5〜1:20とすればよい。   The total pore volume of the monolith intermediate is 5 to 16 ml / g, preferably 6 to 16 ml / g. If the total pore volume is too small, the total pore volume of the monolith obtained after polymerizing the vinyl monomer becomes too small, and the pressure loss during fluid permeation increases, which is not preferable. On the other hand, if the total pore volume is too large, the structure of the monolith obtained after polymerizing the vinyl monomer deviates from the continuous macropore structure, which is not preferable. In order to make the total pore volume of the monolith intermediate within the above numerical range, the ratio of the monomer and water may be about 1: 5 to 1:20.

また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が20〜200μmである。開口の平均直径が20μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。一方、200μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、流体とモノリスやモノリスイオン交換体との接触が不十分となり、その結果、吸着特性やイオン交換特性が低下してしまうため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。   Moreover, the average diameter of the opening (mesopore) which is an overlap part of a macropore and a macropore is 20-200 micrometers in a monolith intermediate. If the average diameter of the openings is less than 20 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes small, and the pressure loss during fluid permeation increases, which is not preferable. On the other hand, if it exceeds 200 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, and the contact between the fluid and the monolith or monolith ion exchanger becomes insufficient. This is not preferable because the characteristics deteriorate. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.

(モノリスの製造方法)
II工程は、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。
(Monolith manufacturing method)
Step II consists of a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent and a polymerization initiator that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer. A step of preparing a mixture of In addition, there is no order of I process and II process, II process may be performed after I process, and I process may be performed after II process.

II工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等の芳香族ビニルモノマーである。   The vinyl monomer used in step II is not particularly limited as long as it is a lipophilic vinyl monomer containing a polymerizable vinyl group in the molecule and having high solubility in an organic solvent, but is allowed to coexist in the polymerization system. It is preferred to select a vinyl monomer that produces the same or similar polymer material as the monolith intermediate. Specific examples of these vinyl monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl and vinyl naphthalene; α-olefins such as ethylene, propylene, 1-butene and isobutene; Diene monomers such as butadiene, isoprene and chloroprene; halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl such as vinyl acetate and vinyl propionate Esters: methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-methacrylic acid 2- Hexyl, cyclohexyl methacrylate, benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. These monomers can be used alone or in combination of two or more. The vinyl monomer suitably used in the present invention is an aromatic vinyl monomer such as styrene or vinyl benzyl chloride.

これらビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で3〜40倍、好ましくは4〜30倍である。ビニルモノマー添加量が多孔質体に対して3倍未満であると、生成したモノリスの骨格(モノリス骨格の壁部の厚み)を太くできず、体積当りの吸着容量やイオン交換基導入後の体積当りのイオン交換容量が小さくなってしまうため好ましくない。一方、ビニルモノマー添加量が40倍を超えると、開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。   The added amount of these vinyl monomers is 3 to 40 times, preferably 4 to 30 times, by weight with respect to the monolith intermediate coexisting during polymerization. If the amount of vinyl monomer added is less than 3 times that of the porous material, the resulting monolith skeleton (the thickness of the monolith skeleton wall) cannot be increased, and the adsorption capacity per volume and the volume after introduction of ion-exchange groups. Since the ion exchange capacity per unit becomes small, it is not preferable. On the other hand, if the amount of vinyl monomer added exceeds 40 times, the opening diameter becomes small and the pressure loss during fluid permeation increases, which is not preferable.

II工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量に対して0.3〜50モル%、特に0.3〜5モル%であることが好ましい。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、50モル%を越えると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくないなお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体の架橋密度とほぼ等しくなるように用いることが好ましい。両者の使用量があまりに大きくかけ離れると、生成したモノリス中で架橋密度分布の偏りが生じ、イオン交換基導入反応時にクラックが生じやすくなる。   As the crosslinking agent used in step II, a crosslinking agent containing at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis. The amount of the crosslinking agent used is preferably 0.3 to 50 mol%, particularly 0.3 to 5 mol%, based on the total amount of the vinyl monomer and the crosslinking agent. When the amount of the crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. On the other hand, if it exceeds 50 mol%, the brittleness of the monolith proceeds and the flexibility is lost, and the introduction amount of ion exchange groups is reduced. It is preferable to use it so as to be approximately equal to the crosslinking density of the monolith intermediate coexisting during the polymerization of the vinyl monomer / crosslinking agent. If the amounts used of both are too large, the crosslink density distribution is biased in the produced monolith, and cracks are likely to occur during the ion exchange group introduction reaction.

II工程で用いられる有機溶媒は、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、エチレングリコール、プロピレングリコール、テトラメチレングリコール、グリセリン等のアルコール類;ジエチルエーテル、エチレングリコールジメチルエーテル、セロソルブ、メチルセロソルブ、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記ビニルモノマーの濃度が30〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱してビニルモノマー濃度が30重量%未満となると、重合速度が低下したり、重合後のモノリス構造が本発明の範囲から逸脱してしまうため好ましくない。一方、ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。   The organic solvent used in Step II is an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer. In other words, it is a poor solvent for the polymer formed by polymerization of the vinyl monomer. . Since the organic solvent varies greatly depending on the type of vinyl monomer, it is difficult to list general specific examples. For example, when the vinyl monomer is styrene, the organic solvent includes methanol, ethanol, propanol, butanol, Alcohols such as hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, ethylene glycol, propylene glycol, tetramethylene glycol, glycerin; diethyl ether, ethylene glycol dimethyl ether, cellosolve, methyl cellosolve, butyl cellosolve, polyethylene glycol, polypropylene Chain (poly) ethers such as glycol and polytetramethylene glycol; hexane, heptane, octane, isooctane, decane, dode Chain saturated hydrocarbons such as down, ethyl acetate, isopropyl acetate, cellosolve acetate, esters such as ethyl propionate. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the vinyl monomer is 30 to 80% by weight. If the amount of the organic solvent used deviates from the above range and the vinyl monomer concentration is less than 30% by weight, the polymerization rate is lowered, or the monolith structure after polymerization deviates from the range of the present invention. On the other hand, if the vinyl monomer concentration exceeds 80% by weight, the polymerization may run away, which is not preferable.

重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。   As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide and the like. The amount of the polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but can be used in a range of about 0.01 to 5% with respect to the total amount of vinyl monomer and crosslinking agent.

III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下に重合を行い、該モノリス中間体の骨格より太い骨格を有する骨太のモノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明のように上記重合系に連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の骨太のモノリスが得られる。その理由は詳細には解明されていないが、モノリス中間体が存在しない場合は、重合により生じた架橋重合体が粒子状に析出・沈殿することで粒子凝集構造が形成されるのに対し、重合系に多孔質体(中間体)が存在すると、ビニルモノマー及び架橋剤が液相から多孔質体の骨格部に吸着又は分配され、多孔質体中で重合が進行して骨太骨格のモノリスが得られると考えられる。なお、開口径は重合の進行により狭められるが、モノリス中間体の全細孔容積が大きいため、例え骨格が骨太になっても適度な大きさの開口径が得られる。   In step III, the mixture obtained in step II is allowed to stand and polymerize in the presence of the monolith intermediate obtained in step I to obtain a thick monolith having a skeleton thicker than the skeleton of the monolith intermediate. It is a process to obtain. The monolith intermediate used in the step III plays a very important role in creating the monolith having the novel structure of the present invention. As disclosed in JP-A-7-501140 and the like, when a vinyl monomer and a crosslinking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic porous material is obtained. The body is obtained. On the other hand, when a monolith intermediate having a continuous macropore structure is present in the polymerization system as in the present invention, the structure of the monolith after polymerization changes dramatically, the particle aggregation structure disappears, and the above-mentioned thick monolith is lost. Is obtained. The reason for this has not been elucidated in detail, but in the absence of a monolith intermediate, the cross-linked polymer produced by polymerization precipitates and precipitates in the form of particles, while a particle aggregate structure is formed. When a porous body (intermediate) is present in the system, the vinyl monomer and the cross-linking agent are adsorbed or distributed from the liquid phase to the skeleton of the porous body, and polymerization proceeds in the porous body to obtain a thick skeleton monolith. It is thought that. Although the opening diameter is narrowed by the progress of the polymerization, since the total pore volume of the monolith intermediate is large, an appropriate opening diameter can be obtained even if the skeleton becomes thick.

反応容器の内容積は、モノリス中間体を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体が隙間無く入るもののいずれであってもよい。このうち、重合後の骨太のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。   The internal volume of the reaction vessel is not particularly limited as long as it is large enough to allow the monolith intermediate to exist in the reaction vessel. When the monolith intermediate is placed in the reaction vessel, there is a gap around the monolith in plan view. Or a monolith intermediate in the reaction vessel with no gap. Of these, the thick monolith after polymerization is not pressed from the inner wall of the container and enters the reaction container without any gap, and the monolith is not distorted, and the reaction raw materials are not wasted and efficient. Even when the internal volume of the reaction vessel is large and there are gaps around the monolith after polymerization, the vinyl monomer and the crosslinking agent are adsorbed and distributed on the monolith intermediate, so the gaps in the reaction vessel A particle aggregate structure is not generated in the portion.

III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、ビニルモノマーの添加量が重量で3〜40倍、好ましくは4〜30倍となるように配合するのが好適である。これにより、適度な開口径を有しつつ、骨太の骨格を有するモノリスを得ることができる。反応容器中、混合物中のビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。   In step III, the monolith intermediate is placed in a reaction vessel impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in Step II and the monolith intermediate is 3 to 40 times by weight, preferably 4 to 30 times by weight, relative to the monolith intermediate. It is suitable to mix. Thereby, it is possible to obtain a monolith having a thick skeleton while having an appropriate opening diameter. In the reaction vessel, the vinyl monomer and the crosslinking agent in the mixture are adsorbed and distributed on the skeleton of the monolith intermediate that has been allowed to stand, and polymerization proceeds in the skeleton of the monolith intermediate.

重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択できる。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間加熱重合させればよい。加熱重合により、モノリス中間体の骨格に吸着、分配したビニルモノマーと架橋剤が該骨格内で重合し、該骨格を太らせる。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して骨太のモノリスを得る。   Various polymerization conditions can be selected depending on the type of monomer and the type of initiator. For example, when 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, etc. are used as initiators In a sealed container under an inert atmosphere, heat polymerization may be performed at 30 to 100 ° C. for 1 to 48 hours. By heat polymerization, the vinyl monomer adsorbed and distributed on the skeleton of the monolith intermediate and the cross-linking agent are polymerized in the skeleton to thicken the skeleton. After completion of the polymerization, the contents are taken out and extracted with a solvent such as acetone for the purpose of removing unreacted vinyl monomer and organic solvent to obtain a thick monolith.

(モノリスイオン交換体の製造方法)
次に、本発明のモノリスイオン交換体の製造方法について説明する。該モノリスイオン交換体の製造方法としては、特に制限はないが、上記の方法によりモノリスを製造した後、イオン交換基を導入する方法が、得られるモノリスイオン交換体の多孔構造を厳密にコントロールできる点で好ましい。
(Method for producing monolithic ion exchanger)
Next, the manufacturing method of the monolith ion exchanger of this invention is demonstrated. The production method of the monolith ion exchanger is not particularly limited, but the method of introducing the ion exchange group after producing the monolith by the above method can strictly control the porous structure of the obtained monolith ion exchanger. This is preferable.

上記モノリスにイオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、スルホン酸基を導入する方法としては、モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法;モノリスに均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部に導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。また、四級アンモニウム基を導入する方法としては、モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;モノリスに、均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。また、ベタインを導入する方法としては、上記の方法によりモノリスに三級アミンを導入した後、モノヨード酢酸を反応させ導入する方法等が挙げられる。これらの方法のうち、スルホン酸基を導入する方法については、クロロ硫酸を用いてスチレン-ジビニルベンゼン共重合体にスルホン酸基を導入する方法が、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリスを製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基;アミノリン酸基、ベタイン、スルホベタイン等の両性イオン交換基が挙げられる。   There is no restriction | limiting in particular as a method to introduce | transduce an ion exchange group into the said monolith, Well-known methods, such as a polymer reaction and graft polymerization, can be used. For example, as a method of introducing a sulfonic acid group, if the monolith is a styrene-divinylbenzene copolymer, etc., a method of sulfonation using chlorosulfuric acid, concentrated sulfuric acid or fuming sulfuric acid; A method of grafting a sodium styrenesulfonate or acrylamido-2-methylpropanesulfonic acid by introducing a mobile group into the skeleton surface or inside the skeleton; Similarly, after graft polymerization of glycidyl methacrylate, a sulfonic acid group is introduced by functional group conversion. And the like. As a method for introducing a quaternary ammonium group, if the monolith is a styrene-divinylbenzene copolymer or the like, a method of introducing a chloromethyl group with chloromethyl methyl ether or the like and then reacting with a tertiary amine; A method in which chloromethylstyrene and divinylbenzene are produced by copolymerization and reacted with a tertiary amine; N, N, N-trimethylammonium is introduced into the monolith by introducing radical initiation groups and chain transfer groups uniformly into the skeleton surface and inside the skeleton. Examples include a method of graft polymerization of ethyl acrylate and N, N, N-trimethylammoniumpropylacrylamide; a method of grafting glycidyl methacrylate in the same manner and then introducing a quaternary ammonium group by functional group conversion. Examples of the method for introducing betaine include a method in which a tertiary amine is introduced into a monolith by the above method and then introduced by reacting with monoiodoacetic acid. Among these methods, the method of introducing a sulfonic acid group includes a method of introducing a sulfonic acid group into a styrene-divinylbenzene copolymer using chlorosulfuric acid, and a method of introducing a quaternary ammonium group includes styrene. -Introducing a chloromethyl group into the divinylbenzene copolymer with chloromethyl methyl ether, etc., then reacting with a tertiary amine, or producing a monolith by copolymerization of chloromethylstyrene and divinylbenzene and reacting with a tertiary amine The method is preferable in that the ion exchange group can be introduced uniformly and quantitatively. The ion exchange groups to be introduced include cation exchange groups such as carboxylic acid groups, iminodiacetic acid groups, sulfonic acid groups, phosphoric acid groups, and phosphoric ester groups; quaternary ammonium groups, tertiary amino groups, and secondary amino groups. Groups, primary amino groups, polyethyleneimine groups, tertiary sulfonium groups, phosphonium groups and the like; and amphoteric ion exchange groups such as aminophosphate groups, betaines and sulfobetaines.

本発明のモノリスイオン交換体は、骨太のモノリスにイオン交換基が導入されるため例えば骨太モノリスの1.4〜1.9倍のように大きく膨潤する。すなわち、特開2002−306976記載の従来のモノリスにイオン交換基が導入されたものよりも膨潤度が遥かに大きい。このため、骨太モノリスの開口径が小さいものであっても、モノリスイオン交換体の開口径は概ね、上記倍率で大きくなる。また、開口径が膨潤で大きくなっても全細孔容積は変化しない。従って、本発明のモノリスイオン交換体は、開口径が格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。また、骨格が太いため、水湿潤状態での体積当りのイオン交換容量を大きくでき、被処理水を低圧、大流量で長期間通水することが可能であり、2床3塔式純水製造装置や電気式脱イオン水製造装置に充填して好適に用いることができる。   The monolith ion exchanger of the present invention swells greatly, for example, 1.4 to 1.9 times that of the thick monolith, since the ion exchange group is introduced into the thick monolith. That is, the degree of swelling is much greater than that obtained by introducing an ion exchange group into a conventional monolith described in JP-A-2002-306976. For this reason, even if the opening diameter of the thick monolith is small, the opening diameter of the monolith ion exchanger generally increases at the above magnification. In addition, the total pore volume does not change even when the opening diameter increases due to swelling. Therefore, the monolith ion exchanger of the present invention has a high mechanical strength because it has a thick bone skeleton despite the remarkably large opening diameter. In addition, since the skeleton is thick, it is possible to increase the ion exchange capacity per volume in a wet state of water, and it is possible to pass water to be treated for a long period of time at a low pressure and a large flow rate. It can be suitably used by filling an apparatus or an electric deionized water production apparatus.

本発明のケミカルフィルターは、上記モノリス、該モノリスに貫通孔を設けたもの、モノリスイオン交換体又は該モノリスイオン交換体に貫通孔を設けたもの、さらには、すでに公知のイオン交換樹脂やイオン交換繊維を用いた吸着層と上記モノリスを組み合わせたものを吸着層として備えるものであれば、フィルターの構成に特に制限はないが、通常、吸着層と該吸着層を支持する支持枠体(ケーシング)とで構成される。該支持枠体は吸着層を支持すると共に、既存設備(設置場所)との接合を司る機能を有する。支持部材の被処理気体流通部分は、脱ガスのないステンレス、アルミニウム、プラスチック等の素材からなる。吸着層の形状としては、特に制限されず、所定の厚みを有するブロック形状、薄板を複数枚重ね合わせた積層形状、定形状又は不定形状の粒状物を多数充填した充填構造などが挙げられる。また、吸着層からガス状有機系汚染物質が極微量発生する恐れのある場合、あるいは被処理気体中の有機性ガス状汚染物質の濃度が高い場合には、吸着層の下流側に物理吸着層を付設することが、下流側の物理吸着層で上流側の吸着層で除去できなかった残部のガス状有機系汚染物質を確実に除去できる点で好適である。   The chemical filter of the present invention includes the monolith, a monolith provided with a through hole, a monolith ion exchanger or a monolith ion exchanger provided with a through hole, and a known ion exchange resin or ion exchange. The structure of the filter is not particularly limited as long as it includes a combination of an adsorption layer using fibers and the above monolith as an adsorption layer, but usually the adsorption layer and a support frame (casing) that supports the adsorption layer It consists of. The support frame supports the adsorbing layer and has a function of managing joining with existing equipment (installation location). The gas distribution portion of the support member is made of a material such as stainless steel, aluminum, or plastic that is not degassed. The shape of the adsorbing layer is not particularly limited, and examples thereof include a block shape having a predetermined thickness, a laminated shape in which a plurality of thin plates are stacked, and a packed structure in which a large number of regular or irregular shaped particles are filled. In addition, when there is a possibility that trace amounts of gaseous organic pollutants may be generated from the adsorption layer, or when the concentration of organic gaseous pollutants in the gas to be treated is high, a physical adsorption layer is provided downstream of the adsorption layer. It is preferable that the remaining gaseous organic pollutant that could not be removed by the upstream adsorption layer in the downstream physical adsorption layer can be reliably removed.

本発明のケミカルフィルターの比表面積は1〜20m/g、好ましくは2〜18m/gである。比表面積が小さ過ぎると、処理能力が低下するため好ましくなく、大き過ぎると、モノリス状多孔質体等の強度が著しく低下するため、好ましくない。比表面積を上記範囲とするには、ビニルモノマー、架橋剤、重合開始剤及び重合温度などにより異なり一概には決定できないものの、モノリス製造の際、ビニルモノマーの添加量をモノリス中間体に対して重量で3〜40倍とし、該ビニルモノマー濃度が30〜80重量%となるように有機溶媒で希釈して重合すればよい。比表面積は水銀圧入法で測定することができる。 The specific surface area of the chemical filter of the present invention is 1 to 20 m 2 / g, preferably 2 to 18 m 2 / g. If the specific surface area is too small, it is not preferable because the processing ability decreases, and if it is too large, the strength of the monolithic porous body or the like is significantly decreased. In order to make the specific surface area within the above range, it depends on the vinyl monomer, the crosslinking agent, the polymerization initiator, the polymerization temperature, etc., but cannot be determined unconditionally. And the polymerization may be carried out by diluting with an organic solvent so that the vinyl monomer concentration becomes 30 to 80% by weight. The specific surface area can be measured by a mercury intrusion method.

該物理吸着層としては、脱臭用途に使用できる吸着剤が使用できる。具体的には、活性炭、活性炭素繊維及びゼオライトなどが挙げられる。該吸着剤は、比表面積が200m2/g以上の多孔質体が好ましく、比表面積が500m2/g以上の多孔質体がさらに好ましい。また、該物理吸着層から物理吸着剤などが飛散する恐れのある場合には、該物理吸着層の下流側に通気性を有するカバー材を配置することが好ましい。カバー材としては、有機高分子材料からなる不織布及び多孔質膜、並びにアルミニウム及びステンレス製のメッシュ等が挙げられる。これらの中、有機高分子材料からなる不織布や多孔質膜は低圧力損失で気体を透過でき、且つ微粒子捕集能力が高いため、特に好適である。 As the physical adsorption layer, an adsorbent that can be used for deodorization can be used. Specific examples include activated carbon, activated carbon fiber, and zeolite. The adsorbent is preferably a porous body having a specific surface area of 200 m 2 / g or more, and more preferably a porous body having a specific surface area of 500 m 2 / g or more. In addition, when there is a possibility that a physical adsorbent or the like is scattered from the physical adsorption layer, it is preferable to arrange a cover material having air permeability on the downstream side of the physical adsorption layer. Examples of the cover material include a nonwoven fabric and a porous film made of an organic polymer material, and a mesh made of aluminum and stainless steel. Among these, non-woven fabrics and porous membranes made of organic polymer materials are particularly suitable because they can permeate gas with low pressure loss and have a high particulate collection ability.

貫通孔は所定の厚みを有するブロック形状のモノリス又はモノリスイオン交換体において、通気方向に延びるように複数個形成するのがよい。貫通孔を設けることにより、通気差圧を更に低下させることができる。モノリス又はモノリスイオン交換体に貫通孔を設けたものを吸着層として使用する場合、見かけのモノリスに占める貫通孔の空隙率は20〜50%、好ましくは25〜40%である。貫通孔の空隙率が低すぎると、通気差圧の低下傾向が小さくなり、貫通孔の空隙率が高すぎると、ガス状汚染物質の除去効率が低下する。   In the block-shaped monolith or monolith ion exchanger having a predetermined thickness, a plurality of through holes are preferably formed so as to extend in the ventilation direction. By providing the through hole, the air pressure difference can be further reduced. When a monolith or a monolith ion exchanger provided with through holes is used as the adsorption layer, the porosity of the through holes in the apparent monolith is 20 to 50%, preferably 25 to 40%. If the porosity of the through hole is too low, the tendency of the air pressure difference to decrease is reduced, and if the porosity of the through hole is too high, the removal efficiency of the gaseous pollutant decreases.

本発明のケミカルフィルターは、半導体産業や医療用等に用いられるクリーンルームやクリーンベンチ等の高度清浄空間を形成するため、クリーンルーム内の空気や雰囲気中に含まれる有機系又は無機系のガス状汚染物質及びその他の汚染物質をイオン交換又は吸着により除去する。ガス状汚染物質及びその他の汚染物質としては、二酸化硫黄、塩酸、フッ酸、硝酸等の酸性ガス、アンモニア等の塩基性ガス、塩化アンモニウム等の塩類、フタル酸エステル系に代表される各種可塑剤、フェノール系及びリン系の酸化防止剤、ベンゾトリアゾール系などの紫外線吸収剤、リン系及びハロゲン系の難燃剤等が挙げられる。酸性ガス、塩基性ガス及び塩類はイオン交換により除去でき、各種可塑剤、酸化防止剤、紫外線吸収剤及び難燃剤は強い極性を有するため、吸着により除去することができる。   The chemical filter of the present invention is an organic or inorganic gaseous pollutant contained in the air or atmosphere in a clean room in order to form a highly clean space such as a clean room or clean bench used in the semiconductor industry or medical applications. And other contaminants are removed by ion exchange or adsorption. Gaseous pollutants and other pollutants include acid gases such as sulfur dioxide, hydrochloric acid, hydrofluoric acid, and nitric acid, basic gases such as ammonia, salts such as ammonium chloride, and various plasticizers represented by phthalate esters And phenolic and phosphorus antioxidants, ultraviolet absorbers such as benzotriazole, phosphorus and halogen flame retardants, and the like. Acid gas, basic gas and salts can be removed by ion exchange, and various plasticizers, antioxidants, ultraviolet absorbers and flame retardants have strong polarity and can be removed by adsorption.

本発明のケミカルフィルターの使用条件としては、公知の条件で行なうことができる。使用雰囲気の湿度としては、相対湿度で30〜80%程度である。気体透過速度としては、特に制限されないが、例えば0.1〜10m/sの範囲である。従来の粒状イオン交換樹脂を吸着層として使用する場合、気体透過速度は0.3〜0.5m/s程度であるが、本発明のケミカルフィルターによれば、気体透過速度が5〜10m/sのように速くても、連続気泡構造でありイオン交換容量が大きく且つ効率良くイオン交換が行なわれるため、ガス状汚染物質を吸着除去できる。また、被処理空気中の汚染物質濃度において、従来のケミカルフィルターによれば、適用範囲はアンモニアの場合、通常0.1〜10μg/m、塩化水素の場合、通常5〜50ng/m、二酸化硫黄の場合、通常0.1〜10μg/m、フタル酸エステルの場合、通常0.1〜5μg/mであるが、本発明のケミカルフィルターによれば、上記範囲に加えて、アンモニア100ng/m以下、塩化水素5ng/m以下、二酸化硫黄100ng/m以下、フタル酸エステル100ng/m以下の極微量濃度であっても十分除去できる。なお、吸着層として用いるモノリス状有機多孔質イオン交換体は、使用に際しては、従来のイオン交換樹脂の場合と同様、得られた有機多孔質イオン交換体を公知の再生方法により処理して用いる。すなわち、多孔質陽イオン交換体は、酸処理により酸型として用い、多孔質陰イオン交換体は、アルカリ処理によりOH型として用いる。また、ケミカルフィルター処理気体が使用雰囲気の湿度になるよう、予めケミカルフィルターをその使用空間における平衡水分率となる水分保有量にしておくことが、慣らし運転を省略できる点で好ましい。本発明のケミカルフィルターをブロック状で用い、気体透過速度が5〜10m/sの場合、ブロック状の吸着層の通気方向の長さは概ね50〜200mmである。 The use conditions of the chemical filter of the present invention can be performed under known conditions. The humidity of the use atmosphere is about 30 to 80% in relative humidity. Although it does not restrict | limit especially as a gas permeation | transmission speed | rate, For example, it is the range of 0.1-10 m / s. When a conventional granular ion exchange resin is used as the adsorption layer, the gas permeation rate is about 0.3 to 0.5 m / s, but according to the chemical filter of the present invention, the gas permeation rate is 5 to 10 m / s. Even if it is as fast as this, since it has an open-cell structure, the ion exchange capacity is large and ion exchange is performed efficiently, gaseous contaminants can be adsorbed and removed. Further, the concentration of contaminants in the air to be processed, according to the conventional chemical filter, the applicable range in the case of ammonia, usually 0.1-10 / m 3, the case of hydrogen chloride, typically 5-50 ng / m 3, In the case of sulfur dioxide, it is usually 0.1 to 10 μg / m 3 , and in the case of phthalate ester, it is usually 0.1 to 5 μg / m 3 , but according to the chemical filter of the present invention, in addition to the above range, ammonia Even a trace concentration of 100 ng / m 3 or less, hydrogen chloride 5 ng / m 3 or less, sulfur dioxide 100 ng / m 3 or less, and phthalate ester 100 ng / m 3 or less can be sufficiently removed. In addition, when using the monolithic organic porous ion exchanger used as the adsorption layer, the obtained organic porous ion exchanger is used by a known regeneration method as in the case of conventional ion exchange resins. That is, the porous cation exchanger is used as an acid type by acid treatment, and the porous anion exchanger is used as an OH type by alkali treatment. In addition, it is preferable that the chemical filter is previously set to a moisture content that provides an equilibrium moisture content in the use space so that the chemical filter treatment gas has a humidity of the use atmosphere in terms of omitting the break-in operation. When the chemical filter of the present invention is used in a block shape and the gas permeation rate is 5 to 10 m / s, the length of the block-shaped adsorption layer in the ventilation direction is approximately 50 to 200 mm.

本発明のケミカルフィルターは、吸着層として用いるモノリス又はモノリスイオン交換体の細孔容積や比表面積が格段に大きく、その表面や内部にイオン交換基が高密度に導入されているため、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、また、ガス状汚染物質が超微量であっても除去可能である。すなわち、従来の粒状のイオン交換樹脂は、粒子内部のイオン交換が遅く、イオン交換容量の全てが有効に使用されない。例えば粒径500μmの粒状イオン交換樹脂の場合、効率よく吸着が行なわれる範囲が表面から100μmと仮定すると、表面層の体積分率は約50%であり、効率よく吸着が行なわれる範囲のイオン交換容量は約半分となる。一方、本発明に係るモノリスイオン交換体は壁の厚みが2〜10μmであるため、全てのイオン交換基が効率よく使用される。   In the chemical filter of the present invention, the monolith or monolith ion exchanger used as the adsorption layer has a remarkably large pore volume and specific surface area, and ion exchange groups are introduced at a high density on the surface and inside thereof. Even if it is fast, it can retain the adsorption removal capability of gaseous pollutants, and it can be removed even if the amount of gaseous pollutants is extremely small. That is, the conventional granular ion exchange resin has a slow ion exchange inside the particles, and the entire ion exchange capacity is not used effectively. For example, in the case of a granular ion exchange resin having a particle diameter of 500 μm, assuming that the range in which the efficient adsorption is performed is 100 μm from the surface, the volume fraction of the surface layer is about 50%, and the ion exchange in the range in which the efficient adsorption is performed. The capacity is about half. On the other hand, since the monolith ion exchanger according to the present invention has a wall thickness of 2 to 10 μm, all ion exchange groups are used efficiently.

本発明のケミカルフィルターの吸着層に用いるモノリスイオン交換体はイオン交換体長さについても、従来の粒状イオン交換樹脂に比べて約1/4と非常に小さく、同じ体積の吸着層を用いても寿命が長くなる。   The monolithic ion exchanger used for the adsorption layer of the chemical filter of the present invention is also about 1/4 of the ion exchanger length compared with the conventional granular ion exchange resin. Becomes longer.

本発明のケミカルフィルターは、送風機ユニットと組み合わせて又は送風機ユニットに組み込まれて使用することができる。送風機ユニットとしては、特に制限はないが、通常、軸流ファンまたはブロアを送風源とする送風機と、その出力を調節するコントローラーと、該送風機と該コントローラーを収める第1ケーシングと、該ケーシングに連結される微粒子除去用のHEPAまたはULPAフィルターと、HEPAまたはULPAフィルターを収める第2ケーシングからなる。第1ケーシング及び第2ケーシングの被処理気体流通部分は、脱ガスのないステンレス、アルミニウム、プラスチック等の素材からなる。微粒子除去用フィルターのろ材についても特に制限はなく、一般的なガラス繊維やPTFEを用いることができる。クリーンルーム等で用いる場合には、ボロンや有機物を放出しないガラス繊維やPTFEがなお好ましい。   The chemical filter of the present invention can be used in combination with a blower unit or incorporated in a blower unit. Although there is no restriction | limiting in particular as an air blower unit, Usually, it is connected to the air blower which uses an axial fan or a blower as an air supply source, the controller which adjusts the output, the air blower, the 1st casing which accommodates the controller, and the casing The HEPA or ULPA filter for removing fine particles and a second casing that houses the HEPA or ULPA filter. The to-be-processed gas distribution parts of the first casing and the second casing are made of a material such as stainless steel, aluminum, or plastic that is not degassed. The filter medium for the particulate removal filter is not particularly limited, and general glass fiber or PTFE can be used. When used in a clean room or the like, glass fiber or PTFE that does not release boron or organic matter is still more preferable.

本発明のケミカルフィルターは微粒子除去用のHEPAまたはULPAフィルターの上流側に付設される。本発明のケミカルフィルターと送風機ユニットを組み合わせる形態としては、互いのケーシング同士を接続して一体化して使用する方法が挙げられる。本発明のケミカルフィルターを送風機ユニットに組み込む形態としては、吸着層を送風機ユニットに組み込む形態である。ケミカルフィルターを送風機ユニットに組み込む形態において、送風機とケミカルフィルターの位置は、どちらが上流側にきてもよい。本発明のケミカルフィルターを送風機ユニットとを組み合わせて使用すれば、ガス状汚染物質と微粒子を共に除去できる点で好ましい。   The chemical filter of the present invention is attached upstream of the HEPA or ULPA filter for removing fine particles. As a form which combines the chemical filter and blower unit of this invention, the method of connecting and mutually using casings is mentioned. As a form which incorporates the chemical filter of this invention in a fan unit, it is a form which incorporates an adsorption layer in a fan unit. In the form in which the chemical filter is incorporated in the blower unit, either the blower or the chemical filter may be located upstream. Use of the chemical filter of the present invention in combination with a blower unit is preferable in that both gaseous pollutants and fine particles can be removed.

本発明においては、モノリス又はモノリスイオン交換体等をケミカルフィルターの吸着層として用いるため、大きな空孔と均一に導入されたイオン交換基により、静圧の小さな小型の送風機においても効率よく被処理気体中の不純物を除去できる。また、体積当たりのイオン交換容量、比表面積が非常に大きく均一にイオン交換基が導入されているため、除去率の向上と長寿命化が図れる。   In the present invention, since a monolith or a monolith ion exchanger is used as an adsorption layer of a chemical filter, the gas to be treated can be efficiently processed even in a small blower with a small static pressure by using large pores and ion exchange groups introduced uniformly. Impurities can be removed. Further, since the ion exchange capacity per volume and the specific surface area are very large and the ion exchange groups are uniformly introduced, the removal rate can be improved and the life can be extended.

実施例
次に、実施例を挙げて本発明を具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
EXAMPLES Next, the present invention will be specifically described with reference to examples. However, this is merely an example and does not limit the present invention.

(I工程;モノリス中間体の製造)
スチレン19.2g、ジビニルベンゼン1.0g、ソルビタンモノオレエート(以下SMOと略す)1.0gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物をTHF1.8mlを含有する180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。該モノリス中間体のマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は56μm、全細孔容積は7.5ml/gであった。
(Step I; production of monolith intermediate)
19.2 g of styrene, 1.0 g of divinylbenzene, 1.0 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water containing 1.8 ml of THF, and a vacuum stirring defoaming mixer which is a planetary stirring device. (EM Co., Ltd.) was used and stirred under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. The average diameter of the opening (mesopore) where the macropores and macropores of the monolith intermediate overlap was 56 μm, and the total pore volume was 7.5 ml / g.

(モノリスの製造)
次いで、スチレン49.0g、ジビニルベンゼン1.0g、1-デカノール50g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.5gを混合し、均一に溶解させた(II工程)。次に上記モノリス中間体を外径70mm、厚さ約20mmの円盤状に切断して、7.6g分取した。分取したモノリス中間体を内径90mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of monoliths)
Next, 49.0 g of styrene, 1.0 g of divinylbenzene, 50 g of 1-decanol, and 0.5 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). Next, the monolith intermediate was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 20 mm, and 7.6 g was collected. The separated monolith intermediate is placed in a reaction vessel having an inner diameter of 90 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察した結果を図1に示す。図1のSEM画像は、モノリスを任意の位置で切断して得た切断面の任意の位置における画像である。図1から明らかなように、当該モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格が比較例の図5や図6のものと比べて遥かに太く、また、骨格を構成する壁部の厚みが厚いものであった。   FIG. 1 shows the result of observing the internal structure of the monolith (dry body) containing 1.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer obtained by SEM as described above. The SEM image in FIG. 1 is an image at an arbitrary position on a cut surface obtained by cutting a monolith at an arbitrary position. As is clear from FIG. 1, the monolith has a continuous macropore structure, and the skeleton constituting the continuous macropore structure is much thicker than those of the comparative examples of FIGS. 5 and 6, and The wall part which comprises was thick.

次ぎに、得られたモノリスを主観を排除して上記位置とは異なる位置で切断して得たSEM画像2点、都合3点から壁部の厚みと断面に表れる骨格部面積を測定した。壁部の厚みは1つのSEM写真から得た8点の平均であり、骨格部面積は画像解析により求めた。なお、壁部は前述の定義のものである。また、骨格部面積は3つのSEM画像の平均で示した。この結果、壁部の平均厚みは30μm、断面で表れる骨格部面積はSEM画像中28%であった。また、水銀圧入法により測定した当該モノリスの開口の平均直径は31μm、全細孔容積は2.2ml/gであった。結果を表1及び表2にまとめて示す。表1中、仕込み欄は左から順に、II工程で用いたビニルモノマー、架橋剤、I工程で得られたモノリス中間体、II工程で用いた有機溶媒を示す。   Next, the thickness of the wall part and the area of the skeleton part appearing in the cross section were measured from two SEM images obtained by cutting the obtained monolith at a position different from the above position, excluding the subjectivity, and three convenient points. The wall thickness was an average of 8 points obtained from one SEM photograph, and the skeleton area was determined by image analysis. The wall portion has the above definition. Moreover, the skeleton part area was shown by the average of three SEM images. As a result, the average thickness of the wall portion was 30 μm, and the area of the skeleton portion represented by the cross section was 28% in the SEM image. Moreover, the average diameter of the opening of the monolith measured by mercury porosimetry was 31 μm, and the total pore volume was 2.2 ml / g. The results are summarized in Tables 1 and 2. In Table 1, the preparation column shows, in order from the left, the vinyl monomer used in Step II, the crosslinking agent, the monolith intermediate obtained in Step I, and the organic solvent used in Step II.

(モノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、外径70mm、厚み約15mmの円盤状に切断した。モノリスの重量は27gであった。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸145gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して連続マクロポア構造を有するモノリスカチオン交換体を得た。
(Production of monolith cation exchanger)
The monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the monolith was 27 g. To this, 1500 ml of dichloromethane was added and heated at 35 ° C. for 1 hour, then cooled to 10 ° C. or lower, 145 g of chlorosulfuric acid was gradually added, and the temperature was raised and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was then washed with methanol to remove dichloromethane and further washed with pure water to obtain a monolith cation exchanger having a continuous macropore structure.

得られたカチオン交換体の反応前後の膨潤率は1.7倍であり、体積当りのイオン交換容量は、水湿潤状態で0.67mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の開口の平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ54μmであり、モノリスと同様の方法で求めた骨格を構成する壁部の平均厚みは50μm、骨格部面積はSEM写真の写真領域中28%、全細孔容積は2.2mlであった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.016MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。その結果を表2にまとめて示す。   The swelling rate before and after the reaction of the obtained cation exchanger was 1.7 times, and the ion exchange capacity per volume was 0.67 mg equivalent / ml in a water-wet state. The average diameter of the openings of the organic porous ion exchanger in the water wet state was estimated from the value of the organic porous body and the swelling ratio of the cation exchanger in the water wet state, and was 54 μm, and was obtained by the same method as for the monolith. The average thickness of the walls constituting the skeleton was 50 μm, the skeleton area was 28% in the photographic region of the SEM photograph, and the total pore volume was 2.2 ml. The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.016 MPa / m · LV, which is a lower pressure loss than that required for practical use. It was. The results are summarized in Table 2.

次に、モノリスカチオン交換体中のスルホン酸基の分布状態を確認するため、EPMAにより硫黄原子の分布状態を観察した。結果を図2及び図3に示す。図3は硫黄原子のカチオン交換体の表面における分布状態を示したものであり、図4は硫黄原子のカチオン交換体の断面(厚み)方向における分布状態を示したものである。図3及び図4より、スルホン酸基はカチオン交換体の骨格表面及び骨格内部(断面方向)にそれぞれ均一に導入されていることがわかる。   Next, in order to confirm the distribution state of the sulfonic acid group in the monolith cation exchanger, the distribution state of sulfur atoms was observed by EPMA. The results are shown in FIGS. FIG. 3 shows the distribution of sulfur atoms on the surface of the cation exchanger, and FIG. 4 shows the distribution of sulfur atoms in the cross-section (thickness) direction of the cation exchanger. 3 and 4, it can be seen that the sulfonic acid groups are uniformly introduced into the surface of the cation exchanger and inside the skeleton (cross-sectional direction).

実施例2〜11
(モノリスの製造)
スチレンの使用量、架橋剤の種類と使用量、有機溶媒の種類と使用量、スチレン及びジビニルベンゼン含浸重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、実施例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。なお、実施例2〜11のSEM画像を、図8〜17に示す。表2から、実施例2〜11のモノリスの開口の平均直径は22〜70μmと大きく、骨格を構成する壁部の平均厚みも25〜50μmと厚く、骨格部面積はSEM画像領域中26〜44%と骨太のモノリスであった。
Examples 2-11
(Manufacture of monoliths)
Table 1 shows the amount of styrene used, the type and amount of crosslinking agent, the type and amount of organic solvent, the porous structure of the monolith intermediate coexisting during styrene and divinylbenzene impregnation polymerization, the crosslinking density and the amount used. A monolith was produced in the same manner as in Example 1 except for the change. The results are shown in Tables 1 and 2. In addition, the SEM image of Examples 2-11 is shown to FIGS. From Table 2, the average diameter of the openings of the monoliths of Examples 2 to 11 is as large as 22 to 70 μm, the average thickness of the wall portion constituting the skeleton is as large as 25 to 50 μm, and the skeleton area is 26 to 44 in the SEM image region. % Monolithic monolith.

(モノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、それぞれ実施例1と同様の方法でクロロ硫酸と反応させ、連続マクロポア構造を有するモノリスカチオン交換体を製造した。その結果を表2に示す。実施例2〜11のモノリスカチオン交換体の開口の平均直径は46〜138μmであり、骨格を構成する壁部の平均厚みも45〜110μmと厚く、骨格部面積はSEM画像領域中26〜44%であり、差圧係数も0.006〜0.031MPa/m・LVと小さい上に、体積当りの交換容量も大きな値を示した。また、実施例8のモノリスカチオン交換体については、機械的特性の評価も行なった。
(Production of monolith cation exchanger)
The monolith produced by the above method was reacted with chlorosulfuric acid in the same manner as in Example 1 to produce a monolith cation exchanger having a continuous macropore structure. The results are shown in Table 2. The average diameter of the openings of the monolith cation exchangers of Examples 2 to 11 is 46 to 138 μm, the average thickness of the wall portion constituting the skeleton is as thick as 45 to 110 μm, and the skeleton area is 26 to 44% in the SEM image region. In addition, the differential pressure coefficient was as small as 0.006 to 0.031 MPa / m · LV, and the exchange capacity per volume showed a large value. The monolith cation exchanger of Example 8 was also evaluated for mechanical properties.

(モノリスカチオン交換体の機械的特性評価)
実施例8で得られたモノリスカチオン交換体を、水湿潤状態で4mm×5mm×10mmの短冊状に切り出し、引張強度試験の試験片とした。この試験片を引張試験機に取り付け、ヘッドスピードを0.5mm/分に設定し、水中、25℃にて試験を行った。その結果、引張強度、引張弾性率はそれぞれ45kPa、50kPaであり、従来のモノリスカチオン交換体に比べて格段に大きな値を示した。また、引張破断伸びは25%であり、従来のモノリスカチオン交換体よりも大きな値であった。
(Mechanical property evaluation of monolith cation exchanger)
The monolith cation exchanger obtained in Example 8 was cut into a strip of 4 mm × 5 mm × 10 mm in a wet state, and used as a test piece for a tensile strength test. The test piece was attached to a tensile tester, the head speed was set to 0.5 mm / min, and the test was performed at 25 ° C. in water. As a result, the tensile strength and the tensile modulus were 45 kPa and 50 kPa, respectively, which were much larger than those of the conventional monolith cation exchanger. Further, the tensile elongation at break was 25%, which was a value larger than that of the conventional monolith cation exchanger.

実施例12
(モノリスの製造)
スチレンの使用量、架橋剤の使用量、有機溶媒の使用量を表1に示す配合量に変更した以外は、実施例1と同様の方法で実施例4と同じ組成・構造のモノリスを製造した。その結果を表1及び表2に示す。実施例12のモノリスはマクロポアとマクロポアの重なり部分の開口の平均直径は38μmと大きく、骨格を構成する壁部の平均厚みも25μmと壁部の厚い有機多孔質体が得られた。
Example 12
(Manufacture of monoliths)
A monolith having the same composition and structure as in Example 4 was produced in the same manner as in Example 1, except that the amount of styrene used, the amount of crosslinking agent, and the amount of organic solvent used were changed to the amounts shown in Table 1. . The results are shown in Tables 1 and 2. In the monolith of Example 12, an organic porous body having a thick wall portion with an average diameter of an opening of a macropore-macropore overlap portion as large as 38 μm and an average thickness of a wall portion constituting the skeleton of 25 μm was obtained.

(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、外径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃、5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリス状有機多孔質体にTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。
(Production of monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropwise addition, the temperature was raised and reacted at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolithic organic porous material, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated.

得られたアニオン交換体の反応前後の膨潤率は1.6倍であり、体積当りのイオン交換容量は、水湿潤状態で0.56mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の開口の平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ61μmであり、モノリスと同様の方法で求めた骨格を構成する壁部の平均厚みは40μm、骨格部面積はSEM写真の写真領域中26%、全細孔容積は、2.9ml/gであった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.020MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。その結果を表2にまとめて示す。   The swelling ratio before and after the reaction of the obtained anion exchanger was 1.6 times, and the ion exchange capacity per volume was 0.56 mg equivalent / ml in a water-wet state. The average diameter of the openings of the organic porous ion exchanger in the water wet state was estimated from the value of the organic porous body and the swelling ratio of the cation exchanger in the water wet state, and was 61 μm. The average thickness of the walls constituting the skeleton was 40 μm, the area of the skeleton was 26% in the photographic region of the SEM photograph, and the total pore volume was 2.9 ml / g. The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.020 MPa / m · LV, which is a lower pressure loss than that required for practical use. It was. The results are summarized in Table 2.

次に、多孔質アニオン交換体中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩素原子の分布状態を観察した。その結果、塩素原子はアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がアニオン交換体中に均一に導入されていることが確認できた。   Next, in order to confirm the distribution state of the quaternary ammonium groups in the porous anion exchanger, the anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chlorine atoms was observed by EPMA. As a result, it was confirmed that the chlorine atoms were uniformly distributed not only on the skeleton surface of the anion exchanger but also inside the skeleton, and the quaternary ammonium groups were uniformly introduced into the anion exchanger.

比較例1
(連続マクロポア構造を有するモノリス状有機多孔質体の製造)
特開2002−306976号記載の製造方法に準拠して連続マクロポア構造を有するモノリス状有機多孔質体を製造した。すなわち、スチレン19.2g、ジビニルベンゼン1.0g、SMO1.0gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス状有機多孔質体を製造した。
Comparative Example 1
(Manufacture of monolithic organic porous body having continuous macropore structure)
A monolithic organic porous body having a continuous macropore structure was produced according to the production method described in JP-A-2002-306976. That is, 19.2 g of styrene, 1.0 g of divinylbenzene, 1.0 g of SMO and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Corp.) which is a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolithic organic porous body having a continuous macropore structure.

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.3モル%含有した有機多孔質体の内部構造を、SEMにより観察した結果を図5に示す。図5から明らかなように、当該有機多孔質体は連続マクロポア構造を有しているが、連続マクロポア構造体の骨格を構成する壁部の厚みは実施例に比べて薄く、また、SEM画像から測定した壁部の平均厚みは5μm、骨格部面積はSEM画像領域中10%であった。また、水銀圧入法により測定した当該有機多孔質体の開口の平均直径は29μm、全細孔容積は、8.6ml/gであった。その結果を表3にまとめて示す。表1〜3中、メソポア直径は開口の平均直径を意味する。   FIG. 5 shows the result of observing the internal structure of the organic porous material containing 3.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer obtained by SEM. As is clear from FIG. 5, the organic porous body has a continuous macropore structure, but the thickness of the wall portion constituting the skeleton of the continuous macropore structure is thinner than that of the example, and from the SEM image The measured wall thickness average thickness was 5 μm, and the skeleton area was 10% in the SEM image area. Moreover, the average diameter of the opening of the organic porous material measured by mercury porosimetry was 29 μm, and the total pore volume was 8.6 ml / g. The results are summarized in Table 3. In Tables 1 to 3, the mesopore diameter means the average diameter of the openings.

(連続マクロポア構造を有するモノリス状有機多孔質カチオン交換体の製造)
上記の方法で製造した有機多孔質体を、外径70mm、厚み約15mmの円盤状に切断した。有機多孔質体の重量は6gであった。これにジクロロメタン1000mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸30gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して連続マクロポア構造を有するモノリス状多孔質カチオン交換体を得た。得られたカチオン交換体の反応前後の膨潤率は1.6倍であり、体積当りのイオン交換容量は、水湿潤状態で0.22mg当量/mlと実施例に比べて小さな値を示した。水湿潤状態での有機多孔質イオン交換体のメソポアの平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ46μmであり、骨格を構成する壁部の平均厚み8μm、骨格部面積はSEM画像領域中10%、全細孔容積は、8.6ml/gであった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.013MPa/m・LVであった。結果を表3にまとめて示すが、差圧係数は実施例と同様に小さな値を示したが、体積当りのイオン交換容量は実施例よりかなり低い値であった。また、比較例1で得られたモノリスカチオン交換体については、機械的特性の評価も行なった。
(Production of monolithic organic porous cation exchanger having a continuous macropore structure)
The organic porous body produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the organic porous material was 6 g. To this was added 1000 ml of dichloromethane, and the mixture was heated at 35 ° C. for 1 hour, then cooled to 10 ° C. or less, 30 g of chlorosulfuric acid was gradually added, and the temperature was raised and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was washed with methanol to remove dichloromethane and further washed with pure water to obtain a monolithic porous cation exchanger having a continuous macropore structure. The swelling rate before and after the reaction of the obtained cation exchanger was 1.6 times, and the ion exchange capacity per volume was 0.22 mg equivalent / ml in a water-wet state, which was a small value compared to the examples. The average diameter of the mesopores of the organic porous ion exchanger in the water wet state was 46 μm as estimated from the value of the organic porous body and the swelling ratio of the cation exchanger in the water wet state. The average thickness was 8 μm, the skeleton part area was 10% in the SEM image area, and the total pore volume was 8.6 ml / g. The differential pressure coefficient, which is an index of pressure loss when water is permeated, was 0.013 MPa / m · LV. The results are summarized in Table 3. The differential pressure coefficient showed a small value as in the example, but the ion exchange capacity per volume was considerably lower than in the example. The monolith cation exchanger obtained in Comparative Example 1 was also evaluated for mechanical properties.

(従来のモノリスカチオン交換体の機械的特性評価)
比較例1で得られたモノリスカチオン交換体について、実施例8の評価方法と同様の方法で引張試験を行った。その結果、引張強度、引張弾性率はそれぞれ28kPa、12kPaであり、実施例8のモノリスカチオン交換体に比べて低い値であった。また、引張破断伸びも17%であり、本発明のモノリスカチオン交換体よりも小さかった。
(Mechanical property evaluation of conventional monolith cation exchanger)
The monolith cation exchanger obtained in Comparative Example 1 was subjected to a tensile test by the same method as the evaluation method of Example 8. As a result, the tensile strength and the tensile modulus were 28 kPa and 12 kPa, respectively, which were lower values than the monolith cation exchanger of Example 8. The tensile elongation at break was 17%, which was smaller than that of the monolith cation exchanger of the present invention.

比較例2〜4
(連続マクロポア構造を有するモノリス状有機多孔質体の製造)
スチレンの使用量、ジビニルベンゼンの使用量、SMOの使用量を表3に示す配合量に変更した以外は、比較例1と同様の方法で、従来技術により連続マクロポア構造を有するモノリス状有機多孔質体を製造した。結果を表3に示す。また、比較例4のモノリスの内部構造を、SEMにより観察した結果を図6に示す。なお、比較例4は全細孔容積を最小とする条件であり、油相部に対してこれ以下の水の配合では、開口が形成できない。比較例2〜4のモノリスはいずれも、開口径が9〜18μmと小さく、骨格を構成する壁部の平均厚みも15μmと薄く、また、骨格部面積はSEM画像領域中最大でも22%と少なかった。
Comparative Examples 2-4
(Manufacture of monolithic organic porous body having continuous macropore structure)
A monolithic organic porous material having a continuous macropore structure according to the conventional technique in the same manner as in Comparative Example 1, except that the amount of styrene used, the amount of divinylbenzene, and the amount of SMO used were changed to the amounts shown in Table 3. The body was manufactured. The results are shown in Table 3. Moreover, the result of having observed the internal structure of the monolith of the comparative example 4 by SEM is shown in FIG. Note that Comparative Example 4 is a condition for minimizing the total pore volume, and an opening cannot be formed by blending water below the oil phase portion. Each of the monoliths of Comparative Examples 2 to 4 has a small opening diameter of 9 to 18 μm, the average thickness of the wall portion constituting the skeleton is as thin as 15 μm, and the skeleton portion area is as small as 22% at the maximum in the SEM image region. It was.

(連続マクロポア構造を有するモノリス状有機多孔質カチオン交換体の製造)
上記の方法で製造した有機多孔質体を、比較例1と同様の方法でクロロ硫酸と反応させ、連続マクロポア構造を有するモノリス状多孔質カチオン交換体を製造した。結果を表3に示す。開口直径を大きくしようとすると壁部の厚みが小さくなったり、骨格が細くなったりする。一方、壁部を厚くしたり、骨格を太くしようとすると開口の直径が減少する傾向が認められた。その結果、差圧係数を低く押さえると体積当りのイオン交換容量が減少し、イオン交換容量を大きくすると差圧係数が増大した。
(Production of monolithic organic porous cation exchanger having a continuous macropore structure)
The organic porous material produced by the above method was reacted with chlorosulfuric acid in the same manner as in Comparative Example 1 to produce a monolithic porous cation exchanger having a continuous macropore structure. The results are shown in Table 3. If the opening diameter is increased, the thickness of the wall portion is reduced or the skeleton is reduced. On the other hand, when the wall portion was made thicker or the skeleton was made thicker, the diameter of the opening tended to decrease. As a result, when the differential pressure coefficient was kept low, the ion exchange capacity per volume decreased, and when the ion exchange capacity was increased, the differential pressure coefficient increased.

なお、実施例及び比較例で製造したモノリスイオン交換体について、差圧係数と体積当りのイオン交換容量の関係を図4に示した。図4から明らかなように、実施例品に対して比較例品は差圧係数とイオン交換容量のバランスが悪いことがわかる。一方、実施例品は体積当りのイオン交換容量が大きく、更に差圧係数も低いことがわかる。   In addition, about the monolith ion exchanger manufactured by the Example and the comparative example, the relationship between a differential pressure coefficient and the ion exchange capacity per volume was shown in FIG. As is apparent from FIG. 4, it can be seen that the comparative example product has a poor balance between the differential pressure coefficient and the ion exchange capacity with respect to the example product. On the other hand, it can be seen that the example products have a large ion exchange capacity per volume and a low differential pressure coefficient.

比較例5
II工程で用いる有機溶媒の種類をポリスチレンの良溶媒であるジオキサンに変更したことを除いて、実施例1と同様の方法でモノリスの製造を試みた。しかし、単離した生成物は透明であり、多孔構造の崩壊・消失が示唆された。確認のためSEM観察を行ったが、緻密構造しか観察されず、連続マクロポア構造は消失していた。
Comparative Example 5
Monolith production was attempted in the same manner as in Example 1 except that the type of organic solvent used in Step II was changed to dioxane, which is a good solvent for polystyrene. However, the isolated product was transparent, suggesting collapse / disappearance of the porous structure. SEM observation was performed for confirmation, but only a dense structure was observed, and the continuous macropore structure disappeared.

実施例13
(モノリスの製造)
厚さ20mmの円盤状に切断して7.6g分取したことに代えて、I工程の試薬量を2倍にしてモノリス中間体を製造し、厚さ50mmの円盤状に切断して19g分取したこと、II工程の試薬量を3倍にしたこと以外は、実施例1と同様の方法でモノリスを製造した。
Example 13
(Manufacture of monoliths)
Instead of cutting into a 20 mm thick disk and separating 7.6 g, a monolith intermediate was produced by doubling the amount of reagent in step I, and cutting into a 50 mm thick disk into 19 g. A monolith was produced in the same manner as in Example 1 except that the amount of the reagent used in Step II was tripled.

(モノリスカチオン交換体の製造)
外径70mm、厚み約15mmの円盤に代えて、外径70mm、厚み50mmの円盤としたこと、ジクロロメタン1,500mlに代えて、5,000mlとしたこと、クロロ硫酸145gに代えて、483gとしたこと以外は、実施例1と同様の方法でモノリスカチオン交換体を製造した。得られたモノリスカチオン交換体の反応前後の膨潤率、体積当りのイオン交換容量、水湿潤状態での有機多孔質イオン交換体の開口の平均直径、モノリスと同様の方法で求めた骨格を構成する壁部の平均厚み、骨格部面積及び全細孔容積は実施例1と同じ値であった。
(Production of monolith cation exchanger)
Instead of a disk having an outer diameter of 70 mm and a thickness of about 15 mm, a disk having an outer diameter of 70 mm and a thickness of 50 mm was used, 5,000 ml was substituted for 1,500 ml of dichloromethane, and 483 g was substituted for 145 g of chlorosulfuric acid. A monolith cation exchanger was produced in the same manner as in Example 1 except that. Swell rate before and after reaction of the obtained monolith cation exchanger, ion exchange capacity per volume, average diameter of organic porous ion exchanger opening in water wet state, and skeleton determined by the same method as monolith The average thickness of the wall part, the skeleton part area, and the total pore volume were the same values as in Example 1.

(モノリスカチオン交換体を用いた塩基性ガスの吸着)
実施例13で得られたモノリスカチオン交換体を3N塩酸中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られたモノリスカチオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温湿度条件下、アンモニア濃度5,000ng/mの空気を面風速0.5m/sで供給したときの通気差圧を測定し、透過気体を超純水インピンジャー法でサンプリングし、イオンクロマトグラフ法でアンモニウムイオンの定量を行った。その結果、空気中のアンモニア濃度は50ng/m未満であり、完全にアンモニアを除去できた。
(Adsorption of basic gas using monolith cation exchanger)
The monolith cation exchanger obtained in Example 13 was immersed in 3N hydrochloric acid for 24 hours, and then sufficiently washed with pure water and dried. The obtained monolith cation exchanger was allowed to stand at 25 ° C. and a relative humidity of 40% for 48 hours, then cut into a disk shape having a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to prepare a chemical filter. When this filter was supplied with air with an ammonia concentration of 5,000 ng / m 3 at a surface wind speed of 0.5 m / s under a temperature and humidity condition of 25 ° C. and 40%, the permeating gas was measured as ultrapure water. Sampling was performed by the impinger method, and ammonium ions were quantified by ion chromatography. As a result, the ammonia concentration in the air was less than 50 ng / m 3 , and ammonia could be completely removed.

比較例6
製造例1(有機多孔質陽イオン交換体の製造)
スチレン38g、ジビニルベンゼン2.0g、ソルビタンモノオレート2.1gおよびアゾビスイソブチロニトリル0.1gを混合し、均一に溶解させた。次に当該スチレン/ジビニルベンゼン/ソルビタンモノオレート/アゾビスイソブチロニトリル混合物を360gの純水に添加し、遊星式攪拌装置である真空攪拌脱泡ミキサー(イーエムイー社製)を用いて13.3kPaの減圧下、底面直径と充填物の高さの比が1:1、公転回転数1000回転/分、自転回転数330回転/分で2分間攪拌し、油中水滴型エマルジョンを得た。乳化終了後、系を窒素で十分置換した後密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで18時間ソックスレー抽出し、未反応モノマー、水およびソルビタンモノオレートを除去した後、85℃で一昼夜減圧乾燥した。このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3モル%含有した有機多孔質体の内部構造をSEMにより観察した結果、当該有機多孔質体は連続気泡構造を有していた。
Comparative Example 6
Production Example 1 (Production of organic porous cation exchanger)
38 g of styrene, 2.0 g of divinylbenzene, 2.1 g of sorbitan monooleate and 0.1 g of azobisisobutyronitrile were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / sorbitan monooleate / azobisisobutyronitrile mixture is added to 360 g of pure water, and 13 using a vacuum stirring defoaming mixer (manufactured by EM Corp.) which is a planetary stirring device. Under reduced pressure of 3 kPa, the mixture was stirred for 2 minutes at a ratio of the bottom surface diameter to the height of the packing of 1: 1, a revolution speed of 1000 revolutions / minute, and a rotation speed of 330 revolutions / minute to obtain a water-in-oil emulsion. After completion of emulsification, the system was sufficiently substituted with nitrogen, sealed, and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the contents were taken out, extracted with Soxhlet with isopropanol for 18 hours to remove unreacted monomers, water and sorbitan monooleate, and then dried under reduced pressure at 85 ° C. overnight. As a result of observing the internal structure of the organic porous material containing 3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer thus obtained by SEM, the organic porous material has an open-cell structure. It was.

次いで上記有機多孔質体を切断して18gを分取し、ジクロロエタン2400mlを加え60℃で30分加熱した後、室温まで冷却し、クロロ硫酸90gを徐々に加え、室温で24時間反応させた。その後、酢酸を加え、多量の水中に反応物を投入し、水洗して有機多孔質陽イオン交換体を得た。この有機多孔質陽イオン交換体のイオン交換容量は、乾燥多孔質体換算で4.8mg当量/gであり、EPMAを用いた硫黄原子のマッピングにより、スルホン酸基がμmオーダーで有機多孔質体に均一に導入されていることを確認した。また、SEM観察により、有機多孔質体の連続気泡構造はイオン交換基導入後も保持されていることを確認した。また、この有機多孔質陽イオン交換体のメソポアの平均径は、30μm、全細孔容積は10.2ml/gであった。   Next, the organic porous material was cut to obtain 18 g, and after adding 2400 ml of dichloroethane and heating at 60 ° C. for 30 minutes, the mixture was cooled to room temperature, 90 g of chlorosulfuric acid was gradually added, and the mixture was reacted at room temperature for 24 hours. Thereafter, acetic acid was added, and the reaction product was poured into a large amount of water and washed with water to obtain an organic porous cation exchanger. The ion exchange capacity of this organic porous cation exchanger is 4.8 mg equivalent / g in terms of dry porous material, and the organic porous material has sulfonic acid groups on the order of μm by mapping sulfur atoms using EPMA. It was confirmed that it was introduced uniformly. Moreover, it was confirmed by SEM observation that the open-cell structure of the organic porous material was retained even after the introduction of ion exchange groups. The organic porous cation exchanger had an average mesopore diameter of 30 μm and a total pore volume of 10.2 ml / g.

(有機多孔質陽イオン交換体を用いた塩基性ガスの吸着)
製造例1で製造した有機多孔質陽イオン交換体を3N塩酸中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られたモノリスカチオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに実施例13と同様の方法でアンモニア除去試験を行った結果、透過空気中のアンモニア濃度は120ng/mとなり、完全にアンモニアを除去することはできなかった。
(Adsorption of basic gas using organic porous cation exchanger)
The organic porous cation exchanger produced in Production Example 1 was immersed in 3N hydrochloric acid for 24 hours, then sufficiently washed with pure water and dried. The obtained monolith cation exchanger was allowed to stand at 25 ° C. and a relative humidity of 40% for 48 hours, then cut into a disk shape having a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to prepare a chemical filter. As a result of performing an ammonia removal test on this filter in the same manner as in Example 13, the ammonia concentration in the permeated air was 120 ng / m 3 , and ammonia could not be completely removed.

実施例14
モノリスカチオン交換体を3N塩酸中に浸漬する前に、内径2mmのSUS316製パイプにより、円柱状モノリスの見かけの円に対して、直径2mmの孔による空隙率が30%となるよう、軸方向に延びる貫通孔をあけた以外は、実施例13と同様の方法で貫通孔を有するモノリスカチオン交換体を得、更に実施例13と同様の方法で塩基性ガスの吸着を行った。その結果、面風速0.5m/sのときの通気差圧は80Paと非常に低圧損であり、空気中のアンモニア濃度は450ng/mであった。
Example 14
Before immersing the monolith cation exchanger in 3N hydrochloric acid, the SUS316 pipe with an inner diameter of 2 mm is used to make the porosity of the hole with a diameter of 2 mm to 30% with respect to the apparent circle of the cylindrical monolith in the axial direction. A monolith cation exchanger having through-holes was obtained in the same manner as in Example 13 except that the extending through-holes were opened, and further basic gas was adsorbed in the same manner as in Example 13. As a result, the airflow differential pressure at a surface wind speed of 0.5 m / s was a very low pressure loss of 80 Pa, and the ammonia concentration in the air was 450 ng / m 3 .

比較例7
上記モノリス状有機多孔質カチオン交換体に代えて、比較例6の連続気泡型モノリス状有機多孔質カチオン交換体を使用したこと以外は、実施例14と同様の方法で貫通孔をあけると共に、塩基性ガスの吸着を行った。その結果、通気差圧は85Paであり、空気中のアンモニア濃度は850ng/mであった。
Comparative Example 7
In place of the monolithic organic porous cation exchanger, an open-cell monolithic organic porous cation exchanger of Comparative Example 6 was used, except that a through-hole was formed in the same manner as in Example 14, and a base was used. Adsorption of sex gas was performed. As a result, the aeration differential pressure was 85 Pa, and the ammonia concentration in the air was 850 ng / m 3 .

実施例15
(モノリスアニオン交換体の製造)
モノリスの製造において厚さ20mmの円盤に代えて、I工程の試薬量を2倍にしてモノリス中間体を製造し、厚さ50mmに切断したこと、II工程の試薬量を3倍にしたこと、モノリスアニオン交換体の製造において厚さ15mmの円盤に代えて50mmとしたこと、ジメトキシメタン使用量を1400mlから4700mlとしたこと、四塩化スズの使用量を20mlから67mlとしたこと、クロロ硫酸の使用量を560mlから1870mlとしたこと、THF及びトリメチルアミン30%水溶液の使用量をそれぞれ1000mlから3400ml、600mlから2000mlとしたこと以外は、実施例12に準拠してモノリス状アニオン交換体を製造した。
Example 15
(Production of monolith anion exchanger)
In the production of monolith, instead of a 20 mm thick disk, the amount of reagent in step I was doubled to produce a monolith intermediate and cut to a thickness of 50 mm, the amount of reagent in step II was tripled, The production of the monolith anion exchanger was changed to 50 mm instead of the 15 mm thick disk, the amount of dimethoxymethane was changed from 1400 ml to 4700 ml, the amount of tin tetrachloride was changed from 20 ml to 67 ml, the use of chlorosulfuric acid A monolithic anion exchanger was produced according to Example 12, except that the amount was changed from 560 ml to 1870 ml, and the amounts of THF and trimethylamine 30% aqueous solution were changed from 1000 ml to 3400 ml and from 600 ml to 2000 ml, respectively.

(モノリス状アニオン交換体を用いた酸性ガスの吸着)
上記方法で得られたモノリス状アニオン交換体を1N水酸化ナトリウム水溶液中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られたモノリス状有機多孔質アニオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温湿度条件下、二酸化硫黄濃度5,000ng/mの空気を面風速0.5m/sで供給したときの通気差圧を測定し、透過気体を超純水インピンジャー法でサンプリングし、イオンクロマトグラフ法で硫酸イオンの定量を行った。その結果、空気中の二酸化硫黄濃度は50ng/m未満であり、完全に二酸化硫黄を除去できた。
(Adsorption of acid gas using monolithic anion exchanger)
The monolithic anion exchanger obtained by the above method was immersed in a 1N aqueous sodium hydroxide solution for 24 hours, and then sufficiently washed with pure water and dried. The resulting monolithic organic porous anion exchanger was allowed to stand for 48 hours at 25 ° C. and a relative humidity of 40%, then cut into a disk with a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to produce a chemical filter. did. The air permeation pressure was measured when air with a sulfur dioxide concentration of 5,000 ng / m 3 was supplied at a surface wind speed of 0.5 m / s under conditions of 25 ° C. and 40% temperature and humidity, and the permeated gas was ultrapure. Sampling was performed by a water impinger method, and sulfate ions were quantified by an ion chromatography method. As a result, the sulfur dioxide concentration in the air was less than 50 ng / m 3 , and sulfur dioxide was completely removed.

比較例8
スチレンに代えてクロロメチルスチレンを用いたこと及びソルビタンモノオレートの量を4.5gに変更したこと以外は、比較例6と同様の方法で連続気泡型のモノリス状有機多孔質体を製造した。この有機多孔質体を切断して15.0gを分取し、テトラヒドロフラン1500gを加え60℃で30分加熱した後、室温まで冷却し、トリメチルアミン(30%)水溶液195gを徐々に加え、50℃で3時間反応させた後、室温で一昼夜放置した。反応終了後、有機多孔質体を取り出し、アセトンで洗浄後水洗し、乾燥して有機多孔質陰イオン交換体を得た。この有機多孔質陰イオン交換体のイオン交換容量は、乾燥多孔質体換算で3.7mg当量/gであり、SIMSにより、トリメチルアンモニウム基が有機多孔質体にμmオーダーで均一に導入されていることを確認した。また、SEM観察により、有機多孔質体の連続気泡構造はイオン交換基導入後も保持されていることを確認した。また、この有機多孔質陰イオン交換体のメソポアの平均径は、25μm、全細孔容積は9.8ml/gであった。
Comparative Example 8
An open-cell monolithic organic porous body was produced in the same manner as in Comparative Example 6 except that chloromethylstyrene was used in place of styrene and the amount of sorbitan monooleate was changed to 4.5 g. The organic porous material was cut to take 15.0 g, 1500 g of tetrahydrofuran was added and the mixture was heated at 60 ° C. for 30 minutes, then cooled to room temperature, and 195 g of a trimethylamine (30%) aqueous solution was gradually added. After reacting for 3 hours, the mixture was allowed to stand overnight at room temperature. After completion of the reaction, the organic porous material was taken out, washed with acetone, washed with water, and dried to obtain an organic porous anion exchanger. The ion exchange capacity of this organic porous anion exchanger is 3.7 mg equivalent / g in terms of dry porous body, and trimethylammonium groups are uniformly introduced into the organic porous body in the order of μm by SIMS. It was confirmed. Moreover, it was confirmed by SEM observation that the open-cell structure of the organic porous material was retained even after the introduction of ion exchange groups. The organic porous anion exchanger had an average mesopore diameter of 25 μm and a total pore volume of 9.8 ml / g.

得られたアニオン交換体を実施例15と同様の方法で二酸化硫黄の除去試験を行った。その結果、空気中の二酸化硫黄の濃度は200ng/mであり、完全に除去することはできなかった。 The obtained anion exchanger was subjected to a sulfur dioxide removal test in the same manner as in Example 15. As a result, the concentration of sulfur dioxide in the air was 200 ng / m 3 and could not be completely removed.

実施例16
(モノリスを用いた有機性ガスの吸着)
実施例13に準拠して製造したモノリスを純水で十分洗浄し、乾燥させた。得られたモノリス状有機多孔質体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温湿度条件下、トルエン濃度1,000ng/mの空気を面風速0.5m/sで供給したときの透過気体を固体吸着剤(TENAX−GR)を用いて捕集し、ガスクロマトグラフ質量分析法でトルエンの定量を行った。その結果、空気中のトルエン濃度は110ng/mとなり、約89%の除去率であった。
Example 16
(Adsorption of organic gas using monolith)
The monolith produced according to Example 13 was thoroughly washed with pure water and dried. The obtained monolithic organic porous material was allowed to stand at 25 ° C. and a relative humidity of 40% for 48 hours, then cut into a disk shape having a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to prepare a chemical filter. A solid adsorbent (TENAX-GR) was used as the permeated gas when air with a toluene concentration of 1,000 ng / m 3 was supplied at a surface wind speed of 0.5 m / s under conditions of 25 ° C. and 40% temperature and humidity. The toluene was quantified by gas chromatography mass spectrometry. As a result, the toluene concentration in the air was 110 ng / m 3 and the removal rate was about 89%.

比較例9
比較例6に準じて連続気泡型モノリス状有機多孔質体を製造し、実施例16と同様に直径50mm、厚み50mmの円盤状ケミカルフィルターを作製した。
Comparative Example 9
An open-cell monolithic organic porous body was produced according to Comparative Example 6, and a disc-shaped chemical filter having a diameter of 50 mm and a thickness of 50 mm was produced in the same manner as in Example 16.

このフィルターを実施例16と同様の条件でトルエン除去試験を行った結果、透過空気中のアンモニア濃度は200ng/mとなり、除去率は約80%であり、実施例16よりも低い除去率となった。 This filter was subjected to a toluene removal test under the same conditions as in Example 16. As a result, the ammonia concentration in the permeated air was 200 ng / m 3 and the removal rate was about 80%, which was a lower removal rate than in Example 16. became.

実施例17
(モノリス状有機多孔質カチオン交換体を用いた高風速下での塩基性ガスの吸着)
アンモニア濃度5,000ng/mの空気に代えて、アンモニア濃度2,000ng/mの空気としたこと、面風速0.5m/sに代えて、5.0m/sとしたこと以外は、実施例13と同様の方法でアンモニアの除去試験を行った。その結果、空気透過速度が速いにもかかわらず、透過空気中のアンモニア濃度は50ng/m未満であり、アンモニアを除去することができた。
Example 17
(Adsorption of basic gas under high wind speed using monolithic organic porous cation exchanger)
Instead of air ammonia concentration 5,000 ng / m 3, it has an air ammonia concentration 2,000 ng / m 3, in place of the face velocity 0.5 m / s, except that a 5.0 m / s, An ammonia removal test was conducted in the same manner as in Example 13. As a result, despite the high air permeation rate, the ammonia concentration in the permeated air was less than 50 ng / m 3 , and ammonia could be removed.

実施例18
(モノリス状有機多孔質カチオン交換体を用いた極微量濃度塩基性ガスの吸着)
アンモニア濃度2,000ng/mの空気に代えて、アンモニア濃度100ng/mの空気とした以外は、実施例17と同様の方法でアンモニア除去の性能評価を行なった。その結果、透過気体中のアンモニア濃度は50ng/m未満であり、空気透過速度が5.0m/sと速くても、極微量のアンモニアを完全に除去することができた。
Example 18
(Adsorption of trace amount of basic gas using monolithic organic porous cation exchanger)
Instead of air ammonia concentration 2,000 ng / m 3, except that the air concentration of ammonia 100 ng / m 3 were subjected to performance evaluation of ammonia removal in the same manner as in Example 17. As a result, the ammonia concentration in the permeated gas was less than 50 ng / m 3 , and even when the air permeation rate was as high as 5.0 m / s, a trace amount of ammonia could be completely removed.

実施例19
(モノリス状有機多孔質カチオン交換体を用いた高濃度塩基性ガスの吸着)
アンモニア濃度5,000ng/mの空気に代えて、アンモニア濃度100μg/mの空気としたこと以外は、実施例13と同様の方法でアンモニア除去の寿命試験を行った。その結果、90%以上の浄化効率を維持できる期間は27日間であった。
Example 19
(Adsorption of high concentration basic gas using monolithic organic porous cation exchanger)
A life test for removing ammonia was conducted in the same manner as in Example 13 except that air having an ammonia concentration of 5,000 ng / m 3 was used instead of air having an ammonia concentration of 100 μg / m 3 . As a result, the period during which purification efficiency of 90% or more can be maintained was 27 days.

比較例10
比較例6のケミカルフィルターを用いて、実施例19と同様のアンモニア除去の寿命試験を行った。その結果、90%以上の除去率を維持できる期間は10日間であった。

Figure 0005019471
Comparative Example 10
Using the chemical filter of Comparative Example 6, the same life test for removing ammonia as in Example 19 was performed. As a result, the period during which the removal rate of 90% or more can be maintained was 10 days.

Figure 0005019471

Figure 0005019471
Figure 0005019471

Figure 0005019471
Figure 0005019471

本発明のモノリス及びモノリスイオン交換体は、化学的に安定で機械的強度が高く、更に、体積当りのイオン交換容量が大きく、連続した空孔が大きくて水や気体等の流体を透過させた際の圧力損失が低いといった特長を有しているため、ケミカルフィルターや吸着剤;2床3塔式純水製造装置や電気式脱イオン水製造装置に充填して用いられるイオン交換体;各種のクロマトグラフィー用充填剤;固体酸/塩基触媒として有用であり、広範な用途分野に応用することができる。   The monolith and the monolith ion exchanger of the present invention are chemically stable and have high mechanical strength, and have a large ion exchange capacity per volume, large continuous pores, and permeate fluids such as water and gas. Because of its low pressure loss, chemical filters and adsorbents; ion exchangers used by filling 2-bed, 3-tower pure water production equipment and electrical deionized water production equipment; Chromatographic packing material; useful as a solid acid / base catalyst and applicable to a wide range of applications.

実施例1で得られたモノリスのSEM画像である。2 is an SEM image of a monolith obtained in Example 1. 実施例1で得られたモノリスカチオン交換体の表面における硫黄原子の分布状態を示したEPMA画像である。2 is an EPMA image showing the distribution state of sulfur atoms on the surface of the monolith cation exchanger obtained in Example 1. FIG. 実施例1で得られたモノリスカチオン交換体の断面(厚み)方向における硫黄原子の分布状態を示したEPMA画像である。2 is an EPMA image showing the distribution state of sulfur atoms in the cross-section (thickness) direction of the monolith cation exchanger obtained in Example 1. FIG. 実施例品及び比較例品の差圧係数と体積当りのイオン換容量の相関を示す図である。It is a figure which shows the correlation of the differential pressure | voltage coefficient of an Example goods and a comparative example goods, and the ion exchange capacity per volume. 比較例1で得られたモノリスのSEM画像である。2 is an SEM image of a monolith obtained in Comparative Example 1. 比較例4で得られたモノリスSEM画像である。10 is a monolith SEM image obtained in Comparative Example 4. 図1のSEM画像の断面として表れる骨格部を手動転写したものである。It is a manual transfer of the skeleton part that appears as a cross section of the SEM image of FIG. 実施例2で得られたモノリスのSEM画像である。2 is a SEM image of a monolith obtained in Example 2. 実施例3で得られたモノリスのSEM画像である。4 is an SEM image of a monolith obtained in Example 3. 実施例4で得られたモノリスのSEM画像である。6 is an SEM image of a monolith obtained in Example 4. 実施例5で得られたモノリスのSEM画像である。6 is an SEM image of a monolith obtained in Example 5. 実施例6で得られたモノリスのSEM画像である。6 is an SEM image of a monolith obtained in Example 6. 実施例7で得られたモノリスのSEM画像である。10 is a SEM image of the monolith obtained in Example 7. 実施例8で得られたモノリスのSEM画像である。10 is a SEM image of the monolith obtained in Example 8. 実施例9で得られたモノリスのSEM画像である。10 is a SEM image of the monolith obtained in Example 9. 実施例10で得られたモノリスのSEM画像である。10 is an SEM image of a monolith obtained in Example 10. 実施例11で得られたモノリスのSEM画像である。10 is a SEM image of a monolith obtained in Example 11.

符号の説明Explanation of symbols

11 写真領域
12 断面で表れる骨格部
13 マクロポア
11 Photo area 12 Skeletal part in cross section 13 Macropore

Claims (11)

気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径20〜200μmの開口となる連続マクロポア構造体であり、厚み1mm以上、全細孔容積0.5〜5ml/g、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%であることを特徴とするモノリス状有機多孔質体。   Bubble macropores overlap each other, and the overlapping portion is a continuous macropore structure in which openings having an average diameter of 20 to 200 μm are formed, and has a thickness of 1 mm or more, a total pore volume of 0.5 to 5 ml / g, and the continuous macropore structure In the SEM image of the cut surface of (dry body), the skeleton part area which appears in a cross section is 25 to 50% in an image region, The monolithic organic porous body characterized by the above-mentioned. 気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径20〜200μmの開口となる連続マクロポア構造体であり、厚み1mm以上、全細孔容積0.5〜5ml/gであって、下記工程;
イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜16ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、
ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、
II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、該有機多孔質中間体の骨格より太い骨格を有する骨太有機多孔質体を得るIII工程、
を行うことで得られるモノリス状有機多孔質体。
Bubble macropores overlap each other, and this overlapping portion is a continuous macropore structure having openings with an average diameter of 20 to 200 μm, and has a thickness of 1 mm or more and a total pore volume of 0.5 to 5 ml / g.
A water-in-oil emulsion is prepared by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion exchange groups, and then the water-in-oil emulsion is polymerized to give a total pore volume of 5-16 ml / g, a monolithic organic porous intermediate having a continuous macropore structure,
A mixture comprising a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, and a polymerization initiator. Step II to prepare,
The mixture obtained in Step II is allowed to stand and polymerized in the presence of the monolithic organic porous intermediate obtained in Step I, and the bone thicker having a skeleton thicker than the skeleton of the organic porous intermediate. Step III for obtaining an organic porous material,
Monolithic organic porous material obtained by performing
気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、厚み1mm以上、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4mg当量/ml以上であり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%であることを特徴とするモノリス状有機多孔質イオン交換体。   Bubble-shaped macropores overlap each other, and the overlapping portion is a continuous macropore structure having openings with an average diameter of 30 to 300 μm in a water-wet state, having a thickness of 1 mm or more, a total pore volume of 0.5 to 5 ml / g, and water-wetting The ion exchange capacity per volume in the state is 0.4 mg equivalent / ml or more, the ion exchange groups are uniformly distributed in the porous ion exchanger, and the continuous macropore structure (dried body) is cut. A monolithic organic porous ion exchanger characterized in that, in the SEM image of the surface, the skeleton part area appearing in the cross section is 25 to 50% in the image region. 請求項2のモノリス状有機多孔質体にイオン交換基を導入したものであって、水湿潤状態での体積当りのイオン交換容量が0.4mg当量/ml以上であり、イオン交換基が該多孔質イオン交換体中に均一に分布していることを特徴とするモノリス状有機多孔質イオン交換体。   An ion exchange group is introduced into the monolithic organic porous material according to claim 2, wherein the ion exchange capacity per volume in a water-wet state is 0.4 mg equivalent / ml or more, and the ion exchange group is in the porous state. Monolithic organic porous ion exchanger characterized by being uniformly distributed in the porous ion exchanger. イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜16ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、
ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、
II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、該有機多孔質中間体の骨格より太い骨格を有する骨太有機多孔質体を得るIII工程、
を行うことを特徴とするモノリス状有機多孔質体の製造方法。
A water-in-oil emulsion is prepared by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion exchange groups, and then the water-in-oil emulsion is polymerized to give a total pore volume of 5-16 ml / g, a monolithic organic porous intermediate having a continuous macropore structure,
A mixture comprising a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, and a polymerization initiator. Step II to prepare,
The mixture obtained in Step II is allowed to stand and polymerized in the presence of the monolithic organic porous intermediate obtained in Step I, and the bone thicker having a skeleton thicker than the skeleton of the organic porous intermediate. Step III for obtaining an organic porous material,
A method for producing a monolithic organic porous material characterized by comprising:
I工程で得られるモノリス状の有機多孔質中間体は、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径20〜200μmの開口となる連続マクロポア構造体であり、全細孔容積が5〜16ml/gであることを特徴とする請求項5記載のモノリス状有機多孔質体の製造方法。   The monolithic organic porous intermediate obtained in the step I is a continuous macropore structure in which bubble-shaped macropores overlap each other, and the overlapping portion is an opening having an average diameter of 20 to 200 μm. 6. The method for producing a monolithic organic porous material according to claim 5, wherein the production rate is 16 ml / g. イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜16ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、
ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、
II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、該有機多孔質中間体の骨格より太い骨格を有する骨太有機多孔質体を得るIII工程、
該III工程で得られた骨太有機多孔質体にイオン交換基を導入するIV工程、
を行うことを特徴とするモノリス状有機多孔質イオン交換体の製造方法。
A water-in-oil emulsion is prepared by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion exchange groups, and then the water-in-oil emulsion is polymerized to give a total pore volume of 5-16 ml / g, a monolithic organic porous intermediate having a continuous macropore structure,
A mixture comprising a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, and a polymerization initiator. Step II to prepare,
The mixture obtained in Step II is allowed to stand and polymerized in the presence of the monolithic organic porous intermediate obtained in Step I, and the bone thicker having a skeleton thicker than the skeleton of the organic porous intermediate. Step III for obtaining an organic porous material,
An IV step for introducing an ion exchange group into the thick organic porous material obtained in the step III;
A process for producing a monolithic organic porous ion exchanger characterized in that
請求項1又は2記載のモノリス状有機多孔質体を吸着層として用いることを特徴とするケミカルフィルター。   A chemical filter using the monolithic organic porous material according to claim 1 or 2 as an adsorption layer. 請求項3又は4記載のモノリス状有機多孔質イオン交換体を吸着層として用いることを特徴とするケミカルフィルター。   5. A chemical filter using the monolithic organic porous ion exchanger according to claim 3 as an adsorption layer. 請求項1又は2記載のモノリス状有機多孔質体に貫通孔を設けたものを吸着層として用いることを特徴とするケミカルフィルター。   A chemical filter using a monolithic organic porous material according to claim 1 or 2 provided with through holes as an adsorption layer. 請求項3又は4記載のモノリス状有機多孔質イオン交換体に貫通孔を設けたものを吸着層として用いることを特徴とするケミカルフィルター。   A chemical filter using a monolithic organic porous ion exchanger according to claim 3 or 4 provided with through holes as an adsorbing layer.
JP2008081731A 2007-08-10 2008-03-26 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter Active JP5019471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081731A JP5019471B2 (en) 2007-08-10 2008-03-26 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007209506 2007-08-10
JP2007209506 2007-08-10
JP2008081731A JP5019471B2 (en) 2007-08-10 2008-03-26 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter

Publications (2)

Publication Number Publication Date
JP2009062512A JP2009062512A (en) 2009-03-26
JP5019471B2 true JP5019471B2 (en) 2012-09-05

Family

ID=40557388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081731A Active JP5019471B2 (en) 2007-08-10 2008-03-26 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter

Country Status (1)

Country Link
JP (1) JP5019471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067982A (en) * 2007-08-22 2009-04-02 Japan Organo Co Ltd Monolithic organic porous body, monolithic organic porous ion exchanger, methods for manufacturing them and chemical filter

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5021540B2 (en) * 2007-10-11 2012-09-12 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5089420B2 (en) * 2008-02-14 2012-12-05 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5522618B2 (en) * 2008-11-11 2014-06-18 オルガノ株式会社 Monolithic organic porous anion exchanger and method for producing the same
JP5411736B2 (en) * 2009-03-10 2014-02-12 オルガノ株式会社 Ultrapure water production equipment
JP5411737B2 (en) * 2009-03-10 2014-02-12 オルガノ株式会社 Ion adsorption module and water treatment method
CN102348505B (en) * 2009-03-10 2014-07-02 奥加诺株式会社 Ion adsorption module and method of treating water
JP5525754B2 (en) * 2009-05-01 2014-06-18 オルガノ株式会社 Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5116724B2 (en) * 2009-05-12 2013-01-09 オルガノ株式会社 Ultrapure water production equipment
JP5294477B2 (en) * 2009-05-12 2013-09-18 オルガノ株式会社 Solid acid catalyst
JP5137896B2 (en) * 2009-05-12 2013-02-06 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5497468B2 (en) * 2009-05-13 2014-05-21 オルガノ株式会社 Electric deionized water production equipment
JP5048712B2 (en) * 2009-05-13 2012-10-17 オルガノ株式会社 Electric deionized water production equipment
JP5030181B2 (en) * 2009-05-13 2012-09-19 オルガノ株式会社 Electric deionized water production equipment
JP5030182B2 (en) * 2009-05-14 2012-09-19 オルガノ株式会社 Electric deionized liquid production equipment
JP5421688B2 (en) * 2009-08-11 2014-02-19 オルガノ株式会社 Solid acid catalyst
JP2017037867A (en) * 2013-12-26 2017-02-16 株式会社クラレ Electrode, manufacturing method of the same, and liquid passing type capacitor including the same
US9592458B2 (en) 2013-12-26 2017-03-14 Dionex Corporation Ion exchange foams to remove ions from samples
US10495614B2 (en) 2014-12-30 2019-12-03 Dionex Corporation Vial cap and method for removing matrix components from a liquid sample
WO2020230555A1 (en) 2019-05-15 2020-11-19 オルガノ株式会社 Method for forming carbon-carbon bond
JP7231574B2 (en) * 2020-02-27 2023-03-01 国立大学法人九州大学 Novel porous crosslinked polymer, immobilized catalyst and device using the same
JP2022107992A (en) 2021-01-12 2022-07-25 オルガノ株式会社 Catalyst having platinum-group metal ion supported thereon, and carbon-carbon bond formation method
EP4324558A1 (en) 2021-04-14 2024-02-21 Organo Corporation Ion exchanger, method for producing ion exchanger, catalyst having platinum-group meal ion supported thereon, and method for forming carbon-carbon bond
JP2022163533A (en) 2021-04-14 2022-10-26 オルガノ株式会社 Platinum group metal-supported catalyst column and carbon-carbon bond formation method
JP2023000337A (en) 2021-06-17 2023-01-04 オルガノ株式会社 Catalytic hydrogenation reduction method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1384746A1 (en) * 2001-04-13 2004-01-28 Organo Corporation Composite porous ion-exchanger, method of manufacturing the ion-exchanger, deionization module using the ion- exchanger, and electric deionized water manufacturing device
JP4633955B2 (en) * 2001-04-13 2011-02-16 オルガノ株式会社 Porous ion exchanger, deionization module and electric deionized water production apparatus using the same
JP2004321930A (en) * 2003-04-24 2004-11-18 Japan Organo Co Ltd Chemical filter
JP4428616B2 (en) * 2003-05-06 2010-03-10 オルガノ株式会社 Graft-modified organic porous material, process for producing the same, adsorbent, chromatographic filler and ion exchanger
JP5290603B2 (en) * 2007-05-28 2013-09-18 オルガノ株式会社 Particle aggregation type monolithic organic porous body, method for producing the same, particle aggregation type monolithic organic porous ion exchanger, and chemical filter
JP5208550B2 (en) * 2007-06-12 2013-06-12 オルガノ株式会社 Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
SG172167A1 (en) * 2008-12-18 2011-07-28 Organo Corp Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067982A (en) * 2007-08-22 2009-04-02 Japan Organo Co Ltd Monolithic organic porous body, monolithic organic porous ion exchanger, methods for manufacturing them and chemical filter

Also Published As

Publication number Publication date
JP2009062512A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP5019471B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5290604B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5021540B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5089420B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5290603B2 (en) Particle aggregation type monolithic organic porous body, method for producing the same, particle aggregation type monolithic organic porous ion exchanger, and chemical filter
JP5208550B2 (en) Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP5019470B2 (en) Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP3852926B2 (en) Organic porous body having selective boron adsorption capacity, boron removal module and ultrapure water production apparatus using the same
JP5698813B2 (en) Ultrapure water production equipment
JP5430983B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
WO2010070774A1 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger
JP5116724B2 (en) Ultrapure water production equipment
JP5685632B2 (en) Ion adsorption module and water treatment method
WO2010104004A1 (en) Ion adsorption module and method of treating water
JP5486162B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
US20070175329A1 (en) Chemical filter
JP5525754B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5137896B2 (en) Electric deionized water production apparatus and deionized water production method
JP5465463B2 (en) Ion adsorption module and water treatment method
JP7081974B2 (en) Liquid purification cartridge and liquid purification method
JP2004131517A (en) Method for producing organic porous material
JP2004107379A (en) Method for manufacturing sulfonated organic porous body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120607

R150 Certificate of patent or registration of utility model

Ref document number: 5019471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250