JP2010204018A - タイヤ試験機及びタイヤ試験方法 - Google Patents

タイヤ試験機及びタイヤ試験方法 Download PDF

Info

Publication number
JP2010204018A
JP2010204018A JP2009052149A JP2009052149A JP2010204018A JP 2010204018 A JP2010204018 A JP 2010204018A JP 2009052149 A JP2009052149 A JP 2009052149A JP 2009052149 A JP2009052149 A JP 2009052149A JP 2010204018 A JP2010204018 A JP 2010204018A
Authority
JP
Japan
Prior art keywords
tire
uniformity
shaft
cage
rotation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009052149A
Other languages
English (en)
Inventor
Koichi Honke
浩一 本家
Toru Okada
徹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009052149A priority Critical patent/JP2010204018A/ja
Publication of JP2010204018A publication Critical patent/JP2010204018A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)
  • Testing Of Balance (AREA)

Abstract

【課題】 タイヤ試験機において、保持器の回転角度に同期した誤差成分を確実に取り除いてタイヤのユニフォミティを高精度に計測する。
【解決手段】本発明のタイヤ試験機1は、タイヤTを保持するタイヤ軸2と、タイヤ軸2をタイヤTの軸心回りに軸受部15を介して回転自在に支持するハウジング3と、タイヤ軸2に保持されたタイヤTに対して接離自在に配備された回転ドラム4とを有し、さらにタイヤ軸2に発生するユニフォミティ波形を測定するユニフォミティ測定部21と、軸受部15のアウター部16とインナー部17との間に保持された転動体18の保持器19に関して、ハウジング3に対する保持器19の回転角度を計測する回転計測器27と、ユニフォミティ波形の測定結果を保持器19の回転角度を元に補正する演算部28と、を有している。
【選択図】図3

Description

本発明は、タイヤのユニフォミティを高精度に計測することのできるタイヤ試験機及びタイヤ試験方法に関するものである。
タイヤの生産ラインではタイヤのユニフォミティを測定するタイヤ試験がタイヤ試験機で行われる。このユニフォミティの測定は、リムでタイヤ軸に固定されたタイヤに回転ドラムに押し付け、タイヤ軸又は回転ドラムを回転駆動させて、タイヤに発生する変動力(ForceVariation)をユニフォミティ波形として測定するものである。
これらの変動力を測定する場合、低速ユニフォミティマシンなどのタイヤ試験機ではタイヤ軸を駆動させ回転ドラムを従動回転させる場合もあるが、高速ユニフォミティマシンなどのタイヤ試験機では回転ドラムを駆動させタイヤ軸を従動回転させる。そして、従動回転するタイヤ軸側に設置されたロードセルを用いて、タイヤ径方向の変動力(ラジアルフォースバリエーション、以下RFVと呼ぶ)、タイヤの幅方向の変動力(ラテラルフォースバリエーション、以下LFVと呼ぶ)、タイヤの接線方向の変動力(トラクティブフォースバリエーション、以下TFVと呼ぶ)の3つを測定することでタイヤのユニフォミティが評価される。
ところで、ロードセルで測定される3方向の変動力(ユニフォミティ波形)には、原因不明な振動波形が誤差成分として加わってユニフォミティの測定精度を低下させるという問題が以前から指摘されてきた。例えば特許文献1には、このロードセルで測定される原因不明な振動波形は回転ドラムが真円でないことに起因して発生するものであると考えて、回転ドラムの1回転分の平均波形に基づいて誤差成分を算出し、この誤差成分でユニフォミティ波形を補正するタイヤ試験方法が開示されている。
特開平2−259445号公報
ところが、特許文献1のタイヤ試験機のように、回転ドラムが真円でないことに起因して誤差成分が発生すると考えると、誤差成分の振動周期は回転ドラムの回転周期と同期するはずであるが、実際には誤差成分の振動周期と回転ドラムの回転周期とは一致しないことがある。また、特許文献1の補正方法で補正してもタイヤ試験条件によっては補正後の振動波形に誤差成分が残る場合もあり、上述した補正はうまくいく場合もあるが確実に誤差成分を取り除けるものではなかった。
本発明は、上述の問題に鑑みてなされたものであり、誤差成分として加わる振動波形を確実に取り除いてタイヤのユニフォミティを高精度に計測することのできるタイヤ試験機及びタイヤ試験方法を提供することを目的とする。
前記目的を達成するため、本発明は次の技術的手段を講じている。
即ち、本発明のタイヤ試験機は、タイヤを保持するタイヤ軸と、当該タイヤ軸をタイヤ軸の軸心回りに軸受部を介して回転自在に支持するハウジングと、前記タイヤ軸と平行な軸心回りに駆動回転自在に且つ前記タイヤに対して接離自在に配備された回転ドラムと、が備えられたタイヤ試験機であって、
前記回転ドラムと接触して従動回転しているタイヤを保持するタイヤ軸に発生するユニフォミティ波形を測定するユニフォミティ測定部と、前記軸受部のアウター部とインナー部との間に設けられた転動体を保持する保持器に関して、前記ハウジングに対する当該保持器の回転角度を計測する回転計測器と、前記ユニフォミティ測定部で求められるユニフォミティ波形の測定結果を前記保持器の回転角度を元に補正する演算部と、を有していることを特徴とするものである。
発明者らは、鋭意研究の結果、ユニフォミティ波形の測定結果に含まれる誤差成分の大きな要因に、軸受部の保持器の回転に同期した成分が存在することを見出した。通常、タイヤ軸がハウジングに対して回転するときには、軸受部の保持器もタイヤ軸の周りを回転する。このように保持器が回転しても、軸受部は対称な構造となっており、また取り付けも正確に行われているため、保持器の回転がユニフォミティ波形の測定結果にまで影響を及ぼすことは少ないと考えるのが一般的である。しかし、現実には軸受の玉もしくはころの径の不揃いや、内輪・外輪寸法誤差等により、このような誤差成分が発生するものと思われる。
そして、ハウジングに対する保持器の回転角度とこれより発生する誤差信号の関係をあらかじめ求めておき、ユニフォミティ測定時には保持器の回転角度を計測すると共に、この角度信号から求まる誤差補正信号を用いてユニフォミティ波形の測定結果を補正すれば、タイヤのユニフォミティが高精度に計測されることを知見して本発明の完成するに至ったのである。
なお、前記演算部は前記ユニフォミティ測定部で求められるユニフォミティ波形の振動波形から前記保持器の回転角度から求められた誤差信号を減算する構成とされているのが好ましい。
また、前記回転計測器は前記ハウジングとタイヤ軸との間であって前記軸受部の取付位置の上側又は下側に隣接して配備されるセンサを備えているのが好ましく、前記センサは前記ハウジングに対する前記保持器の角度位置を検知可能な非接触式とされているのが好ましい。
なお、本発明のタイヤ試験方法は、タイヤを保持するタイヤ軸と、当該タイヤ軸をタイヤ軸の軸心回りに軸受部を介して回転自在に支持するハウジングと、前記タイヤ軸と平行な軸心回りに駆動回転自在に且つ前記タイヤに対して接離自在に配備された回転ドラムと、が備えられたタイヤ試験機を用いて、前記回転ドラムと接触して従動回転しているタイヤのユニフォミティを測定するに際して、前記回転ドラムと接触して従動回転しているタイヤを保持するタイヤ軸に発生するユニフォミティ波形を測定し、前記軸受部のアウター部とインナー部との間に設けられた転動体を保持する保持器に関して、前記ハウジングに対する当該保持器の回転角度を計測し、前記ユニフォミティ測定部で求められるユニフォミティ波形の測定結果を前記保持器の回転角度を元にあらかじめ求められた軸受転動体より発生する誤差成分で補正することを特徴とするものである。
本発明のタイヤ試験機及びタイヤ試験方法によれば、誤差成分として加わる振動波形(保持器の回転に同期した成分)を確実に取り除いてタイヤのユニフォミティを高精度に計測することができる。
タイヤ試験機の正面断面図である。 従来の軸受部の一部断面斜視図である。 タイヤ試験機の装置構成を示す説明図である。 本発明の軸受部の一部断面斜視図である。 保持器の回転角度に同期した誤差成分が重畳しているユニフォミティ波形の振動波形を示すグラフである。 保持器の回転角度に同期した誤差成分を示すグラフである。 保持器の回転角度に同期した誤差成分を取り除いたユニフォミティ波形の振動波形を示すグラフである。
本発明のタイヤ試験機1を、図面に基づき以降に説明する。
図1に模式的に示されるように、本実施形態のタイヤ試験機1は、タイヤTの高速回転時(回転周波数60rpm以上で回転させたとき)のユニフォミティ(タイヤTの均一性)を測定する試験装置であり、タイヤTを保持するタイヤ軸2と、タイヤ軸2を軸心回りに回転自在に支持するハウジング3と、タイヤ軸2と平行な軸心回りに駆動回転自在に配備された回転ドラム4と、を備えている。
図1の紙面の上方をタイヤ試験機1を説明する際の上方又は上側、また紙面の下方をタイヤ試験機1を説明する際の下方又は下側とする。また、図1におけるタイヤ軸2の軸心に対して半径方向に離れる方向をタイヤ試験機1を説明する際の径外方向又は外周側と、また半径方向にタイヤ軸2の軸心に近づく方向をタイヤ試験機1を説明する際の径内方向又は内周側とする。
タイヤ軸2は、上下方向に向かう軸心回りに略円筒状に形成された上軸5と下軸6とを互いに連結自在に備えている。
上軸5は、下端が下方向かって突出する棒状に形成されており、上下方向の中途側には外周面から径外側に向かって鍔状に突出する上リム7が形成されている。上リム7は、タイヤTの内周に合わせた外径に形成されており、タイヤTの内周に上方から挿し込まれてタイヤTを内周側から保持できるようになっている。
下軸6は、中央に上軸5の下端を挿入可能な軸孔8が形成されており、この軸孔8に上軸5の下端を挿入することで上軸5と一体に回転可能となっている。下軸6は、上下方向の中途側に外周面から径外側に向かって鍔状に突出する下リム9が形成されている。下リム9は、上リム7を上下方向に反転したような構造に形成されており、タイヤTの内周に下方から挿し込まれて上リム7との間にタイヤTを挟持できるようになっている。
ハウジング3は、タイヤ軸2の外周側に配備される内ケーシング10と、内ケーシング10のさらに外周側に設けられた外ケーシング11とを備えている。内ケーシング10は、タイヤ軸2の下軸6の外径より大きな内径を備えた円筒状に形成されており、下軸6の下端側を上下一対の軸受部15を介して回転自在に支持している。内ケーシング10の上端には外周側に向かって鍔状に突出するフランジ部12が形成されており、このフランジ部12の下面には締結具13を用いて外ケーシング11の上端が固定されている。外ケーシング11は、内ケーシング10の外径より大きな内径を備えた円筒状であり、床面(基台)に対して固定されている。これらの外ケーシング11と内ケーシング10との間には、3方向の力成分を計測できるロードセル14が締結具13により貫通状に固定されて設けられている。
図2に示されるように、軸受部15は、本実施形態の場合はテーパころ軸受であり、ハウジング3の内ケーシング10の内周面に取り付けられたアウター部16と、タイヤ軸2の下軸6の外周面に取り付けられたインナー部17とを備えている。そして、これらのアウター部16とインナー部17との間には転動体18(本実施形態のテーパころ軸受の場合はコロ)が、保持器19に保持された状態で保持されている。
保持器19は、環状に形成されており、その外周面には周方向に一定間隔をあけて開口部20が複数形成されている。これらの開口部20には転動体18が回転自在に設けられており、保持器19はアウター部16とインナー部17との双方に対して相対回動自在とされている。
タイヤ試験機1では、ロードセル14で計測された3方向の力成分は、ユニフォミティ測定部21にユニフォミティ波形の信号として送られる。このユニフォミティ測定部21は、ロードセル14で計測されたユニフォミティ波形の信号をそれぞれ増幅するRFV−アンプ22、LFV−アンプ23、及びTFV−アンプ24を備えている。各アンプ22〜24で増幅された振動波形の信号はマルチプレクサ25に入力され、このマルチプレクサ25でデータストリームに適したように重畳される。マルチプレクサ25で重畳された振動波形の信号はADコンバータ26に入力され、演算部28に出力される。
ところが、このようにして計測されたユニフォミティ波形の測定結果には、誤差成分が加わることが以前から知られてきた。この誤差成分は、回転ドラム4が真円でないなどの原因に基づいて発生していると考えられてきたが、そのような考え方に基づいて規定されたどのような補正方法でも誤差成分の影響を確実に排除することはできなかった。
そこで、発明者らは、保持器19の回転に伴って発生する振動が誤差成分の真の原因であると考えた。つまり、上述の軸受部15については、アウター部16がインナー部17の回りを回転(公転)すると、転動体18を保持する保持器19がインナー部17の周りを回転することが知られている。この保持器19の回転に伴って発生する振動波形は、軸受部15の構造が完全に対称であれば、また軸受部15の取り付けが確実に行われていれば、ユニフォミティ波形の測定結果に影響をすることはない。しかし、設計誤差や加工誤差を完全に無くすことや軸受部15を少しの傾きもなく取り付けることは実際には困難であるので、保持器19の回転に伴って発生する誤差成分の振動波形がユニフォミティ波形の測定結果に重畳してしまうことがある。
ここで、軸受部15の保持器19の振動波形については、その回転周波数が機構学的な関係より式(1)で与えられることが知られている。
Figure 2010204018
式(1)からも分かるように、保持器19の振動波形の回転周波数は、タイヤ軸2(インナー部17)の回転周波数の半分より少し小さな値となる。通常、タイヤ試験機1(ユニフォミティマシン)にはエンコーダ等の角度検出器(図示略)が取り付けられていることが多いので、この角度検出器を用いて保持器19の回転角度を推定することも考えられる。
しかし、実際には転動体18のすべりなどもあり、タイヤ軸2に取り付けられたエンコーダから保持器19の正確な回転角度を予測することは困難である。つまり、保持器19の正確な回転角度を求めるには、保持器19の動きをタイヤ試験毎に実際に検出する必要がある。
そこで、図3に示されるように本発明のタイヤ試験機1では、上述のユニフォミティ測定部21に加えて、軸受部15のアウター部16とインナー部17との間に設けられた転動体18を保持する保持器19に関して、ハウジング3に対する保持器19の角度位置を計測する回転計測器27と、ユニフォミティ測定部21で求められるユニフォミティ波形の測定結果を保持器19の回転角度に基づく補正信号を用いて補正する演算部28とを設けている。この補正信号は装置立ち上げ時などに、あらかじめ求められている。
回転計測器27は、ハウジング3とタイヤ軸2との間であって軸受部15の取付位置の上側又は下側に隣接して配備されるセンサ29と、このセンサ29で検知された転動体18の位置情報に基づいてハウジング3に対する保持器19の回転角度(転動体18の公転周波数)を算出するエンコーダ30とを備えている。
図4(a)に示されるように、センサ29は、本実施形態では磁気を用いた非接触式のセンサが用いられている。センサ29は、軸受部15の下方に軸受部15の自由な回転を妨げない程度の距離をあけて配備されており、ハウジング3の内ケーシング10の内周面に取り付けられている。
また、センサ29と対向する保持器19の下端側は内周側に向かって折り曲げられており、この折り曲げられた部分の下面には磁気スケール31が貼り付けられている。この磁気スケール31は、例えばN、S、N、S・・・のように永久磁石が極性を替えながら一定の間隔をあけて配備された帯状体(テープ)であり、保持器19の回転に対応したステップ波形の信号が検知できるようになっている。このセンサ29で検知されたステップ波形の信号はエンコーダ30に出力される。
エンコーダ30は、センサ29から出力されたステップ波形の信号に基づいて保持器19の回転角度波形を算出するカウンタを備えている。このカウンタは、ステップ波形の信号を入力可能なA相、B相、Z相の3つの入力チャンネルを備えており、保持器19の回転角度のみならず保持器19の回転方向をも算出できるようになっている。このようにしてエンコーダ30で計測された保持器19の回転角度は演算部28に出力される。
演算部28は、予め入力されたプログラムに従って、ユニフォミティ測定部21で求められるユニフォミティ波形の測定結果を保持器19の回転角度に応じて補正するものであり、具体的にはパソコンやCPUなどのデジタル回路で構成されている。
次に、演算部28で行われる信号処理の内容、つまり上述のタイヤ試験機1を用いたタイヤ試験方法について詳しく説明する。
本発明のタイヤ試験方法は、上述のタイヤ試験機1を用いて回転ドラム4と接触して従動回転しているタイヤTのユニフォミティを測定するに際して、回転ドラム4と接触して従動回転しているタイヤTを保持するタイヤ軸2に発生するユニフォミティ波形を測定し、軸受部15のアウター部16とインナー部17との間に設けられた転動体18を保持する保持器19に関して、ハウジング3に対する保持器19の回転角度を計測し、ユニフォミティ測定部21で求められるユニフォミティ波形の測定結果を保持器19の回転角度に応じた補正波形で補正するものである。
本発明のタイヤ試験方法は、具体的には以下の通りに行われる。
タイヤ軸2にタイヤTを装着し、タイヤ軸2に保持されたタイヤTに回転ドラム4を接触させる。そして、この状態で回転ドラム4を駆動回転させると、回転ドラム4に接触しているタイヤTが従動回転し、タイヤTにRFV、LFV、TFVの変動力が発生する。この3方向の変動力はタイヤ軸2及びハウジング3の内ケーシング10を経由してロードセル14に伝わり、ロードセル14において3方向の力成分の振動波形として計測される。ロードセル14で計測された振動波形はユニフォミティ測定部21に送られる。
ユニフォミティ測定部21では、ロードセル14で計測された3つの振動波形がそれぞれRFV−アンプ22、LFV−アンプ23、及びTFV−アンプ24で増幅される。各アンプで増幅された振動波形の信号はマルチプレクサ25に入力され、このマルチプレクサ25でデータストリームに適したように重畳される。マルチプレクサ25で重畳された振動波形の信号はADコンバータ26に入力され、デジタル信号として演算部28に出力される。
一方、タイヤ軸2がハウジング3に対して回転すると、タイヤ軸2の下軸6の外周面に取り付けられた軸受部15のインナー部17がハウジング3の内ケーシング10の内周面に取り付けられた軸受部15のアウター部16に対して回転状態となり、これらのインナー部17とアウター部16との間に設けられた転動体18を保持する保持器19がタイヤ軸2の軸心回りに回転する。
このとき、保持器19の回転に合わせて保持器19の下面側に設けられた磁気スケール31が回転し、保持器19の下方に配備されたセンサ29で保持器19の回転角度に対応したステップ波形の信号が検知され、エンコーダ30を介して演算部28に出力される。
演算部28では、まずエンコーダ30から送られてきたステップ波形の信号をカウントすることで、回転角度を算出する。さらにこの回転角度に基づき、あらかじめ求められた保持器回転角度と同期した補正信号を算出する。この補正信号は実際の試験の前に、別途計測しておく必要がある。これについては十分に長い計測時間をかけて、ユニフォミティを計測することで、タイヤ回転に同期した成分と、保持器回転に同期した成分を分離することが可能であり、この分離された転動体に同期した成分を補正信号として、この信号と保持器回転角度との関係を演算部28に記憶しておく。
次に、演算部28では、上述のようにして作成された保持器19の回転角度応じた補正信号を、ユニフォミティ測定部21で求められるユニフォミティ波形の振動波形から減算(補正)することで、誤差成分が取り除かれた真のユニフォミティ波形が計算される。このようにして計算された真のユニフォミティ波形をフーリエ変換等することでタイヤTのユニフォミティを高精度に評価することができる。
次に、実施例を用いて本発明のタイヤ試験機1及びタイヤ試験方法を説明する。
実施例は、上述のタイヤ試験機1においてタイヤTが保持されたタイヤ軸2を60rpmで駆動回転した場合の例である。このとき、ユニフォミティ測定部21では、タイヤ回転1次成分を1.0N、タイヤ回転2次成分を1.0Nとする力成分の真のユニフォミティ波形が発生している。一方、軸受部15の保持器19はタイヤ軸2の回転周波数の0.45倍に相当する27rpmでタイヤ軸2の軸心回りを回転しており、保持器回転2次成分の0.5Nの誤差成分がユニフォミティ波形の振動波形に重畳している。
それゆえ、演算部28に入力されるユニフォミティ波形(補正前のユニフォミティ波形)には、保持器19の回転角度に同期して発生する誤差成分によりが図5中に大きなうねり状の波形として表れており、サンプリング領域の大きさによってはユニフォミティの評価結果に大きなバラツキが発生することが予想される。
そこで、回転計測器27で保持器19の回転角度を計測し、ユニフォミティ測定のサンプリング時間内の補正信号を、あらかじめ演算部28に記憶された誤差信号から算出する。
次に、演算部28では、図5に示されるユニフォミティ波形の振動波形から図6に示される保持器19の回転角度に同期した誤差成分を補正信号として減算する。このようにすれば、図7に示されるように誤差成分として加わる保持器19の回転角度に同期した成分が確実に取り除かれた真のユニフォミティ波形が求められ、この真のユニフォミティ波形をフーリエ変換等することでタイヤTのユニフォミティが高精度に計測される。
本発明は上記各実施形態に限定されるものではなく、発明の本質を変更しない範囲で各部材の形状、構造、材質、組み合わせなどを適宜変更可能である。
上記実施形態では、タイヤ軸2を回転周波数60rpm以上で高速回転させたときに発生するタイヤTのユニフォミティを測定する高速タイヤ試験機を例に挙げて、本発明のタイヤ試験機1を説明した。しかし、本発明のタイヤ試験機1は、タイヤ軸2を回転周波数60rpm以下で低速回転させたときに発生するタイヤTのユニフォミティを測定する低速タイヤ試験機にも用いることができる。
上記実施形態では、保持器19に設けられた磁気スケール31に対して、この磁気スケール31の磁気を検知することで保持器19の回転角度を算出する磁気式センサを回転計測器27のセンサ29として例示した。しかし、回転計測器27のセンサ29には、例えば図4(b)に示すように保持器19の周方向の1箇所に反射テープを貼り付けておき、この反射テープを光学式センサでピックアップする光学式センサや、保持器19の下面の一部に突起または傷を付けておき、これを変位計でピックアップする変位計などを用いることも可能である。
上記実施形態では、上下にそれぞれ設けられた軸受部15のうち、下側の軸受部15の下方にセンサ29が取り付けられたものを例示した。しかし、センサ29は、上側の軸受部15に対して取り付けられていても良いし、上側から保持器19の動きをセンシングする構造としても良い。
1 タイヤ試験機
2 タイヤ軸
3 ハウジング
4 回転ドラム
5 上軸
6 下軸
7 上リム
8 軸孔
9 下リム
10 内ケーシング
11 外ケーシング
12 フランジ部
13 締結具
14 ロードセル
15 軸受部
16 アウター部
17 インナー部
18 転動体
19 保持器
20 開口部
21 ユニフォミティ測定部
22 RFV−アンプ
23 LFV−アンプ
24 TFV−アンプ
25 マルチプレクサ
26 コンバータ
27 回転計測器
28 演算部
29 センサ
30 エンコーダ
31 磁気スケール
T タイヤ

Claims (5)

  1. タイヤを保持するタイヤ軸と、当該タイヤ軸をタイヤ軸の軸心回りに軸受部を介して回転自在に支持するハウジングと、前記タイヤ軸と平行な軸心回りに駆動回転自在に且つ前記タイヤに対して接離自在に配備された回転ドラムと、が備えられたタイヤ試験機であって、
    前記回転ドラムと接触して従動回転しているタイヤを保持するタイヤ軸に発生するユニフォミティ波形を測定するユニフォミティ測定部と、
    前記軸受部のアウター部とインナー部との間に設けられた転動体を保持する保持器に関して、前記ハウジングに対する当該保持器の回転角度を計測する回転計測器と、
    前記ユニフォミティ測定部で求められるユニフォミティ波形の測定結果を前記保持器の回転角度を元に補正する演算部と、
    を有していることを特徴とするタイヤ試験機。
  2. 前記演算部は、前記ユニフォミティ測定部で求められるユニフォミティ波形の振動波形から前記保持器の回転角度に応じた補正信号を減算する構成とされていることを特徴とする請求項1に記載のタイヤ試験機。
  3. 前記回転計測器は、前記ハウジングとタイヤ軸との間であって前記軸受部の取付位置の上側又は下側に隣接して配備されるセンサを備えていることを特徴とする請求項1又は2に記載のタイヤ試験機。
  4. 前記センサは、前記ハウジングに対する前記保持器の角度位置を検知可能な非接触式とされていることを特徴とする請求項1〜3のいずれかに記載のタイヤ試験機。
  5. タイヤを保持するタイヤ軸と、当該タイヤ軸をタイヤ軸の軸心回りに軸受部を介して回転自在に支持するハウジングと、前記タイヤ軸と平行な軸心回りに駆動回転自在に且つ前記タイヤに対して接離自在に配備された回転ドラムと、が備えられたタイヤ試験機を用いて、前記回転ドラムと接触して従動回転しているタイヤのユニフォミティを測定するに際して、
    前記回転ドラムと接触して従動回転しているタイヤを保持するタイヤ軸に発生するユニフォミティ波形を測定し、
    前記軸受部のアウター部とインナー部との間に設けられた転動体を保持する保持器に関して、前記ハウジングに対する当該保持器の回転角度を計測し、
    前記ユニフォミティ測定部で求められるユニフォミティ波形の測定結果を前記保持器の回転角度を元に補正する
    ことを特徴とするタイヤ試験方法。
JP2009052149A 2009-03-05 2009-03-05 タイヤ試験機及びタイヤ試験方法 Pending JP2010204018A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052149A JP2010204018A (ja) 2009-03-05 2009-03-05 タイヤ試験機及びタイヤ試験方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009052149A JP2010204018A (ja) 2009-03-05 2009-03-05 タイヤ試験機及びタイヤ試験方法

Publications (1)

Publication Number Publication Date
JP2010204018A true JP2010204018A (ja) 2010-09-16

Family

ID=42965634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052149A Pending JP2010204018A (ja) 2009-03-05 2009-03-05 タイヤ試験機及びタイヤ試験方法

Country Status (1)

Country Link
JP (1) JP2010204018A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145504A (ja) * 2011-01-13 2012-08-02 Kobe Steel Ltd スピンドル構造およびこれを備えたタイヤ試験機
WO2013051310A1 (ja) * 2011-10-06 2013-04-11 株式会社神戸製鋼所 タイヤユニフォミティ試験装置及びタイヤユニフォミティ試験方法
JP2013083475A (ja) * 2011-10-06 2013-05-09 Kobe Steel Ltd タイヤユニフォミティ試験装置及びタイヤユニフォミティ試験方法
JP2013083476A (ja) * 2011-10-06 2013-05-09 Kobe Steel Ltd タイヤユニフォミティ試験装置及びタイヤユニフォミティ試験方法
WO2014073662A1 (ja) * 2012-11-12 2014-05-15 株式会社神戸製鋼所 タイヤのユニフォミティ波形の補正方法
CN104075895A (zh) * 2014-06-25 2014-10-01 清华大学 用于测量轮胎高速均匀性的方法和***
US9046444B2 (en) 2010-12-15 2015-06-02 Kobe Steel, Ltd. Tire testing device
WO2015118657A1 (ja) * 2014-02-07 2015-08-13 三菱重工マシナリーテクノロジー株式会社 タイヤ反力計測装置、および、タイヤ試験装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9046444B2 (en) 2010-12-15 2015-06-02 Kobe Steel, Ltd. Tire testing device
JP2012145504A (ja) * 2011-01-13 2012-08-02 Kobe Steel Ltd スピンドル構造およびこれを備えたタイヤ試験機
WO2013051310A1 (ja) * 2011-10-06 2013-04-11 株式会社神戸製鋼所 タイヤユニフォミティ試験装置及びタイヤユニフォミティ試験方法
JP2013083475A (ja) * 2011-10-06 2013-05-09 Kobe Steel Ltd タイヤユニフォミティ試験装置及びタイヤユニフォミティ試験方法
JP2013083476A (ja) * 2011-10-06 2013-05-09 Kobe Steel Ltd タイヤユニフォミティ試験装置及びタイヤユニフォミティ試験方法
US9360396B2 (en) 2011-10-06 2016-06-07 Kobe Steel, Ltd. Tire uniformity testing device and tire uniformity testing method
WO2014073662A1 (ja) * 2012-11-12 2014-05-15 株式会社神戸製鋼所 タイヤのユニフォミティ波形の補正方法
US10222300B2 (en) 2012-11-12 2019-03-05 Kobe Steel, Ltd. Method of correcting uniformity waveform of tire
WO2015118657A1 (ja) * 2014-02-07 2015-08-13 三菱重工マシナリーテクノロジー株式会社 タイヤ反力計測装置、および、タイヤ試験装置
CN104075895A (zh) * 2014-06-25 2014-10-01 清华大学 用于测量轮胎高速均匀性的方法和***

Similar Documents

Publication Publication Date Title
JP2010204018A (ja) タイヤ試験機及びタイヤ試験方法
JP5442553B2 (ja) 軸受の損傷検出方法
CN102192718B (zh) 确定球轴承接触角的方法
JP4667186B2 (ja) 回転精度測定方法
US9146136B2 (en) Axis run-out measuring method and angle detecting device with self-calibration function having axis run-out measuring function
JP2012132714A (ja) 角度検出装置およびその偏心量推定方法
JP5871778B2 (ja) タイヤのユニフォミティ波形の補正方法
JP5444879B2 (ja) シャシーダイナモメータ
JP6373705B2 (ja) 振れ測定装置
JP2004077159A (ja) パルサリングおよびセンサ付き軸受ユニット
JP6430162B2 (ja) タイヤ均一性装置を評価するためのシステム、及び、評価の使用方法
EP3076149B1 (en) Enhancement of precision in determining a contact angle in a ball bearing
JP5489697B2 (ja) タイヤ用ダイナミックバランス検査装置
JP2010156564A (ja) ねじり振動測定装置及び方法
JP5330008B2 (ja) 回転精度の評価方法および評価装置
JP2010112929A (ja) 軸受用ころの外径測定装置
JP6455702B2 (ja) 回転体の振動計測方法と装置
JPS60142201A (ja) 薄肉円環の直径測定装置
JP2016014593A (ja) 接触角測定方法及び接触角測定装置
JP2014160020A (ja) 物品の形状測定方法及び測定装置
JP2015017898A (ja) 触針検査方法及び表面形状測定装置
JP2010185838A (ja) 回転機軸振動検出装置
JP2004191146A (ja) 軸受検査装置
JP2752476B2 (ja) ワークピースの振れ測定方法および装置
JP2009257887A (ja) 内周面測定装置