JP2010202465A - Heat insulating glass and method for producing the same - Google Patents

Heat insulating glass and method for producing the same Download PDF

Info

Publication number
JP2010202465A
JP2010202465A JP2009050707A JP2009050707A JP2010202465A JP 2010202465 A JP2010202465 A JP 2010202465A JP 2009050707 A JP2009050707 A JP 2009050707A JP 2009050707 A JP2009050707 A JP 2009050707A JP 2010202465 A JP2010202465 A JP 2010202465A
Authority
JP
Japan
Prior art keywords
refractive index
transparent conductive
conductive layer
layer
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009050707A
Other languages
Japanese (ja)
Other versions
JP5560434B2 (en
Inventor
Yoshiki Okuhara
芳樹 奥原
Hideaki Matsubara
秀彰 松原
Noribumi Isu
紀文 井須
Masasuke Takada
雅介 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Japan Fine Ceramics Center
Nagaoka University of Technology NUC
Original Assignee
Inax Corp
Japan Fine Ceramics Center
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp, Japan Fine Ceramics Center, Nagaoka University of Technology NUC filed Critical Inax Corp
Priority to JP2009050707A priority Critical patent/JP5560434B2/en
Publication of JP2010202465A publication Critical patent/JP2010202465A/en
Application granted granted Critical
Publication of JP5560434B2 publication Critical patent/JP5560434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat insulating glass which has a simple laminated structure but can reflect infrared radiation from the near infrared region having a short wavelength close to the visible light region. <P>SOLUTION: Transparent conductive layers 4 and high refractive index layers 3 are alternately laminated in a plurality of periods on a glass substrate 2, wherein the high refractive index layer 3 has a relatively higher refractive index in the near infrared region than the refractive index of the transparent conductive layer 4. Although the refractive index of the high refractive index layer 3 is not almost dependent on wavelength, the refractive index of the transparent conductive layer 4 is dependent on wavelength. Thus, the refractive indices of the high refractive index layer 3 and the transparent conductive layer 4 are in the same level in the visible light region, but there is a difference between the refractive indices of the high refractive index layer 3 and the transparent conductive layer 4 in the near infrared region. A transparent conductive layer 4a is set as the top surface of the light incidence side with a periodical structure. Preferably, the transparent conductive layer on the top surface of the light incidence side has the largest film thickness compared with the film thicknesses of the other layers 3 and 4, and the layer 4a and the other layers 3 and 4 have the same film thickness or optical film thickness. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、赤外線を反射し且つ放射率が低い断熱ガラスとその製造方法に関する。   The present invention relates to a heat insulating glass that reflects infrared rays and has a low emissivity, and a method for manufacturing the same.

太陽からは、紫外線(波長10〜400nm程度)、可視光線(波長400〜800nm程度)、赤外線(波長800nm〜1mm程度)など種々の波長の電磁波が到達する。赤外線は、波長0.8〜2.5μm(800〜2500nm)程度の近赤外線と、波長2.5〜4μm程度の中赤外線と、4〜1000μm程度の遠赤外線とに分けられる。紫外線は化学的な作用が著しいことに対し、赤外線は熱的な作用を及ぼす。したがって、夏季において室内冷房等を使用していても、赤外線が窓ガラスを透過することで室内が暖められ、冷却効果を阻害する。一方、物体は赤外線を放射する作用(黒体放射)があり、例えば冬場の室内の暖気が窓材に伝わった場合、窓材表面の放射率が高いとその表面から遠赤外線となって放射されることによって伝熱が起こってしまう。そのため、室内の保温性を高め空調機器の負荷を軽減するなどのためには、夏季には赤外線を反射し、冬季には放射率を低減することが求められる。これを前提として、従来から、居住空間の快適性向上、エネルギーコスト削減、環境問題対策などに有効な断熱性ガラスが開発されている。   From the sun, electromagnetic waves of various wavelengths such as ultraviolet rays (wavelengths of about 10 to 400 nm), visible rays (wavelengths of about 400 to 800 nm), infrared rays (wavelengths of about 800 nm to 1 mm) arrive. Infrared rays are classified into near infrared rays having a wavelength of about 0.8 to 2.5 μm (800 to 2500 nm), middle infrared rays having a wavelength of about 2.5 to 4 μm, and far infrared rays of about 4 to 1000 μm. Ultraviolet rays have a significant chemical effect, whereas infrared rays have a thermal effect. Therefore, even if indoor cooling or the like is used in the summer, the infrared rays pass through the window glass, so that the room is warmed and the cooling effect is hindered. On the other hand, an object has an action of emitting infrared rays (black body radiation). For example, when warm air in a winter room is transmitted to a window material, if the emissivity of the window material surface is high, it is emitted as far infrared rays from the surface. Heat transfer will occur. For this reason, in order to increase indoor heat retention and reduce the load on air conditioning equipment, it is necessary to reflect infrared rays in summer and to reduce emissivity in winter. On the premise of this, heat insulating glass effective for improving the comfort of living spaces, reducing energy costs, and dealing with environmental problems has been developed.

例えば、Agを主体成分とする膜の赤外線反射及び低放射率特性を主に利用した断熱ガラスとして、特許文献1や特許文献2がある。具体的には、ガラス基板上に、Agを主体成分とする層と、金属酸化物層とを交互に複数積層することで、穏やかな外観色調を有し、かつ基体側から見た反射光の色調が、入射角度を変えても変化が少ない断熱ガラスとしている。特許文献1では、金属酸化物層として酸化亜鉛(ZnO)層やAlを添加した酸化亜鉛(ZnO・Al)層などを使用可能とされており、特許文献2では、金属酸化物層としてZnOにAlを添加したZnO・Al層が好ましいとされている。なお、特許文献1及び特許文献2では、各層の厚みを異ならせている。   For example, there are Patent Document 1 and Patent Document 2 as heat insulating glass mainly utilizing the infrared reflection and low emissivity characteristics of a film containing Ag as a main component. Specifically, a plurality of layers containing Ag as a main component and a metal oxide layer are alternately laminated on a glass substrate, thereby providing a gentle appearance color tone and reflecting light viewed from the substrate side. The color of the heat-insulating glass is small even when the incident angle is changed. In Patent Document 1, a zinc oxide (ZnO) layer or a zinc oxide (ZnO.Al) layer to which Al is added can be used as a metal oxide layer. In Patent Document 2, ZnO is used as a metal oxide layer. A ZnO.Al layer to which Al is added is considered preferable. In Patent Document 1 and Patent Document 2, the thickness of each layer is made different.

特許文献1や特許文献2でも利用され得る、ZnOにAlを添加したZnO・Al膜などの透明導電膜(層)も、可視光線は透過するが赤外線は反射し、かつ放射率が低いことが知られている(非特許文献1及び非特許文献2参照)。赤外線の反射は膜中の自由電子に起因しており、消衰係数の増加に伴い赤外線が透過し難くなる。下式(1)は、反射を生じさせる波長の目安となるプラズマ波長λPを示す式であり、Nは自由電子密度、mは電子の有効質量、eは電子の電荷量、εは真空中の誘電率、εは物質の比誘電率である。この式(1)から、自由電子密度Nの増大によりプラズマ波長λを近赤外領域まで低減させ、赤外線を反射できると定性的に説明できる。

Figure 2010202465

A transparent conductive film (layer) such as a ZnO / Al film in which Al is added to ZnO, which can be used in Patent Document 1 and Patent Document 2, also transmits visible light but reflects infrared light and has low emissivity. It is known (see Non-Patent Document 1 and Non-Patent Document 2). Infrared reflection is caused by free electrons in the film, and it becomes difficult for infrared rays to transmit as the extinction coefficient increases. The following equation (1) is an equation showing a plasma wavelength λ P that is a measure of the wavelength that causes reflection, where N is the free electron density, m * is the effective mass of the electron, e is the charge amount of the electron, and ε 0 is dielectric constant in vacuum, epsilon is the dielectric constant of a substance. From this equation (1), the increase of free electron density N reduces the plasma wavelength lambda p to near infrared region, it can be explained qualitatively when it reflects infrared.
Figure 2010202465

また、第一のポリマー種を含む層と第二のポリマー種を含む層との交互層を有する赤外光反射多層フィルムと、硬化したポリマーバインダー中に分散させた多数の金属酸化物ナノ粒子を含み、かつ1〜20μmの範囲の厚さを有する赤外光吸収ナノ粒子層とを備える太陽光制御多層フィルムが、特許文献3に記載されている。ここでの金属酸化物ナノ粒子は、酸化スズまたはドープト酸化スズとされている。   In addition, an infrared light reflective multilayer film having alternating layers of a layer containing a first polymer species and a layer containing a second polymer species, and a number of metal oxide nanoparticles dispersed in a cured polymer binder Patent Document 3 discloses a solar control multilayer film including an infrared light absorbing nanoparticle layer including and having a thickness in the range of 1 to 20 μm. The metal oxide nanoparticles here are tin oxide or doped tin oxide.

特開平8-104547号公報JP-A-8-104547 特開平11-34216号公報JP-A-11-34216 特表2008―528313号公報Special table 2008-528313

Optical Properties of Aluminum Doped Zinc Oxide ThinFilms Prepared by RF Magnetron Sputtering、T. Minami, H. Nanto and S.Takata, Jpn. J. Appl. Phys., Vol. 24No.8, L605-L607 (1985)Optical Properties of Aluminum Doped Zinc Oxide ThinFilms Prepared by RF Magnetron Sputtering, T. Minami, H. Nanto and S. Takata, Jpn. J. Appl. Phys., Vol. 24No. 8, L605-L607 (1985) ZnO系透明導電膜、南内嗣、応用物理 第16巻 第12号、1255-1258 (1992)ZnO-based transparent conductive film, Minoru Minamiuchi, Applied Physics Vol.16, No.12, 1255-1258 (1992)

上述のように、ZnO・Al膜(層)やAgを主体成分とする膜(層)のような透明導電膜は、赤外線反射作用を奏する。しかしながら、ZnO・Al膜において、赤外線反射現象が発現する波長は凡そ1500nm程度以上であり、この1500nmから可視光の長波長端である約800nmまでの近赤外領域については反射が小さい。また、Ag膜では800nm程度の近赤外線を反射させるためには膜厚を増加させる必要があり、その場合には可視領域の透過率が低下してしまう。太陽光の放射強度スペクトルは、可視光領域の約500nmをピークとして波長の増加とともに減少するスペクトルであるため、可視光領域より長波長側では800nm程度の近赤外領域の放射強度が高く、長波長になるにしたがって放射強度は低下する。したがって、Ag膜では得られない可視光透過率を確保しつつ、ZnO・Al膜では反射できない800〜1500nm程度の近赤外線を如何に反射させるかが太陽光の熱線をカットする上で重要となる。   As described above, a transparent conductive film such as a ZnO.Al film (layer) or a film (layer) containing Ag as a main component exhibits an infrared reflecting effect. However, in the ZnO.Al film, the wavelength at which the infrared reflection phenomenon appears is about 1500 nm or more, and reflection is small in the near infrared region from 1500 nm to about 800 nm, which is the long wavelength end of visible light. Further, in the Ag film, it is necessary to increase the film thickness in order to reflect near-infrared rays of about 800 nm, and in this case, the transmittance in the visible region is lowered. Since the radiant intensity spectrum of sunlight is a spectrum that decreases with an increase in wavelength with a peak at about 500 nm in the visible light region, the radiant intensity in the near infrared region of about 800 nm is high on the longer wavelength side than the visible light region, The radiation intensity decreases with wavelength. Therefore, how to reflect near-infrared rays of about 800 to 1500 nm that cannot be reflected by the ZnO.Al film while securing visible light transmittance that cannot be obtained by the Ag film is important in cutting the heat rays of sunlight. .

そこで、本発明者らは、ガラス表面に形成する被膜において、式(1)に示した自由電子による赤外反射(波長1500nm以上)に加えて、近赤外領域における屈折率の異なる被膜を互いに積層することで、800〜1500nm程度の近赤外線の反射も発現できないかと考えた。ここで、光学特性(屈折率)の異なる膜を積層することで反射現象を発現させるためには、異なる膜A・B同士の屈折率差が重要となる。その反射波長λおよび反射率Rmaxは、一般的に次の式(2)および式(3)で与えられる。nは屈折率、dは膜厚、nは膜表面に接する媒質の屈折率、nは基板の屈折率である。

Figure 2010202465

Figure 2010202465
Accordingly, the inventors of the present invention have formed a film formed on the glass surface, in addition to the infrared reflection (wavelength 1500 nm or more) by the free electrons shown in the formula (1), the films having different refractive indexes in the near infrared region are mutually connected. It was considered that reflection of near-infrared rays of about 800 to 1500 nm could be developed by laminating. Here, in order to express a reflection phenomenon by laminating films having different optical characteristics (refractive indices), a difference in refractive index between different films A and B is important. The reflection wavelength λ and the reflectance R max are generally given by the following equations (2) and (3). n is the refractive index, d is the film thickness, the n m the refractive index of the medium in contact with the membrane surface, n s is the refractive index of the substrate.
Figure 2010202465

Figure 2010202465

特許文献1や特許文献2では、Agを主体成分とする層とZnO・Al層などの金属酸化物層とを交互に積層しているが、両層の屈折率差には特に注目しておらず、これを有効利用できる構成ともなっていない。具体的には、特許文献1では複数種の金属酸化物層を積層しているので各層間の屈折率差が一定でなく、屈折率差に基づく反射現象を有効利用できない。当然、屈折率差に基づく近赤外線の反射現象も有効利用できない。金属酸化物層として1種のみ(例えばZnO層)使用した例もあるが、各層の厚み(膜厚)が異なるので、周期性(屈折率差)に起因して反射が生じる波長を制御することはできない。   In Patent Document 1 and Patent Document 2, layers containing Ag as a main component and metal oxide layers such as ZnO / Al layers are alternately stacked, but the refractive index difference between the two layers is not particularly noted. However, it is not configured to be able to use this effectively. Specifically, in Patent Document 1, since a plurality of types of metal oxide layers are laminated, the refractive index difference between the respective layers is not constant, and the reflection phenomenon based on the refractive index difference cannot be effectively used. Naturally, the near-infrared reflection phenomenon based on the refractive index difference cannot be effectively used. Although there is an example in which only one type (for example, ZnO layer) is used as the metal oxide layer, the thickness (film thickness) of each layer is different, so the wavelength at which reflection occurs due to periodicity (refractive index difference) is controlled. I can't.

特許文献2では金属酸化物層としてZnO・Al層が好ましいとされているが、これとAgを主体成分とする層との周期構造では、可視光線領域では屈折率差を生じさせず近赤外線領域において屈折率差を生じさせることはできない。しかも、特許文献2でも各層の厚み(膜厚)が異なるので、やはり周期性(屈折率差)に起因して反射が生じる波長を制御することはできない。   In Patent Document 2, a ZnO.Al layer is preferred as the metal oxide layer. However, in the periodic structure of this and a layer containing Ag as a main component, a refractive index difference does not occur in the visible light region, and the near infrared region. In this case, a difference in refractive index cannot be generated. Moreover, since the thickness (film thickness) of each layer is different in Patent Document 2, the wavelength at which reflection occurs due to periodicity (refractive index difference) cannot be controlled.

特許文献3では、屈折率の異なる2種類の膜を交互に積層させているので、反射波長の制御はある程度可能である。しかしながら、特許文献3における第一のポリマー種を含む層及び第二のポリマー種を含む層の屈折率は、波長に対して変動せずほぼ一定であり、透明導電膜のような波長依存性がない。屈折率差が全ての波長で不変の場合、反射させたい波長の整数分の1の波長(n=n=λ/4のときは1/3)に別の反射ピークが発現する。例えば1200nmの波長を反射させたい場合でも、可視光領域である400nmの波長も同時に反射してしまい、膜が着色してしまう。また、屈折率が異なるだけで導電性を有していない場合、自由電子に起因する反射は期待できない。そのため、特許文献3では、屈折率の異なる膜を交互に積層させることに加えて、金属酸化物ナノ粒子(自由電子)を含む層も設けている。しかしながら、これでは、周期構造のための2種類の異なる層と、自由電子を含む層との、合計3種類もの膜が最低限必要となる。 In Patent Document 3, since two types of films having different refractive indexes are alternately stacked, the reflection wavelength can be controlled to some extent. However, the refractive index of the layer containing the first polymer species and the layer containing the second polymer species in Patent Document 3 is almost constant without changing with respect to the wavelength, and has a wavelength dependency like that of a transparent conductive film. Absent. If the refractive index difference is unchanged at all wavelengths, another reflection peak (1/3 when n A d A = n B d B = λ / 4) integral fraction of one wavelength of the wavelength to be reflected To express. For example, even when it is desired to reflect a wavelength of 1200 nm, a wavelength of 400 nm that is a visible light region is also reflected at the same time, and the film is colored. In addition, when the refractive index is different and it does not have conductivity, reflection due to free electrons cannot be expected. Therefore, in Patent Document 3, in addition to alternately laminating films having different refractive indexes, a layer containing metal oxide nanoparticles (free electrons) is also provided. However, this requires a minimum of a total of three types of films, two different layers for the periodic structure and a layer containing free electrons.

そこで、本発明は上記課題を解決するものであって、単純な積層構造でありながら、可視光の透過率を維持しつつ、より可視光領域に近い短波長の近赤外領域から赤外線を反射できる断熱ガラスとその製造方法を提供することを目的とする。   Therefore, the present invention solves the above-described problem, and reflects infrared rays from a near-infrared region having a short wavelength closer to the visible light region while maintaining a visible light transmittance while having a simple laminated structure. It aims at providing the heat insulation glass which can be performed, and its manufacturing method.

本発明の断熱ガラスは、ガラス基板上に、透明導電層と、近赤外線領域における屈折率が前記透明導電層の屈折率と比べて相対的に高い高屈折率層とが積層されている。高屈折率層は透明導電層の屈折率と比べて相対的に高ければよく、一般的な種々のガラス被膜と比べて極めて高い必要はない。具体的には、前記高屈折率層として屈折率が波長に応じて大きく変動しない層を使用することに対し、前記透明導電層としては、屈折率が波長に応じて変動し、可視光線領域では前記高屈折率層の屈折率と同レベルであるが、近赤外線領域において屈折率が低下する特性を有する層を使用する。これにより、透明導電層と高屈折率層との間では、可視光領域では屈折率差が生じていないが、近赤外線領域において屈折率差が生じることになる。なお、高屈折率層の屈折率が波長に応じて変動しないとは、厳密には屈折率が若干変動することはあるが、殆ど変動せず実質的にほぼ一定であることを意味する。   In the heat insulating glass of the present invention, a transparent conductive layer and a high refractive index layer whose refractive index in the near-infrared region is relatively higher than the refractive index of the transparent conductive layer are laminated on a glass substrate. The high refractive index layer only needs to be relatively high compared to the refractive index of the transparent conductive layer, and does not need to be extremely high as compared with various general glass coatings. Specifically, as the high refractive index layer, a layer whose refractive index does not vary greatly depending on the wavelength is used, whereas as the transparent conductive layer, the refractive index varies depending on the wavelength, and in the visible light region. A layer having the same level as the refractive index of the high refractive index layer but having a characteristic that the refractive index decreases in the near infrared region is used. Thereby, between the transparent conductive layer and the high refractive index layer, a refractive index difference does not occur in the visible light region, but a refractive index difference occurs in the near infrared region. Note that the fact that the refractive index of the high refractive index layer does not vary according to the wavelength means that the refractive index slightly varies, but does not vary substantially and is substantially constant.

前記透明導電層と高屈折率層とは交互に積層されている。当該透明導電層と高屈折率層とが交互に積層された周期構造は、複数周期(2周期以上)繰り返すことで多層構造となっている。このとき、前記周期構造の光入射側最表面は高屈折率層としても構わないが、前記透明導電層とすることが好ましい。また、前記光入射側最表面の透明導電層の膜厚は他の層の膜厚と比べて同じでも構わないが、最も大きく設定することが好ましい。さらに、前記光入射側最表面層以外の他の層は、全て同じ膜厚若しくは同じ光学膜厚とすることが好ましい。なお、光学膜厚は屈折率と膜厚との積である。   The transparent conductive layer and the high refractive index layer are alternately laminated. The periodic structure in which the transparent conductive layer and the high refractive index layer are alternately stacked has a multilayer structure by repeating a plurality of periods (two or more periods). At this time, the light incident side outermost surface of the periodic structure may be a high refractive index layer, but is preferably the transparent conductive layer. The film thickness of the transparent conductive layer on the outermost surface of the light incident side may be the same as the film thickness of other layers, but is preferably set to the largest value. Furthermore, it is preferable that all the layers other than the light incident side outermost layer have the same film thickness or the same optical film thickness. The optical film thickness is the product of the refractive index and the film thickness.

このような関係を有する透明導電層と高屈折率層とは、大きく分けて3つの形態で形成することができる。まず、第1の形態として、前記透明導電層に、Al添加ZnO、Ga添加ZnO、Sc添加ZnO、Y添加ZnO、B添加ZnO、F添加ZnO、Ti添加ZnO、Zr添加ZnO、Hf添加ZnO、Si添加ZnO、Ge添加ZnO、V添加ZnO、In添加ZnO、Nb添加TiO、Sn添加In、F添加In、Zn添加In、Sb添加SnO、F添加SnO、Zn添加SnO、Sb添加SrTiO、V添加SrTiO、La添加SrTiO、Nb添加SrTiO、ZnSnO、CdSnO、InSbO、CdIn、MgInO、CaGaO、CdO、TiN、ZrN、HfN、LaB、V,VOからなる群から選ばれる1種もしくは2種以上を使用し、前記高屈折率層として、ZnO、TiO、In、SnO、SrTiO、BaTiO、SiO、Al、ZrO、MgO、PbO、Y、ZnAl、GaAl、LiNbO、CaCO、MgF、SiC、Agからなる群から選ばれる1種もしくは2種以上を使用する。これら透明導電層用の材料と高屈折率層用の材料との組み合わせは、高屈折率層の屈折率が透明導電層よりも相対的に高くなる限り、種々の組み合わせができる。なお、光入射側最表面層以外の他の層を全て同じ膜厚とする場合は、透明導電層や高屈折率層に使用する材料はそれぞれ1種のみとする。光入射側最表面層以外の他の層の光学膜厚が全て同じであれば、透明導電層や高屈折率層に使用する材料はそれぞれ2種以上を組み合わせることもできる。 The transparent conductive layer and the high refractive index layer having such a relationship can be roughly divided into three forms. First, as a first embodiment, the transparent conductive layer is formed of Al-added ZnO, Ga-added ZnO, Sc-added ZnO, Y-added ZnO, B-added ZnO, F-added ZnO, Ti-added ZnO, Zr-added ZnO, Hf-added ZnO, Si-doped ZnO, Ge-doped ZnO, V-doped ZnO, In-doped ZnO, Nb-doped TiO 2 , Sn-doped In 2 O 3 , F-doped In 2 O 3 , Zn-doped In 2 O 3 , Sb-doped SnO 2 , F-doped SnO 2 , Zn-added SnO 2 , Sb-added SrTiO 3 , V-added SrTiO 3 , La-added SrTiO 3 , Nb-added SrTiO 3 , Zn 2 SnO 4 , Cd 2 SnO 2 , InSbO 4 , CdIn 2 O 4 , MgInO 4 O 4 , CdO, TiN, ZrN, HfN , LaB 6, V 2 O 3, 1 kind selected from the group consisting of VO 2 Properly uses two or more, as the high refractive index layer, ZnO, TiO 2, In 2 O 3, SnO 2, SrTiO 3, BaTiO 3, SiO 2, Al 2 O 3, ZrO 2, MgO, PbO, One or more selected from the group consisting of Y 2 O 3 , ZnAl 2 O 4 , GaAl 2 O 4 , LiNbO 3 , CaCO 3 , MgF 2 , SiC, and Ag 2 S 3 are used. Various combinations of the material for the transparent conductive layer and the material for the high refractive index layer can be used as long as the refractive index of the high refractive index layer is relatively higher than that of the transparent conductive layer. In addition, when all the layers other than the light incident side outermost surface layer have the same film thickness, only one kind of material is used for each of the transparent conductive layer and the high refractive index layer. If the optical film thicknesses of the other layers other than the light incident side outermost surface layer are all the same, two or more materials used for the transparent conductive layer and the high refractive index layer can be combined.

第1形態の断熱ガラスでは、前記透明導電層と高屈折率層とは、共に同一のターゲットを使用した反応性スパッタリングにより成膜される。そして、添加元素用ターゲットのシャッターを定期的に開閉することのみによって、透明導電層と高屈折率層とを交互に積層できる。添加元素用ターゲットのシャッターを開けば、ZnOなどの金属酸化物にAlなどの添加元素が添加されて透明導電層となる。逆に、添加元素用ターゲットのシャッターを閉じれば、Alなどの添加元素が添加されずZnOなどの金属酸化物のみからなる高屈折率層となる。   In the heat insulating glass of the first form, both the transparent conductive layer and the high refractive index layer are formed by reactive sputtering using the same target. And a transparent conductive layer and a high refractive index layer can be alternately laminated | stacked only by opening and closing the shutter of the target for additive elements regularly. When the shutter of the target for the additive element is opened, an additive element such as Al is added to a metal oxide such as ZnO to form a transparent conductive layer. On the contrary, if the shutter of the target for the additive element is closed, an additive element such as Al is not added and a high refractive index layer made of only a metal oxide such as ZnO is obtained.

また、第2の形態として、前記透明導電層を、Al添加ZnO、Ga添加ZnO、Sc添加ZnO、Y添加ZnO、B添加ZnO、F添加ZnO、Ti添加ZnO、Zr添加ZnO、Hf添加ZnO、Si添加ZnO、Ge添加ZnO、V添加ZnO、In添加ZnO、Nb添加TiO、Sn添加In、F添加In、Zn添加In、Sb添加SnO、F添加SnO、Zn添加SnO、Sb添加SrTiO、V添加SrTiO、La添加SrTiO、Nb添加SrTiOからなる群から選ばれる1種もしくは2種以上とし、前記高屈折率層も前記透明導電層と同種の層としながら、前記透明導電層よりも添加元素量が多く導電性を有しない層とする。 Further, as a second embodiment, the transparent conductive layer is made of Al-added ZnO, Ga-added ZnO, Sc-added ZnO, Y-added ZnO, B-added ZnO, F-added ZnO, Ti-added ZnO, Zr-added ZnO, Hf-added ZnO, Si-doped ZnO, Ge-doped ZnO, V-doped ZnO, In-doped ZnO, Nb-doped TiO 2 , Sn-doped In 2 O 3 , F-doped In 2 O 3 , Zn-doped In 2 O 3 , Sb-doped SnO 2 , F-doped SnO 2 , Zn-added SnO 2 , Sb-added SrTiO 3 , V-added SrTiO 3 , La-added SrTiO 3 , Nb-added SrTiO 3, or one or more selected from the group consisting of the high refractive index layer and the transparent conductive layer And a layer having a larger amount of additive elements than the transparent conductive layer and having no conductivity.

第2の形態の断熱ガラスでも、前記透明導電層と高屈折率層とは、共に同一のターゲットを使用した反応性スパッタリングにより成膜される。ここでは、添加元素用ターゲットへの印加電力量を定期的に増減することのみによって、透明導電層と高屈折率層とを交互に積層できる。添加元素用ターゲットへの印加電力量を適正に調整することで、ZnOなどの金属酸化物にAlなどの添加元素が適量添加された透明導電層となる。逆に、添加元素用ターゲットへの印加電力量を透明導電層のときよりも増大させれば、ZnOなどの金属酸化物にAlなどの添加元素が多量に添加されて高屈折率層となる。   Even in the heat insulating glass of the second form, the transparent conductive layer and the high refractive index layer are both formed by reactive sputtering using the same target. Here, the transparent conductive layer and the high refractive index layer can be alternately stacked only by periodically increasing or decreasing the amount of electric power applied to the additive element target. By appropriately adjusting the amount of electric power applied to the target for the additive element, a transparent conductive layer is obtained in which an appropriate amount of additive element such as Al is added to a metal oxide such as ZnO. Conversely, if the amount of electric power applied to the target for the additive element is increased as compared with that for the transparent conductive layer, a large amount of an additive element such as Al is added to a metal oxide such as ZnO to form a high refractive index layer.

また、第3の形態として、前記透明導電層及び前記高屈折率層を、共に同一のターゲットを使用した反応性スパッタリングにより成膜し、前記高屈折率層は、前記透明導電層の成膜時と比べて雰囲気ガス中の酸素割合が少ない雰囲気で成膜され導電性を有しない層とする。なお、第2の形態及び第3の形態において、導電性を有しないとは、僅かに電気は伝導するが透明導電層に比べて十分導電性が低く、実質的に非導電性と同視できる程度の場合を含む。   As a third embodiment, the transparent conductive layer and the high refractive index layer are both formed by reactive sputtering using the same target, and the high refractive index layer is formed when the transparent conductive layer is formed. The film is formed in an atmosphere where the oxygen ratio in the atmosphere gas is small compared to the above, and the layer does not have conductivity. In the second and third embodiments, the term “having no electrical conductivity” means that electricity is slightly conducted, but the electrical conductivity is sufficiently lower than that of the transparent conductive layer, and can be regarded as substantially non-conductive. Including the case.

第3の形態の断熱ガラスでも、前記透明導電層と高屈折率層とは、共に同一のターゲットを使用した反応性スパッタリングにより成膜される。ここでは、前記透明導電層と高屈折率層とは、雰囲気ガス中の酸素割合を変更することで分けられる。具体的には、前記高屈折率層は、前記透明導電層の成膜時と比べて雰囲気ガス中の酸素割合が少ない雰囲気で成膜される。   Even in the heat insulating glass of the third form, both the transparent conductive layer and the high refractive index layer are formed by reactive sputtering using the same target. Here, the transparent conductive layer and the high refractive index layer are separated by changing the oxygen ratio in the atmospheric gas. Specifically, the high refractive index layer is formed in an atmosphere in which the proportion of oxygen in the atmospheric gas is smaller than when the transparent conductive layer is formed.

本発明によれば、これの大前提として、ガラス基板上に透明導電層を形成していることで、可視光線を良好に透過しながら赤外線を良好に反射し、且つ放射率が低い。このため、夏季においては赤外線を反射することで室内冷房効率が向上すると共に、冬季においては放射率が低いことで室内暖房効率が向上する。そのうえで、近赤外線領域における屈折率が透明導電層の屈折率と比べて相対的に高い高屈折率層を積層し、近赤外線領域において両層間に屈折率差が生じることで近赤外線を反射させることができる。この透明導電層が本来有する赤外反射と、屈折率差に起因する近赤外反射を組み合わせることにより、従来の断熱ガラスよりも、より断熱効果が向上する。また、本発明によれば、周期構造の膜そのものが透明導電層由来の自由電子の効果を有しているため、2種類の層のみからなる単純な構成にできる。   According to the present invention, the main premise of this is that the transparent conductive layer is formed on the glass substrate, so that the infrared rays are well reflected while the visible light is favorably transmitted, and the emissivity is low. For this reason, indoor cooling efficiency is improved by reflecting infrared rays in summer, and indoor heating efficiency is improved by low emissivity in winter. In addition, a high refractive index layer having a relatively high refractive index in the near-infrared region compared to the refractive index of the transparent conductive layer is laminated, and a near-infrared region is reflected by a difference in refractive index between both layers in the near-infrared region. Can do. By combining the infrared reflection originally possessed by the transparent conductive layer and the near-infrared reflection caused by the difference in refractive index, the heat insulating effect is further improved as compared with the conventional heat insulating glass. In addition, according to the present invention, since the periodic structure film itself has the effect of free electrons derived from the transparent conductive layer, it can have a simple configuration consisting of only two types of layers.

透明導電層の屈折率は波長依存性を有することに対し、高屈折率層の屈折率が波長依存性がほとんどなく、可視光線領域では透明導電層と高屈折率層の屈折率が同レベルであるが、近赤外線領域において屈折率差が生じる関係となっていれば、赤外線領域においては屈折率差により赤外線が反射されるが、可視光領域において屈折率差がほとんどなければ、当該可視光領域での反射現象は発現せず着色することがない。このため、反射させる近赤外波長を任意に選択でき、その波長を近赤外線領域の中でもより可視光領域に近い波長に移行させることができる。   The refractive index of the transparent conductive layer has wavelength dependence, whereas the refractive index of the high refractive index layer has almost no wavelength dependence, and the refractive index of the transparent conductive layer and that of the high refractive index layer are the same level in the visible light region. If there is a relationship in which a refractive index difference occurs in the near infrared region, infrared rays are reflected by the refractive index difference in the infrared region, but if there is almost no refractive index difference in the visible light region, the visible light region. The reflection phenomenon is not manifested and no coloring occurs. For this reason, the near infrared wavelength to be reflected can be arbitrarily selected, and the wavelength can be shifted to a wavelength closer to the visible light region in the near infrared region.

透明導電層と高屈折率層とがそれぞれ1層のみ形成されているだけでも、透明導電層の自由電子に起因する反射と屈折率差による反射とは発現し得る。そのうえで、透明導電層と高屈折率層と交互に積層された周期構造を複数繰り返す多層構造としていれば、確実に赤外線を反射できる。このとき、周期構造の光入射側最表面を透明導電層としていれば、基本となる自由電子に起因する反射を発揮でき、また、気体と触れる最表面を透明導電層としていれば、膜から気体側への赤外放射を低減でき、効率的に断熱できる。   Even if only one transparent conductive layer and one high refractive index layer are formed, reflection due to free electrons in the transparent conductive layer and reflection due to a difference in refractive index can be manifested. In addition, if a multilayer structure in which a periodic structure in which transparent conductive layers and high refractive index layers are alternately stacked is repeated, infrared rays can be reliably reflected. At this time, if the light incident side outermost surface of the periodic structure is a transparent conductive layer, reflection due to basic free electrons can be exhibited, and if the outermost surface in contact with the gas is a transparent conductive layer, the gas is removed from the film. Infrared radiation to the side can be reduced and heat insulation can be performed efficiently.

光入射側最表面の透明導電層の膜厚が他の層の膜厚と比べて最も大きければ、透明導電層に起因する赤外線反射と低放射率とを効率的に強められるので、屈折率差による短波長領域の反射を発現させながら、従来の断熱ガラスと同様に赤外線の中でも長波長領域の反射率を確実に高め、かつ良好な低放射率を担保できる。   If the film thickness of the transparent conductive layer on the outermost surface of the light incident side is the largest compared with the film thickness of other layers, infrared reflection and low emissivity caused by the transparent conductive layer can be effectively enhanced. As in the case of conventional heat insulating glass, the reflectance in the long wavelength region can be reliably increased in the infrared and the good low emissivity can be secured.

光入射側最表面層以外の他の層を全て同じ膜厚もしくは同じ光学膜厚としていれば、これらの膜厚を調整することで交互に積層した周期性(屈折率差)に起因して反射が生じる波長を制御することができる。   If all the layers other than the outermost surface layer on the light incident side have the same film thickness or the same optical film thickness, they are reflected due to the periodicity (refractive index difference) stacked alternately by adjusting these film thicknesses. Can be controlled.

透明導電層と高屈折率層とを、同じターゲットを利用した基本的に同種の組成からなる層としながら、添加元素の有無、添加元素量、又は雰囲気ガス中の酸素割合によって透明導電層とするか高屈折率層とするかで成膜し分ければ、容易かつ効率的に透明導電層と高屈折率層との周期構造を構成できる。   The transparent conductive layer and the high refractive index layer are basically made of the same type of composition using the same target, and the transparent conductive layer is formed by the presence or absence of an additive element, the amount of the additive element, or the oxygen ratio in the atmospheric gas. If the film is formed depending on whether it is a high refractive index layer, a periodic structure of the transparent conductive layer and the high refractive index layer can be configured easily and efficiently.

断熱ガラスの断面図である。It is sectional drawing of heat insulation glass. ZnO・Al膜の透過率・反射率波長依存性を示すグラフである。It is a graph which shows the transmittance | permeability and reflectance wavelength dependence of a ZnO * Al film | membrane. ZnO膜の透過率・反射率波長依存性を示すグラフである。It is a graph which shows the transmittance | permeability and reflectance wavelength dependence of a ZnO film | membrane. ZnO・Al膜の屈折率・消衰係数波長依存性を示すグラフである。It is a graph which shows the refractive index and extinction coefficient wavelength dependence of a ZnO * Al film | membrane. ZnO膜の透過率・反射率波長依存性を示すグラフである。It is a graph which shows the transmittance | permeability and reflectance wavelength dependence of a ZnO film | membrane. 全ての膜厚が150nmの周期構造における透過率・反射率波長依存性を示すグラフである。It is a graph which shows the transmittance | permeability and reflectance wavelength dependence in the periodic structure whose all film thickness is 150 nm. 内層部の膜厚が100nmの周期構造における透過率・反射率波長依存性を示すグラフある。It is a graph which shows the transmittance | permeability and reflectance wavelength dependence in the periodic structure whose film thickness of an inner layer part is 100 nm. 内層部の膜厚が125nmの周期構造における透過率・反射率波長依存性を示すグラフである。It is a graph which shows the transmittance | permeability and reflectance wavelength dependence in the periodic structure whose film thickness of an inner layer part is 125 nm. 内層部の膜厚が150nmの周期構造における透過率・反射率波長依存性を示すグラフである。It is a graph which shows the transmittance | permeability and reflectance wavelength dependence in the periodic structure whose film thickness of an inner layer part is 150 nm. 内層部の膜厚が200nmの周期構造における透過率・反射率波長依存性を示すグラフである。It is a graph which shows the transmittance | permeability and reflectance wavelength dependence in the periodic structure whose film thickness of an inner layer part is 200 nm. 内層部の膜厚が250nmの周期構造における透過率・反射率波長依存性を示すグラフである。It is a graph which shows the transmittance | permeability and reflectance wavelength dependence in the periodic structure whose film thickness of an inner layer part is 250 nm. Al過剰添加ZnO・Al膜の透過率・反射率波長依存性を示すグラフである。It is a graph which shows the transmittance | permeability and reflectance wavelength dependence of Al excessive addition ZnO * Al film | membrane. Al過剰添加ZnO・Al膜の屈折率・消衰係数波長依存性を示すグラフである。It is a graph which shows the refractive index and the extinction coefficient wavelength dependence of Al excessive addition ZnO * Al film | membrane. Al過剰添加ZnO・Al膜とAl適量添加ZnO・Al膜との周期構造における透過率・反射率波長依存性を示すグラフである。It is a graph which shows the transmittance | permeability and reflectance wavelength dependence in the periodic structure of Al excess addition ZnO * Al film | membrane and Al suitable amount addition ZnO * Al film | membrane. 酸素供給不足ZnO・Al膜の屈折率・消衰係数波長依存性を示すグラフである。It is a graph which shows the refractive index and extinction coefficient wavelength dependence of an oxygen supply insufficient ZnO * Al film | membrane. 酸素供給不足ZnO・Al膜の屈折率・消衰係数波長依存性を示すグラフである。It is a graph which shows the refractive index and extinction coefficient wavelength dependence of an oxygen supply insufficient ZnO * Al film | membrane. 酸素供給不足ZnO・Al膜と酸素適量ZnO・Al膜との周期構造における透過率・反射率波長依存性を示すグラフである。It is a graph which shows the transmittance | permeability and reflectance wavelength dependence in the periodic structure of an oxygen supply insufficient ZnO * Al film | membrane and an oxygen suitable amount ZnO * Al film | membrane. 通常の窓ガラスに使用されるフロートガラスの遠赤外領域における放射率を示すグラフである。It is a graph which shows the emissivity in the far-infrared area | region of the float glass used for a normal window glass. ZnO・Al膜の放射率を示すグラフである。It is a graph which shows the emissivity of a ZnO * Al film | membrane. ZnO膜の放射率を示すグラフである。It is a graph which shows the emissivity of a ZnO film | membrane. 透明導電層と高屈折率層とを交互に積層した積層膜の放射率を示すグラフである。It is a graph which shows the emissivity of the laminated film which laminated | stacked the transparent conductive layer and the high refractive index layer alternately.

まず、本発明の基本的な構成について説明する。本発明の断熱ガラス1は、図1に示すように、ガラス基板2上に、透明導電層4と、高屈折率層3とが交互に積層されて成る。高屈折率層3は、少なくとも波長800〜2500nm程度の近赤外線領域における屈折率が透明導電層4の屈折率と比べて相対的に高い層であり、高屈折率層3自体の屈折率が極めて高くなっている訳ではない。詳しくは、高屈折率層3は、屈折率が波長に応じて変動せず(波長依存性がほとんど無い)、全波長に対してほぼ一定となっている。一方、透明導電層4は、屈折率が波長に応じて変動し(波長依存性を有し)、波長400〜800nm程度の可視光線領域では高屈折率層3の屈折率と同レベルであるが、近赤外線領域において屈折率が低下する傾向を有する。これにより、透明導電層4と高屈折率層3との間には、可視光線領域では屈折率差が生じていないが、近赤外線領域では屈折率差が生じている。   First, the basic configuration of the present invention will be described. As shown in FIG. 1, the heat insulating glass 1 of the present invention is formed by alternately laminating transparent conductive layers 4 and high refractive index layers 3 on a glass substrate 2. The high refractive index layer 3 is a layer having a relatively high refractive index in the near infrared region of at least a wavelength of about 800 to 2500 nm as compared with the refractive index of the transparent conductive layer 4, and the high refractive index layer 3 itself has an extremely high refractive index. It is not high. Specifically, in the high refractive index layer 3, the refractive index does not vary according to the wavelength (has almost no wavelength dependence), and is almost constant for all wavelengths. On the other hand, the refractive index of the transparent conductive layer 4 varies according to the wavelength (has wavelength dependence), and is in the same level as the refractive index of the high refractive index layer 3 in the visible light region having a wavelength of about 400 to 800 nm. The refractive index tends to decrease in the near infrared region. Thereby, a refractive index difference does not occur between the transparent conductive layer 4 and the high refractive index layer 3 in the visible light region, but a refractive index difference occurs in the near infrared region.

透明導電層4と高屈折率層3とが交互に積層された周期構造は、複数繰り返されている。具体的には、透明導電層4と高屈折率層3との周期構造は2周期以上とし、好ましくは3周期以上とする。但し、あまりに積層周期が多いと、可視光領域を含めて透過率を低下させるとともにコストの無駄となるので、透明導電層4と高屈折率層3とが交互に積層された周期構造は8周期以内とすることが好ましい。より好ましくは、4〜6周期である。周期構造の光入射側最表面は透明導電層4aとすることが好ましい。自由電子による赤外線反射と低放射率とを光入射側最表面において効率的に発現させるためである。周期構造の光入射側最表面を高屈折率層3としても構わないが、最初の自由電子による赤外線反射や低放射率が内層部において生じる点において効率性が劣る。また、太陽光が膜面側ではなくガラス基板側から入射される窓ガラスの構造の場合には、ガラス基板と膜の界面に透明導電層を設けてもよい。   A plurality of periodic structures in which the transparent conductive layers 4 and the high refractive index layers 3 are alternately stacked are repeated. Specifically, the periodic structure of the transparent conductive layer 4 and the high refractive index layer 3 is two periods or more, preferably three periods or more. However, if there are too many lamination cycles, the transmittance including the visible light region is reduced and the cost is wasted. Therefore, the periodic structure in which the transparent conductive layers 4 and the high refractive index layers 3 are alternately laminated has 8 cycles. It is preferable to be within. More preferably, it is 4-6 periods. The light incident side outermost surface of the periodic structure is preferably a transparent conductive layer 4a. This is because infrared reflection by free electrons and low emissivity are efficiently expressed on the outermost surface on the light incident side. The outermost surface on the light incident side of the periodic structure may be the high refractive index layer 3, but the efficiency is inferior in that infrared reflection or low emissivity by the first free electrons occurs in the inner layer portion. In the case of a window glass structure in which sunlight is incident not from the film surface side but from the glass substrate side, a transparent conductive layer may be provided at the interface between the glass substrate and the film.

また、光入射側最表面の透明導電層4aの膜厚は、これより内層部にある他の層3・4の膜厚と比べて最も大きく設定することが好ましい。自由電子に由来する赤外線反射を確実に発現させるためである。光入射側最表面の透明導電層4aの膜厚は、これより内層部にある他の層3・4の膜厚と比べて大きければ、具体的な膜厚は特に限定されないが、内層部にある他の層3・4の膜厚に対して、1.25〜4倍(125〜400%)程度とすればよい。好ましくは、内層部にある他の層3・4に対して、1.75〜3.5倍程度である。なお、光入射側最表面の透明導電層4aの膜厚がこれより内層部にある他の層3・4の膜厚と同じでも、機能的には問題ない。さらに、光入射側最表面の透明導電層4aの膜厚がこれより内層部にある他の層3・4の膜厚より小さくても、断熱ガラスとしての機能は担保できる。   Moreover, it is preferable to set the film thickness of the transparent conductive layer 4a on the light incident side outermost surface to be the largest compared to the film thicknesses of the other layers 3 and 4 in the inner layer portion. This is because the infrared reflection derived from the free electrons is surely expressed. The thickness of the transparent conductive layer 4a on the outermost surface of the light incident side is not particularly limited as long as the thickness of the transparent conductive layer 4a is larger than the thickness of the other layers 3 and 4 in the inner layer portion. What is necessary is just to be about 1.25 to 4 times (125-400%) with respect to the film thickness of a certain other layer 3 * 4. Preferably, it is about 1.75 to 3.5 times the other layers 3 and 4 in the inner layer portion. Even if the thickness of the transparent conductive layer 4a on the outermost surface of the light incident side is the same as the thickness of the other layers 3 and 4 in the inner layer, there is no functional problem. Furthermore, even if the film thickness of the transparent conductive layer 4a on the light incident side outermost surface is smaller than the film thicknesses of the other layers 3 and 4 in the inner layer portion, the function as the heat insulating glass can be secured.

光入射側最表面の透明導電層4a以外の他の層3・4は、全て同じ膜厚とするか、もしくは同じ光学膜厚(屈折率nと膜厚dとの積=nd)とすることが好ましい。周期構造において屈折率の差が一定間隔で繰り返され、各層3・4の膜厚を制御することで赤外線反射発現波長の制御が容易となるからである。内層部にある他の層3・4の膜厚をそれぞれ異ならしても構わないが、光学膜厚が同じでなければ、赤外線反射発現波長の制御が難しくなると共に、屈折率差に基づく反射作用が生じ難くなるおそれがある。内層部にある透明導電層4及び高屈折率層3の膜厚は、当該透明導電層4及び高屈折率層3の屈折率に応じて適宜調整すればよい。ある特定の波長を反射させたい場合に、上記式(2)に従って、透明導電層4及び高屈折率層3の屈折率が大きければ、透明導電層4及び高屈折率層3の膜厚は比較的薄くする。逆に、透明導電層4及び高屈折率層3の屈折率が小さければ、透明導電層4及び高屈折率層3の膜厚は比較的厚くする。例えば、800〜1500nm程度の波長を選択的に反射させたい場合に、透明導電層4の屈折率が1.3、高屈折率層3の屈折率が1.8の場合、当該透明導電層4及び高屈折率層3の膜厚は100〜250nm程度とする。内層部にある透明導電層4及び高屈折率層3の膜厚が110nm未満では、屈折率差に起因する反射波長が可視光線領域において発現してしまう。逆に、内層部にある透明導電層4及び高屈折率層3の膜厚が250nmを超えると、屈折率差に起因する反射波長が長波長側へ移行し過ぎる。これでは、近赤外線領域におけるできるだけ短波長(可視光線領域側)で反射させたい本発明の効果から離れてしまう。つまり、透明導電層4のみでも1500nm程度から赤外線を反射できるので、周期構造に基づく屈折率差に起因する反射作用の効果が意味を成さなくなる。好ましくは、内層部にある透明導電層4及び高屈折率層3の膜厚を120〜180nm程度とし、より好ましくは120〜160nm程度とする。内層部にある透明導電層4及び高屈折率層3の膜厚が120〜160nm程度であれば、周期構造に基づく屈折率差に起因する反射が、波長1000nm前後において発現する。   All the layers 3 and 4 other than the transparent conductive layer 4a on the light incident side outermost surface have the same film thickness, or have the same optical film thickness (product of refractive index n and film thickness d = nd). Is preferred. This is because the difference in the refractive index is repeated at regular intervals in the periodic structure, and the control of the thickness of each of the layers 3 and 4 facilitates the control of the infrared reflection expression wavelength. The film thicknesses of the other layers 3 and 4 in the inner layer part may be different from each other. However, if the optical film thickness is not the same, it is difficult to control the infrared reflection expression wavelength, and the reflection action based on the difference in refractive index. May be difficult to occur. The film thicknesses of the transparent conductive layer 4 and the high refractive index layer 3 in the inner layer portion may be appropriately adjusted according to the refractive indexes of the transparent conductive layer 4 and the high refractive index layer 3. If it is desired to reflect a specific wavelength and the refractive indexes of the transparent conductive layer 4 and the high refractive index layer 3 are large according to the above formula (2), the film thicknesses of the transparent conductive layer 4 and the high refractive index layer 3 are compared. Make it thin. Conversely, if the transparent conductive layer 4 and the high refractive index layer 3 have a small refractive index, the transparent conductive layer 4 and the high refractive index layer 3 are made relatively thick. For example, when it is desired to selectively reflect a wavelength of about 800 to 1500 nm, when the refractive index of the transparent conductive layer 4 is 1.3 and the refractive index of the high refractive index layer 3 is 1.8, the transparent conductive layer 4 The film thickness of the high refractive index layer 3 is about 100 to 250 nm. When the film thickness of the transparent conductive layer 4 and the high refractive index layer 3 in the inner layer portion is less than 110 nm, the reflection wavelength due to the difference in refractive index appears in the visible light region. On the contrary, when the film thickness of the transparent conductive layer 4 and the high refractive index layer 3 in the inner layer portion exceeds 250 nm, the reflection wavelength caused by the difference in refractive index is shifted too much to the long wavelength side. This departs from the effect of the present invention which is desired to be reflected at the shortest possible wavelength (visible light region side) in the near infrared region. That is, since only the transparent conductive layer 4 can reflect infrared rays from about 1500 nm, the effect of the reflective action due to the difference in refractive index based on the periodic structure becomes meaningless. Preferably, the film thickness of the transparent conductive layer 4 and the high refractive index layer 3 in the inner layer portion is about 120 to 180 nm, more preferably about 120 to 160 nm. If the film thickness of the transparent conductive layer 4 and the high refractive index layer 3 in the inner layer portion is about 120 to 160 nm, reflection due to the refractive index difference based on the periodic structure appears around a wavelength of 1000 nm.

透明導電層4や高屈折率層3は、スパッタリング、イオンプレーティング、真空蒸着などのPVDのほか、化学蒸着(CVD)などによってガラス基板2上に積層することができる。   The transparent conductive layer 4 and the high refractive index layer 3 can be laminated on the glass substrate 2 by chemical vapor deposition (CVD) or the like, in addition to PVD such as sputtering, ion plating, and vacuum deposition.

このような透明導電層4と高屈折率層3との周期構造を有する断熱ガラス1は、一般住宅やビルなどの建築物、及び自動車や列車などの車両など、断熱性が求められる窓ガラスとして好適に使用できる。次に、本発明の具体的な形態について説明する。   The heat insulating glass 1 having such a periodic structure of the transparent conductive layer 4 and the high refractive index layer 3 is used as a window glass that requires heat insulation, such as buildings such as ordinary houses and buildings, and vehicles such as automobiles and trains. It can be used suitably. Next, specific embodiments of the present invention will be described.

[第1の形態]
第1の形態は、内層部にある透明導電層4と高屈折率層3との膜厚を、上記基本的形態における膜厚条件に基づいて制御することで、反射波長を制御する形態である。ここでの透明導電層4としては、Al添加ZnO、Ga添加ZnO、Sc添加ZnO、Y添加ZnO、B添加ZnO、F添加ZnO、Ti添加ZnO、Zr添加ZnO、Hf添加ZnO、Si添加ZnO、Ge添加ZnO、V添加ZnO、In添加ZnO、Nb添加TiO、Sn添加In、F添加In、Zn添加In、Sb添加SnO、F添加SnO、Zn添加SnO、Sb添加SrTiO、V添加SrTiO、La添加SrTiO、Nb添加SrTiO、ZnSnO、CdSnO、InSbO、CdIn、MgInO、CaGaO、CdO、TiN、ZrN、HfN、LaB、V,VOからなる群から選ばれる1種もしくは2種以上を例示できる。内層部にある全透明導電層4や全高屈折率層3の膜厚をそれぞれ同一とする場合は、当該透明導電層4や高屈折率層3に使用する材料はそれぞれ1種のみとする。透明導電層4や高屈折率層3に使用する材料として2種以上を組み合わせる場合は、内層部にある全透明導電層4や全高屈折率層3の光学膜厚をそれぞれ同一とする。
[First embodiment]
A 1st form is a form which controls a reflective wavelength by controlling the film thickness of the transparent conductive layer 4 and the high refractive index layer 3 in an inner layer part based on the film thickness conditions in the said basic form. . As the transparent conductive layer 4 here, Al-added ZnO, Ga-added ZnO, Sc-added ZnO, Y-added ZnO, B-added ZnO, F-added ZnO, Ti-added ZnO, Zr-added ZnO, Hf-added ZnO, Si-added ZnO, Ge added ZnO, V added ZnO, an In addition ZnO, Nb added TiO 2, Sn added In 2 O 3, F added In 2 O 3, Zn added In 2 O 3, Sb added SnO 2, F added SnO 2, Zn added SnO 2 , Sb-added SrTiO 3 , V-added SrTiO 3 , La-added SrTiO 3 , Nb-added SrTiO 3 , Zn 2 SnO 4 , Cd 2 SnO 2 , InSbO 4 , CdIn 2 O 4 , MgInO 4 Ti, CaGaC 4 , ZrN, HfN, LaB 6, V 2 O 3, 1 or or 2 kinds selected from the group consisting of VO 2 The above can be exemplified. When the film thickness of all the transparent conductive layers 4 and all the high refractive index layers 3 in an inner layer part is made the same, the material used for the said transparent conductive layer 4 and the high refractive index layer 3 shall be only 1 type, respectively. When combining two or more kinds of materials used for the transparent conductive layer 4 and the high refractive index layer 3, the optical film thicknesses of the total transparent conductive layer 4 and the total high refractive index layer 3 in the inner layer are the same.

なかでも、高屈折率層3と透明導電層4とを同種の基本素材として、これに不純物元素を添加するか否かによって高屈折率層3と透明導電層4とに分けることが好ましい。これによれば、後述のように、同じターゲットを用いた反応性スパッタリングによって容易に製造できるからである。具体的には、高屈折率層3をZnOとする場合、これにAl、Ga、Sc、Y、B、F、Ti、Zr、Hf、Si、Ge、In、又はVを添加することで透明導電層4とする。高屈折率層3をTiOとする場合、これにNbを添加することで透明導電層4とする。高屈折率層3をInとする場合、これにSn、F、又はZnを添加することで透明導電層4とする。高屈折率層3をSnOとする場合、これにSb、F、又はZnを添加することで透明導電層4とする。高屈折率層3をSrTiOとする場合、これにSb、V、La、又はNbを添加することで透明導電層4とする。なお、高屈折率層3と透明導電層4には必ずしも同種の基本素材を使用する必要もない。この場合は、高屈折率層3として、BaTiO、SiO、Al、ZrO、MgO、PbO、Y、ZnAl、GaAl、LiNbO、CaCO、MgF、SiC、Agからなる群から選ばれる1種もしくは2種以上を使用することもできる。 In particular, it is preferable that the high refractive index layer 3 and the transparent conductive layer 4 are made of the same basic material and are divided into the high refractive index layer 3 and the transparent conductive layer 4 depending on whether or not an impurity element is added thereto. This is because it can be easily manufactured by reactive sputtering using the same target as will be described later. Specifically, when the high refractive index layer 3 is made of ZnO, it is transparent by adding Al, Ga, Sc, Y, B, F, Ti, Zr, Hf, Si, Ge, In, or V thereto. The conductive layer 4 is used. When the high refractive index layer 3 is made of TiO 2 , the transparent conductive layer 4 is made by adding Nb thereto. When the high refractive index layer 3 is In 2 O 3 , the transparent conductive layer 4 is formed by adding Sn, F, or Zn thereto. When the high refractive index layer 3 is made of SnO 2 , the transparent conductive layer 4 is made by adding Sb, F, or Zn thereto. When the high refractive index layer 3 is SrTiO 3 , the transparent conductive layer 4 is formed by adding Sb, V, La, or Nb thereto. The high refractive index layer 3 and the transparent conductive layer 4 do not necessarily need to use the same basic material. In this case, as the high refractive index layer 3, BaTiO 3 , SiO 2 , Al 2 O 3 , ZrO 2 , MgO, PbO, Y 2 O 3 , ZnAl 2 O 4 , GaAl 2 O 4 , LiNbO 3 , CaCO 3 , One or more selected from the group consisting of MgF 2 , SiC, and Ag 2 S 3 can also be used.

ガラス基板2上に形成する透明導電層4と高屈折率層3とが交互に積層された周期構造は、反応性スパッタリングによって形成することが好ましい。反応性スパッタリングによる成膜方法は、基本的には公知の方法と同様である。具体的には、真空チャンバー内に薄膜として形成したい元素をターゲットとして設置し、高電圧をかけてイオン化させたアルゴンなどの希ガス元素や窒素を衝突させて、ターゲット表面の原子が弾き飛ばされて基板上にターゲット金属からなる薄膜を成膜できる。反応性スパッタリングは、真空チャンバー内に希ガスと共に反応ガスを導入し(本発明では酸素)、これをはじき飛ばされた元素と反応させることによって化合物を製膜する。使用する元素(蒸着材料)の数に応じて2極・3極・4極としたり、RF(高周波)、マグネトロン、対向ターゲット、ミラートロン、イオンビーム、やデュアルイオンビームなどとすることができる。   The periodic structure in which the transparent conductive layers 4 and the high refractive index layers 3 formed on the glass substrate 2 are alternately stacked is preferably formed by reactive sputtering. The film forming method by reactive sputtering is basically the same as a known method. Specifically, an element to be formed as a thin film in a vacuum chamber is set as a target, and a rare gas element such as argon ionized by applying a high voltage or nitrogen is collided to blow off atoms on the target surface. A thin film made of a target metal can be formed on the substrate. In reactive sputtering, a reactive gas is introduced into a vacuum chamber together with a rare gas (oxygen in the present invention), and a compound is formed by reacting this with an element that is repelled. Depending on the number of elements (evaporation material) used, it can be 2 poles, 3 poles, 4 poles, RF (radio frequency), magnetron, counter target, mirrortron, ion beam, dual ion beam, or the like.

そのうえで、例えば高屈折率層3をZnOとし、透明導電層4をZnO・Alとするように、高屈折率層3と透明導電層4とを同種の基本素材(ZnO)として、これに不純物元素(Al)を添加するか否かによって高屈折率層3と透明導電層4とに分ける場合は、基本元素となるZnなどの金属ターゲットと、添加元素用のAlなどの金属ターゲットを併設し、添加元素用ターゲットの前面に開閉可能なシャッターを設けておく。そして、高屈折率層3を成膜する場合はシャッターを閉じておき、透明導電層4を成膜する場合はシャッターを開けばよい。このように、シャッターを開閉するのみによって高屈折率層3と透明導電層4とを分けられれば、周期構造の形成が容易となる。又は、単に添加元素用のターゲットへ電圧を印加するか否かのみによって高屈折率層3と透明導電層4とを成膜することもできる。   In addition, for example, the high refractive index layer 3 and the transparent conductive layer 4 are made of the same basic material (ZnO) so that the high refractive index layer 3 is made of ZnO and the transparent conductive layer 4 is made of ZnO.Al. When dividing into the high refractive index layer 3 and the transparent conductive layer 4 depending on whether or not (Al) is added, a metal target such as Zn as a basic element and a metal target such as Al for the additive element are provided side by side, A shutter that can be opened and closed is provided in front of the target for the additive element. Then, when the high refractive index layer 3 is formed, the shutter is closed, and when the transparent conductive layer 4 is formed, the shutter is opened. Thus, if the high refractive index layer 3 and the transparent conductive layer 4 can be separated by simply opening and closing the shutter, the formation of the periodic structure is facilitated. Alternatively, the high refractive index layer 3 and the transparent conductive layer 4 can be formed only by applying a voltage to the target for the additive element.

各層3・4の膜厚は、成膜時間によって制御できる。また、添加元素の添加量は、添加元素用ターゲットへの印加電圧の強弱によって制御できる。本第1の形態では、基本元素用のターゲットへの印加電力50〜70Wに対して、添加元素用ターゲットへの印加電力を20〜30Wとする。基本元素用のターゲットへの印加電力対して、添加元素用ターゲットへの印加電力が上記範囲から外れると、添加元素の添加量が少なすぎ又は多すぎて良好な導電性を確保できず、赤外線反射機能が低下する。好ましくは、基本元素用のターゲットへの印加電力50〜70Wに対して、添加元素用ターゲットへの印加電力を25〜30Wとする。   The film thickness of each of the layers 3 and 4 can be controlled by the film formation time. Moreover, the addition amount of the additive element can be controlled by the strength of the voltage applied to the target for the additive element. In the first embodiment, the applied power to the additive element target is 20 to 30 W with respect to the applied power 50 to 70 W to the basic element target. If the power applied to the target for the additive element deviates from the above range with respect to the power applied to the target for the basic element, the additive amount of the additive element is too small or too large to ensure good conductivity and infrared reflection. Function declines. Preferably, the applied power to the target for the additive element is set to 25 to 30 W with respect to the applied power of 50 to 70 W to the target for the basic element.

(実施例1)
先ず、透明導電層をZnO・Al層とし、高屈折率層をZnOとして、両層の屈折率差に基づく反射の発現性について評価した。透明導電層及び高屈折率層は、反応性スパッタリング法により成膜した。成膜させる基板には30×30mm合成石英を用い、基板温度を200℃とした。成膜時には基板を15rpmにて回転させることで膜厚の均一化を図った。この基板を設置した後、チャンバー内を9×10-9Torr以下の超高真空としてから、雰囲気ガスとしてArおよび酸素を導入し、その合計流量を20sccmで一定とし、その流量比の調整によって酸素供給量を制御した。成膜時の全圧は3mTorrに設定した。Zn金属(純度99.999%以上)およびAl金属(純度99.999%以上)をターゲットとして、ZnターゲットにはRF電源にて60W、AlターゲットにはDC電源を接続して28W程度を与えてプラズマを発生させた。
Example 1
First, the transparent conductive layer was a ZnO.Al layer, the high refractive index layer was ZnO, and the expression of reflection based on the refractive index difference between the two layers was evaluated. The transparent conductive layer and the high refractive index layer were formed by a reactive sputtering method. 30 × 30 mm synthetic quartz was used as the substrate for film formation, and the substrate temperature was 200 ° C. During film formation, the substrate was rotated at 15 rpm to make the film thickness uniform. After installing this substrate, the chamber is evacuated to an ultrahigh vacuum of 9 × 10 −9 Torr or less, Ar and oxygen are introduced as atmospheric gases, the total flow rate is kept constant at 20 sccm, and the oxygen flow rate is adjusted by adjusting the flow rate ratio. The supply amount was controlled. The total pressure during film formation was set to 3 mTorr. Using Zn metal (purity: 99.999% or more) and Al metal (purity: 99.999% or more) as targets, the Zn target is connected with an RF power supply of 60 W, and the Al target is connected with a DC power supply to give about 28 W. Plasma was generated.

最初に、透明導電層であるZnO・Al層のみをガラス基板上に堆積させた。Arの流量を18.2sccm、酸素の流量を1.85sccmとし、成膜時間を1時間として膜厚750nmの透明導電層をガラス基板上に形成した。このZnO・Alからなる透明導電層の透過率及び反射率の波長依存性を図2に示す。図2の結果から、可視光領域(380〜780nm程度)では、透過率は約80%以上、反射率は約10%程度であった。それぞれのスペクトルが波長によって上下変動しているのは、膜厚に応じた干渉現象のためである。波長800nm以上の近赤外領域では、透過スペクトルにおいて約1000nm以上から大きく透過率が減少し、1700nm以上ではほとんど近赤外光を透過させないことが確認できる。反射スペクトルにおいても、約1300nm以上より反射率が増加し始め、2500nmでは約80%の反射率を示した。このZnO・Al膜(層)の抵抗率は3×10−4Ωcm以下であり、そのキャリア濃度(自由電子密度N)は約1×1021cm−3、ホール移動度は約25cm/Vsにまで高められていた。 First, only a ZnO.Al layer, which is a transparent conductive layer, was deposited on a glass substrate. A transparent conductive layer having a thickness of 750 nm was formed on a glass substrate with an Ar flow rate of 18.2 sccm, an oxygen flow rate of 1.85 sccm, and a film formation time of 1 hour. FIG. 2 shows the wavelength dependence of the transmittance and reflectance of the transparent conductive layer made of ZnO.Al. From the results of FIG. 2, in the visible light region (about 380 to 780 nm), the transmittance was about 80% or more and the reflectance was about 10%. The reason why each spectrum fluctuates up and down depending on the wavelength is due to an interference phenomenon corresponding to the film thickness. It can be confirmed that in the near-infrared region having a wavelength of 800 nm or more, the transmittance is greatly reduced from about 1000 nm or more in the transmission spectrum, and almost no near-infrared light is transmitted at 1700 nm or more. Also in the reflection spectrum, the reflectance started to increase from about 1300 nm or more, and the reflectance was about 80% at 2500 nm. The resistivity of the ZnO.Al film (layer) is 3 × 10 −4 Ωcm or less, the carrier concentration (free electron density N) is about 1 × 10 21 cm −3 , and the hole mobility is about 25 cm 2 / Vs. It was raised to.

次に、上記と同じ条件で、Alを添加せずにZnO層のみを、膜厚を500nmとしてガラス基板上に堆積させた。このZnO膜の透過率及び反射率の波長依存性を図3に示す。図3の結果から、ZnO膜では、可視光領域での透過率は80%程度あるものの、上記のZnO・Al膜とは異なり近赤外領域の反射現象は現れていない。このZnO膜の抵抗率は2×10−2Ωcm以下であり、そのキャリア濃度(自由電子密度N)は2×1019cm−3、ホール移動度は15cm/Vsであり、抵抗率および自由電子密度NともにAlを添加した場合に比べて2桁ほど低下していた。つまり、上式(1)にしたがって、自由電子密度Nの低下がλの増加をもたらし、それが近赤外よりも長波長側にまで押し出したと説明できる。 Next, under the same conditions as described above, only a ZnO layer was deposited on a glass substrate with a film thickness of 500 nm without adding Al. The wavelength dependence of the transmittance and reflectance of this ZnO film is shown in FIG. From the results shown in FIG. 3, the ZnO film has a transmittance of about 80% in the visible light region, but unlike the ZnO • Al film described above, the reflection phenomenon in the near infrared region does not appear. The resistivity of this ZnO film is 2 × 10 −2 Ωcm or less, the carrier concentration (free electron density N) is 2 × 10 19 cm −3 , the hole mobility is 15 cm 2 / Vs, and the resistivity and free Both the electron density N was reduced by two orders of magnitude compared to the case where Al was added. That is, according to the above equation (1), resulted in increased reduction in lambda P free electron density N, it can be described as it was extruded to a longer wavelength side than the near infrared.

そこで、図2および図3に示したZnO・Al膜およびZnO膜を交互に積層させることで、800〜1300nmの近赤外線を反射させることを試みた。まず、図4および図5に、透明導電層となるZnO・Al膜と、高屈折率層となるZnO膜それぞれについて分光エリプソメータによって計測した屈折率nおよび消衰係数kの波長依存性を示す。図5の結果から、ZnO膜の屈折率nおよび消衰係数kは500nm以上では波長にほとんど依存せず、n=1.8、k=0であった。一方、図4の結果から、ZnO・Al膜の屈折率nおよび消衰係数kは波長に依存し、波長の増加とともに屈折率nはプラズマ波長付近まで減少し、消衰係数kはプラズマ波長付近から増加する傾向を示した。   Therefore, an attempt was made to reflect near infrared rays of 800 to 1300 nm by alternately laminating the ZnO.Al film and the ZnO film shown in FIGS. First, FIG. 4 and FIG. 5 show the wavelength dependence of the refractive index n and the extinction coefficient k measured by a spectroscopic ellipsometer for each of the ZnO.Al film serving as the transparent conductive layer and the ZnO film serving as the high refractive index layer. From the results of FIG. 5, the refractive index n and the extinction coefficient k of the ZnO film hardly depend on the wavelength at 500 nm or more, and n = 1.8 and k = 0. On the other hand, from the results of FIG. 4, the refractive index n and extinction coefficient k of the ZnO.Al film depend on the wavelength, and as the wavelength increases, the refractive index n decreases to near the plasma wavelength, and the extinction coefficient k is near the plasma wavelength. Showed a tendency to increase.

ここで、図4および図5の屈折率差に着目すると、ZnO・Al膜およびZnO膜の屈折率は波長500nm以下ではほぼ同等であるが、それより波長が長くなるにつれてZnO・Al膜の屈折率が低下するため屈折率差が生じてくる。この屈折率差を利用することで、透明導電層/高屈折率層の積層構造における周期性に起因した近赤外反射を発現させることとした。   Here, focusing on the difference in refractive index between FIGS. 4 and 5, the refractive indexes of the ZnO.Al film and the ZnO film are substantially equal at a wavelength of 500 nm or less, but the refractive index of the ZnO.Al film increases as the wavelength becomes longer. The refractive index difference is generated because the rate is lowered. By utilizing this difference in refractive index, near-infrared reflection caused by periodicity in the laminated structure of the transparent conductive layer / high refractive index layer was developed.

1000nmにおけるZnO・Al膜の屈折率n=1.3、および1000nmにおけるZnO膜の屈折率n=1.8であることから、上式(2)によれば、ZnO・Al膜およびZnO膜の膜厚を150nm程度に設定すれば、反射波長を波長1000nm程度にできると算出できる。そこで、本実施例では、ZnO・Al膜及びZnO膜をそれぞれ5層ずつ交互に積層して合計10層の積層膜を作製した。Arと酸素の流量はそれぞれ18.2sccmおよび1.85sccmとし、Znターゲットに与えるRF電力を60Wと固定したまま、Alターゲットに与えるDC電力を0Wと28Wとに交互に切り替えることで積層膜を得た。成膜時間は、ZnO・Al膜12分、ZnO膜18分として共に約150nmの膜厚となるように設定した。この積層膜の透過率及び反射率の波長依存性を図6に示す。図6の結果から、可視光領域では透過率が70〜80%程度であり、ZnO・Al単層膜に比べて若干低下したものの、ほぼ透明であった。一方、反射率スペクトルには約1000nm付近に50%強の反射ピークが現れ、周期性に起因した反射現象の発現が確認できた。さらに、それよりも長波長側の2000nm以降においても自由電子に起因する反射が現れていることが確認できる。   Since the refractive index n of the ZnO · Al film at 1000 nm is 1.3 and the refractive index n of the ZnO film at 1000 nm is 1.8, according to the above formula (2), the ZnO · Al film and the ZnO film If the film thickness is set to about 150 nm, the reflection wavelength can be calculated to be about 1000 nm. Therefore, in this example, five layers of ZnO.Al films and ZnO films were alternately laminated to produce a total of ten laminated films. The flow rates of Ar and oxygen were 18.2 sccm and 1.85 sccm, respectively, and the RF power applied to the Zn target was fixed at 60 W, while the DC power applied to the Al target was alternately switched between 0 W and 28 W to obtain a laminated film It was. The film formation time was set to be about 150 nm for both the ZnO.Al film 12 minutes and the ZnO film 18 minutes. FIG. 6 shows the wavelength dependence of the transmittance and reflectance of this laminated film. From the results in FIG. 6, the transmittance in the visible light region was about 70 to 80%, which was slightly transparent as compared with the ZnO.Al single layer film, but was almost transparent. On the other hand, in the reflectance spectrum, a reflection peak of about 50% appeared in the vicinity of about 1000 nm, and the occurrence of a reflection phenomenon due to periodicity could be confirmed. Furthermore, it can be confirmed that reflection due to free electrons appears even after 2000 nm on the longer wavelength side.

次に、積層させる各層の膜厚を変えた場合に、周期性に起因する反射の波長の動向について評価した。具体的には、各光入射側最表面のZnO・Al層をそれぞれ400nmに統一設定し、その下層(内部層)にあるZnO層およびZnO・Al層を、それぞれ全て100nm(積層膜1)、125nm(積層膜2)、150nm(積層膜3)、200nm(積層膜4)、250nm(積層膜5)に設定したときの透過・反射スペクトルを測定した。積層膜1の結果を図7に、積層膜2の結果を図8に、積層膜3の結果を図9に、積層膜4の結果を図10に、積層膜5の結果を図11に、それぞれ示す。図7〜図11の透過・反射スペクトル形状に一定の傾向が確認され、周期構造における各層の膜厚の増加とともに周期性に起因する反射波長が長波長側へシフトする様子がわかる。   Next, when the film thickness of each layer to be laminated was changed, the trend of the wavelength of reflection due to periodicity was evaluated. Specifically, the ZnO · Al layers on the outermost surfaces of the respective light incident sides are uniformly set to 400 nm, respectively, and the ZnO layer and the ZnO · Al layer in the lower layer (inner layer) are all 100 nm (laminated film 1), Transmission and reflection spectra were measured when the thickness was set to 125 nm (laminated film 2), 150 nm (laminated film 3), 200 nm (laminated film 4), and 250 nm (laminated film 5). 7 shows the results of the laminated film 1, FIG. 8 shows the results of the laminated film 2, FIG. 9 shows the results of the laminated film 3, FIG. 10 shows the results of the laminated film 4, and FIG. 11 shows the results of the laminated film 5. Each is shown. A certain tendency is confirmed in the transmission / reflection spectrum shapes of FIGS. 7 to 11, and it can be seen that the reflection wavelength due to the periodicity shifts to the longer wavelength side as the film thickness of each layer in the periodic structure increases.

詳しく見ると、図7の結果より、透明導電層及び高屈折率層の膜厚が100nmの場合、周期性に起因する反射波長は約700nmであり、可視光領域において反射していた。図8の結果より、透明導電層及び高屈折率層の膜厚が125nmの場合、周期性に起因する反射波長は約900nmであった。図9の結果より、透明導電層及び高屈折率層の膜厚が150nmの場合、周期性に起因する反射波長は約1050nmであった。図10の結果より、透明導電層及び高屈折率層の膜厚が200nmの場合、周期性に起因する反射波長は約1400nmであった。図11の結果より、透明導電層及び高屈折率層の膜厚が250nmの場合、周期性に起因する反射波長は約1700nmであり、かなり長波長側において反射していた。これにより、透明導電層及び高屈折率層の膜厚によって反射波長を制御する場合、可視光線領域に近い800〜1500nm程度の近赤外線領域において屈折率差に起因して反射させるには、光入射側最表面層以外の各層の膜厚を少なくとも110〜210nm程度とする必要があり、好ましくは120〜180nm程度、より好ましくは120〜160nm程度であることがわかった。   When it sees in detail, from the result of FIG. 7, when the film thickness of the transparent conductive layer and the high refractive index layer is 100 nm, the reflection wavelength due to the periodicity is about 700 nm, and it was reflected in the visible light region. From the result of FIG. 8, when the film thickness of the transparent conductive layer and the high refractive index layer was 125 nm, the reflection wavelength due to the periodicity was about 900 nm. From the results of FIG. 9, when the film thickness of the transparent conductive layer and the high refractive index layer was 150 nm, the reflection wavelength due to the periodicity was about 1050 nm. From the result of FIG. 10, when the film thicknesses of the transparent conductive layer and the high refractive index layer were 200 nm, the reflection wavelength due to the periodicity was about 1400 nm. From the results of FIG. 11, when the film thickness of the transparent conductive layer and the high refractive index layer is 250 nm, the reflection wavelength due to the periodicity is about 1700 nm, and the reflection was performed on the considerably long wavelength side. As a result, when the reflection wavelength is controlled by the film thickness of the transparent conductive layer and the high refractive index layer, in order to reflect due to the refractive index difference in the near infrared region of about 800 to 1500 nm close to the visible light region, It was found that the thickness of each layer other than the side outermost surface layer should be at least about 110 to 210 nm, preferably about 120 to 180 nm, more preferably about 120 to 160 nm.

また、光入射側最表面に位置する透明導電膜の厚さを変えることで、周期性に起因した反射と自由電子に起因した反射の大小関係を制御することも可能である。図6の結果では、光入射側最表面の透明導電膜の膜厚は150nmであるが、これを400nmに増加させることによって、図9のように1000nm付近の周期性に起因する反射は10%弱低下するものの、2000nm以上の近赤外線の反射率を高めることができ、2500nmでの反射率は30%程度向上する。逆に、透明導電膜の厚さを小さくすれば、2000nm以上の近赤外線の反射率が低下するものの、周期性に起因する反射を高めることも可能である。   In addition, by changing the thickness of the transparent conductive film located on the outermost surface on the light incident side, it is possible to control the magnitude relationship between the reflection caused by the periodicity and the reflection caused by the free electrons. In the result of FIG. 6, the film thickness of the transparent conductive film on the light incident side outermost surface is 150 nm. By increasing this to 400 nm, the reflection due to the periodicity near 1000 nm is 10% as shown in FIG. Although weakly reduced, the reflectance of near infrared rays of 2000 nm or more can be increased, and the reflectance at 2500 nm is improved by about 30%. Conversely, if the thickness of the transparent conductive film is reduced, the reflectance due to periodicity can be increased, although the reflectance of near-infrared rays of 2000 nm or more is reduced.

なお、上記実施例1における特性(傾向)は、高屈折率層3をZnOとして、これにGa、Sc、Y、B、F、Ti、Zr、Hf、Si、Ge、In、又はVを添加することで透明導電層4とする場合、高屈折率層3をTiOとして、これにNbを添加することで透明導電層4とする場合、高屈折率層3をInとして、これにSn、F、又はZnを添加することで透明導電層4とする場合、高屈折率層3をSnOとして、これにSb、F、又はZnを添加することで透明導電層4とする場合、及び高屈折率層3をSrTiOとして、これにSb、V、La、又はNbを添加することで透明導電層4とする場合でも同様である。 The characteristic (trend) in Example 1 is that the high refractive index layer 3 is ZnO, and Ga, Sc, Y, B, F, Ti, Zr, Hf, Si, Ge, In, or V is added thereto. Thus, when the transparent conductive layer 4 is formed, the high refractive index layer 3 is made of TiO 2 , and when Nb is added thereto, the high refractive index layer 3 is made of In 2 O 3 . When adding Sn, F, or Zn to the transparent conductive layer 4, the high refractive index layer 3 is SnO 2 , and adding Sb, F, or Zn to the transparent conductive layer 4 The same applies to the case where the high refractive index layer 3 is made of SrTiO 3 and the transparent conductive layer 4 is made by adding Sb, V, La, or Nb thereto.

[第2の形態]
上記第1の形態では、基本的には高屈折率層3として他の不純物元素を添加していない金属酸化物膜を用いることが好ましいとしたが、添加元素量を透明導電層4よりも多量に添加することでも、高屈折率膜として利用できる。この場合、透明導電層4としては、Al添加ZnO、Ga添加ZnO、Sc添加ZnO、Y添加ZnO、B添加ZnO、F添加ZnO、Ti添加ZnO、Zr添加ZnO、Hf添加ZnO、Si添加ZnO、Ge添加ZnO、V添加ZnO、In添加ZnO、Nb添加TiO、Sn添加In、F添加In、Zn添加In、Sb添加SnO、F添加SnO、Zn添加SnO、Sb添加SrTiO、V添加SrTiO、La添加SrTiO、Nb添加SrTiOからなる群から選ばれる1種もしくは2種以上とする。そして、高屈折率層3も、透明導電層4と同種の組成からなる層としながら、透明導電層4よりも添加元素量を多くする。透明導電層4は、金属酸化物に適量の不純物元素が添加されていることで、良好な導電性を有する。これに対し、高屈折率層3への添加元素量の目安としては、高屈折率層3が導電性を有しなくなる程度とする。例えば、高屈折率層3の添加元素量を、透明導電層4の添加元素量に対して1.1〜15倍程度、好ましくは5〜12倍程度とすればよい。周期構造を有する積層膜としてのその他の条件は、上記基本的形態や第1の形態と同様である。
[Second form]
In the first embodiment, it is basically preferable to use a metal oxide film to which no other impurity element is added as the high refractive index layer 3, but the amount of added elements is larger than that of the transparent conductive layer 4. It can also be used as a high refractive index film by adding to. In this case, the transparent conductive layer 4 includes Al-added ZnO, Ga-added ZnO, Sc-added ZnO, Y-added ZnO, B-added ZnO, F-added ZnO, Ti-added ZnO, Zr-added ZnO, Hf-added ZnO, Si-added ZnO, Ge added ZnO, V added ZnO, an In addition ZnO, Nb added TiO 2, Sn added In 2 O 3, F added In 2 O 3, Zn added In 2 O 3, Sb added SnO 2, F added SnO 2, Zn added and SnO 2, Sb added SrTiO 3, V added SrTiO 3, La added SrTiO 3, Nb added one or more selected from the group consisting of SrTiO 3. The high refractive index layer 3 is also made of the same kind of composition as that of the transparent conductive layer 4, and the amount of additive elements is made larger than that of the transparent conductive layer 4. The transparent conductive layer 4 has good conductivity because an appropriate amount of impurity element is added to the metal oxide. On the other hand, as a standard of the amount of added elements to the high refractive index layer 3, the high refractive index layer 3 is not conductive. For example, the amount of additive element in the high refractive index layer 3 may be about 1.1 to 15 times, preferably about 5 to 12 times that of the transparent conductive layer 4. Other conditions for the laminated film having the periodic structure are the same as those in the basic form and the first form.

この場合、透明導電層及び高屈折率層は、基本的には第1の形態と同様に反応性スパッタリングにより成膜すればよい。第1の形態の場合と異なる点は、透明導電層及び高屈折率層は、共に同一の金属ターゲットを使用して、添加元素用ターゲットへの印加電力量を定期的に増減することのみによって交互に積層することができる。高屈折率層3を成膜するときは、添加元素用ターゲットへの印加電力量を、透明導電層4を成膜するときに対して、1.1〜1.5倍程度、好ましくは1.1〜1.3倍程度とすればよい。その他の製造条件は、上記基本的形態や第1の形態の場合と同様である。   In this case, the transparent conductive layer and the high refractive index layer may be basically formed by reactive sputtering as in the first embodiment. The difference from the case of the first embodiment is that the transparent conductive layer and the high refractive index layer are alternately used only by using the same metal target and periodically increasing or decreasing the amount of power applied to the target for the additive element. Can be laminated. When the high refractive index layer 3 is formed, the amount of electric power applied to the target for the additive element is about 1.1 to 1.5 times, preferably 1. It may be about 1 to 1.3 times. Other manufacturing conditions are the same as those in the basic form and the first form.

(実施例2)
Al適量添加ZnO・Al透明導電膜とAl過剰添加ZnO・Al高屈折率膜を、反応性スパッタリング法により交互に積層させることで、実施例1と同様の効果が得られるかを評価した。先ず、それぞれの単層膜を成膜した。成膜させる基板には30×30mm合成石英を用い、基板温度を200℃とした。成膜時には基板を15rpmにて回転させることで膜厚の均一化を図った。この基板を設置した後、チャンバー内を9×10-9Torr以下の超高真空としてから、雰囲気ガスとしてArおよび酸素を導入し、その合計流量を20sccmで一定として、Arと酸素の流量はそれぞれ18.1sccmおよび1.90sccmとした。成膜時の全圧は3mTorrに設定した。Zn金属(純度99.999%以上)およびAl金属(純度99.999%以上)をターゲットとして、ZnターゲットにはRF電源にて60W、AlターゲットにはDC電源を接続して、適量添加ZnO・Al層用に28W程度、過剰添加ZnO・Al層用には32Wを与えてプラズマを発生させた。
(Example 2)
It was evaluated whether the same effect as in Example 1 could be obtained by alternately laminating an appropriate amount of added ZnO · Al transparent conductive film and an Al excess added ZnO · Al high refractive index film by a reactive sputtering method. First, each single layer film was formed. 30 × 30 mm synthetic quartz was used as the substrate for film formation, and the substrate temperature was 200 ° C. During film formation, the substrate was rotated at 15 rpm to make the film thickness uniform. After installing this substrate, the chamber is evacuated to an ultrahigh vacuum of 9 × 10 −9 Torr or less, Ar and oxygen are introduced as atmospheric gases, the total flow rate is constant at 20 sccm, and the flow rates of Ar and oxygen are respectively 18.1 sccm and 1.90 sccm. The total pressure during film formation was set to 3 mTorr. Using Zn metal (purity 99.999% or higher) and Al metal (purity 99.999% or higher) as targets, connect the Zn target with RF power at 60 W, connect the Al power source with DC power, and add appropriate amount of ZnO. Plasma was generated by applying about 28 W for the Al layer and 32 W for the over-doped ZnO.Al layer.

まず、Alを過剰添加した高屈折率層となるZnO・Al層のみを、成膜時間を1時間として、ガラス基板上に190nm堆積させた。組成分析の結果、このAl過剰添加ZnO・Al膜ではAl適量添加ZnO・Al膜に比べて約10倍のAlが添加されていた。この透明導電膜の透過率及び反射率の波長依存性を図12に示す。また、過剰添加ZnO・Al膜の屈折率及び消衰係数の波長依存性を図13に示す。Al適量添加ZnO・Al層の透過率及び反射率の波長依存性は図2を、同じく屈折率及び消衰係数の波長依存性は図4を参照。図12の結果から、Al過剰添加ZnO・Al膜では、近赤外領域での反射現象は示さなかった。電気的にも導電性を有しておらず、図13の屈折率にみられるように、図4における屈折率に比べて近赤外領域では高屈折率となっている。また、同じ高屈折率層である、Al無添加ZnO膜とAl過剰添加ZnO・Al膜とでは、図12と図3の比較において、紫外領域から可視光領域に明確な違いがある。図3のAlを添加していないZnO膜では、700nm以下の波長領域から透過率が低下し始めて350nm以下の光を透過せず、これによって黄色く着色して見えていた。このため、図7〜図11に示した積層膜も黄色く着色した膜であった。一方、Al過剰添加ZnO・Al膜は、図12より約300nm以上では高い透過率を示すため、ZnO膜のような黄色い着色ではなくほぼ透明である。この膜を用いて積層構造を形成させることにより、着色を低減させた積層膜が得られた。   First, only a ZnO.Al layer serving as a high refractive index layer with excessive addition of Al was deposited on a glass substrate at a thickness of 190 nm for a film formation time of 1 hour. As a result of the compositional analysis, about 10 times as much Al was added to the Al-excess-added ZnO.Al film as compared to the appropriate Al-added ZnO.Al film. The wavelength dependence of the transmittance and reflectance of this transparent conductive film is shown in FIG. FIG. 13 shows the wavelength dependence of the refractive index and extinction coefficient of the overdoped ZnO.Al film. See FIG. 2 for the wavelength dependence of the transmittance and the reflectance of the ZnO / Al layer added with an appropriate amount of Al, and FIG. 4 for the wavelength dependence of the refractive index and extinction coefficient. From the results shown in FIG. 12, the Al-excess-doped ZnO.Al film showed no reflection phenomenon in the near infrared region. It has no electrical conductivity, and has a higher refractive index in the near-infrared region than the refractive index in FIG. 4 as seen in the refractive index in FIG. Further, in the comparison between FIG. 12 and FIG. 3, there is a clear difference between the ultraviolet region and the visible light region between the Al-free ZnO film and the Al-excess-doped ZnO.Al film, which are the same high refractive index layer. In the ZnO film not added with Al in FIG. 3, the transmittance began to decrease from a wavelength region of 700 nm or less and did not transmit light of 350 nm or less. For this reason, the laminated film shown in FIGS. 7 to 11 was also a yellow colored film. On the other hand, the Al-excess ZnO.Al film shows a high transmittance at about 300 nm or more as shown in FIG. By forming a laminated structure using this film, a laminated film with reduced coloring was obtained.

次に、膜厚200nmのAl適量添加ZnO・Al透明導電膜5層、同じく膜厚200nmのAl過剰添加ZnO・Al高屈折率膜5層を、透明導電膜が光入射側最表面となるように交互に積層した。この積層膜の透過・反射スペクトルを図14に示す。図14の結果から、周期性に起因する反射ピークは1200nm付近に現れており、それより長波長側においても自由電子に起因して反射が増大するスペクトルが確認できた。積層構造が光学特性に及ぼす効果としては、基本的に第1形態の積層膜と同じである。違いとしては、可視光領域における透過率が高く、ある色に着色するという影響を抑えられているという点である。積層構造の製造プロセスとしては、Alターゲットに与えるDC電力を僅かに変化させるだけで周期構造が積層可能であり、同一のターゲットを用いながら電気信号の変調のみによって積層膜の合成が可能である点において有利である。   Next, five layers of 200 nm-thick Al-added ZnO / Al transparent conductive film, and five layers of 200 nm-thick Al-added ZnO / Al high-refractive-index film are formed so that the transparent conductive film becomes the outermost surface on the light incident side. Were alternately stacked. The transmission / reflection spectrum of this laminated film is shown in FIG. From the result of FIG. 14, the reflection peak due to the periodicity appears in the vicinity of 1200 nm, and the spectrum in which the reflection is increased due to the free electrons can be confirmed on the longer wavelength side. The effect of the laminated structure on the optical characteristics is basically the same as that of the laminated film of the first embodiment. The difference is that the transmittance in the visible light region is high, and the influence of coloring in a certain color is suppressed. As a manufacturing process of a laminated structure, a periodic structure can be laminated only by slightly changing DC power applied to an Al target, and a laminated film can be synthesized only by modulation of an electric signal while using the same target. Is advantageous.

なお、上記実施例2における特性(傾向)は、透明導電層4及び高屈折率層3を、共にGa添加ZnO、Sc添加ZnO、Y添加ZnO、B添加ZnO、F添加ZnO、Ti添加ZnO、Zr添加ZnO、Hf添加ZnO、Si添加ZnO、Ge添加ZnO、V添加ZnO、In添加ZnO、Nb添加TiO、Sn添加In、F添加In、Zn添加In、Sb添加SnO、F添加SnO、Zn添加SnO、Sb添加SrTiO、V添加SrTiO、La添加SrTiO、又はNb添加SrTiOなどの同種の組成とした場合でも同様である。 The characteristics (trends) in Example 2 were as follows: the transparent conductive layer 4 and the high refractive index layer 3 were both Ga-doped ZnO, Sc-doped ZnO, Y-doped ZnO, B-doped ZnO, F-doped ZnO, Ti-doped ZnO, Zr-doped ZnO, Hf-doped ZnO, Si-doped ZnO, Ge-doped ZnO, V-doped ZnO, In-doped ZnO, Nb-doped TiO 2 , Sn-doped In 2 O 3 , F-doped In 2 O 3 , Zn-doped In 2 O 3 , The same applies to the same type of composition such as Sb-added SnO 2 , F-added SnO 2 , Zn-added SnO 2 , Sb-added SrTiO 3 , V-added SrTiO 3 , La-added SrTiO 3 , or Nb-added SrTiO 3 .

[第3の形態]
上記第1及び第2の形態では、他の不純物元素を添加しない金属酸化物膜や、不純物元素を過剰に添加したZnO・Al膜など、不純物元素の有無ないし添加量の制御によって高屈折率膜を得ていた。これに対して、添加元素用ターゲットへの供給電力を適量値で一定としながらも、成膜雰囲気における酸素割合(流量比)を変えることでも、透明導電膜と高屈折率膜の両者を成膜することができる。
[Third embodiment]
In the first and second embodiments, a high-refractive-index film can be obtained by controlling the presence or absence or addition amount of an impurity element, such as a metal oxide film to which no other impurity element is added, or a ZnO / Al film to which an impurity element is excessively added. Was getting. On the other hand, both the transparent conductive film and the high refractive index film can be formed by changing the oxygen ratio (flow rate ratio) in the film formation atmosphere while keeping the power supplied to the target for the additive element constant at an appropriate value. can do.

この場合、透明導電層4及び高屈折率層3は共に同種の組成として、Al添加ZnO、Ga添加ZnO、Sc添加ZnO、Y添加ZnO、B添加ZnO、F添加ZnO、Ti添加ZnO、Zr添加ZnO、Hf添加ZnO、Si添加ZnO、Ge添加ZnO、V添加ZnO、In添加ZnO、Nb添加TiO、Sn添加In、F添加In、Zn添加In、Sb添加SnO、F添加SnO、Zn添加SnO、Sb添加SrTiO、V添加SrTiO、La添加SrTiO、Nb添加SrTiOからなる群から選ばれる1種もしくは2種以上とする。透明導電層4は、成膜時に酸素流量が適量に設定されていることで、良好な導電性を有する。これに対し、高屈折率層3成膜時における酸素流量の目安としては、高屈折率層3が導電性を有しなくなる程度とする。例えば、高屈折率層3成膜時の酸素流量を、透明導電層4成膜時の酸素流量に対して0.85〜0.95倍程度、好ましくは0.90〜0.95倍程度とすればよい。この場合も、透明導電層4及び高屈折率層3は、基本的には第1の形態と同様に反応性スパッタリングにより成膜すればよい。周期構造を有する積層膜としてのその他の条件や製造条件は、上記基本的形態や第1の形態と同様である。 In this case, both the transparent conductive layer 4 and the high refractive index layer 3 have the same composition, Al-added ZnO, Ga-added ZnO, Sc-added ZnO, Y-added ZnO, B-added ZnO, F-added ZnO, Ti-added ZnO, and Zr-added. ZnO, Hf-doped ZnO, Si-doped ZnO, Ge-doped ZnO, V-doped ZnO, In-doped ZnO, Nb-doped TiO 2 , Sn-doped In 2 O 3 , F-doped In 2 O 3 , Zn-doped In 2 O 3 , Sb-doped and SnO 2, F added SnO 2, Zn added SnO 2, Sb added SrTiO 3, V added SrTiO 3, La added SrTiO 3, Nb added one or more selected from the group consisting of SrTiO 3. The transparent conductive layer 4 has good conductivity because the oxygen flow rate is set to an appropriate amount during film formation. On the other hand, as a guideline for the oxygen flow rate when the high refractive index layer 3 is formed, the high refractive index layer 3 is not conductive. For example, the oxygen flow rate when forming the high refractive index layer 3 is about 0.85 to 0.95 times, preferably about 0.90 to 0.95 times the oxygen flow rate when forming the transparent conductive layer 4. do it. Also in this case, the transparent conductive layer 4 and the high refractive index layer 3 may be basically formed by reactive sputtering as in the first embodiment. Other conditions and manufacturing conditions for the laminated film having a periodic structure are the same as those in the basic form and the first form.

(実施例3)
酸素流量が適量な雰囲気で成膜したZnO・Al透明導電膜と、酸素流量を不足させた雰囲気において成膜したZnO・Al高屈折率膜を、反応性スパッタリング法により交互に積層させることで、第1の形態の積層膜と同様の効果が得られるかを評価した。
(Example 3)
By alternately laminating a ZnO / Al transparent conductive film formed in an atmosphere having an appropriate oxygen flow rate and a ZnO / Al high refractive index film formed in an atmosphere having an insufficient oxygen flow rate by a reactive sputtering method, Whether the same effect as the laminated film of the first embodiment can be obtained was evaluated.

先ず、それぞれの単層膜の成膜を試みた。成膜させる基板には30×30mm合成石英を用い、基板温度を200℃とした。成膜時には基板を15rpmにて回転させることで膜厚の均一化を図った。この基板を設置した後、チャンバー内を9×10-9Torr以下の超高真空としてから、雰囲気ガスとしてArおよび酸素を導入した。Arと酸素の流量は、酸素流量が適量な雰囲気で成膜する場合、それぞれ18.1sccm及び1.90sccmとし、酸素流量を不足させた雰囲気において成膜する場合は、それぞれ18.2sccm及び1.75sccmとした。成膜時の全圧は30mTorrに設定した。Zn金属(純度99.999%以上)およびAl金属(純度99.999%以上)をターゲットとして、ZnターゲットにはRf電源にて60W、AlターゲットにはDC電源を接続して28Wを与えてプラズマを発生させた。 First, deposition of each single layer film was tried. 30 × 30 mm synthetic quartz was used as the substrate for film formation, and the substrate temperature was 200 ° C. During film formation, the substrate was rotated at 15 rpm to make the film thickness uniform. After installing this substrate, Ar and oxygen were introduced as atmospheric gases after the inside of the chamber was set to an ultra-high vacuum of 9 × 10 −9 Torr or less. The flow rates of Ar and oxygen are 18.1 sccm and 1.90 sccm, respectively, when the film is formed in an atmosphere with an appropriate oxygen flow rate, and 18.2 sccm and 1.90 sccm when the film is formed in an atmosphere where the oxygen flow rate is insufficient. 75 sccm. The total pressure during film formation was set to 30 mTorr. Using Zn metal (purity: 99.999% or higher) and Al metal (purity: 99.999% or higher) as targets, the Zn target is connected to an Rf power source at 60 W, and the Al target is connected to a DC power source at 28 W to provide plasma. Was generated.

最初に、雰囲気ガス中の酸素流量を不足させた透明導電膜のZnO・Al層のみを、成膜時間を1時間として、ガラス基板上に190nm堆積させた。この酸素供給不足ZnO・Al膜の透過率及び反射率の波長依存性を図15に示し、同じく屈折率及び消衰係数の波長依存性を図16に示す。酸素適量ZnO・Al層の透過率及び反射率の波長依存性は図2を、同じく屈折率及び消衰係数の波長依存性は図4を参照。図15の結果から、酸素供給不足ZnO・Al膜では、近赤外領域での反射現象は示さなかった。電気的にも導電性を有しておらず、図16の屈折率にみられるように、図4における屈折率に比べて近赤外領域では高屈折率となっている。また、同じ高屈折率層である、Al無添加ZnO膜と酸素供給不足ZnO・Al膜とでは、図15と図3の比較において、紫外領域から可視光領域に明確な違いがある。図3のAlを添加していないZnO膜では、700nm以下の波長領域から透過率が低下し始めて350nm以下の光を透過せず、これによって黄色く着色して見えていた。このため、図7〜図11に示した積層膜も黄色く着色した膜であった。一方、酸素供給不足ZnO・Al膜は、図15より約300nm以上では高い透過率を示すため、ZnO膜のような黄色い着色ではなくほぼ透明である。この膜を用いて積層構造を形成させることにより、着色を低減させた積層膜が得られた。   First, only the ZnO.Al layer of the transparent conductive film in which the oxygen flow rate in the atmospheric gas was insufficient was deposited on a glass substrate with a film formation time of 1 hour. FIG. 15 shows the wavelength dependence of the transmittance and the reflectance of this oxygen supply-deficient ZnO.Al film, and FIG. 16 shows the wavelength dependence of the refractive index and extinction coefficient. See FIG. 2 for the wavelength dependence of the transmittance and reflectance of the appropriate amount of ZnO.Al layer, and FIG. 4 for the wavelength dependence of the refractive index and extinction coefficient. From the result of FIG. 15, the oxygen supply-deficient ZnO.Al film showed no reflection phenomenon in the near infrared region. It has no electrical conductivity, and has a higher refractive index in the near-infrared region than the refractive index in FIG. 4 as seen in the refractive index in FIG. Further, in the same high refractive index layer, there is a clear difference between the ultraviolet region and the visible light region in the comparison between FIG. 15 and FIG. 3 between the Al-free ZnO film and the oxygen supply-deficient ZnO.Al film. In the ZnO film not added with Al in FIG. 3, the transmittance began to decrease from a wavelength region of 700 nm or less and did not transmit light of 350 nm or less. For this reason, the laminated film shown in FIGS. 7 to 11 was also a yellow colored film. On the other hand, the oxygen supply-deficient ZnO.Al film shows a high transmittance at about 300 nm or more as shown in FIG. 15, and is therefore not transparent like a ZnO film but almost transparent. By forming a laminated structure using this film, a laminated film with reduced coloring was obtained.

次に、膜厚200nmの酸素適量ZnO・Al透明導電膜5層、同じく膜厚200nmの酸素供給不足ZnO・Al高屈折率膜5層を、透明導電膜が光入射側最表面となるように交互に積層した。この積層膜の透過・反射スペクトルを図17に示す。図17の結果から、周期性に起因する反射ピークは1400nm付近に現れており、それより長波長側においても自由電子に起因して反射が増大するスペクトルが確認できた。なお、シミュレーション上では、図14と同様の結果が得られるはずであるが、図17に示す実験結果では近赤外領域の反射率が若干低く、可視光領域の透過率も低い結果となった。この原因は、おそらくZnターゲットの劣化によりスパッタリングレートが変わり、ZnとAlの最適なバランス、Znと酸素の最適なバランスから僅かにずれが生じたためと考えられる。しかしながら、酸素量を制御することによって周期構造を与えることができ、透明導電膜における光学特性をコントロールして断熱性能の向上に活用できるという本質的な点について明らかにできた。   Next, 5 layers of an appropriate amount of ZnO · Al transparent conductive film with a thickness of 200 nm, and 5 layers of ZnO · Al high refractive index film with a thickness of 200 nm, so that the transparent conductive film becomes the outermost surface on the light incident side. Alternatingly stacked. The transmission / reflection spectrum of this laminated film is shown in FIG. From the result of FIG. 17, the reflection peak due to the periodicity appears in the vicinity of 1400 nm, and the spectrum in which the reflection is increased due to the free electrons can be confirmed on the longer wavelength side. In the simulation, the same result as in FIG. 14 should be obtained. However, in the experimental result shown in FIG. 17, the reflectance in the near infrared region is slightly low and the transmittance in the visible light region is also low. . This is probably because the sputtering rate changed due to deterioration of the Zn target, and a slight deviation occurred from the optimum balance between Zn and Al and the optimum balance between Zn and oxygen. However, by controlling the amount of oxygen, the periodic structure can be provided, and the essential point that the optical characteristics of the transparent conductive film can be controlled to improve the heat insulation performance has been clarified.

積層構造が光学特性に及ぼす効果としては、基本的に第1形態の積層膜と同じである。違いとしては、可視光領域における透過率が高く、ある色に着色するという影響を抑えられているという点である。積層構造の製造プロセスとしては、雰囲気ガス中の酸素流量を僅かに変化させるだけで周期構造が積層可能であり、同一のターゲットを用いながら酸素流量の増減のみによって積層膜の合成が可能である点において有利である。   The effect of the laminated structure on the optical characteristics is basically the same as that of the laminated film of the first embodiment. The difference is that the transmittance in the visible light region is high, and the influence of coloring in a certain color is suppressed. As a manufacturing process of the laminated structure, the periodic structure can be laminated by changing the oxygen flow rate in the atmospheric gas slightly, and the laminated film can be synthesized only by increasing or decreasing the oxygen flow rate while using the same target. Is advantageous.

なお、上記実施例3における特性(傾向)は、透明導電層4及び高屈折率層3を共に同種の組成として、Ga添加ZnO、Sc添加ZnO、Y添加ZnO、B添加ZnO、F添加ZnO、Ti添加ZnO、Zr添加ZnO、Hf添加ZnO、Si添加ZnO、Ge添加ZnO、V添加ZnO、In添加ZnO、Nb添加TiO、Sn添加In、F添加In、Zn添加In、Sb添加SnO、F添加SnO、Zn添加SnO、Sb添加SrTiO、V添加SrTiO、La添加SrTiO、Nb添加SrTiOなどとした場合でも同様である。 Note that the characteristics (trends) in Example 3 are as follows: the transparent conductive layer 4 and the high refractive index layer 3 have the same composition, and Ga-added ZnO, Sc-added ZnO, Y-added ZnO, B-added ZnO, F-added ZnO, Ti added ZnO, Zr added ZnO, Hf added ZnO, Si added ZnO, Ge added ZnO, V added ZnO, In addition ZnO, Nb added TiO 2, Sn doped In 2 O 3, F doped In 2 O 3, Zn doped In The same applies to 2 O 3 , Sb-added SnO 2 , F-added SnO 2 , Zn-added SnO 2 , Sb-added SrTiO 3 , V-added SrTiO 3 , La-added SrTiO 3 , Nb-added SrTiO 3 , and the like.

(実施例4)
実施例1〜3では、太陽光からの熱線を反射させるという断熱性能について評価した。そこで、次に、断熱という観点においてもう1つ重要な、本発明における透明導電膜と高屈折率膜の積層膜における遠赤外領域における放射率について評価した。ここでは、第1〜3の形態の断熱ガラスの内、代表的な第1の形態の断熱ガラスの評価試験で使用した、図5の結果に示す積層膜を使用して評価した。
Example 4
In Examples 1-3, the heat insulating performance of reflecting heat rays from sunlight was evaluated. Then, next, the emissivity in the far-infrared region in the laminated film of the transparent conductive film and the high refractive index film in the present invention, which is another important from the viewpoint of heat insulation, was evaluated. Here, it evaluated using the laminated film shown in the result of FIG. 5 used by the evaluation test of the heat insulation glass of the typical 1st form among the heat insulation glass of the 1st-3rd form.

図18に、通常の窓ガラスに使用されるフロートガラスの遠赤外領域における放射率を示す。図19に、図2の結果に示すZnO・Alからなる透明導電層の遠赤外領域における放射率を示す。図20に、図3の結果に示すZnOからなる高屈折率層の遠赤外領域における放射率を示す。図21に、図5の結果に示す透明導電層と高屈折率層とを交互に積層した積層膜の遠赤外領域における放射率を示す。前提として、室温付近の黒体放射(物体が放射する赤外線)エネルギーは波長10μm付近をピークに5〜25μmまで広く分布し、この放射率データの5μm以上において放射率が低いことが望ましい。そのうえで、図18の結果を見ると、窓ガラスの放射率はほぼ全波長域において90%程度という高い放射率を示し、断熱性能が低い。これに対して、図19に示した透明導電層の放射率は20%以下であり、断熱において有利となる。この低い放射率は、透明導電層中における高い密度の自由電子によってもたらされる。一方、図20に示した高屈折率層は、自由電子の寄与が期待できないため80%程度という高い放射率を示す。この放射率が高い高屈折率層と、放射率が低い透明導電性層を交互に積層させた場合、低放射率な透明導電層を最表面とすることで、図21のように20%程度の放射率に抑えることが可能であることが確認できた。   In FIG. 18, the emissivity in the far-infrared area | region of the float glass used for a normal window glass is shown. FIG. 19 shows the emissivity in the far-infrared region of the transparent conductive layer made of ZnO.Al shown in the results of FIG. FIG. 20 shows the emissivity in the far infrared region of the high refractive index layer made of ZnO shown in the results of FIG. FIG. 21 shows the emissivity in the far-infrared region of a laminated film in which transparent conductive layers and high refractive index layers shown in the results of FIG. 5 are alternately laminated. As a premise, it is desirable that the energy of black body radiation (infrared rays emitted from an object) near room temperature is widely distributed from 5 to 25 μm peaking at a wavelength of about 10 μm, and the emissivity is low at 5 μm or more of this emissivity data. In addition, looking at the results of FIG. 18, the emissivity of the window glass shows a high emissivity of about 90% in almost all wavelength regions, and the heat insulation performance is low. In contrast, the emissivity of the transparent conductive layer shown in FIG. 19 is 20% or less, which is advantageous in heat insulation. This low emissivity is caused by a high density of free electrons in the transparent conductive layer. On the other hand, the high refractive index layer shown in FIG. 20 shows a high emissivity of about 80% because the contribution of free electrons cannot be expected. When the high refractive index layer having a high emissivity and the transparent conductive layer having a low emissivity are alternately laminated, the transparent conductive layer having a low emissivity is used as the outermost surface, so that about 20% as shown in FIG. It was confirmed that it was possible to suppress the emissivity to.

1 断熱ガラス
2 ガラス基板
3 高屈折率層
4 透明導電層
4a 光入射側最表面の透明導電層
DESCRIPTION OF SYMBOLS 1 Heat insulation glass 2 Glass substrate 3 High refractive index layer 4 Transparent conductive layer 4a The transparent conductive layer of the light incident side outermost surface

Claims (11)

ガラス基板上に、透明導電層と、近赤外線領域における屈折率が前記透明導電層の屈折率より相対的に高い高屈折率層とが積層されて成り、
前記高屈折率層は、屈折率が波長に応じて変動せず、
前記透明導電層は、屈折率が波長に応じて変動し、可視光線領域では前記高屈折率層の屈折率と同レベルであるが、近赤外線領域において屈折率が低下することで前記高屈折率層と屈折率差が生じており、
前記透明導電層と高屈折率層とは交互に積層され、当該透明導電層と高屈折率層とが交互に積層された周期構造が複数繰り返されている、断熱ガラス。
On a glass substrate, a transparent conductive layer and a high refractive index layer having a refractive index in the near infrared region relatively higher than the refractive index of the transparent conductive layer are laminated,
The high refractive index layer, the refractive index does not vary according to the wavelength,
The transparent conductive layer has a refractive index that varies depending on the wavelength, and in the visible light region is at the same level as the refractive index of the high refractive index layer. There is a difference in refractive index with the layer,
The heat insulating glass in which the transparent conductive layer and the high refractive index layer are alternately laminated, and a plurality of periodic structures in which the transparent conductive layer and the high refractive index layer are alternately laminated are repeated.
前記周期構造の光入射側最表面が前記透明導電層となっている、請求項1に記載の断熱ガラス。   The heat insulating glass according to claim 1, wherein the light incident side outermost surface of the periodic structure is the transparent conductive layer. 前記光入射側最表面の透明導電層の膜厚が他の層の膜厚と比べて最も大きい、請求項2に記載の断熱ガラス。   The heat insulating glass according to claim 2, wherein a film thickness of the transparent conductive layer on the light incident side outermost surface is the largest as compared with a film thickness of another layer. 前記光入射側最表面層以外の他の層が、全て同じ膜厚もしくは同じ光学膜厚である、請求項2又は請求項3に記載の断熱ガラス。   The heat insulating glass according to claim 2 or 3, wherein all the layers other than the light incident side outermost surface layer have the same film thickness or the same optical film thickness. 前記透明導電層が、Al添加ZnO、Ga添加ZnO、Sc添加ZnO、Y添加ZnO、B添加ZnO、F添加ZnO、Ti添加ZnO、Zr添加ZnO、Hf添加ZnO、Si添加ZnO、Ge添加ZnO、V添加ZnO、In添加ZnO、Nb添加TiO2、Sn添加In23、F添加In23、Zn添加In23、Sb添加SnO2、F添加SnO2、Zn添加SnO2、Sb添加SrTiO3、V添加SrTiO3、La添加SrTiO3、Nb添加SrTiO3、Zn2SnO4、Cd2SnO2、InSbO4、CdIn24、MgInO4、CaGaO4、CdO、TiN、ZrN、HfN、LaB6、V23,VO2からなる群から選ばれる1種もしくは2種以上である、請求項1ないし請求項4のいずれかに記載の断熱ガラス。 The transparent conductive layer is made of Al-doped ZnO, Ga-doped ZnO, Sc-doped ZnO, Y-doped ZnO, B-doped ZnO, F-doped ZnO, Ti-doped ZnO, Zr-doped ZnO, Hf-doped ZnO, Si-doped ZnO, Ge-doped ZnO, V-doped ZnO, In-doped ZnO, Nb-doped TiO 2 , Sn-doped In 2 O 3 , F-doped In 2 O 3 , Zn-doped In 2 O 3 , Sb-doped SnO 2 , F-doped SnO 2 , Zn-doped SnO 2 , Sb Addition SrTiO 3 , V addition SrTiO 3 , La addition SrTiO 3 , Nb addition SrTiO 3 , Zn 2 SnO 4 , Cd 2 SnO 2 , InSbO 4 , CdIn 2 O 4 , MgInO 4 , CaGaO 4 , CdO, TiN, HfN , LaB 6, is V 2 O 3, 1 or or more selected from the group consisting of VO 2, serial to any one of claims 1 to 4 Of insulating glass. 前記高屈折率層が、ZnO、TiO2、In23、SnO2、SrTiO3、BaTiO3、SiO2、Al23、ZrO2、MgO、PbO、Y23、ZnAl24、GaAl24、LiNbO3、CaCO3、MgF2、SiC、Ag23からなる群から選ばれる1種もしくは2種以上である、請求項1ないし請求項5いずれかに記載の断熱ガラス。 The high refractive index layer is made of ZnO, TiO 2 , In 2 O 3 , SnO 2 , SrTiO 3 , BaTiO 3 , SiO 2 , Al 2 O 3 , ZrO 2 , MgO, PbO, Y 2 O 3 , ZnAl 2 O 4. , GaAl 2 O 4, LiNbO 3 , CaCO 3, MgF 2, SiC, is one or more selected from the group consisting of Ag 2 S 3, insulating glass according to any one claims 1 to 5 . 前記透明導電層が、Al添加ZnO、Ga添加ZnO、Sc添加ZnO、Y添加ZnO、B添加ZnO、F添加ZnO、Ti添加ZnO、Zr添加ZnO、Hf添加ZnO、Si添加ZnO、Ge添加ZnO、V添加ZnO、In添加ZnO、Nb添加TiO2、Sn添加In23、F添加In23、Zn添加In23、Sb添加SnO2、F添加SnO2、Zn添加SnO2、Sb添加SrTiO3、V添加SrTiO3、La添加SrTiO3、Nb添加SrTiO3からなる群から選ばれる1種もしくは2種以上であり、
前記高屈折率層も、前記透明導電層と同種の層としながら、前記透明導電層よりも添加元素量が多く導電性を有しない、請求項1ないし請求項4のいずれかに記載の断熱ガラス。
The transparent conductive layer is made of Al-doped ZnO, Ga-doped ZnO, Sc-doped ZnO, Y-doped ZnO, B-doped ZnO, F-doped ZnO, Ti-doped ZnO, Zr-doped ZnO, Hf-doped ZnO, Si-doped ZnO, Ge-doped ZnO, V-doped ZnO, In-doped ZnO, Nb-doped TiO 2 , Sn-doped In 2 O 3 , F-doped In 2 O 3 , Zn-doped In 2 O 3 , Sb-doped SnO 2 , F-doped SnO 2 , Zn-doped SnO 2 , Sb One or more selected from the group consisting of added SrTiO 3 , V-added SrTiO 3 , La-added SrTiO 3 , and Nb-added SrTiO 3 ;
The heat insulating glass according to any one of claims 1 to 4, wherein the high refractive index layer is also the same type of layer as the transparent conductive layer, and has a larger amount of additive elements than the transparent conductive layer and has no conductivity. .
前記透明導電層及び前記高屈折率層は、共に同一のターゲットを使用した反応性スパッタリングにより成膜されて同じ組成となっているが、
前記高屈折率層は、前記透明導電層の成膜時と比べて雰囲気ガス中の酸素割合が少ない雰囲気で成膜されて導電性を有しない、請求項1ないし請求項4のいずれかに記載の断熱ガラス。
The transparent conductive layer and the high refractive index layer are both formed by reactive sputtering using the same target and have the same composition.
The said high refractive index layer is formed into a film in the atmosphere where the oxygen ratio in atmospheric gas has few compared with the time of film-forming of the said transparent conductive layer, and does not have electroconductivity. Insulated glass.
ガラス基板上に、金属酸化物に他の元素を添加した透明導電層と、該透明導電層と同じ金属酸化物からなり、前記透明導電層よりも近赤外線領域における屈折率が相対的に高い高屈折率層とが交互に複数周期で積層された断熱ガラスの製造方法であって、
前記透明導電層と高屈折率層とは、共に同一のターゲットを使用した反応性スパッタリングにより成膜されており、
添加元素用ターゲットのシャッターを定期的に開閉することのみによって、透明導電層と高屈折率層とを交互に積層させる、断熱ガラスの製造方法。
A transparent conductive layer in which another element is added to a metal oxide on a glass substrate, and the same metal oxide as the transparent conductive layer. A method for producing heat insulating glass in which refractive index layers are alternately laminated in a plurality of cycles,
The transparent conductive layer and the high refractive index layer are both formed by reactive sputtering using the same target,
A method for producing heat insulating glass, in which transparent conductive layers and high refractive index layers are alternately laminated only by periodically opening and closing the shutter of the target for the additive element.
ガラス基板上に、金属酸化物に他の元素を添加した透明導電層と、該透明導電層と同じ金属酸化物に前記透明導電層よりも多量の元素を添加してなり、前記透明導電層よりも近赤外線領域における屈折率が相対的に高い高屈折率層とが交互に複数周期で積層された断熱ガラスの製造方法であって、
前記透明導電層と高屈折率層とは、共に同一のターゲットを使用した反応性スパッタリングにより成膜されており、
添加元素用ターゲットへの印加電力量を定期的に増減することのみによって、透明導電層と高屈折率層とを交互に積層させる、断熱ガラスの製造方法。
A transparent conductive layer obtained by adding another element to a metal oxide on a glass substrate, and a larger amount of elements than the transparent conductive layer are added to the same metal oxide as the transparent conductive layer. Is a method for producing heat insulating glass in which a high refractive index layer having a relatively high refractive index in the near infrared region is alternately laminated in a plurality of cycles,
The transparent conductive layer and the high refractive index layer are both formed by reactive sputtering using the same target,
A method for producing heat insulating glass, in which transparent conductive layers and high refractive index layers are alternately laminated only by periodically increasing or decreasing the amount of electric power applied to the additive element target.
ガラス基板上に、金属酸化物に他の元素を添加した透明導電層と、該透明導電層と同じ組成であるが、前記透明導電層よりも近赤外線領域における屈折率が相対的に高い高屈折率層とが交互に複数周期で積層された断熱ガラスの製造方法であって、
前記透明導電層と高屈折率層とは、共に同一のターゲットを使用した反応性スパッタリングにより成膜されており、
前記透明導電層と高屈折率層とは、雰囲気ガス中の酸素割合を変更することで分けられ、前記高屈折率層は、前記透明導電層の成膜時と比べて雰囲気ガス中の酸素割合が少ない雰囲気で成膜される、断熱ガラスの製造方法。


A transparent conductive layer in which another element is added to a metal oxide on a glass substrate, and the same composition as the transparent conductive layer, but a high refractive index having a relatively higher refractive index in the near infrared region than the transparent conductive layer It is a method for producing heat insulating glass in which rate layers are alternately laminated in a plurality of cycles,
The transparent conductive layer and the high refractive index layer are both formed by reactive sputtering using the same target,
The transparent conductive layer and the high refractive index layer are separated by changing the oxygen ratio in the atmospheric gas, and the high refractive index layer is compared with the oxygen ratio in the atmospheric gas compared to when the transparent conductive layer is formed. A method for producing heat insulating glass, in which a film is formed in an atmosphere with a small amount.


JP2009050707A 2009-03-04 2009-03-04 Insulated glass and method for producing the same Active JP5560434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009050707A JP5560434B2 (en) 2009-03-04 2009-03-04 Insulated glass and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009050707A JP5560434B2 (en) 2009-03-04 2009-03-04 Insulated glass and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010202465A true JP2010202465A (en) 2010-09-16
JP5560434B2 JP5560434B2 (en) 2014-07-30

Family

ID=42964342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009050707A Active JP5560434B2 (en) 2009-03-04 2009-03-04 Insulated glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP5560434B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185518A1 (en) 2013-05-16 2014-11-20 日本化薬株式会社 Infrared-shielding sheet, method for manufacturing same, and application for same
JP2014224921A (en) * 2013-05-16 2014-12-04 日本化薬株式会社 Infrared intercepting sheet, and manufacturing method for the same
JP2015127274A (en) * 2013-12-27 2015-07-09 日本化薬株式会社 Infrared radiation shielding sheet and application thereof
KR20190020323A (en) 2016-06-15 2019-02-28 니폰 가야꾸 가부시끼가이샤 Infrared shielding sheet, interlayer film for infrared shielding laminated glass, infrared shielding laminated glass and manufacturing method thereof
CN110284125A (en) * 2019-07-02 2019-09-27 电子科技大学 A kind of adjustable vanadium dioxide laminated film of transmissivity and preparation method thereof
WO2021095550A1 (en) * 2019-11-15 2021-05-20 三菱マテリアル株式会社 Laminated structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890604A (en) * 1981-11-25 1983-05-30 Toyota Central Res & Dev Lab Inc Infrared-ray shielding laminate
JPS58209549A (en) * 1982-06-01 1983-12-06 株式会社豊田中央研究所 Heat-wave shielding laminate
JPH0848545A (en) * 1994-05-31 1996-02-20 Asahi Glass Co Ltd Low reflectivity heat ray reflection glass
JP2003267756A (en) * 2002-03-18 2003-09-25 National Institute Of Advanced Industrial & Technology Glass substrate having both photocatalyst function and low emissivity characteristic and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890604A (en) * 1981-11-25 1983-05-30 Toyota Central Res & Dev Lab Inc Infrared-ray shielding laminate
JPS58209549A (en) * 1982-06-01 1983-12-06 株式会社豊田中央研究所 Heat-wave shielding laminate
JPH0848545A (en) * 1994-05-31 1996-02-20 Asahi Glass Co Ltd Low reflectivity heat ray reflection glass
JP2003267756A (en) * 2002-03-18 2003-09-25 National Institute Of Advanced Industrial & Technology Glass substrate having both photocatalyst function and low emissivity characteristic and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185518A1 (en) 2013-05-16 2014-11-20 日本化薬株式会社 Infrared-shielding sheet, method for manufacturing same, and application for same
JP2014224921A (en) * 2013-05-16 2014-12-04 日本化薬株式会社 Infrared intercepting sheet, and manufacturing method for the same
KR20160011197A (en) 2013-05-16 2016-01-29 닛뽄 가야쿠 가부시키가이샤 Infrared-shielding sheet, method for manufacturing same, and application for same
CN105324689A (en) * 2013-05-16 2016-02-10 日本化药株式会社 Infrared-shielding sheet, method for manufacturing same, and application for same
TWI614540B (en) * 2013-05-16 2018-02-11 Nippon Kayaku Kk Infrared shielding sheet, manufacturing method thereof and use thereof
US9908306B2 (en) 2013-05-16 2018-03-06 Nippon Kayaku Kabushikikaisha Infrared shielding sheet, method for manufacturing the same, and use of the same
CN105324689B (en) * 2013-05-16 2018-10-30 日本化药株式会社 Infrared shield piece and its manufacturing method with and application thereof
JP2015127274A (en) * 2013-12-27 2015-07-09 日本化薬株式会社 Infrared radiation shielding sheet and application thereof
KR20190020323A (en) 2016-06-15 2019-02-28 니폰 가야꾸 가부시끼가이샤 Infrared shielding sheet, interlayer film for infrared shielding laminated glass, infrared shielding laminated glass and manufacturing method thereof
CN110284125A (en) * 2019-07-02 2019-09-27 电子科技大学 A kind of adjustable vanadium dioxide laminated film of transmissivity and preparation method thereof
WO2021095550A1 (en) * 2019-11-15 2021-05-20 三菱マテリアル株式会社 Laminated structure

Also Published As

Publication number Publication date
JP5560434B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
Jin et al. Design, formation and characterization of a novel multifunctional window with VO 2 and TiO 2 coatings
US10234609B2 (en) Systems, methods, and apparatus for production coatings of low-emissivity glass including a ternary alloy
Okuhara et al. Near-infrared reflection from periodically aluminium-doped zinc oxide thin films
JP5560434B2 (en) Insulated glass and method for producing the same
US8747630B2 (en) Transparent conducting oxides and production thereof
Kaminski et al. Multilayer broadband antireflective coatings for more efficient thin film CdTe solar cells
EP3560700A1 (en) Low-emissivity coating for a glass substrate
JP6498202B2 (en) Low radiation coating and functional building materials for joinery including the same
RU2610044C2 (en) Coated glasses with low surface resistance, smooth surface and/or low thermal emissivity factor
JP6211075B2 (en) Low radiation transparent laminate, building material including the same, and method for producing low radiation transparent laminate
JP2019197202A (en) Curved coating panel, manufacturing method thereof, and solar module
RU2759408C2 (en) Product with low-emission coating having ir-radiation reflecting layer or layers and dielectric layer or layers of alloyed titanium oxide
KR20140001541A (en) Manufacturing method of thermochromic window
Dang et al. Preparation and optical properties of W-doped VO2/AZO bilayer composite film
US8734621B2 (en) Transparent conducting oxides and production thereof
Lee et al. Sputter-deposited AlTiO thin films for semi-transparent silicon thin film solar cells
Andersson et al. High stability titanium nitride based solar control films
WO2016183691A1 (en) Transparent metallo-dielectric coatings, structures, and devices, and methods of fabrication thereof
JP2018514499A (en) Titanium nickel niobium alloy barrier for low emissivity coating
JP6459374B2 (en) Transparent substrate with window glass and laminated film
WO2017107181A1 (en) Anti-reflection film and preparation method therefor
JPH06150723A (en) Transparent conductive film
KR101210974B1 (en) Low Thermal Emissivity Film Using Amorphous ZnO structure and Method for Manufacturing the same
Chiba et al. Fabrication and optical properties of low-emissivity coatings of AlSiN and AgCuNd-Alloy multilayer films on glass
JP2014124815A (en) Low-radiation film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140515

R150 Certificate of patent or registration of utility model

Ref document number: 5560434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250