JPH06150723A - Transparent conductive film - Google Patents

Transparent conductive film

Info

Publication number
JPH06150723A
JPH06150723A JP9698892A JP9698892A JPH06150723A JP H06150723 A JPH06150723 A JP H06150723A JP 9698892 A JP9698892 A JP 9698892A JP 9698892 A JP9698892 A JP 9698892A JP H06150723 A JPH06150723 A JP H06150723A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
gan
film
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9698892A
Other languages
Japanese (ja)
Other versions
JP3205036B2 (en
Inventor
Uchitsugu Minami
内嗣 南
Shinzo Takada
新三 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP09698892A priority Critical patent/JP3205036B2/en
Publication of JPH06150723A publication Critical patent/JPH06150723A/en
Application granted granted Critical
Publication of JP3205036B2 publication Critical patent/JP3205036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To provide a transparent conductive film having higher functions and a light confining effect by using specific raw materials, and employing the ECR-MOCVD method. CONSTITUTION:A coning glass base is set with its center located just beneath a plasma outlet provided within an ECR-MOCVD device growth chamber. TEG is employed as Ga raw material and N2 and NH3 as N raw materials. A GaN thin film is formed under predetermined conditions including a growth chamber back pressure of 0.000004Torr, a film-forming gas pressure of 0.009Torr, a base temperature of 350 deg.C, and a TEG bubbler temperature of 20 deg.C, etc. In Figure, 1 indicates the film-forming gas pressure dependency of the resistivity of a GaN transparent conductive film to which no impurities are added, 2 indicates that of the resistivity of a GaN: O or GaN: Ti transparent conductive film containing O of VI group and Ti of IV group by 0.6 and 2 atomic percent per 1 chemical formula, respectively, or an N transparent conductive film in which 15 atomic percent Ga is substituted by In, and 3 indicates that of the resistivity of a GaN; O, Ti transparent conductive film in which O and Ti are simultaneously introduced into GaN.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は透明導電膜に関する。FIELD OF THE INVENTION The present invention relates to a transparent conductive film.

【0002】[0002]

【従来の技術】太陽電池やエレクトロルミネッセントデ
ィスプレイ(ELD)等の受光・発光素子を初め液晶デ
ィスプレイ(LCD)、透明面状発熱体、調光窓、各種
光学フィルタ、可視光選択透過膜および透明タッチスイ
ッチ等の製造には透明導電膜が必要不可欠である。
2. Description of the Related Art A light receiving / light emitting element such as a solar cell or an electroluminescent display (ELD), a liquid crystal display (LCD), a transparent planar heating element, a light control window, various optical filters, a visible light selective transmission film, and A transparent conductive film is indispensable for manufacturing a transparent touch switch or the like.

【0003】現在一般に利用可能な透明導電膜として
は、酸化スズ(SnO2)系、酸化インジウム(In2O
3)系、インジウム−錫酸化物(ITO)系および酸化
亜鉛(ZnO)系等の酸化物系や金等の金属薄膜が知ら
れている。
Currently available transparent conductive films include tin oxide (SnO2) and indium oxide (In2O).
3), oxides such as indium-tin oxide (ITO) and zinc oxide (ZnO), and metal thin films such as gold are known.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、酸化
物系透明導電膜は、実装に際し、還元性雰囲気中もしく
は酸化性雰囲気中のいずれにおいても、その化学的安定
性に乏しく、または他の酸化物材料と組み合わせて利用
された場合、酸化されることによる特性劣化が生ずると
いう問題を含んでいる。また、金属透明導電膜の場合で
は、膜の機械的強度が低く、かつ密着性に極めて乏し
く、化学的安定性も乏しいため利用範囲が非常に限られ
るという問題がある。
However, the oxide-based transparent conductive film has poor chemical stability in mounting in either a reducing atmosphere or an oxidizing atmosphere, or other oxides. When used in combination with a material, there is a problem that characteristic deterioration due to oxidation occurs. Further, in the case of a metal transparent conductive film, there is a problem in that the mechanical strength of the film is low, the adhesiveness is extremely poor, and the chemical stability is also poor, so that the usable range is very limited.

【0005】一般に、透明導電膜を太陽電池用透明電極
層や透明コーティング層として、集積化光導波ないしは
光偏向回路等のオプトエレクトロニクス素子に実装する
場合、その透明導電膜の光屈折率が大きければ光閉じ込
め効果が大いに期待でき、より高性能な素子が実現でき
る。その結果、素子の付加価値が一段と高められる。し
かるに前記した各種透明導電膜を実装しても光屈折率が
小さいため、そのような効果が得られないという問題が
あった。そのため実際にはそれら透明導電膜の表面を微
細な凹凸構造にし、入射光を膜表面で散乱させることに
より閉じ込めるようにする等の特別なプロセスが必要に
なり、工程が複雑になるという問題があった。
In general, when a transparent conductive film is mounted on an optoelectronic element such as an integrated optical waveguide or an optical deflection circuit as a transparent electrode layer for solar cells or a transparent coating layer, if the transparent conductive film has a large optical refractive index. The light confinement effect can be greatly expected, and higher performance devices can be realized. As a result, the added value of the device is further enhanced. However, there is a problem that such an effect cannot be obtained because the optical refractive index is small even when the above-mentioned various transparent conductive films are mounted. Therefore, in practice, a special process such as making the surface of the transparent conductive film a fine uneven structure and confining the incident light by scattering the incident light on the film surface is required, and the process becomes complicated. It was

【0006】さらにこれらのオプトエレクトロニクス素
子への実装に際し、とくに該透明導電膜と他の薄膜とを
積層した多層膜を形成する際には、エッチングの選択性
が重要なファクタとなる。しかし前記した該透明導電膜
ではこのような条件を満たすことができないためその応
用範囲を著しく狭くしていたという問題があった。
Further, when mounting on these optoelectronic elements, particularly when forming a multilayer film in which the transparent conductive film and another thin film are laminated, etching selectivity is an important factor. However, the above-mentioned transparent conductive film cannot satisfy such a condition, so that there is a problem that its application range is remarkably narrowed.

【0007】オプトエレクトロニクス全盛時代を迎えつ
つある現在、各種ディスプレイ装置や太陽電池あるいは
精密光学器械にける高性能光学薄膜や自動車並びに建築
物における装飾用コーティング膜、窓用赤外線反射膜調
光窓等に大規模な透明導電膜の需要が見込まれている。
このような状況下において、さらに高性能な透明導電膜
が求められている。
Nowadays, in the heyday of optoelectronics, high-performance optical thin films in various display devices, solar cells, precision optical instruments, decorative coating films for automobiles and buildings, infrared reflective films for windows, light control windows, etc. Demand for large-scale transparent conductive films is expected.
Under such circumstances, a higher performance transparent conductive film is required.

【0008】本発明は、このような社会的要請に応え、
かつ前記した従来形透明導電膜の欠点を除去した新しい
透明導電膜を提供することを目的とする。
The present invention responds to such social demands,
Another object of the present invention is to provide a new transparent conductive film that eliminates the above-mentioned drawbacks of the conventional transparent conductive film.

【0009】[0009]

【問題点を解決するための手段】この目的は、透明導電
膜用原材料としてGaN、あるいはそれに元素周期表第
VI族もしくは第IV族の元素のうち少なくとも1種
を、もしくはVI族元素とIV族元素のそれぞれ少なく
とも1種を1化学式当たり0.01〜20原子%含有し
たもの、または本発明の目的を損なわない範囲でGaN
のGaの一部をIn、Al、Bあるいは(In,Al)
や(In,B)に置き換えたもの(以下、例えば(Ga
1-xInx)N、(Ga1-yAly)N、(Ga1-zBz)
N、(Ga1-x-yInxAly)Nや(Ga1-x-zInxB
z)Nという)等を使用することによって達成される。
すなわち光屈折率2.1以上、好ましくは2.2以上
で、電気抵抗率0.1Ωcm以下、好ましくは0.01Ω
cm以下のGaN系透明導電膜単体もしくは各種金属薄膜
もしくは金属酸化物系薄膜を組み合わせて使用すること
により、全く新しい透明導電膜を提供するものである。
さらにこのGaN系透明導電膜は、還元性ガスに強く、
化学的安定性を有しているためエッチングの選択性や各
種使用環境下での耐性に優れ、各種デバイス等の保護膜
としても有効である。
The object of the present invention is to use GaN as a raw material for a transparent conductive film, or at least one of Group VI or Group IV elements in the periodic table, or Group VI and Group IV elements. One containing at least one element of 0.01 to 20 atomic% per chemical formula, or GaN within a range not impairing the object of the present invention.
Part of Ga of In, Al, B or (In, Al)
Or (In, B) replaced (for example, (Ga
1-xInx) N, (Ga1-yAly) N, (Ga1-zBz)
N, (Ga1-x-yInxAly) N and (Ga1-x-zInxB)
z) referred to as N) and the like.
That is, the light refractive index is 2.1 or more, preferably 2.2 or more, and the electrical resistivity is 0.1 Ωcm or less, preferably 0.01 Ω.
A completely new transparent conductive film is provided by using a GaN-based transparent conductive film having a size of cm or less alone or combining various metal thin films or metal oxide thin films.
Furthermore, this GaN-based transparent conductive film is resistant to reducing gas,
Since it has chemical stability, it has excellent etching selectivity and resistance under various usage environments, and is effective as a protective film for various devices.

【0010】[0010]

【作用】GaNは故意に不純物を導入しない状態では通
常n形伝導を示す半導体である。一般にGaNは高温基
板上に作成されている。得られる電気抵抗率は1000
0000000Ωcm台と高く、透明導電膜となり得な
い。しかし非熱平衡状態での成膜法を採用すれば、Ga
Nの化学量論的組成比を制御することが可能であり、そ
れによってN空孔もしくは格子間Ga等の真性格子欠陥
を導入でき、非化学量論的組成比の結晶質GaNが生成
する結果、該欠陥に起因する内因性ドナーの導入が可能
となることにより、1019cm-3台の高いキャリア密度
と、0.1〜0.01Ωcmという透明導電膜として十分
利用できる低い抵抗率が実現する。
FUNCTION GaN is a semiconductor that normally exhibits n-type conduction in the state where impurities are not intentionally introduced. Generally, GaN is formed on a high temperature substrate. The electrical resistivity obtained is 1000
It is as high as 0000000 Ωcm and cannot be a transparent conductive film. However, if a film formation method in a non-thermal equilibrium state is adopted, Ga
As a result of being able to control the stoichiometric composition ratio of N, and thereby introducing N vacancy or an intrinsic lattice defect such as interstitial Ga, a crystalline GaN having a non-stoichiometric composition ratio is produced. By allowing the introduction of an endogenous donor due to the defects, a high carrier density of 10 19 cm −3 and a low resistivity of 0.1 to 0.01 Ωcm that can be sufficiently used as a transparent conductive film are realized.

【0011】本発明で添加、使用するVI族元素は、酸
素(O)、イオウ(S)、セレン(Se)あるいはテル
ル(Te)のうち1種以上であり、他方、IV族元素と
しては、炭素(C)、シリコン(Si)、ゲルマニウム
(Ge)、錫(Sn)、鉛(Pb)、チタニウム(T
i)、ジルコニウム(Zr)、ハフニウム(Hf)のう
ち1種以上である。あるいは、上記に加えVI族元素と
IV族元素を複合添加することも有効である。例えば、
OのようなVI族とTiのようなIV族元素の複合添加
も有効である。それらの含有量は1化学式当たり0.0
1〜20原子%、好ましくは0.05〜10原子%であ
る。これらの元素の添加はVI族元素においてはNとの
置換によって有効な外因性ドナーとして働き、またIV
族元素においてはGaとの置換によって有効なドナーと
して働き、伝導電子を生成することによってGaN膜の
低抵抗率化が達成できる。また、そのドナーが0.01
%原子以下ではその効果が不十分であり、20原子%以
上ではかえって著しい結晶性の悪化を招くため適当でな
い。また前記方法によりVI族並びに、もしくはIV族
元素を導入すると、前記内因性ドナーの作用効果に加
え、この外因性ドナーにより、さらに高い1020cm-3台
のキャリア密度が容易に得られる。
The group VI element added and used in the present invention is at least one of oxygen (O), sulfur (S), selenium (Se) or tellurium (Te), while the group IV element is Carbon (C), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), titanium (T)
One or more of i), zirconium (Zr), and hafnium (Hf). Alternatively, in addition to the above, it is also effective to add a group VI element and a group IV element in combination. For example,
Composite addition of group VI elements such as O and group IV elements such as Ti is also effective. Their content is 0.0 per chemical formula
It is 1 to 20 atomic%, preferably 0.05 to 10 atomic%. Addition of these elements acts as an effective extrinsic donor by substitution with N in group VI elements, and also IV
By substituting with Ga in the group element, it acts as an effective donor, and by generating conduction electrons, the resistivity of the GaN film can be lowered. In addition, the donor is 0.01
If it is less than 20% by atom, the effect is insufficient, and if it is more than 20% by atom, the crystallinity is rather deteriorated. Further, when a group VI element or a group IV element is introduced by the above-mentioned method, in addition to the action effect of the endogenous donor, a higher carrier density of 10 20 cm -3 can be easily obtained by this extrinsic donor.

【0012】また本発明の目的を損なわない範囲でGa
の一部をIn、AlあるいはBもしくは(In,A
l)、(In,B)または(In,Al,B)で置き換
えても良い。即ち、前述したように(Ga1-xInx)
N、(Ga1-yAly)Nまたは(Ga1-zBz)N等の擬
2元混晶系や(Ga1-x-yInxAly)Nや(Ga1-x-z
InxBz)Nのような擬3元混晶系が可能であり、前記
した(Ga1-x-yInxAly)Nや(Ga1-x-zInxB
z)N混晶系の組成を制御することによりエネルギーギ
ャップ(Eg)を変化させることができるため光学的吸
収端やキャリア密度および移動度を変化させることが可
能である。適当な組成では結晶性向上による高い移動度
を実現でき、0.01〜0.0001Ωcm台というさら
に低抵抗な透明導電膜が実現できる。ただし、InやA
lもしくはBの添加量がGa原子に対して20原子%以
上置き換えると、InではEgが小さくなり過ぎ光透過
率の点で、またAlおよびBではEgが大きくなり過ぎ
抵抗率の増加を招く点で、透明導電膜として好ましくな
くなる。
[0012] Further, as long as the object of the present invention is not impaired, Ga
Of In, Al or B or (In, A
l), (In, B) or (In, Al, B). That is, as described above (Ga1-xInx)
Pseudo binary mixed crystal system such as N, (Ga1-yAly) N or (Ga1-zBz) N, (Ga1-x-yInxAly) N or (Ga1-xz)
A quasi-ternary mixed crystal system such as InxBz) N is possible, and (Ga1-x-yInxAly) N and (Ga1-x-zInxB) described above are possible.
z) Since the energy gap (Eg) can be changed by controlling the composition of the N mixed crystal system, it is possible to change the optical absorption edge, the carrier density and the mobility. With an appropriate composition, high mobility can be realized by improving crystallinity, and a transparent conductive film having a lower resistance of 0.01 to 0.0001 Ωcm can be realized. However, In and A
When the addition amount of 1 or B is replaced by 20 atom% or more with respect to Ga atoms, Eg becomes too small for In and light transmittance becomes too large for Al and B, and resistivity increases. Therefore, it is not preferable as a transparent conductive film.

【0013】本発明の透明導電膜の製造方法としては、
減圧下で、低温基板上にスパッタ法、イオンプレーティ
ング法、真空蒸着法、化学気相成長法や、最近ではエレ
クトロンサイクロトロン共鳴(ECR)プラズマを用い
た有機金属化学気相成長(MOCVD)法等の公知の膜
形成技術が利用できる。これらの中でECRプラズマを
用いた有機金属化学気相成長法(以下、ECR−MOC
VD法という)は低温でも膜形成過程における基板損傷
が少なく、高速で、高品質な薄膜形成が可能と言われて
いる。さらに独立に制御できるパラメータが多いため成
長している膜の結晶性や光屈折率等を再現性良く精密に
制御でき、本発明を実施するうえで最適な方法である。
またGaN、(Ga1-xInx)N、(Ga1-yAly)
N、(Ga1-zBz)Nあるいは(Ga1-x-yInxAl
y)Nや(Ga1-x-zInxBz)NにVI族やIV族元素
を含有させる方法としては膜形成過程で原材料のGa、
In、Al、BもしくはGaNにVI族やIV族元素を
含む合金、水素化合物、窒化物、ハロゲン化物および有
機化合物の形態で導入するのが好適であるが、透明導電
膜を形成した後、VI族やIV族元素をGaN、(Ga
1-xInx)N、(Ga1-yAly)N、(Ga1-zBz)N
あるいは(Ga1-x-yInxAly)Nや(Ga1-x-zIn
xBz)N膜中に熱拡散したりイオン注入することも可能
である。他方、N原料としてアンモニア(NH3)、窒
素(N2)、トリメチルアミン[(CH3)3N]、トリ
エチルアミン[(C2H5)3N]、ジメチルアミン
[(CH3)2NH]、ジエチルアミン[(C2H5)2N
H]またはヒドラジン(N2H4)等が利用できる。また
スパッタ法により製造する場合には、ターゲット材料と
して、本発明の透明導電膜前記組成と同じ焼結体や、金
属Gaを用いることができる。後者の場合、窒素を含む
雰囲気中での反応性スパッタリングにより該透明導電膜
を製造することができる。尚、ターゲットの製造は公知
の方法によって行うことができる。
The method for producing the transparent conductive film of the present invention includes:
Sputtering method, ion plating method, vacuum deposition method, chemical vapor deposition method on low temperature substrate under reduced pressure, and recently metal organic chemical vapor deposition (MOCVD) method using electron cyclotron resonance (ECR) plasma, etc. The well-known film forming technology can be used. Among these, metal organic chemical vapor deposition using ECR plasma (hereinafter referred to as ECR-MOC
The VD method) is said to be capable of forming a high-quality thin film at a high speed with less substrate damage in the film forming process even at a low temperature. Furthermore, since there are many parameters that can be controlled independently, the crystallinity and photorefractive index of the growing film can be precisely controlled with good reproducibility, which is an optimal method for implementing the present invention.
GaN, (Ga1-xInx) N, (Ga1-yAly)
N, (Ga1-zBz) N or (Ga1-x-yInxAl
y) N or (Ga1-x-zInxBz) N can be made to contain a Group VI or IV group element by Ga as a raw material during the film formation process.
It is preferable to introduce it into In, Al, B, or GaN in the form of an alloy containing a Group VI or Group IV element, a hydrogen compound, a nitride, a halide, or an organic compound. Group IV and IV elements are GaN, (Ga
1-xInx) N, (Ga1-yAly) N, (Ga1-zBz) N
Alternatively, (Ga1-x-yInxAly) N or (Ga1-x-zIn)
It is also possible to perform thermal diffusion or ion implantation into the xBz) N film. On the other hand, as N raw material, ammonia (NH3), nitrogen (N2), trimethylamine [(CH3) 3N], triethylamine [(C2H5) 3N], dimethylamine [(CH3) 2NH], diethylamine [(C2H5) 2N]
H] or hydrazine (N2H4) can be used. In the case of manufacturing by the sputtering method, a sintered body having the same composition as the transparent conductive film of the present invention or metal Ga can be used as the target material. In the latter case, the transparent conductive film can be manufactured by reactive sputtering in an atmosphere containing nitrogen. The target can be manufactured by a known method.

【0014】以下、本発明を実施例により説明する。The present invention will be described below with reference to examples.

【実施例 1】ECR−MOCVD装置成長室内に設け
られたプラズマ取り出し口から鉛直下11cmの位置に、
水平面に対し45°傾いたコーニングガラス基板の中心
が来るようにセットし、Ga原料としてトリエチルガリ
ウム(TEG)、N原料として窒素(N2)およびアン
モニア(NH3)ガスを採用し、以下の作成条件でGa
N膜の形成を行った。すなわちa)成長室背圧:0.0
00004Torr、b)成膜ガス圧:0.009To
rr、c)基板温度:350℃、d)TEGバブラー温
度:20℃、e)TEGキャリア水素ガス流量:0.6
sccm、f)NH3導入ガス流量:0.9sccm、g)プラ
ズマ発生室導入水素ガス流量:1.1sccm、h)成長時
間:150分、i)TEG噴き出しノズル方向:基板に
対し垂直、j)TEG噴き出しノズル−基板間距離:4
cm。その結果、膜厚100nm、平均可視光透過率85
%、光屈折率2.3、キャリア密度8×1019cm-3そし
て電気抵抗率は0.013Ωcmという各値が得られた。
この時、電気抵抗率の成膜ガス圧依存性を図1の曲線1
に示す。また得られた該透明導電膜の典型的な透過率ス
ペクトルを図2に示す。尚、N原料としてN2ガスやト
リメチルアミン、トリエチルアミン、ジメチルアミン、
ジエチルアミンあるいはヒドラジンを含むガスを用いた
場合においてもNH3を用いた場合とほぼ同じ電気的、
光学的特性が得られた。
Example 1 ECR-MOCVD apparatus At a position 11 cm vertically below a plasma outlet provided in a growth chamber,
Set so that the center of the Corning glass substrate inclined at 45 ° with respect to the horizontal plane is located, and triethylgallium (TEG) is used as the Ga raw material and nitrogen (N2) and ammonia (NH3) gas are used as the N raw material. Ga
An N film was formed. That is, a) Growth chamber back pressure: 0.0
00004 Torr, b) Film forming gas pressure: 0.009To
rr, c) substrate temperature: 350 ° C., d) TEG bubbler temperature: 20 ° C., e) TEG carrier hydrogen gas flow rate: 0.6
sccm, f) NH3 introduction gas flow rate: 0.9 sccm, g) Plasma generation chamber introduction hydrogen gas flow rate: 1.1 sccm, h) Growth time: 150 minutes, i) TEG ejection nozzle direction: perpendicular to the substrate, j) TEG Distance between ejection nozzle and substrate: 4
cm. As a result, the film thickness is 100 nm and the average visible light transmittance is 85.
%, Photorefractive index 2.3, carrier density 8 × 10 19 cm −3, and electrical resistivity 0.013 Ωcm.
At this time, the dependence of the electrical resistivity on the film forming gas pressure is shown by the curve 1 in FIG.
Shown in. A typical transmittance spectrum of the obtained transparent conductive film is shown in FIG. As N raw material, N2 gas, trimethylamine, triethylamine, dimethylamine,
In the case of using a gas containing diethylamine or hydrazine, the same electrical characteristics as in the case of using NH3,
Optical properties were obtained.

【0015】[0015]

【実施例 2】実施例1と同じ条件に加え、VI族元素
としてSを導入するため二硫化炭素(CS2)を詰めた
バブラーを用い、水素キャリアガスとともにCS2ガス
をTEG噴き出しノズル出口付近で別々に噴き出させ
た。CS2水素キャリアガス流量は0.05sccmであっ
た。得られた膜の厚さは136nm、平均可視光透過率は
85%、キャリア密度3.1×1020cm-3、そして電気
抵抗率は0.005Ωcmであった。尚、O、Se、Te
のようなVI族元素や、C、Si、SnおよびTiのよ
うなIV族元素を単独で添加した場合、いずれもほぼ同
様の電気的・光学的特性が得られた。この時、電気抵抗
率の成膜ガス圧依存性を図1の曲線2に示す。また実施
例1で示したTEG噴き出しノズルとほぼ同じ所からV
I族元素とIV族元素を同時に含むようなテトライソプ
ロピルチタネート(C12H28O4Ti)を不純物として
導入した場合では、さらに低抵抗化が達成できた。即
ち、アルゴンガスもしくはN2ガスでキャリアされたテ
トライソプロピルチタネートを含むガスを0.2sccm導
入して作成した同様のGaN:O,Ti透明導電膜では
キャリア密度9×1020cm-3、抵抗率0.0003Ωcm
が得られた。一方、透過率スペクトルから求めたいずれ
の膜の吸収端波長も図2で示される位置より短波長側に
シフトした。尚、テトライソプロピルチタネートの代わ
りにIV族元素のGe、Sn、ZrおよびHfを含むガ
スと酸素を含むガスとを導入して膜形成したそれぞれの
場合についても前記O、Tiの場合とほぼ同様の電気
的、光学的特性が得られた。この時、電気抵抗率の成膜
ガス圧依存性を図1の曲線3に示す。
Example 2 In addition to the same conditions as in Example 1, a bubbler filled with carbon disulfide (CS2) for introducing S as a Group VI element was used, and CS2 gas together with hydrogen carrier gas was separately discharged near the TEG ejection nozzle outlet. I made it gush out. The CS2 hydrogen carrier gas flow rate was 0.05 sccm. The thickness of the obtained film was 136 nm, the average visible light transmittance was 85%, the carrier density was 3.1 × 10 20 cm −3, and the electrical resistivity was 0.005 Ωcm. In addition, O, Se, Te
When the group VI element as described above and the group IV element such as C, Si, Sn, and Ti were added alone, almost the same electrical and optical characteristics were obtained. At this time, curve 2 in FIG. 1 shows the dependency of the electrical resistivity on the film forming gas pressure. In addition, from the almost same place as the TEG ejection nozzle shown in Embodiment 1, V
When tetraisopropyl titanate (C12H28O4Ti) containing the group I element and the group IV element at the same time is introduced as an impurity, the resistance can be further reduced. That is, in the same GaN: O, Ti transparent conductive film prepared by introducing 0.2 sccm of a gas containing tetraisopropyl titanate carried by argon gas or N 2 gas, the carrier density is 9 × 10 20 cm −3 and the resistivity is 0.0003 Ωcm.
was gotten. On the other hand, the absorption edge wavelengths of all the films obtained from the transmittance spectra were shifted to the shorter wavelength side than the position shown in FIG. It should be noted that, in each case where a gas containing a group IV element Ge, Sn, Zr and Hf and a gas containing oxygen was introduced instead of tetraisopropyl titanate to form a film, the same results as in the case of O and Ti described above were obtained. Electrical and optical properties were obtained. At this time, the curve 3 in FIG. 1 shows the dependency of the electrical resistivity on the film forming gas pressure.

【0016】[0016]

【実施例 3】実施例1と同じ条件に加え、GaNにお
いてGa原子に対して15原子%をInで置き換えた
(Ga0.85In0.15)N薄膜を作成した。Inの原料と
してトリエチルインジウム(TEI)を採用した。TE
Iバブラー温度は80℃、TEIキャリア水素ガス流量
は0.2sccm、TEGキャリア水素ガス流量は0.4sc
cmとして成膜した。得られた膜の膜厚は190nm、平均
可視光透過率は80%、光屈折率は2.3、キャリア密
度2×1020cm-3、そして電気抵抗率は0.006Ωcm
であった。この時、得られた電気抵抗率の成膜ガス圧依
存性は図1の曲線2とほぼ同様の傾向を示した。また、
VI族不純物として酸素を導入した場合では、さらに低
抵抗化が達成できた。即ち、実施例1で示したようにプ
ラズマ発生室へ導入していた水素の代わりにアルゴン8
0%/酸素20%の混合ガスを0.08sccm導入して作
成した同様の該透明導電膜ではキャリア密度6×1020
cm-3、抵抗率0.001Ωcmが得られた。しかし、透過
率スペクトルから求めたいずれの膜の吸収端波長も図2
で示される位置より長波長側にシフトした。
Example 3 In addition to the same conditions as in Example 1, a (Ga0.85In0.15) N thin film was prepared in which 15 atomic% of Ga atoms in GaN were replaced with In. Triethylindium (TEI) was used as a raw material for In. TE
I bubbler temperature is 80 ° C., TEI carrier hydrogen gas flow rate is 0.2 sccm, TEG carrier hydrogen gas flow rate is 0.4 sc
The film was formed as cm. The thickness of the obtained film is 190 nm, the average visible light transmittance is 80%, the light refractive index is 2.3, the carrier density is 2 × 10 20 cm -3, and the electrical resistivity is 0.006 Ωcm.
Met. At this time, the dependency of the obtained electrical resistivity on the film forming gas pressure showed almost the same tendency as the curve 2 in FIG. Also,
When oxygen was introduced as a Group VI impurity, further reduction in resistance could be achieved. That is, as shown in Example 1, argon 8 was used instead of hydrogen introduced into the plasma generation chamber.
The same transparent conductive film prepared by introducing 0.08 sccm of a mixed gas of 0% / 20% oxygen has a carrier density of 6 × 10 20
cm-3 and a resistivity of 0.001 Ωcm were obtained. However, the absorption edge wavelengths of all films obtained from the transmittance spectra are shown in FIG.
The wavelength was shifted to the longer wavelength side than the position indicated by.

【0017】[0017]

【実施例 4】実施例1と同じ条件に加え、GaNにお
いてGa原子に対して10原子%をAlで置き換えた
(Ga0.90Al0.10)N薄膜を作成した。Alの原料と
してトリメチルアルミニウム(TMA)を採用した。T
MAバブラー温度は10℃、TMAキャリア水素ガス流
量は0.2sccm、TEGキャリア水素ガス流量は0.4
sccmとして成膜した。得られた膜の膜厚は150nm、平
均可視光透過率は88%、光屈折率は2.2、キャリア
密度4×1019cm-3、そして電気抵抗率は0.04Ωcm
であり、吸収端がブルーシフトして可視光域での透過率
が改善できた。この時、得られた電気抵抗率の成膜ガス
圧依存性は図1の曲線1とほぼ同様の傾向を示した。一
方、前記TMAの代わりにトリエチルボロン(TEB)
を使用し、そのバブラー温度を0℃に保ち前記同様にし
て(Ga0.85B0.15)N薄膜を作成したところ、TMA
を使用した場合とほぼ同じ電気的特性並びに同等の可視
光透過率が得られた。また前記作成条件でTMAとTE
Bを同時に供給して作成した(Ga0.85Al0.10B0.0
5)N透明導電膜においてもほぼ同様の電気的特性並び
に同等の可視光透過率が得られた。また前記TMAに加
え、80℃に保ったTEIバブラーからTEIを含むガ
スを同時に導入し、前記同様の方法で(Ga0.90In0.
08Al0.02)N薄膜を作成したところ、TMAのみを使
用した場合とほぼ同じ電気的特性、並びに可視光透過率
が得られた。
Example 4 In addition to the same conditions as in Example 1, a (Ga0.90Al0.10) N thin film was prepared in which 10 atomic% of Ga atoms in GaN were replaced with Al. Trimethyl aluminum (TMA) was adopted as a raw material of Al. T
MA bubbler temperature is 10 ° C., TMA carrier hydrogen gas flow rate is 0.2 sccm, TEG carrier hydrogen gas flow rate is 0.4
A film was formed as sccm. The thickness of the obtained film is 150 nm, the average visible light transmittance is 88%, the light refractive index is 2.2, the carrier density is 4 × 10 19 cm −3, and the electrical resistivity is 0.04 Ωcm.
The absorption edge was blue-shifted, and the transmittance in the visible light region was improved. At this time, the dependency of the obtained electrical resistivity on the film forming gas pressure showed a tendency similar to that of the curve 1 in FIG. On the other hand, instead of the TMA, triethylboron (TEB)
Was used and the bubbler temperature was kept at 0 ° C. to prepare a (Ga0.85B0.15) N thin film in the same manner as described above.
The same electric characteristics and the same visible light transmittance as those obtained by using the same were obtained. Also, under the above-mentioned preparation conditions, TMA and TE
B was supplied at the same time to create (Ga0.85Al0.10B0.0
5) The N transparent conductive film also had substantially the same electrical characteristics and the same visible light transmittance. In addition to the TMA, a gas containing TEI was simultaneously introduced from a TEI bubbler maintained at 80 ° C., and the same method (Ga0.90In0.
When the 08Al0.02) N thin film was formed, the same electrical characteristics and visible light transmittance as when using only TMA were obtained.

【0018】[0018]

【実施例 5】高周波マグネトロンスパッタ法によりコ
ーニング7059ガラス上に作成された平均可視光透過
率85%、電気抵抗率0.0003Ωcmの特性を持つZ
nO:Al(Al=2wt%)薄膜の上に、実施例1と
同じ条件で厚さ122nmのGaN透明導電膜を形成で
きた。得られた該膜の平均可視光透過率は85%、シー
ト抵抗5Ω/□であり、膜の化学的安定性を改善できる
ことが確認できた。また、逆に実施例1で作成したGa
N透明導電膜の上にも同様にZnO:Al透明導電膜を
形成することができた。いずれの場合でも、膜が剥がれ
たりする事もなく平滑な無反射コーティング膜を形成で
きた。さらに、GaNの代わりに実施例3で示した(G
a0.85In0.15)Nや(Ga0.85B0.15)Nおよび(G
a0.85In0.10B0.05)N、さらに実施例4で示した
(Ga0.90Al0.10)Nおよび(Ga0.90In0.08Al
0.02)Nに替えても全く問題なかった。得られた電気
的、光学的特性はそれぞれ実施例3および4で示した場
合とほぼ同様であった。また、上述のZnO:Al透明
導電膜をSnO2系、In2O3系およびITO系の内少
なくとも1種の酸化物系透明導電膜に代えることは何ら
支障なかった。
Example 5 Z having characteristics of an average visible light transmittance of 85% and an electric resistivity of 0.0003 Ωcm formed on Corning 7059 glass by a high frequency magnetron sputtering method.
A GaN transparent conductive film having a thickness of 122 nm could be formed on the nO: Al (Al = 2 wt%) thin film under the same conditions as in Example 1. The obtained film had an average visible light transmittance of 85% and a sheet resistance of 5Ω / □, and it was confirmed that the chemical stability of the film could be improved. On the contrary, the Ga created in Example 1
A ZnO: Al transparent conductive film could be similarly formed on the N transparent conductive film. In any case, a smooth antireflection coating film could be formed without peeling off the film. Further, instead of GaN, it is shown in Example 3 (G
a0.85In0.15) N and (Ga0.85B0.15) N and (G
a0.85In0.10B0.05) N, and (Ga0.90Al0.10) N and (Ga0.90In0.08Al) shown in Example 4.
0.02) There was no problem even when changing to N. The electrical and optical characteristics obtained were almost the same as those shown in Examples 3 and 4, respectively. Further, there was no problem in replacing the above ZnO: Al transparent conductive film with at least one kind of oxide transparent conductive film of SnO2 series, In2O3 series and ITO series.

【0019】[0019]

【実施例 6】実施例1で作成したGaN透明導電膜上
に、同装置を用いて、原料ガスに水素希釈ジシラン、ジ
ボランおよびホスフィンを用いた通常のプラズマCVD
法によってp層a−Si、i層a−Si、n層a−Si
を形成し、最後にAl電極を付け、a−Si太陽電池セ
ルを作成した。通常の酸化物系透明導電膜を形成した基
板を用いた場合と光−電気変換効率を比較した結果、約
40%の向上が見られた。これは透明導電膜に高屈折率
であるGaNを使用した結果、光閉じ込め効果による効
率向上であると考えられる。また、このような水素雰囲
気中で膜形成を行なっても該透明導電膜の特性は劣化す
ることはなく還元性ガスにも十分強いことが分かった。
[Embodiment 6] On the GaN transparent conductive film prepared in Embodiment 1, the same apparatus is used and ordinary plasma CVD using hydrogen-diluted disilane, diborane and phosphine as a source gas.
P layer a-Si, i layer a-Si, n layer a-Si
Was formed, and finally an Al electrode was attached to form an a-Si solar cell. As a result of comparing the photoelectric conversion efficiency with the case of using a substrate on which an ordinary oxide-based transparent conductive film was formed, an improvement of about 40% was observed. It is considered that this is because of the use of GaN having a high refractive index for the transparent conductive film, which results in the efficiency improvement due to the light confinement effect. It was also found that the characteristics of the transparent conductive film did not deteriorate even when the film was formed in such a hydrogen atmosphere, and it was sufficiently resistant to reducing gas.

【0020】[0020]

【実施例 7】コーニング#7059ガラス基板上に作
成されたミクロな凹凸状表面を有するいわゆるミルキー
ZnO:Al透明導電膜上に、反応性高周波マグネトロ
ンスパッタ法により、ターゲットとして直径150mmの
GaN焼結体、スパッタガスとしてアルゴン80%/酸
素20%混合ガス、ガス圧6×10-3Torr、基板温度2
50℃、基板−ターゲット間距離40mm、高周波電力8
0Wの各条件下で厚さ50nmのGaN:O透明導電膜を
オーバーコーティングした。得られた該透明導電膜の平
均可視光透過率は85%、シート抵抗5Ω/□であっ
た。尚、スパッタガスとしてN280%/酸素20%を
用いた場合、およびアンモニア(NH3)ガス/酸素ガ
スの分圧比を10%とし、それぞれ独立に導入した場合
のいずれの場合においても前記とほぼ同様の電気的、光
学的特性が得られた。これらの透明電極を用いて、実施
例6と同様にa−Si太陽電池セルを実装したところ、
十分な水素プラズマに対する還元耐性も認められ、また
変換効率は実施例6の場合に比べさらに約20%向上し
た。これは光閉じ込め効果によるものと考えられる。一
方、同装置を用いターゲットとして深さ3mmのステンレ
ス製皿に金属ガリウムを装填したものを使用し、窒素ガ
スに酸素(O)ガスを2%含ませたガス雰囲気中で反応
性スパッタにより上記と同一条件下で同ミルキーZn
O:Al透明導電膜上に厚さ30nmのGaN:O透明導
電膜をオーバーコーティングした。得られた該透明導電
膜の平均可視光透過率は83%、シート抵抗3Ω/□で
あった。この方法を用いて、前記同様a−Si太陽電池
セルに実装した結果、実施例6の場合と同等の対水素プ
ラズマ還元耐性並びに変換効率が得られた。
Example 7 On a so-called milky ZnO: Al transparent conductive film having a micro uneven surface formed on a Corning # 7059 glass substrate, a GaN sintered body having a diameter of 150 mm was used as a target by a reactive high frequency magnetron sputtering method. , 80% argon / 20% oxygen mixed gas as sputtering gas, gas pressure 6 × 10 −3 Torr, substrate temperature 2
50 ℃, substrate-target distance 40mm, high frequency power 8
A GaN: O transparent conductive film having a thickness of 50 nm was overcoated under each condition of 0 W. The obtained transparent conductive film had an average visible light transmittance of 85% and a sheet resistance of 5Ω / □. It should be noted that, when N2 80% / oxygen 20% is used as the sputter gas, and when the partial pressure ratio of ammonia (NH3) gas / oxygen gas is 10% and they are independently introduced, the same results as above are obtained. Electrical and optical properties were obtained. When an a-Si solar cell was mounted in the same manner as in Example 6 using these transparent electrodes,
Sufficient reduction resistance to hydrogen plasma was also recognized, and the conversion efficiency was further improved by about 20% as compared with the case of Example 6. This is considered to be due to the light confinement effect. On the other hand, using the same apparatus, as a target, a stainless steel dish having a depth of 3 mm loaded with metallic gallium was used, and the above was obtained by reactive sputtering in a gas atmosphere containing 2% of oxygen (O) gas in nitrogen gas. Milky Zn under the same conditions
A 30 nm thick GaN: O transparent conductive film was overcoated on the O: Al transparent conductive film. The average visible light transmittance of the obtained transparent conductive film was 83%, and the sheet resistance was 3Ω / □. As a result of mounting this method on an a-Si solar cell in the same manner as described above, the same resistance to hydrogen plasma reduction and conversion efficiency as in Example 6 were obtained.

【0021】[0021]

【実施例 8】実施例1の方法、条件でガラス基板上に
誘電体フッ化マグネシウム(MgF)/GaN/MgF
から成るファブリ・ペロー形干渉フィルタを作成した。
ただしMgFは真空蒸着法により形成した。この場合も
GaNとMgFとのなじみは良く、剥がれたりすること
はなかった。また500nmを中心波長に持つ単色フィル
ターを構成したところ、最大透過率は65%であった。
さらに5%透過率における波長幅は150nmであった。
いずれの値も実用上十分なものである。さらに、上記M
gFの代わりにAZO、ITO、SnO2系等の酸化物
系透明導電膜(TCO)に置き換えても同様のフィルタ
を形成することができ、フィルタ機能を有する透明導電
膜を実現できた。また、AZO透明導電膜をGaN薄膜
で挟んだ場合もフィルタ効果が得られた。各層の厚さや
上記層構成を多層化することにより所望の中心波長や光
透過率を持つフィルタ機能付き透明導電膜を精度よく製
作することができた。
[Embodiment 8] Dielectric magnesium fluoride (MgF) / GaN / MgF on a glass substrate under the method and conditions of Embodiment 1.
We made a Fabry-Perot interference filter consisting of.
However, MgF was formed by the vacuum deposition method. Also in this case, GaN and MgF were well compatible with each other and were not peeled off. Further, when a monochromatic filter having a central wavelength of 500 nm was constructed, the maximum transmittance was 65%.
Further, the wavelength width at 5% transmittance was 150 nm.
Both values are practically sufficient. Furthermore, the above M
A similar filter could be formed by substituting an oxide-based transparent conductive film (TCO) such as AZO, ITO or SnO2 for the gF, and a transparent conductive film having a filter function could be realized. Further, the filter effect was obtained also when the AZO transparent conductive film was sandwiched by GaN thin films. A transparent conductive film with a filter function having a desired center wavelength and light transmittance could be accurately manufactured by making the thickness of each layer and the above-mentioned layer structure multi-layered.

【0022】[0022]

【実施例 9】ガラス基板上にコーティングされたIT
O透明導電膜上に厚さ約20nmの金属銀(Ag)薄膜を
付けた後、実施例1の方法、条件で厚さ60nmのGaN
透明導電膜を形成し、その上に実施例6と同様の方法を
用いてp−i−na−Si:H層を付け、その上にAl
反射層を形成し、Glass/ITO/Ag/GaN/
p−i−na−Si:H/Al太陽電池セルを作成し
た。GaN層は既に述べたように化学的安定性に優れて
いるためセル活性層保護膜として、またGaN層の屈折
率は2.2〜2.3と大きいので、光閉じこめ効果を向
上させることによる変換効率の増大に、そして薄いAg
層挿入により光透過率を低下させることなくGaN透明
電極層の低シート抵抗化にそれぞれ寄与し、その結果光
ー電気変換効率は実施例6の場合に比べ35%向上し
た。またステンレス(SS)基板上に前記同様の方法で
形成したITO/Ag/GaN/p−i−na−Si:
H/SS太陽電池セルの場合においてもほぼ同様の電気
的、光学的特性を実現することができた。さらにTCO
の代わりにAZOやSnO2に置き換えてもほぼ同様の
電気的、光学的特性を実現することができた。
Example 9 IT coated on a glass substrate
After depositing a metal silver (Ag) thin film having a thickness of about 20 nm on the O transparent conductive film, GaN having a thickness of 60 nm was formed according to the method and conditions of Example 1.
A transparent conductive film is formed, a p-i-na-Si: H layer is formed on the transparent conductive film by the same method as in Example 6, and Al is formed thereon.
Forming a reflective layer, Glass / ITO / Ag / GaN /
A p-i-na-Si: H / Al solar cell was created. Since the GaN layer has excellent chemical stability as described above, it serves as a protective film for the cell active layer, and since the GaN layer has a large refractive index of 2.2 to 2.3, it is possible to improve the light confinement effect. Increases conversion efficiency, and thin Ag
The layer insertion contributed to the reduction of the sheet resistance of the GaN transparent electrode layer without lowering the light transmittance, and as a result, the photoelectric conversion efficiency was improved by 35% as compared with the case of Example 6. Further, ITO / Ag / GaN / pi-na-Si formed on the stainless (SS) substrate by the same method as described above:
Also in the case of H / SS solar cells, almost the same electrical and optical characteristics could be realized. Further TCO
It was possible to realize almost the same electrical and optical characteristics by substituting AZO or SnO2 instead of.

【0023】[0023]

【実施例10】実施例1の方法、条件(ただし基板は故
意に加熱しない条件)でポリエチレンテレフタレート
(PET)プラスチックフィルム基板上に、第1層目と
して40nmのGaN透明導電膜を、第2層目として真空
蒸着法により厚さ20nmの金属銀(Ag)薄膜を、第3
層目として厚さ40nmのGaN透明導電膜をそれぞれ形
成した。得られた透明導電膜の平均可視光透過率は84
%、シート抵抗5Ω/□であった。尚、実施例7で使用
した高周波マグネトロンスパッタ装置を用い、Ag金属
ターゲットとGaN焼結体ターゲットを用いた2元スパ
ッタ法によって前記同様のPETプラスチックフィルム
基板上に該3層膜を形成した場合や、基板を実施例1で
用いたガラスに置き換えた場合、さらには、第2層目を
Ag薄膜に代わって金(Au)薄膜やAl薄膜に置き換
えて膜形成を行なった場合等、いずれの場合も前記とほ
ぼ同等の電気的、光学的特性を有する該透明導電膜を実
現することができた。このように極く薄い金属薄膜とG
aN透明導電膜の積層構造は、金属薄膜の安定性を高
め、低いシート抵抗を持つ透明導電膜の形成が可能とな
り、かつ透明で高い光透過率を実現できた。本方法によ
って得られた該透明導電膜を電磁シールドフィルムとし
て実装したところ、約40dBの電磁ノイズ低減効果が認
められた。また、該膜に通電することにより透明ヒータ
ー(透明面状発熱体)を実現できた。さらには直流駆動
有機EL素子の透明電極として前記GaN/Ag/Ga
N積層構造を有する透明導電膜を実装した結果、光透過
率を低下させることなく低シート抵抗化することがで
き、該素子の経時安定性を著しく高めることができた。
尚、第1層目を除いても、あるいはのGaN透明導電膜
の代わりにAZO膜に置き換えても全く支障なかった。
[Embodiment 10] A 40 nm GaN transparent conductive film as a first layer and a second layer as a first layer on a polyethylene terephthalate (PET) plastic film substrate under the method and conditions of Example 1 (however, the substrate is not intentionally heated). For the eyes, a metallic silver (Ag) thin film with a thickness of 20 nm was formed by a vacuum evaporation method.
As a layer, a GaN transparent conductive film having a thickness of 40 nm was formed. The average visible light transmittance of the obtained transparent conductive film is 84.
%, And the sheet resistance was 5Ω / □. When the three-layer film is formed on the same PET plastic film substrate as the above by the two-way sputtering method using the Ag metal target and the GaN sintered body target using the high frequency magnetron sputtering apparatus used in Example 7, In any case, such as when the substrate is replaced with the glass used in Example 1 and further the second layer is replaced with a gold (Au) thin film or an Al thin film in place of the Ag thin film to form a film. It was possible to realize the transparent conductive film having substantially the same electrical and optical characteristics as described above. Such an extremely thin metal thin film and G
The laminated structure of the aN transparent conductive film enhanced the stability of the metal thin film, enabled the formation of a transparent conductive film having a low sheet resistance, and realized a transparent and high light transmittance. When the transparent conductive film obtained by this method was mounted as an electromagnetic shield film, an electromagnetic noise reduction effect of about 40 dB was recognized. Further, a transparent heater (transparent sheet heating element) could be realized by energizing the film. Further, as the transparent electrode of the DC drive organic EL element, the GaN / Ag / Ga is used.
As a result of mounting the transparent conductive film having the N laminated structure, it was possible to reduce the sheet resistance without lowering the light transmittance, and it was possible to remarkably improve the temporal stability of the device.
There was no problem even if the first layer was removed or the GaN transparent conductive film was replaced with an AZO film.

【0024】本発明は前記実施例のみに限定されるもの
ではなく、種々の方法により製造できることは言うまで
もない。例えば、前記実施例においては、Ga原料とし
てTEG、In原料としてTEIを使用しているが、ト
リメチルガリウム(TMG)やトリメチルインジウム
(TMI)が利用できる。またこのような有機金属化合
物だけではなく、金属アルコレートを使用しても良い。
さらにN原料として窒素ガス以外に、トリメチルアミ
ン、トリエチルアミン、ジメチルアミン、ジエチルアミ
ンあるいはヒドラジン等を使用することは全く支障な
い。
It is needless to say that the present invention is not limited to the above-mentioned embodiment and can be manufactured by various methods. For example, although TEG is used as the Ga raw material and TEI is used as the In raw material in the above-described embodiment, trimethylgallium (TMG) or trimethylindium (TMI) can be used. Further, not only such an organometallic compound but also a metal alcoholate may be used.
Further, it is perfectly acceptable to use trimethylamine, triethylamine, dimethylamine, diethylamine, hydrazine or the like as the N raw material other than nitrogen gas.

【発明の効果】本発明によれば、2.1以上の高い光屈
折率と0.1Ωcm以下の低い抵抗率を有するこれまでに
ない新しい透明導電膜を提供でき、場合によっては極薄
の金属薄膜を併用することによって、低いシート抵抗が
要求される多くのオプトエレクトロニクス素子、例えば
太陽電池や、液晶ディスプレイおよびエレクトロルミネ
ッセントディスプレイ等のフラットパネルディスプレイ
の高性能化を図ることも容易になるという効果が認めら
れた。本発明になるGaN系透明導電膜は窒化物である
ため、還元性や酸化性雰囲気に極めて強く安定である。
しかも成膜プロセスは単純となり低コスト化が図れると
いう効果がある。たとえば太陽電池の受光面に該透明導
電膜を利用することにより光閉じ込め効果が容易に得ら
れ、従来行なわれていた活性層側界面を凹凸にする等の
複雑な工程は一切不要となる。さらに減圧下の低温基板
上に成膜することにより抵抗率や光屈折率を制御するこ
とができ、多機能化や機能強化を容易に実現することが
できる。また上述したように該透明導電膜は化学的に非
常に安定であるため透明ヒーター、電磁波シールドフィ
ルム等苛酷な環境下においても、その性能を低下させる
ことなく使用できるという顕著な効果が得られた。
According to the present invention, it is possible to provide a novel transparent conductive film having a high optical refractive index of 2.1 or more and a low resistivity of 0.1 Ωcm or less, and in some cases, an extremely thin metal film. By using thin films together, it will be easy to improve the performance of many optoelectronic elements that require low sheet resistance, such as solar cells and flat panel displays such as liquid crystal displays and electroluminescent displays. The effect was recognized. Since the GaN-based transparent conductive film according to the present invention is a nitride, it is extremely strong and stable in a reducing or oxidizing atmosphere.
Moreover, there is an effect that the film forming process becomes simple and the cost can be reduced. For example, by using the transparent conductive film on the light receiving surface of the solar cell, the light confining effect can be easily obtained, and the complicated process such as the conventional process of making the interface on the active layer side uneven is unnecessary. Furthermore, by forming a film on a low-temperature substrate under reduced pressure, the resistivity and photorefractive index can be controlled, and multifunctionalization and functional enhancement can be easily realized. Further, as described above, since the transparent conductive film is chemically very stable, the remarkable effect that it can be used without deteriorating its performance even in a harsh environment such as a transparent heater and an electromagnetic wave shielding film was obtained. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で得られた該透明導電膜の抵抗
率の成膜ガス圧依存性を示す図である。
FIG. 1 is a diagram showing the film forming gas pressure dependency of the resistivity of the transparent conductive film obtained in an example of the present invention.

【図2】本発明の実施例で得られた該透明導電膜の光透
過率スペクトルを示す図である。
FIG. 2 is a diagram showing a light transmittance spectrum of the transparent conductive film obtained in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 故意に不純物を添加しないGaN透明導電膜におけ
る抵抗率の成膜ガス圧依存性を示す図である。 2 VI族あるいはIV族元素を単独で添加した場合の
GaN系透明導電膜における抵抗率の成膜ガス圧依存性
を示す図である。 3 VI族やIV族元素を同時に添加した場合のGaN
系透明導電膜における抵抗率の成膜ガス圧依存性を示す
図である。
1 is a diagram showing the film forming gas pressure dependency of the resistivity in a GaN transparent conductive film in which impurities are not intentionally added. It is a figure which shows the film-forming gas pressure dependence of the resistivity in a GaN type | system | group transparent conductive film at the time of adding a 2 VI group or IV group element independently. GaN when 3 VI group or IV group elements are added at the same time
It is a figure which shows the film-forming gas pressure dependence of the resistivity in a transparent transparent conductive film.

Claims (9)

【特許請求の範囲】[Claims] 【請求項 1】 基体上に形成した光屈折率2.1以
上、好ましくは2.2以上で電気抵抗率0.1Ωcm以下
好ましくは0.01Ωcm以下の透明かつ導電性を有し、
多結晶質もしくは微結晶質窒化ガリウム(GaN)から
成ることを特徴とする透明導電膜。
1. A transparent and conductive material having a light refractive index of 2.1 or more, preferably 2.2 or more and an electrical resistivity of 0.1 Ωcm or less, preferably 0.01 Ωcm or less, formed on a substrate,
A transparent conductive film made of polycrystalline or microcrystalline gallium nitride (GaN).
【請求項 2】 前記請求項1のGaNが、ガリウムの
一部をインジウム(In)、アルミニウム(Al)また
はホウ素(B)のようなIII族元素のうち少なくとも1
種、もしくは2種、もしくは3種によって置換されて成
るGaNを主成分とすることを特徴とする透明導電膜。
2. The GaN according to claim 1, wherein part of gallium is at least one of Group III elements such as indium (In), aluminum (Al) or boron (B).
A transparent conductive film containing GaN as a main component, which is substituted by one kind, or two kinds, or three kinds.
【請求項 3】 前記請求項1および2のGaNもしく
はGaNを主成分とする透明導電膜に対して、酸素、イ
オウ、セレンおよびテルルのようなVI族元素や、炭
素、シリコン、ゲルマニウム、錫、チタニウム、ジルコ
ニウム、またはハフニウムのようなIV族元素のうち少
なくとも1種を、もしくはVI族元素とIV族元素のそ
れぞれ少なくとも1種を同時に1化学式当たり0.01
〜20原子%含有したGaNを主成分とすることを特徴
とする透明導電膜。
3. The transparent conductive film containing GaN or GaN as a main component according to claim 1 or 2, wherein Group VI elements such as oxygen, sulfur, selenium and tellurium, carbon, silicon, germanium, tin, 0.01 of at least one group IV element such as titanium, zirconium, or hafnium, or at least one group VI element and at least one group IV element simultaneously per one chemical formula
A transparent conductive film containing GaN containing 20 atom% to 20% as a main component.
【請求項 4】 基体上に少なくとも1種の金属薄膜あ
るいは酸化物透明導電膜と、前記請求項1、2または3
のGaN透明導電膜とを積層もしくは交互に多層積層し
て成ることを特徴とする透明導電膜。
4. At least one kind of metal thin film or transparent conductive oxide film on a substrate, and the above-mentioned claim 1, 2 or 3.
And a GaN transparent conductive film of 1. are laminated or alternately laminated in multiple layers.
【請求項 5】 前記請求項1の基体がガラスまたはプ
ラスチックである請求項1、2、3または4記載の透明
導電膜。
5. The transparent conductive film according to claim 1, 2, 3 or 4, wherein the substrate according to claim 1 is glass or plastic.
【請求項 6】 太陽電池用透明電極、またはフラット
パネル形ディスプレイ用透明電極として使用する請求項
1、2、3または4記載の透明導電膜。
6. The transparent conductive film according to claim 1, which is used as a transparent electrode for a solar cell or a transparent electrode for a flat panel type display.
【請求項 7】 基体表面上に光学フィルター用コーテ
ィング層として酸化物系またはフッ化物系透明膜で挟ま
れるか、あるいは酸化物系またはフッ化物系透明膜を挟
むように多層形成された請求項1、2または3記載の透
明導電膜。
7. The oxide-based or fluoride-based transparent film is sandwiched as a coating layer for an optical filter on the surface of the substrate, or a multilayer is formed so as to sandwich the oxide-based or fluoride-based transparent film. 2. The transparent conductive film according to 2 or 3.
【請求項 8】 太陽電池、フラットパネル形ディスプ
レイ、透明電磁波シールドフィルムあるいは透明ヒータ
ー用透明導電膜を、あるいは単色もしくは近赤外域から
近紫外域にわたるバンドパス光学干渉フィルタを製造す
るために使用される請求項1、2、3または4記載の透
明導電膜。
8. Used for producing a solar cell, a flat panel type display, a transparent electromagnetic wave shielding film or a transparent conductive film for a transparent heater, or a bandpass optical interference filter in a monochromatic or near infrared to near ultraviolet region. The transparent conductive film according to claim 1, 2, 3, or 4.
【請求項 9】 無反射コーティングを製造するために
使用される請求項1、2または3記載の透明導電膜。
9. The transparent conductive film according to claim 1, 2 or 3 used for producing an antireflection coating.
JP09698892A 1991-03-27 1992-03-23 Transparent conductive film Expired - Lifetime JP3205036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09698892A JP3205036B2 (en) 1991-03-27 1992-03-23 Transparent conductive film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-89613 1991-03-27
JP8961391 1991-03-27
JP09698892A JP3205036B2 (en) 1991-03-27 1992-03-23 Transparent conductive film

Publications (2)

Publication Number Publication Date
JPH06150723A true JPH06150723A (en) 1994-05-31
JP3205036B2 JP3205036B2 (en) 2001-09-04

Family

ID=26431028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09698892A Expired - Lifetime JP3205036B2 (en) 1991-03-27 1992-03-23 Transparent conductive film

Country Status (1)

Country Link
JP (1) JP3205036B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997038558A1 (en) * 1996-04-03 1997-10-16 Ecole Polytechnique Federale De Lausanne Electroluminescent device
JP2008066699A (en) * 2006-08-10 2008-03-21 Kochi Univ Of Technology Transparent electromagnetic shielding film
JP2010225384A (en) * 2009-03-23 2010-10-07 Kaneka Corp Substrate with transparent electrode, and method for manufacturing the same
JP4939058B2 (en) * 2004-02-16 2012-05-23 株式会社カネカ Method for producing transparent conductive film and method for producing tandem-type thin film photoelectric conversion device
JP2014159368A (en) * 2010-12-20 2014-09-04 Tosoh Corp Gallium nitride sintered body or gallium nitride molded article, and method for producing the same
WO2020095723A1 (en) * 2018-11-07 2020-05-14 日本電気硝子株式会社 Bandpass filter and method for manufacturing same
CN114759100A (en) * 2022-03-28 2022-07-15 中山大学 Silicon-based heterojunction solar cell and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997038558A1 (en) * 1996-04-03 1997-10-16 Ecole Polytechnique Federale De Lausanne Electroluminescent device
JP4939058B2 (en) * 2004-02-16 2012-05-23 株式会社カネカ Method for producing transparent conductive film and method for producing tandem-type thin film photoelectric conversion device
JP2008066699A (en) * 2006-08-10 2008-03-21 Kochi Univ Of Technology Transparent electromagnetic shielding film
JP2010225384A (en) * 2009-03-23 2010-10-07 Kaneka Corp Substrate with transparent electrode, and method for manufacturing the same
JP2014159368A (en) * 2010-12-20 2014-09-04 Tosoh Corp Gallium nitride sintered body or gallium nitride molded article, and method for producing the same
WO2020095723A1 (en) * 2018-11-07 2020-05-14 日本電気硝子株式会社 Bandpass filter and method for manufacturing same
CN114759100A (en) * 2022-03-28 2022-07-15 中山大学 Silicon-based heterojunction solar cell and preparation method thereof

Also Published As

Publication number Publication date
JP3205036B2 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
US9045821B2 (en) Laminate, method for producing same, and functional element using same
JP7091577B2 (en) A device provided with a metal oxide thin film, a method for depositing a metal oxide thin film, and a metal oxide thin film.
JP5296691B2 (en) Manufacturing method of conductor layer
US10311992B2 (en) Transparent conducting films including complex oxides
KR20090120459A (en) Process for producing electroconductor
KR20150093187A (en) Transparent conductive glass substrate with surface electrode, method for producing same, thin film solar cell, and method for manufacturing thin film solar cell
CN101582460B (en) Multilayer transparent conductive film of thin film solar cell and manufacturing method thereof
JP4622075B2 (en) Transparent conductive material and method for producing the same
Yamamoto et al. Ga‐doped zinc oxide: An attractive potential substitute for ITO, large‐area coating, and control of electrical and optical properties on glass and polymer substrates
EP1462541B1 (en) Method for forming thin film.
JP3205036B2 (en) Transparent conductive film
JP5518355B2 (en) Conductor substrate, method for manufacturing conductor substrate, device and electronic apparatus
US9349885B2 (en) Multilayer transparent electroconductive film and method for manufacturing same, as well as thin-film solar cell and method for manufacturing same
JP2001189114A (en) Manufacturing method of transparent electrode
JPH08264022A (en) Transparent conductive film
JP2001015787A (en) Substrate with transparent conductive film, manufacturing method therefor, and solar battery
KR102116392B1 (en) Polymer substrates comprising antireflective layer and thin metal layer and fabrication method for the same
US20150140321A1 (en) Methodology for improved adhesion for deposited fluorinated transparent conducting oxide films on a substrate
TWI591655B (en) Transparent conductive film and manufacturing method thereof
JP5864872B2 (en) Conductor substrate, method for manufacturing conductor substrate, device, electronic device, and solar cell panel
JPH11186584A (en) Transparent conducting film, its manufacture, and photovoltaic element
KR20110078650A (en) Method for manufacturing zinc oxide layer and thin film silicon solar cell comprising the zinc oxide layer manufactured therefrom
Gordon et al. Deposition, Characterization and Optimization of Optically Transparent Films
JP2014162968A (en) Production method of conductor substrate, conductor substrate, light-emitting device, electronic apparatus, photoelectric conversion element and solar cell panel
JP2015201525A (en) Photoelectric conversion device and manufacturing method of the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090629

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100629