JP2010201447A - Method for manufacturing heat transfer plate - Google Patents

Method for manufacturing heat transfer plate Download PDF

Info

Publication number
JP2010201447A
JP2010201447A JP2009048091A JP2009048091A JP2010201447A JP 2010201447 A JP2010201447 A JP 2010201447A JP 2009048091 A JP2009048091 A JP 2009048091A JP 2009048091 A JP2009048091 A JP 2009048091A JP 2010201447 A JP2010201447 A JP 2010201447A
Authority
JP
Japan
Prior art keywords
recess
main body
heat transfer
transfer plate
lid member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009048091A
Other languages
Japanese (ja)
Other versions
JP5177017B2 (en
Inventor
Isato Sato
勇人 佐藤
Hisashi Hori
久司 堀
Nobushiro Seo
伸城 瀬尾
Tomohiro Kawamoto
知広 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2009048091A priority Critical patent/JP5177017B2/en
Publication of JP2010201447A publication Critical patent/JP2010201447A/en
Application granted granted Critical
Publication of JP5177017B2 publication Critical patent/JP5177017B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Straightening Metal Sheet-Like Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a heat transfer plate, in which a heat transfer plate of high flatness is manufactured while enhancing water tightness and air tightness of the heat transfer plate. <P>SOLUTION: In the method for manufacturing the heat transfer plate, in a body 10 comprising a first recessed part 12 which is recessed on a surface 10a and a second recessed part 13 which is recessed on the bottom face 12a of the first recessed part 12 and causes a heat transport fluid to flow wherein the heat generated by a heat generator is transferred to the outside, a lid member 30 for sealing the second recessed part 13 is formed by fixing it by friction stir welding. The method includes: a lid member fixing process for performing friction stir welding along a butted part 40; a second recessed part sealing process in which a revolving tool G is moved along the periphery 14 of the opening of the second recessed part 13 to perform friction stir welding on a superimposed part 18; and a straightening process in which a projecting warp on the reverse side of the body 10 is straightened by actuating a bending moment that generates a tensile stress on the front side of the body 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、伝熱板の製造方法に関する。   The present invention relates to a method for manufacturing a heat transfer plate.

金属部材同士を接合する方法として、摩擦攪拌接合(FSW=Friction Stir Welding)が知られている。摩擦攪拌接合とは、回転ツールを回転させつつ金属部材同士の突合部に沿って移動させ、回転ツールと金属部材との摩擦熱により突合部の金属を塑性流動させることで、金属部材同士を固相接合させるものである。   Friction stir welding (FSW = Friction Stir Welding) is known as a method for joining metal members. Friction stir welding is a technique in which metal members are fixed to each other by causing the metal at the abutting portion to plastically flow by frictional heat between the rotating tool and the metal member by moving the rotating tool along the abutting portion while rotating the rotating tool. Phase joining is performed.

例えば、特許文献1に示すように、半導体製造装置において冷却用に使用されるヒートプレート(伝熱板)は、板状を呈する本体と、本体の表面に形成された凹部を封止する蓋部材とを摩擦攪拌接合によって形成されている。   For example, as shown in Patent Document 1, a heat plate (heat transfer plate) used for cooling in a semiconductor manufacturing apparatus is a lid member that seals a plate-shaped main body and a recess formed on the surface of the main body. Are formed by friction stir welding.

具体的には、本体は、本体の表面に凹設された第一凹部と、第一凹部の底面に凹設された第二凹部とを有する。蓋部材は、第一凹部に隙間無く配置される形状を呈している。伝熱板は、第一凹部の側壁と蓋部材の側面との突合部に対して摩擦攪拌接合を行うことにより一体成形されている。摩擦攪拌接合によれば、比較的容易にかつ水密性及び気密性の高い製品を製造することができる。   Specifically, the main body has a first concave portion provided in the surface of the main body and a second concave portion provided in the bottom surface of the first concave portion. The lid member has a shape that is arranged in the first recess without any gap. The heat transfer plate is integrally formed by performing friction stir welding on the abutting portion between the side wall of the first recess and the side surface of the lid member. According to the friction stir welding, a product having high water tightness and air tightness can be manufactured relatively easily.

特開2002−257490号公報JP 2002-257490 A

従来の伝熱板の製造方法では、第一凹部の側壁と蓋部材の側面との突合部のみを摩擦攪拌接合するだけであるため、例えば第一凹部の底面と蓋部材の裏面との間には微細な隙間が形成されている。かかる隙間は伝熱板の水密性及び気密性を低下させる要因になっていた。また、本体の表面から摩擦攪拌を行うため、熱収縮によって塑性化領域が縮むと、伝熱板が反って撓んでしまうという問題があった。   In the conventional method of manufacturing a heat transfer plate, only the abutting portion between the side wall of the first recess and the side surface of the lid member is friction stir welded. For example, between the bottom surface of the first recess and the back surface of the lid member. A fine gap is formed. Such a gap has been a factor of reducing the water tightness and air tightness of the heat transfer plate. In addition, since frictional stirring is performed from the surface of the main body, there is a problem that when the plasticized region shrinks due to heat shrinkage, the heat transfer plate warps and bends.

本発明は、かかる問題に鑑みてなされたものであり、伝熱板の水密性及び気密性を高めるとともに、平坦性の高い伝熱板を製造することができる伝熱板の製造方法を提供することを課題とする。   The present invention has been made in view of such problems, and provides a method of manufacturing a heat transfer plate that can improve the water tightness and air tightness of the heat transfer plate and can manufacture a heat transfer plate with high flatness. This is the issue.

前記課題を解決するための手段として、本発明は、表面に凹設された第一凹部と、この第一凹部の底面に凹設され熱発生体が発生する熱を外部に輸送する熱輸送流体が流れる第二凹部とを有する本体に、前記第二凹部を封止する蓋部材を摩擦攪拌接合によって固定して形成される伝熱板の製造方法であって、前記本体の前記第一凹部の側壁と前記蓋部材の側面との突合部に沿って回転ツールを移動させて少なくとも前記突合部の一部に対して摩擦攪拌接合を行う蓋部材固定工程と、前記第二凹部の開口周縁に沿って回転ツールを移動させて、前記第一凹部の底面と前記蓋部材の裏面との重ね合わせ部に対して摩擦攪拌接合を行う第二凹部密封工程と、前記蓋部材固定工程及び前記第二凹部密封工程によって形成された前記本体の裏面側に凸となる反りを、前記本体の表面側に引張応力が発生するような曲げモーメントを作用させることで矯正する矯正工程と、を含むことを特徴とする。   As means for solving the above-mentioned problems, the present invention provides a heat transfer fluid for transporting heat generated by a heat generating body that is provided in a bottom surface of the first recess and is formed in a bottom surface of the first recess to the outside. A heat transfer plate formed by fixing a lid member sealing the second recess by friction stir welding to a main body having a second recess through which the first recess of the main body is formed. A lid member fixing step of moving the rotary tool along the abutting portion between the side wall and the side surface of the lid member to perform friction stir welding on at least a part of the abutting portion, and along the opening periphery of the second recess A second recess sealing step in which the rotating tool is moved to perform friction stir welding on the overlapping portion of the bottom surface of the first recess and the back surface of the lid member, the lid member fixing step, and the second recess Convex on the back side of the main body formed by the sealing process Warpage that, characterized in that it comprises a and a correction step of correcting by the action of the bending moments as a tensile stress is generated in the surface side of the body.

かかる製造方法によれば、第一凹部の底面と蓋部材の裏面との重ね合わせ部に対して摩擦攪拌接合を行うことにより、第一凹部の底面と蓋部材の裏面との微細な隙間を塞ぐことができる。これにより、伝熱板の水密性及び気密性を高めることができる。また、矯正工程において本体の表面側に引張応力が発生するような曲げモーメントを作用させることにより、蓋部材固定工程及び第二凹部密封工程により形成された本体の裏面側に凸となる反りを矯正し、伝熱板の平坦性を高めることができる。   According to this manufacturing method, the fine gap between the bottom surface of the first recess and the back surface of the lid member is closed by performing friction stir welding on the overlapping portion of the bottom surface of the first recess and the back surface of the lid member. be able to. Thereby, the watertightness and airtightness of a heat exchanger plate can be improved. In addition, by applying a bending moment that generates a tensile stress on the front side of the main body in the correction process, the warping that is convex on the back side of the main body formed by the lid member fixing process and the second recess sealing process is corrected. In addition, the flatness of the heat transfer plate can be improved.

また、前記矯正工程では、前記本体を押圧するプレス矯正、前記本体をハンマーなどの衝打具で衝打する衝打矯正、又は前記本体上でロール部材を回転させるロール矯正を行うことにより、前記反りを矯正することが好ましい。また、矯正工程を行う際に、前記本体の裏面側の中央付近に当接する第一補助部材を配置するとともに、前記本体の表面側の周縁付近に当接する第二補助部材及び第三補助部材を、前記第一補助部材を挟んで両側に配置した状態で、前記反りをプレス矯正、衝打矯正又はロール矯正を行うことが好ましい。   Further, in the correction step, by performing press correction for pressing the main body, hitting correction for hitting the main body with a hitting tool such as a hammer, or roll correction for rotating a roll member on the main body, It is preferable to correct the warpage. In addition, when performing the correction process, a first auxiliary member that contacts the vicinity of the center of the back surface side of the main body is disposed, and a second auxiliary member and a third auxiliary member that contact the vicinity of the peripheral edge of the front surface side of the main body are disposed. The warp is preferably subjected to press correction, impact correction or roll correction in a state where the first auxiliary member is disposed on both sides of the first auxiliary member.

かかる製造方法によれば、本体が裏面側に凸の状態から表面側に凸の状態になるように強制的に押圧力が加わって、本体が、反りとは反対側に強制的に撓ませられるため反りを矯正することができる。また、補助部材を配置することで、プレス矯正、衝打矯正又はロール矯正の作業性を高めることができる。   According to such a manufacturing method, the main body is forcibly bent to the side opposite to the warp by forcibly applying a pressing force so that the main body is convex from the back side to the front side. Therefore, the warp can be corrected. Moreover, the workability | operativity of press correction, impact correction, or roll correction can be improved by arrange | positioning an auxiliary member.

また、前記各補助部材は、前記本体よりも硬度が低い材料を用いていることが好ましい。かかる製造方法によれば、プレス矯正、衝打矯正又はロール矯正で押圧する際に、本体を傷つけることなく矯正することができる。   Moreover, it is preferable that each auxiliary member uses a material whose hardness is lower than that of the main body. According to this manufacturing method, when pressing by press correction, impact correction or roll correction, correction can be made without damaging the main body.

本発明によれば、水密性及び気密性が高く、かつ、平坦性の高い伝熱板を提供することができる。   According to the present invention, a heat transfer plate having high water tightness and air tightness and high flatness can be provided.

第一実施形態に係る伝熱板を示した分解斜視図である。It is the disassembled perspective view which showed the heat exchanger plate which concerns on 1st embodiment. (a)は、小型回転ツール、(b)は、大型回転ツールを示した側面図である。(A) is the small rotation tool, (b) is the side view which showed the large rotation tool. 第一実施形態に係る蓋部材固定工程を示した図であって、(a)は、平面図、(b)は、(a)のX1−X1断面図である。It is the figure which showed the cover member fixing process which concerns on 1st embodiment, Comprising: (a) is a top view, (b) is X1-X1 sectional drawing of (a). 第一実施形態に係る蓋部材固定工程を示した平面図である。It is the top view which showed the cover member fixing process which concerns on 1st embodiment. 第一実施形態に係る第二凹部密封工程を示した図であって、(a)は、平面図、(b)は、(a)のX2−X2断面図である。It is the figure which showed the 2nd recessed part sealing process which concerns on 1st embodiment, Comprising: (a) is a top view, (b) is X2-X2 sectional drawing of (a). 第一実施形態に係る第二凹部密封工程を示した平面図である。It is the top view which showed the 2nd recessed part sealing process which concerns on 1st embodiment. 第一実施形態に係る第二凹部密封工程後を示した図であって、(a)は、斜視図、(b)は、地点c−地点fを結ぶ線の断面図である。It is the figure which showed the 2nd recessed part sealing process after 1st embodiment, Comprising: (a) is a perspective view, (b) is sectional drawing of the line | wire which connects the point c-point f. 第一実施形態に係るプレス矯正の準備段階を示した斜視図である。It is the perspective view which showed the preparatory stage of the press correction which concerns on 1st embodiment. 第一実施形態に係るプレス矯正を示した側面図であって、(a)はプレス前、(b)はプレス中を示した図である。It is the side view which showed the press correction which concerns on 1st embodiment, Comprising: (a) is before a press, (b) is the figure which showed during press. 第一実施形態に係るプレス矯正の押圧位置を示した平面図である。It is the top view which showed the press position of the press correction which concerns on 1st embodiment. 第一実施形態に係るロール矯正を示した図であって、(a)は斜視図、(b)はプレス前を示した側面図、(c)はプレス中を示した側面図である。It is the figure which showed the roll correction which concerns on 1st embodiment, Comprising: (a) is a perspective view, (b) is the side view which showed before the press, (c) is the side view which showed during the press. 第二実施形態に係る伝熱板を示した図であって、(a)は、分解斜視図、(b)は断面図を示す。It is the figure which showed the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) is a disassembled perspective view, (b) shows sectional drawing. 第二実施形態に係る第二凹部密封工程を段階的に示した平面図である。It is the top view which showed the 2nd recessed part sealing process which concerns on 2nd embodiment in steps. 第三実施形態に係る伝熱板を示した分解斜視図である。It is the disassembled perspective view which showed the heat exchanger plate which concerns on 3rd embodiment. 第三実施形態に係る第二凹部密封工程を示した平面図である。It is the top view which showed the 2nd recessed part sealing process which concerns on 3rd embodiment. 第四実施形態に係る本体を示した斜視図である。It is the perspective view which showed the main body which concerns on 4th embodiment. 第四実施形態に係る第二凹部密封工程を示した図であって、(a)は、平面図、(b)は、(a)X3−X3断面図である。It is the figure which showed the 2nd recessed part sealing process which concerns on 4th embodiment, Comprising: (a) is a top view, (b) is (a) X3-X3 sectional drawing. 仮接合工程を示した図であって、(a)は、平面図、(b)は、(a)のX4−X4断面図である。It is the figure which showed the temporary joining process, Comprising: (a) is a top view, (b) is X4-X4 sectional drawing of (a).

[第一実施形態]
本発明の第一実施形態に係る伝熱板の製造方法について図面を適宜参照して詳細に説明する。まず、本発明に係る伝熱板の製造方法によって形成される伝熱板1について説明する。
[First embodiment]
A method for manufacturing a heat transfer plate according to a first embodiment of the present invention will be described in detail with reference to the drawings as appropriate. First, the heat transfer plate 1 formed by the method for manufacturing a heat transfer plate according to the present invention will be described.

伝熱板1は、図1に示すように、本体10に、蓋部材30を摩擦攪拌接合によって固定して形成される。伝熱板1は、例えば、スパッタリング装置において、ターゲット材を冷却するために使用される。   As shown in FIG. 1, the heat transfer plate 1 is formed by fixing a lid member 30 to the main body 10 by friction stir welding. The heat transfer plate 1 is used for cooling the target material in, for example, a sputtering apparatus.

本体10は、略直方体の外観を呈し、本実施形態ではアルミニウム又はアルミニウム合金から形成されている。本体10は、本体10の表面(上面)10aに凹設された第一凹部12と、第一凹部12の内部に凹設された第二凹部13,13と、第二凹部13に連通する貫通孔16とを有する。本体10は、例えば、ダイキャスト、鋳造、鍛造などによって作製される。   The main body 10 has a substantially rectangular parallelepiped appearance, and is formed of aluminum or an aluminum alloy in the present embodiment. The main body 10 has a first recess 12 recessed in the surface (upper surface) 10 a of the main body 10, second recesses 13 and 13 recessed in the first recess 12, and a through hole communicating with the second recess 13. And a hole 16. The main body 10 is produced, for example, by die casting, casting, forging, or the like.

本体10は、本実施形態ではアルミニウム又はアルミニウム合金から形成したが、他の金属部材で形成してもよい。また、本体10は、本実施形態では外観視略直方体としたが、多角柱体、円柱体等であってもよい。   The main body 10 is formed of aluminum or an aluminum alloy in this embodiment, but may be formed of other metal members. Moreover, although the main body 10 is a substantially rectangular parallelepiped in appearance in the present embodiment, it may be a polygonal column, a cylinder, or the like.

第一凹部12は、蓋部材30が配置される部位である。第一凹部12は、本体10の上面10aよりも一段下がった位置に形成されており、平面視矩形を呈する底面12aと、底面12aから垂直に立設する4つの側壁12bとを有する。側壁12bの高さは、蓋部材30の厚みtと略同等に形成されている。   The first recess 12 is a part where the lid member 30 is disposed. The first recess 12 is formed at a position one step lower than the upper surface 10a of the main body 10, and has a bottom surface 12a that has a rectangular shape in plan view and four side walls 12b that stand vertically from the bottom surface 12a. The height of the side wall 12 b is formed substantially equal to the thickness t of the lid member 30.

第二凹部13,13は、熱輸送流体(本実施形態では冷却水)が流通する部分である。第二凹部13,13は、平面視矩形を呈し、それぞれ略同等の形状に形成されている。第二凹部13,13は、上方が開口しており、第一凹部12の内部において所定の間隔をあけて設けられている。第二凹部13,13の周囲には前記した第一凹部12の底面12aが拡がっている。つまり、第二凹部13,13は、第一凹部12に包囲されている。第二凹部13の形状や設置数は伝熱板1の用途に応じて適宜変更可能である。   The second recesses 13 and 13 are portions through which the heat transport fluid (cooling water in this embodiment) flows. The 2nd recessed parts 13 and 13 exhibit the planar view rectangle, and are each formed in the substantially equivalent shape. The second recesses 13 and 13 are open at the top, and are provided within the first recess 12 at a predetermined interval. Around the second recesses 13, the bottom surface 12 a of the first recess 12 extends. That is, the second recesses 13 and 13 are surrounded by the first recess 12. The shape and number of the second recesses 13 can be appropriately changed according to the use of the heat transfer plate 1.

貫通孔16は、図1に示すように、本体10の外部と第二凹部13とを連通し、熱輸送流体(冷却水)を循環させる部分である。貫通孔16は、第二凹部13,13に連通しつつ、本体10の対向する側面10b,10b間を貫通して形成されている。貫通孔16の形状、数及び形成位置は、冷却水の種類や流量に応じて適宜変更可能である。   As shown in FIG. 1, the through hole 16 is a portion that communicates the outside of the main body 10 with the second recess 13 and circulates a heat transport fluid (cooling water). The through hole 16 is formed so as to penetrate between the opposing side surfaces 10 b and 10 b of the main body 10 while communicating with the second recesses 13 and 13. The shape, number, and formation position of the through holes 16 can be changed as appropriate according to the type and flow rate of the cooling water.

蓋部材30は、図1に示すように、本体10と同等の材料からなる板状部材である。蓋部材30の平面形状は、本体10の第一凹部12の平面形状と同等に形成されている。蓋部材30は、第一凹部12に配置された後に、摩擦攪拌接合されることで第二凹部13の開口部を封止する。   The lid member 30 is a plate-like member made of the same material as the main body 10 as shown in FIG. The planar shape of the lid member 30 is formed equivalent to the planar shape of the first recess 12 of the main body 10. After the lid member 30 is disposed in the first recess 12, the opening of the second recess 13 is sealed by friction stir welding.

次に、後記する摩擦攪拌接合によって用いる小型の回転ツール(以下、「小型回転ツールF」という。)及び小型回転ツールFよりも大型の回転ツール(以下、「大型回転ツールG」という。)について図2を用いて説明する。   Next, a small rotating tool (hereinafter referred to as “small rotating tool F”) and a rotating tool larger than the small rotating tool F (hereinafter referred to as “large rotating tool G”) used by friction stir welding described later. This will be described with reference to FIG.

図2に示す小型回転ツールFは、工具鋼など本体10よりも硬質の金属材料からなり、円柱状を呈するショルダ部F1と、このショルダ部F1の下端面F11に突設された攪拌ピン(プローブ)F2とを備えて構成されている。小型回転ツールFの寸法・形状は、本体10の材質や厚さ等に応じて設定すればよいが、少なくとも、大型回転ツールG(図2の(b)参照)よりも小型にする。このようにすると、大型回転ツールGを用いる場合よりも小さな負荷で摩擦攪拌接合を行うことが可能となるので、摩擦攪拌装置に掛かる負荷を低減することが可能となり、さらには、小型回転ツールFの移動速度(送り速度)を大型回転ツールGの移動速度よりも高速にすることも可能になるので、摩擦攪拌接合に要する作業時間やコストを低減することが可能となる。   A small rotary tool F shown in FIG. 2 is made of a metal material harder than the main body 10 such as tool steel, and has a columnar shoulder portion F1 and a stirring pin (probe) protruding from a lower end surface F11 of the shoulder portion F1. ) F2. The size and shape of the small rotary tool F may be set according to the material, thickness, etc. of the main body 10, but at least smaller than the large rotary tool G (see FIG. 2B). In this way, it is possible to perform friction stir welding with a smaller load than when the large rotary tool G is used, so it is possible to reduce the load applied to the friction stirrer, and further to the small rotary tool F. Since the moving speed (feeding speed) can be made higher than the moving speed of the large rotary tool G, the working time and cost required for the friction stir welding can be reduced.

ショルダ部F1の下端面F11は、塑性流動化した金属を押えて周囲への飛散を防止する役割を担う部位であり、本実施形態では、凹面状に成形されている。ショルダ部F1の外径Xの大きさに特に制限はないが、本実施形態では、大型回転ツールGのショルダ部G1の外径Yよりも小さくなっている。 The lower end surface F11 of the shoulder portion F1 is a portion that plays a role of pressing the plastic fluidized metal and preventing scattering to the surroundings, and is formed in a concave shape in this embodiment. There is no particular limitation on the size of the outer diameter X 1 of the shoulder portion F1, in this embodiment, is smaller than the outer diameter Y 1 of the shoulder portion G1 of a large rotating tool G.

攪拌ピンF2は、ショルダ部F1の下端面F11の中央から垂下しており、本実施形態では、先細りの円錐台状に成形されている。また、攪拌ピンF2の周面には、螺旋状に刻設された攪拌翼が形成されている。攪拌ピンF2の外径の大きさに特に制限はないが、本実施形態では、最大外径(上端径)Xが大型回転ツールGの攪拌ピンG2の最大外径(上端径)Yよりも小さく、かつ、最小外径(下端径)Xが攪拌ピンG2の最小外径(下端径)Yよりも小さくなっている。攪拌ピンF2の長さLは、蓋部材30の厚みt(図1参照)よりも小さく形成されている。 The stirring pin F2 hangs down from the center of the lower end surface F11 of the shoulder portion F1, and is formed into a tapered truncated cone shape in this embodiment. In addition, a stirring blade engraved in a spiral shape is formed on the peripheral surface of the stirring pin F2. There is no particular limitation on the size of the outer diameter of the stirring pin F2, in the present embodiment, than the maximum outer diameter of the maximum outer diameter of the stirring pin G2 of (upper diameter) X 2 is large rotating tool G (upper end diameter) Y 2 It is small, and is smaller than the minimum outer diameter minimum outer diameter (bottom diameter) X 3 is the stirring pin G2 (lower diameter) Y 3. The length L A of the stirring pin F2 is formed to be smaller than the thickness t (see FIG. 1) of the lid member 30.

図2の(b)に示す大型回転ツールGは、工具鋼など本体10よりも硬質の金属材料からなり、円柱状を呈するショルダ部G1と、このショルダ部G1の下端面G11に突設された攪拌ピン(プローブ)G2とを備えて構成されている。ショルダ部G1の下端面G11は、小型回転ツールFと同様に、凹面状に成形されている。攪拌ピンG2は、ショルダ部G1の下端面G11の中央から垂下しており、本実施形態では、先細りの円錐台状に成形されている。攪拌ピンG2の長さLは、蓋部材30の厚みt(図1参照)よりも大きく形成されている。 A large-sized rotary tool G shown in FIG. 2B is made of a metal material harder than the main body 10 such as tool steel, and protrudes from a shoulder portion G1 having a columnar shape and a lower end surface G11 of the shoulder portion G1. A stirring pin (probe) G2 is provided. The lower end surface G11 of the shoulder portion G1 is formed in a concave shape like the small rotary tool F. The stirring pin G2 hangs down from the center of the lower end surface G11 of the shoulder portion G1, and is formed into a tapered truncated cone shape in this embodiment. The length L B of the stirring pin G2 is larger than the thickness of the lid member 30 t (see FIG. 1).

次に、伝熱板の製造方法について説明する。本実施形態に係る伝熱板の製造方法では、蓋部材固定工程と、第二凹部密封工程と、矯正工程を実行する。   Next, the manufacturing method of a heat exchanger plate is demonstrated. In the heat transfer plate manufacturing method according to the present embodiment, a lid member fixing step, a second recess sealing step, and a correction step are executed.

まず、図3の(a)に示すように、蓋部材30を、本体10の第一凹部12(図1参照)に配置する。第一凹部12の側壁12bと、蓋部材30の側面30aとが突き合わされ、突合部40が構成される。なお、図3の(b)に示すように、第一凹部12の底面12aと、蓋部材30の裏面30bとが重なり合う部分を、重ね合わせ部18とする。   First, as shown to (a) of FIG. 3, the cover member 30 is arrange | positioned in the 1st recessed part 12 (refer FIG. 1) of the main body 10. FIG. The side wall 12b of the first recess 12 and the side surface 30a of the lid member 30 are abutted to form an abutting portion 40. As shown in FIG. 3B, a portion where the bottom surface 12 a of the first recess 12 and the back surface 30 b of the lid member 30 overlap is referred to as an overlapping portion 18.

蓋部材固定工程では、突合部40に摩擦攪拌接合を行って、本体10に蓋部材30を接合する。図3の(a)に示すように、右回転させた小型回転ツールFを、本体10の上面10aに設定した開始位置s1に挿入した後、突合部40に沿って移動させる。小型回転ツールFの押込み量、送り速度等は適宜設定すればよい。このとき、本体10の外周面に、本体10を四方向から囲む治具(図示せず)を予め当てておくのが好ましい。これによれば、小型回転ツールF及び大型回転ツールGの押圧力によって本体10が変形しにくくなる。   In the lid member fixing step, friction stir welding is performed on the abutting portion 40 to bond the lid member 30 to the main body 10. As shown to (a) of FIG. 3, after inserting the small rotation tool F rotated rightward into the starting position s1 set to the upper surface 10a of the main body 10, it is moved along the abutting part 40. FIG. What is necessary is just to set suitably the pushing amount, feed rate, etc. of the small rotation tool F. FIG. At this time, it is preferable that a jig (not shown) surrounding the main body 10 from four directions is applied in advance to the outer peripheral surface of the main body 10. According to this, the main body 10 is hardly deformed by the pressing force of the small rotary tool F and the large rotary tool G.

小型回転ツールFの移動について具体的に説明する。小型回転ツールFを、開始位置s1から突合部40の真上位置(小型回転ツールFの中心が突合部40と重なる位置)まで回転させながら移動させる。そして、小型回転ツールFの中心(軸芯)が突合部40上を移動するように、突合部40に沿って小型回転ツールFを移動させる。このとき、突合部40の周囲の本体10と蓋部材30は、一体的に塑性流動化されて塑性化領域W1が形成される。「塑性化領域」とは、小型回転ツールFの摩擦熱によって加熱されて現に塑性化している状態と、小型回転ツールFが通り過ぎて常温に戻った状態の両方を含むこととする。なお、図3の(a)に示すように、塑性化領域W1のうち、突合部40上に最初に突入した部分を始端W1aとする。   The movement of the small rotary tool F will be specifically described. The small rotating tool F is moved while rotating from the start position s1 to a position directly above the abutting portion 40 (a position where the center of the small rotating tool F overlaps the abutting portion 40). Then, the small rotating tool F is moved along the abutting portion 40 so that the center (axial center) of the small rotating tool F moves on the abutting portion 40. At this time, the main body 10 and the lid member 30 around the abutting portion 40 are integrally plastically fluidized to form a plasticized region W1. The “plasticization region” includes both a state in which the small rotating tool F is heated by frictional heat and is actually plasticized, and a state in which the small rotating tool F passes and returns to room temperature. In addition, as shown to (a) of FIG. 3, let the part which plunged first on the abutting part 40 among the plasticization area | regions W1 be the start end W1a.

蓋部材固定工程では、図3の(b)に示すように、攪拌ピンF2の長さが蓋部材30の厚みtよりも小さく、塑性化領域W1が第一凹部12の底面12aに接触しない程度に設定されている。摩擦攪拌接合を行うと、蓋部材30のような比較的薄い部材は、熱収縮によって変形する可能性が高い。したがって、攪拌ピンF2の長さ及び小型回転ツールFの押込み量を小さく設定することにより、蓋部材30の変形を防ぐことができる。
なお、蓋部材固定工程では、小型回転ツールFの攪拌ピンF2の長さを大きくしたり、小型回転ツールFを深く押し込んだりして、塑性化領域W1と底面12aとを接触させてもよい。
In the lid member fixing step, as shown in FIG. 3B, the length of the stirring pin F2 is smaller than the thickness t of the lid member 30, and the plasticized region W1 is not in contact with the bottom surface 12a of the first recess 12. Is set to When friction stir welding is performed, a relatively thin member such as the lid member 30 is likely to be deformed by heat shrinkage. Therefore, the deformation of the lid member 30 can be prevented by setting the length of the stirring pin F2 and the pushing amount of the small rotary tool F small.
In the lid member fixing step, the plasticizing region W1 and the bottom surface 12a may be brought into contact with each other by increasing the length of the stirring pin F2 of the small rotary tool F or by pressing the small rotary tool F deeply.

小型回転ツールFの移動方向(図3(a)参照)と同じ方向に小型回転ツールFが回動するシアー側(被接合部に対する小型回転ツールFの外周の相対速さが、小型回転ツールFの外周における接線速度の大きさに移動速度の大きさを加算した値となる側)が、本体10上に位置するように、小型回転ツールFを回転、移動させる。つまり、突合部40における小型回転ツールFの回転方向(自転方向)が、移動方向(公転方向)と同じ方向となるようにする。具体的には、本実施形態では、小型回転ツールFを第二凹部13に対して右回りに移動させているので、小型回転ツールFも右回転させる。   The shear side where the small rotating tool F rotates in the same direction as the moving direction of the small rotating tool F (see FIG. 3A) (the relative speed of the outer periphery of the small rotating tool F with respect to the joined portion is the small rotating tool F). The small rotating tool F is rotated and moved so that the side of the tangential speed on the outer circumference of the main body 10 is positioned on the main body 10. That is, the rotation direction (spinning direction) of the small rotary tool F in the abutting portion 40 is set to be the same direction as the moving direction (revolution direction). Specifically, in the present embodiment, since the small rotary tool F is moved clockwise with respect to the second recess 13, the small rotary tool F is also rotated clockwise.

なお、小型回転ツールFを第二凹部13に対して左回りに移動させるときは、小型回転ツールFを左回転させることとなる。このようにすることによって、小型回転ツールFのシアー側が厚肉の本体10側に位置する。そして、薄肉の蓋部材30側は、小型回転ツールFのフロー側(被接合部に対する小型回転ツールFの外周の相対速さが、小型回転ツールFの外周における接線速度の大きさから移動速度の大きさを減算した値となる側)となる。このため、蓋部材30側は、メタルの流動量が少なくなり、空洞欠陥が発生しにくくなる。そして、摩擦攪拌によって空洞欠陥が発生したとしても、本体10側であって突合部40よりも外側位置の離間した部分に発生することとなり、熱輸送流体が外部に漏れにくくなるので、接合部の密閉性能を低下させることはない。   In addition, when moving the small rotation tool F counterclockwise with respect to the 2nd recessed part 13, the small rotation tool F will be rotated counterclockwise. By doing so, the shear side of the small rotary tool F is positioned on the thick main body 10 side. And the thin lid member 30 side is the flow side of the small rotating tool F (the relative speed of the outer periphery of the small rotating tool F with respect to the joined portion is determined from the magnitude of the tangential speed on the outer periphery of the small rotating tool F. The side that becomes the value obtained by subtracting the size). For this reason, on the lid member 30 side, the amount of metal flow is reduced, and cavity defects are less likely to occur. And even if a cavity defect occurs due to frictional stirring, it will occur on the main body 10 side and at a part spaced apart from the abutting portion 40, and the heat transport fluid will not leak easily to the outside. The sealing performance is not degraded.

小型回転ツールFの回転及び移動を継続し、図4に示すように、小型回転ツールFを、突合部40に沿って一周させる。小型回転ツールFが、塑性化領域W1の始端W1a(図3の(a)参照)を通過したら、小型回転ツールFを本体10の上面10a側に移動させて、終了位置e1で小型回転ツールFを離脱させる。なお、塑性化領域W1のうち、突合部40上に最後に形成される部分を終端W1bとする。   The rotation and movement of the small rotating tool F are continued, and the small rotating tool F is caused to make a round along the abutting portion 40 as shown in FIG. When the small rotary tool F passes the start end W1a (see FIG. 3A) of the plasticizing region W1, the small rotary tool F is moved to the upper surface 10a side of the main body 10, and the small rotary tool F is reached at the end position e1. To leave. In the plasticized region W1, the last portion formed on the abutting portion 40 is referred to as a terminal end W1b.

このように、塑性化領域W1の始端W1a(図3(a)参照)を小型回転ツールFが通り越すことにより、始端W1aと終端W1bとが互いにオーバーラップするため、塑性化領域W1の一部が重複するように構成される。   Thus, since the small rotation tool F passes the start end W1a (see FIG. 3A) of the plasticization region W1, the start end W1a and the end end W1b overlap each other, so that a part of the plasticization region W1 is formed. Configured to overlap.

終了位置e1は、突合部40から外側に外れた位置となっているので、小型回転ツールFの引抜跡が突合部40に形成されることはなく、本体10と蓋部材30との接合性をさらに高めることができる。なお、引抜跡は補修するようにしてもよい。   Since the end position e1 is a position deviated to the outside from the abutting portion 40, the drawing trace of the small rotary tool F is not formed in the abutting portion 40, and the joining property between the main body 10 and the lid member 30 is improved. It can be further increased. In addition, you may make it repair a drawing trace.

第二凹部密封工程では、第一凹部12の底面12aと、蓋部材30の裏面30bとが重なり合う重ね合わせ部18に対して摩擦攪拌接合を行う。第二凹部密封工程では、図5の(a)に示すように、回転させた大型回転ツールGを本体10の上面10aに設定した開始位置SM1に挿入した後、第二凹部13の開口周縁14に沿って移動させ、終了位置EM1まで移動させる。   In the second recess sealing step, friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a of the first recess 12 and the back surface 30b of the lid member 30 overlap. In the second recessed portion sealing step, as shown in FIG. 5A, after the rotated large rotating tool G is inserted into the start position SM1 set on the upper surface 10a of the main body 10, the opening peripheral edge 14 of the second recessed portion 13 is obtained. And move to the end position EM1.

大型回転ツールGの移動について具体的に説明する。本体10の上面10aに設定した開始位置SM1に、右回転させた大型回転ツールGを挿入した後、蓋部材30側へ移動させる。大型回転ツールGが塑性化領域W1を横断したら、重ね合わせ部18上において、第二凹部13の回りに沿って移動させる。大型回転ツールGを移動させることにより、第二凹部13の周囲には、塑性化領域W2が形成される。図5の(b)に示すように、大型回転ツールGの攪拌ピンG2の長さLが、蓋部材30の厚みtよりも大きくなっているため、重ね合わせ部18を確実に摩擦攪拌接合することができる。 The movement of the large rotary tool G will be specifically described. After inserting the large rotation tool G rotated right into the start position SM1 set on the upper surface 10a of the main body 10, it is moved to the lid member 30 side. When the large rotary tool G crosses the plasticizing region W1, it is moved along the second recess 13 on the overlapping portion 18. By moving the large rotary tool G, a plasticized region W2 is formed around the second recess 13. FIG as shown in (b) of 5, the length L B of the stirring pin G2 of the large rotating tool G is, because larger than the thickness t of the lid member 30 securely friction stir welding the overlapping portion 18 can do.

本実施形態では、第二凹部13の開口周縁14から第一凹部12の側壁12bまでの距離D1は、大型回転ツールGのショルダ部G1の外径Yの2倍以上で形成されているため、重ね合わせ部18の幅を十分に確保することができ確実に摩擦攪拌接合を行うことができる。なお、隣り合う第二凹部13,13の間の距離D2(図3の(a)参照)は、少なくとも大型回転ツールGのショルダ部G1の外径Yよりも大きくければよいが、本実施形態ではショルダ部G1の外径Yの約3倍になっている。 In the present embodiment, the distance D1 from the opening peripheral edge 14 of the second recess 13 to the sidewall 12b of the first recess 12, which is formed by twice or more large rotating tool outer diameter Y 1 of the shoulder portion G1 of G The width of the overlapping portion 18 can be sufficiently secured, and the friction stir welding can be performed reliably. Incidentally, (see (a) in FIG. 3) the distance D2 between the second recess 13, 13 adjacent, may Kere larger than the outer diameter Y 1 of the shoulder portion G1 at least large rotating tool G, but the present embodiment in the form which is about 3 times the outer diameter Y 1 of the shoulder portion G1.

また、図5の(b)に示すように、本実施形態では、大型回転ツールGの中心から第二凹部13の開口周縁14までの距離E1は、ショルダ部G1の外径Yの半径よりも大きくなっている。このようにすれば、摩擦攪拌接合により塑性流動化された塑性流動材が第二凹部13に流入するのを防ぐことができる。 Further, as shown in (b) of FIG. 5, in the present embodiment, the distance E1 from the center of the large rotating tool G to the opening peripheral edge 14 of the second recess 13, than the radius of the outer diameter Y 1 of the shoulder portion G1 Is also getting bigger. In this way, it is possible to prevent the plastic fluidized material plasticized by friction stir welding from flowing into the second recess 13.

また、本実施形態では、第二凹部13の開口周縁14から大型回転ツールGの外周面までの距離E2は、4mmよりも大きくすることが好ましい。距離E2が4mm以下であると、大型回転ツールGと第二凹部13との距離が近くなり、摩擦攪拌接合の際に第二凹部13の内壁が変形する可能性がある。   Moreover, in this embodiment, it is preferable that the distance E2 from the opening peripheral edge 14 of the 2nd recessed part 13 to the outer peripheral surface of the large sized rotary tool G is larger than 4 mm. If the distance E2 is 4 mm or less, the distance between the large rotary tool G and the second recess 13 is reduced, and the inner wall of the second recess 13 may be deformed during friction stir welding.

大型回転ツールGを第二凹部13の回りに一周させたら、図5の(a)の矢印に示すように、塑性化領域W2及び塑性化領域W1を横断させて、本体10の上面10aに設定した終了位置EM1まで移動させる。大型回転ツールGが終了位置EM1に達したら、本体10から大型回転ツールGを離脱させる。なお、引抜跡は補修するようにしてもよい。   When the large-sized rotary tool G makes a round around the second recess 13, the plasticizing region W 2 and the plasticizing region W 1 are traversed and set on the upper surface 10 a of the main body 10 as shown by the arrows in FIG. Move to the finished end position EM1. When the large rotary tool G reaches the end position EM1, the large rotary tool G is detached from the main body 10. In addition, you may make it repair a drawing trace.

第二凹部密封工程では、大型回転ツールGの移動方向と同じ方向に大型回転ツールGが回動するシアー側(被接合部に対する大型回転ツールGの外周の相対速さが、大型回転ツールGの外周における接線速度の大きさに移動速度の大きさを加算した値となる側)が、本体10上の第二凹部13から離間した部位に位置するように、大型回転ツールGを回転、移動させる。つまり、大型回転ツールGの回転方向(自転方向)が、移動方向(公転方向)と同じ方向となるようにする。具体的には、本実施形態では、大型回転ツールGを第二凹部13に対して右回りに移動させているので、大型回転ツールGも右回転させる。   In the second recessed portion sealing step, the shear side (the relative speed of the outer periphery of the large rotating tool G with respect to the joined portion is the same as the moving direction of the large rotating tool G is the relative speed of the outer periphery of the large rotating tool G). The large rotary tool G is rotated and moved so that the tangential speed at the outer circumference is added to the magnitude of the moving speed is located at a position away from the second recess 13 on the main body 10. . That is, the rotation direction (spinning direction) of the large rotary tool G is set to be the same direction as the moving direction (revolution direction). Specifically, in the present embodiment, since the large rotary tool G is moved clockwise with respect to the second recess 13, the large rotary tool G is also rotated clockwise.

なお、大型回転ツールGを第二凹部13に対して左回りに移動させるときは、大型回転ツールGを左回転させる。かかる方法によれば、大型回転ツールGのシアー側が本体10の第二凹部13から離間した部位に位置する。本体10の第二凹部13に近い部位は、大型回転ツールGのフロー側(被接合部に対する大型回転ツールGの外周の相対速さが、大型回転ツールGの外周における接線速度の大きさから移動速度の大きさを減算した値となる側)となる。このため、本体10の第二凹部13に近い部位は、メタルの流動量が少なくなり、空洞欠陥が発生しにくくなる。そして、摩擦攪拌によって空洞欠陥が発生したとしても、第二凹部13から離間した部分に発生することとなり、熱輸送流体が外部に漏れにくくなるので、接合部の密閉性能を低下させることはない。   When the large rotary tool G is moved counterclockwise with respect to the second recess 13, the large rotary tool G is rotated counterclockwise. According to such a method, the shear side of the large-sized rotary tool G is located at a site separated from the second recess 13 of the main body 10. The portion of the main body 10 near the second recess 13 is located on the flow side of the large rotating tool G (the relative speed of the outer periphery of the large rotating tool G with respect to the joined portion is moved from the magnitude of the tangential velocity on the outer periphery of the large rotating tool G. The side on which the magnitude of the speed is subtracted). For this reason, the part close | similar to the 2nd recessed part 13 of the main body 10 reduces the flow amount of a metal, and becomes difficult to generate | occur | produce a cavity defect. And even if a cavity defect occurs due to frictional stirring, it will occur in a portion away from the second recess 13 and the heat transport fluid will not leak to the outside, so the sealing performance of the joint will not be reduced.

次に、図6に示すように、他方の第二凹部13の回りに形成された重ね合わせ部18に対して、摩擦攪拌接合を行う。本体10の上面10aに設定した開始位置SM2に大型回転ツールGを挿入した後、蓋部材30側へ移動させる。大型回転ツールGが塑性化領域W1を横断したら、重ね合わせ部18上において、第二凹部13回りに沿って移動させる。大型回転ツールGを移動させることにより、第二凹部13の周囲に塑性化領域W2が形成される。大型回転ツールGを第二凹部13の回りに一周させたら、図6の矢印に示すように、塑性化領域W2及び塑性化領域W1を横断させて、本体10の上面10aに設定された終了位置EM2まで移動させる。大型回転ツールGが終了位置EM2に達したら、本体10から大型回転ツールGを離脱させる。   Next, as shown in FIG. 6, friction stir welding is performed on the overlapping portion 18 formed around the other second concave portion 13. After the large rotary tool G is inserted into the start position SM2 set on the upper surface 10a of the main body 10, it is moved to the lid member 30 side. When the large rotary tool G crosses the plasticizing region W1, it is moved along the second recess 13 on the overlapping portion 18. By moving the large rotary tool G, a plasticized region W2 is formed around the second recess 13. When the large-sized rotary tool G makes a round around the second recess 13, as shown by the arrows in FIG. 6, the end position set on the upper surface 10 a of the main body 10 across the plasticized region W <b> 2 and the plasticized region W <b> 1. Move to EM2. When the large rotary tool G reaches the end position EM2, the large rotary tool G is detached from the main body 10.

なお、第二凹部密封工程において、開始位置SM1,SM2及び終了位置EM1,EM2は、突合部40よりも外側であれば、他の位置であっても構わない。   In the second recess sealing step, the start positions SM1 and SM2 and the end positions EM1 and EM2 may be other positions as long as they are outside the abutting portion 40.

図7に示すように、蓋部材固定工程と、第二凹部密封工程を行った後、伝熱板1には、塑性化領域W1,W2が形成される。塑性化領域W1,W2は、熱収縮によって縮むため、伝熱板1の表面Za側において、本体2の各隅部側から中心側に向かって圧縮応力が作用する。これにより、伝熱板1は表面Za側が凹となるように(裏面Zb側に凸となるように)、撓んでしまう可能性がある。特に、伝熱板1の表面Zaに示す地点a〜地点jのうち、伝熱板1の四隅に係る地点a,c,f,hにおいては、その反りの影響が顕著に現れる傾向がある。なお、地点jは、伝熱板1の中心地点を示し、地点b,d,e,gは、本体2の各辺の中間地点を示す。また、伝熱板1の表面Zaに示す地点a〜地点jに対応する裏面Zbの各点を地点a’〜j’とする。また、伝熱板1の地点aから地点f方向を縦方向、地点aから地点c方向を横方向とする。   As shown in FIG. 7, plasticized regions W <b> 1 and W <b> 2 are formed in the heat transfer plate 1 after performing the lid member fixing step and the second recess sealing step. Since the plasticized regions W1 and W2 are shrunk due to thermal contraction, compressive stress acts from the respective corners of the main body 2 toward the center on the surface Za side of the heat transfer plate 1. Thereby, the heat exchanger plate 1 may bend so that the surface Za side may be concave (so that it may be convex on the back surface Zb side). In particular, among the points a to j shown on the surface Za of the heat transfer plate 1, at the points a, c, f, and h related to the four corners of the heat transfer plate 1, the influence of the warp tends to be noticeable. In addition, the point j shows the center point of the heat exchanger plate 1, and the points b, d, e, and g show the intermediate points of each side of the main body 2. Further, the points on the back surface Zb corresponding to the points a to j indicated on the front surface Za of the heat transfer plate 1 are defined as points a ′ to j ′. Further, the direction from the point a to the point f of the heat transfer plate 1 is the vertical direction, and the direction from the point a to the point c is the horizontal direction.

矯正工程では、伝熱板1(本体2)の裏面Zbから、本体2の表面Za側に引張応力が発生するような曲げモーメントを作用させて、前記した接合工程により形成された伝熱板1の反りを矯正する。矯正工程では、以下に記すプレス矯正、衝打矯正及びロール矯正の三種類の方法からいずれか一以上の方法を選択して行えばよい。まず、プレス矯正について説明する。   In the straightening process, a bending moment that generates a tensile stress is applied from the back surface Zb of the heat transfer plate 1 (main body 2) to the surface Za side of the main body 2, and the heat transfer plate 1 formed by the joining process described above. To correct the warp. In the correction process, one or more methods may be selected from the following three methods: press correction, impact correction, and roll correction. First, press correction will be described.

(プレス矯正)
前記した第二凹部密封工程が終了したら、摩擦攪拌で発生したバリを除去するとともに、図8に示すように、伝熱板1の裏面Zbが上方を向くように裏返し、裏面Zbの中心地点j’(図7の(b)参照)に板状の第一補助部材T1を配置する。さらに、伝熱板1の表面Za側の四隅に、板状の第二補助部材T2,T2及び第三補助部材T3,T3を配置する。即ち、第二補助部材T2、第三補助部材T3は、第一補助部材T1を挟んで両側に配置される。第一補助部材T1乃至第三補助部材T3は、プレス矯正を行う際の当て材又は台座となる部材であるとともに、伝熱板1が傷つかないようにするための部材である。第一補助部材T1乃至第三補助部材T3は、伝熱板1よりも軟質の材料であればよく、例えば、アルミニウム合金、硬質ゴム、プラスチック、木材を用いることができる。なお、第一補助部材T1乃至第三補助部材T3は、伝熱板1の力学特性や反りの曲率に応じて、反りとは反対側に撓ませて反りを矯正するのに十分な厚みで設定すればよい。
(Press correction)
When the second recess sealing step is completed, burrs generated by friction stirring are removed, and as shown in FIG. 8, the heat transfer plate 1 is turned over so that the back surface Zb faces upward, and the center point j of the back surface Zb A plate-like first auxiliary member T1 is arranged at '(see Fig. 7B). Furthermore, plate-like second auxiliary members T2, T2 and third auxiliary members T3, T3 are arranged at the four corners on the surface Za side of the heat transfer plate 1. That is, the second auxiliary member T2 and the third auxiliary member T3 are disposed on both sides with the first auxiliary member T1 interposed therebetween. The first auxiliary member T1 to the third auxiliary member T3 are members that serve as a contact material or a base when performing press correction, and are members that prevent the heat transfer plate 1 from being damaged. The first auxiliary member T1 to the third auxiliary member T3 may be any material that is softer than the heat transfer plate 1, and for example, aluminum alloy, hard rubber, plastic, and wood can be used. The first auxiliary member T1 to the third auxiliary member T3 are set with a thickness sufficient to correct the warp by bending to the opposite side of the warp according to the mechanical characteristics of the heat transfer plate 1 and the curvature of the warp. do it.

各補助部材を配置したら、図9の(a)及び(b)に示すように、公知のプレス装置Pを用いて、伝熱板1の裏面Zbから押圧する。即ち、第一補助部材T1にプレス装置PのポンチPaを押し当て、所定の押圧力で押圧する。プレス装置Pによって伝熱板1に圧力が加えられると、図9の(a)及び(b)に示すように、第一補助部材T1が伝熱板1を下側に押し、第二補助部材T2及び第三補助部材T3が伝熱板1の両端側を上側に押すため、伝熱板1には曲げモーメントが作用する。この曲げモーメントは伝熱板1の表面Za側に引張応力を発生させるため、伝熱板1が強制的に下側に凸に撓ませられる。   If each auxiliary member is arrange | positioned, as shown to (a) and (b) of FIG. 9, it will press from the back surface Zb of the heat exchanger plate 1 using the well-known press apparatus P. FIG. That is, the punch Pa of the press device P is pressed against the first auxiliary member T1 and pressed with a predetermined pressing force. When pressure is applied to the heat transfer plate 1 by the press device P, as shown in FIGS. 9A and 9B, the first auxiliary member T1 pushes the heat transfer plate 1 downward, and the second auxiliary member Since T2 and the third auxiliary member T3 push both end sides of the heat transfer plate 1 upward, a bending moment acts on the heat transfer plate 1. Since this bending moment generates a tensile stress on the surface Za side of the heat transfer plate 1, the heat transfer plate 1 is forcibly bent downwardly.

プレス装置の押圧力は、伝熱板1の厚みや材料によって適宜設定すればよいが、図9の(b)に示すように、伝熱板1の表面Za側が下に凸となって、表面Zaに引張応力が発生するような曲げモーメントを作用させることが好ましい。   The pressing force of the pressing device may be appropriately set depending on the thickness and material of the heat transfer plate 1, but as shown in FIG. 9B, the surface Za side of the heat transfer plate 1 is convex downward, and the surface It is preferable to apply a bending moment that causes tensile stress to Za.

また、本実施形態では、図10に示すように、中心地点j’だけでなく伝熱板1の裏面Zbの地点b’、地点d’、地点e’及び地点g’付近に対しても押圧を行う。即ち、伝熱板1の裏面Zbにかかる各辺の中間地点である地点b’、地点d’、地点e’及び地点g’を含んだ位置H2〜H5に第一補助部材T1を配置して、プレス装置Pによって押圧を行う。これにより、伝熱板1をバランスよく矯正でき、平坦性をより高めることができる。   Further, in the present embodiment, as shown in FIG. 10, not only the central point j ′ but also the points b ′, d ′, e ′ and g ′ of the back surface Zb of the heat transfer plate 1 are pressed. I do. That is, the first auxiliary member T1 is disposed at positions H2 to H5 including the point b ′, the point d ′, the point e ′, and the point g ′ that are intermediate points between the sides on the back surface Zb of the heat transfer plate 1. Then, pressing is performed by the press device P. Thereby, the heat exchanger plate 1 can be corrected with good balance, and flatness can be further improved.

なお、プレスする位置は、本実施形態では5箇所に設定したが、これに限定されるものではなく、接合工程によって生じる伝熱板1の反りに応じて適宜設定すればよい。   In addition, although the position to press was set to five places in this embodiment, it is not limited to this, What is necessary is just to set suitably according to the curvature of the heat exchanger plate 1 produced by a joining process.

(衝打矯正)
次に、衝打矯正について説明する。衝打矯正については、プレス矯正と近似するため、
具体的な図示は省略する。衝打矯正とは、例えばハンマーなどの衝打具を用いて伝熱板に発生した反りを矯正することをいう。衝打矯正は、プレス装置Pに替えてハンマー等の衝打具で伝熱板1を衝打する点を除いては、プレス矯正と略同等である。
(Shock correction)
Next, hit correction will be described. For impact correction, it approximates press correction.
Specific illustration is omitted. The hit correction means correcting a warp generated in the heat transfer plate using a hitting tool such as a hammer. The hit correction is substantially the same as the press correction except that the heat transfer plate 1 is hit with a hitting tool such as a hammer instead of the press device P.

衝打矯正では、プレス矯正と同様に補助部材を配置した後、図9及び図10を参照するように、伝熱板1の裏面Zbから例えばプラスチックハンマー等の衝打具で伝熱板1を衝打する。伝熱板1を衝打すると、伝熱板1の表面Za側に引張応力を発生させるため、伝熱板1が強制的に下側に凸に撓ませられる(図9の(b)参照)。これにより、伝熱板1の反りを矯正して平坦にすることができる。また、プレス矯正と同様に、必要に応じて伝熱板1の裏面Zbの位置H2〜H5を衝打することで、伝熱板1をバランスよく矯正することができる。   In the impact correction, after the auxiliary members are arranged in the same manner as in the press correction, the heat transfer plate 1 is moved from the rear surface Zb of the heat transfer plate 1 with an impact tool such as a plastic hammer as shown in FIGS. Hit it. When the heat transfer plate 1 is struck, a tensile stress is generated on the surface Za side of the heat transfer plate 1, so that the heat transfer plate 1 is forcibly bent downward (see FIG. 9B). . Thereby, the curvature of the heat exchanger plate 1 can be corrected and made flat. Further, similarly to the press correction, the heat transfer plate 1 can be corrected in a well-balanced manner by hitting the positions H2 to H5 of the back surface Zb of the heat transfer plate 1 as necessary.

衝打矯正は、プレス矯正と比べると、プレス装置等を準備する手間が省けるため、作業を容易に行うことができる。また、衝打矯正は、作業が容易であるため伝熱板1が小さい場合や薄い場合に有効である。なお、衝打矯正を終了した後は、衝打により発生したバリを除去することが好ましい。   The impact correction can be easily performed because it saves time and labor for preparing a press device or the like as compared with the press correction. Further, the impact correction is effective when the heat transfer plate 1 is small or thin because the work is easy. In addition, it is preferable to remove the burr generated by the hit after the hit correction.

(ロール矯正)
次に、ロール矯正について説明する。前記した接合工程が終了したら、摩擦攪拌で発生したバリを除去するとともに、伝熱板1の裏面Zbが上方を向くように裏返し、裏面Zbの中心地点j’を含んで縦方向と平行になるように長板形状の第一補助部材T1を配置する。さらに、伝熱板1の表面Za側の縁部において縦方向と平行になるように、長板形状の第二補助部材T2及び第三補助部材T3を配置する。即ち、第二補助部材T2、第三補助部材T3は、第一補助部材T1を挟んで両側に配置される。
(Roll straightening)
Next, roll correction will be described. When the above-described joining process is completed, burrs generated by friction stirring are removed, and the back surface Zb of the heat transfer plate 1 is turned over so that it faces upward, and is parallel to the vertical direction including the center point j ′ of the back surface Zb. Thus, the long plate-shaped first auxiliary member T1 is arranged. Further, the long plate-shaped second auxiliary member T2 and the third auxiliary member T3 are arranged so as to be parallel to the vertical direction at the edge portion on the surface Za side of the heat transfer plate 1. That is, the second auxiliary member T2 and the third auxiliary member T3 are disposed on both sides with the first auxiliary member T1 interposed therebetween.

そして、第一補助部材T1の上側に、第一補助部材T1と直交するようにロールR1を配置し、第二補助部材T2,T3の下側に第二補助部材T2及び第三補助部材T3と直交するようにロールR2を配置する。つまり、伝熱板1は、図11の(b)に示すように、上側に凸の状態でロールR1,R2の間に配置され、第一補助部材T1乃至第三補助部材T3を介してロールR1,R2に狭持される。   And roll R1 is arrange | positioned so that it may orthogonally cross with 1st auxiliary member T1 above 1st auxiliary member T1, 2nd auxiliary member T2 and 3rd auxiliary member T3 below 2nd auxiliary member T2, T3, Roll R2 is arrange | positioned so that it may orthogonally cross. That is, as shown in FIG. 11B, the heat transfer plate 1 is disposed between the rolls R1 and R2 so as to protrude upward, and rolls via the first auxiliary member T1 to the third auxiliary member T3. It is held between R1 and R2.

第一補助部材T1乃至第三補助部材T3は、ロール矯正を行う際の当て材であるとともに、伝熱板1が傷つかないようにするための部材である。第一補助部材T1乃至第三補助部材T3は、伝熱板1よりも軟質の材料であればよく、例えば、アルミニウム合金、硬質ゴム、プラスチック、木材を用いることができる。   The first auxiliary member T <b> 1 to the third auxiliary member T <b> 3 are members for preventing the heat transfer plate 1 from being damaged as well as a contact material when performing roll correction. The first auxiliary member T1 to the third auxiliary member T3 may be any material that is softer than the heat transfer plate 1, and for example, aluminum alloy, hard rubber, plastic, and wood can be used.

ここで、ロールR1,R2が互いに近づいて伝熱板1に圧力を加えると、図11の(b)及び(c)に示すように、第一補助部材T1が伝熱板1を下側に押し、第二補助部材T2及び第三補助部材T3が伝熱板1の両端側を上側に押すため、伝熱板1には曲げモーメントが作用する。この曲げモーメントは伝熱板1の表面Za側に引張応力を発生させるため、伝熱板1が強制的に下側に凸に撓ませられる。   Here, when the rolls R1 and R2 approach each other and apply pressure to the heat transfer plate 1, the first auxiliary member T1 moves the heat transfer plate 1 downward as shown in FIGS. 11B and 11C. Since the second auxiliary member T2 and the third auxiliary member T3 push the both end sides of the heat transfer plate 1 upward, a bending moment acts on the heat transfer plate 1. Since this bending moment generates a tensile stress on the surface Za side of the heat transfer plate 1, the heat transfer plate 1 is forcibly bent downwardly.

また、図11の(a)に示すように、ロールR1が矢印α方向に回転するとともに、ロールR2が矢印β方向に回転すると、ロールR1,R2は伝熱板1に対して矢印γ方向(ロール送り方向)に相対的に移動する。また、ロールR1が矢印β方向に回転するとともにロールR2が矢印α方向に回転すると、ロールR1,R2は伝熱板1に対して矢印δ方向(ロール送り方向)に相対的に移動する。   11A, when the roll R1 rotates in the direction of the arrow α and the roll R2 rotates in the direction of the arrow β, the rolls R1 and R2 are in the direction of the arrow γ with respect to the heat transfer plate 1 ( Moves relatively in the roll feed direction). When the roll R1 rotates in the arrow β direction and the roll R2 rotates in the arrow α direction, the rolls R1 and R2 move relative to the heat transfer plate 1 in the arrow δ direction (roll feed direction).

したがって、伝熱板1に作用する曲げモーメントの位置が、その相対的な移動に伴って遷移していくため、伝熱板1の全体が強制的に下側に凸に撓まされる。そのため、この相対的な移動を繰り返して往復動させることによって、反りを矯正していくことが可能になる。なお、第一補助部材T1乃至第三補助部材T3は、伝熱板1の力学特性や反りの曲率に応じて、反りとは反対側に撓ませて反りを矯正するのに十分な厚みで設定すればよい。   Therefore, since the position of the bending moment acting on the heat transfer plate 1 changes with the relative movement, the entire heat transfer plate 1 is forcibly bent downward. Therefore, it is possible to correct the warp by repeatedly reciprocating this relative movement. The first auxiliary member T1 to the third auxiliary member T3 are set with a thickness sufficient to correct the warp by bending to the opposite side of the warp according to the mechanical characteristics of the heat transfer plate 1 and the curvature of the warp. do it.

また、伝熱板1の縦方向にロールR1,R2を回転させて矯正工程を行なった後、横方向にロールR1,R2を回転させてもよい。即ち、第一補助部材T1乃至第三補助部材T3を横方向と平行になるように配置するとともに、第一補助部材T1乃至第三補助部材T3に対して直交するようにロールR1,R2を配置する。そして、ロールR1,R2を横方向に往復動させる。これにより、伝熱板1をバランスよく矯正することができる。   Alternatively, the rolls R1 and R2 may be rotated in the vertical direction of the heat transfer plate 1 to perform the correction process, and then the rolls R1 and R2 may be rotated in the horizontal direction. That is, the first auxiliary member T1 to the third auxiliary member T3 are arranged so as to be parallel to the lateral direction, and the rolls R1, R2 are arranged so as to be orthogonal to the first auxiliary member T1 to the third auxiliary member T3. To do. And roll R1, R2 is reciprocated to a horizontal direction. Thereby, the heat exchanger plate 1 can be corrected with sufficient balance.

また、ここでは、伝熱板1の裏面Zbを上にして、歪矯正工程を行うものとして説明したが、裏返さずに表面Zaを上にして歪矯正工程を行うようにしてもよい。この場合、前記した各構成部品は、表裏対称に表れるため、説明を省略する。   In addition, here, the description has been made on the assumption that the back surface Zb of the heat transfer plate 1 is up and the distortion correction process is performed, but the distortion correction process may be performed with the surface Za up without turning over. In this case, since each component described above appears symmetrically, description thereof is omitted.

以上説明した伝熱板の製造方法によれば、突合部40に対する摩擦攪拌接合に加えて、第二凹部13の周囲において、重ね合わせ部18に対して摩擦攪拌接合を行うことにより、第一凹部12の底面12aと蓋部材30の裏面30bとの微細な隙間を塞ぐことができる。また、第二凹部13の周囲において、本体10と蓋部材30とを密着させることができる。これにより、伝熱板1の水密性及び気密性を高めることができる。   According to the manufacturing method of the heat transfer plate described above, in addition to the friction stir welding to the abutting portion 40, the first concave portion is formed by performing the friction stir welding to the overlapping portion 18 around the second concave portion 13. Thus, a minute gap between the bottom surface 12a of the twelve and the back surface 30b of the lid member 30 can be closed. Further, the main body 10 and the lid member 30 can be brought into close contact with each other around the second recess 13. Thereby, the watertightness and airtightness of the heat exchanger plate 1 can be improved.

また、矯正工程において本体の表面Za側に引張応力が発生するような曲げモーメントを作用させることにより、蓋部材固定工程及び第二凹部密封工程により形成された本体の裏面側に凸となる反りを矯正し、伝熱板の平坦性を高めることができる。   In addition, by applying a bending moment that generates a tensile stress on the surface Za side of the main body in the straightening process, a warp that protrudes on the back side of the main body formed by the lid member fixing process and the second concave sealing process is performed. It can be corrected and the flatness of the heat transfer plate can be improved.

また、第一凹部12内に第二凹部13,13を内包するように形成されているため、第二凹部13が複数個形成される場合や第二凹部13の形状が複雑になる場合であっても、容易に伝熱板1を製造することができる。従来は、例えば第二凹部が平面視蛇行状を呈する場合、その形状に合わせて平面視蛇行状に蓋部材を成形していた。これにより、蓋部材の成形作業が煩雑になるとともに、本体と蓋部材とを精度よく配置するのが困難になるという問題があった。
しかし、本実施形態によれば、第二凹部13が複数個ある場合であっても、第二凹部13,13を包囲するように平面視矩形の第一凹部12を形成するとともに、第一凹部12の形状に合わせて蓋部材30を矩形に形成することで、蓋部材30の形状を単純化することができる。これにより、蓋部材30を容易に成形できるとともに、第一凹部12に蓋部材30を精度よく配置することができ、伝熱板1を容易に製造することができる。
In addition, since the first recess 12 is formed so as to include the second recesses 13, 13, a plurality of the second recesses 13 are formed or the shape of the second recess 13 is complicated. However, the heat transfer plate 1 can be easily manufactured. Conventionally, for example, when the second recess has a serpentine shape in plan view, the lid member is formed in a serpentine shape in plan view in accordance with the shape. Accordingly, there is a problem that the molding operation of the lid member becomes complicated and it is difficult to accurately arrange the main body and the lid member.
However, according to this embodiment, even when there are a plurality of second recesses 13, the first recess 12 having a rectangular shape in plan view is formed so as to surround the second recesses 13, 13, and the first recess By forming the lid member 30 in a rectangular shape in accordance with the shape of 12, the shape of the lid member 30 can be simplified. Thereby, while being able to shape | mold the cover member 30 easily, the cover member 30 can be accurately arrange | positioned in the 1st recessed part 12, and the heat exchanger plate 1 can be manufactured easily.

また、本実施形態では、第二凹部密封工程の前に蓋部材固定工程を行うため、蓋部材30を本体10に固定した状態で第二凹部密封工程を行うことができるため、作業性を高めることができる。   In this embodiment, since the lid member fixing step is performed before the second concave portion sealing step, the second concave portion sealing step can be performed in a state where the lid member 30 is fixed to the main body 10, thereby improving workability. be able to.

また、本実施形態に係る第二凹部密封工程では、第二凹部13の開口周縁14に沿って大型回転ツールGを一周させるとともに、塑性化領域W2をオーバーラップさせて重複させることにより、第二凹部13の周囲の重ね合わせ部18の気密性及び水密性を高めることができる。   Moreover, in the 2nd recessed part sealing process which concerns on this embodiment, while making the large rotation tool G make one round along the opening peripheral edge 14 of the 2nd recessed part 13, by overlapping the plasticizing area | region W2 and overlapping, it is 2nd. The airtightness and watertightness of the overlapping portion 18 around the recess 13 can be enhanced.

また、大型回転ツールGを金属部材に挿入する際には、金属部材に大きな負荷が作用するため、摩擦攪拌の開始位置SM1,SM2を蓋部材30上に設定すると、蓋部材30が変形してしまう可能性がある。しかし、本実施形態に係る第二凹部密封工程では、摩擦攪拌の開始位置SM1,SM2を突合部40の外側に設定したため、大型回転ツールGの挿入時における蓋部材30の変形を防ぐことができる。また、本実施形態では、摩擦攪拌の終了位置EM1,EM2を肉厚の本体10側に設定したため、大型回転ツールGの引抜跡の補修を容易に行うことができる。   Further, when the large rotating tool G is inserted into the metal member, a large load acts on the metal member. Therefore, when the friction stirring start positions SM1 and SM2 are set on the lid member 30, the lid member 30 is deformed. There is a possibility. However, in the second recess sealing step according to the present embodiment, the friction stirring start positions SM1 and SM2 are set outside the abutting portion 40, so that deformation of the lid member 30 when the large rotary tool G is inserted can be prevented. . Further, in the present embodiment, the friction stirring end positions EM1 and EM2 are set on the thick main body 10 side, so that it is possible to easily repair the extraction trace of the large-sized rotating tool G.

[第二実施形態]
次に、本発明の第二実施形態について説明する。第二実施形態では、本体10に形成された第二凹部51の形状が、平面視矩形枠状を呈する点で第一実施形態と相違する。なお、第二実施形態の説明においては、第一実施形態と重複する部分については説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In 2nd embodiment, the shape of the 2nd recessed part 51 formed in the main body 10 differs from 1st embodiment by the point which exhibits planar view rectangular frame shape. In the description of the second embodiment, the description of the same parts as those in the first embodiment is omitted.

第二実施形態に係る伝熱板101は、図12の(a)に示すように、本体10と、本体10に摩擦攪拌接合される蓋部材30とを備えている。
本体10は、本体10の上面10aに凹設された第一凹部12と、第一凹部12の中央に凹設された第二凹部51と、第二凹部51に連通する貫通孔16とを有する。
As shown in FIG. 12A, the heat transfer plate 101 according to the second embodiment includes a main body 10 and a lid member 30 that is friction stir welded to the main body 10.
The main body 10 includes a first recess 12 that is recessed in the upper surface 10 a of the main body 10, a second recess 51 that is recessed in the center of the first recess 12, and a through hole 16 that communicates with the second recess 51. .

第一凹部12は、本体10の上面10aよりも一段下がった位置に形成されており、蓋部材30が配置される部位である。第一凹部12は、平面視矩形を呈する底面12aと、底面12aから垂直に立設した4つの側壁12bとを有する。本実施形態では、第二凹部51を平面視矩形枠状に形成したため、底面12aが第二凹部51の内側と外側の両方に形成されている。   The first recess 12 is formed at a position one level lower than the upper surface 10a of the main body 10, and is a part where the lid member 30 is disposed. The first recess 12 has a bottom surface 12a that has a rectangular shape in plan view, and four side walls 12b that stand vertically from the bottom surface 12a. In this embodiment, since the 2nd recessed part 51 was formed in planar view rectangular frame shape, the bottom face 12a is formed in both the inner side and the outer side of the 2nd recessed part 51. FIG.

第二凹部51は、熱輸送流体(本実施形態では冷却水)が流通する部分である。第二凹部51は、第一凹部12内において、平面視矩形枠状に形成されており、上方に開口している。第二凹部51の開口部には、開口周縁53a,53bがそれぞれ形成されている。   The second recess 51 is a portion through which the heat transport fluid (cooling water in the present embodiment) flows. The second recess 51 is formed in a rectangular frame shape in plan view in the first recess 12 and opens upward. Opening rims 53a and 53b are formed in the opening of the second recess 51, respectively.

図12の(b)に示すように、第一凹部12に蓋部材30を配置すると、第一凹部12の側壁12bと蓋部材30の側面30aとで突合部40が形成される。また、第一凹部12の底面12aと蓋部材30の裏面30bとで重ね合わせ部18が形成される。本実施形態では、重ね合わせ部18は、第二凹部51の内側と外側の両方に形成される。   As shown in FIG. 12B, when the lid member 30 is disposed in the first recess 12, the abutting portion 40 is formed by the side wall 12 b of the first recess 12 and the side surface 30 a of the lid member 30. Further, the overlapping portion 18 is formed by the bottom surface 12 a of the first recess 12 and the back surface 30 b of the lid member 30. In the present embodiment, the overlapping portion 18 is formed on both the inside and the outside of the second recess 51.

次に、第二実施形態に係る伝熱板の製造方法について図13を用いて説明する。本実施形態に係る伝熱板の製造方法では、蓋部材固定工程と、第二凹部密封工程と、矯正工程を実行する。   Next, the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment is demonstrated using FIG. In the heat transfer plate manufacturing method according to the present embodiment, a lid member fixing step, a second recess sealing step, and a correction step are executed.

蓋部材固定工程では、突合部40に摩擦攪拌接合を行って、本体10に蓋部材30を接合する。蓋部材固定工程では、図13の(a)に示すように、右回転させた小型回転ツールFを、突合部40上に設定した開始位置s2に挿入し、突合部40に沿って終了位置e2まで摩擦攪拌接合を行う。第一実施形態では、突合部40の全周に亘って摩擦攪拌接合を行ったが、本実施形態では、突合部40を構成する各辺の中間部分のみに対して摩擦攪拌接合を行う。即ち、突合部40を構成する各辺の一点に開始位置s2及び終了位置e2をそれぞれ設定し摩擦攪拌接合を行う。蓋部材固定工程では、突合部40の一方の対辺の中間部分を摩擦攪拌接合した後に、他方の対辺の中間部分を摩擦攪拌接合することが好ましい。これにより、蓋部材30をバランスよく固定することができ、蓋部材30の本体10に対する位置決め精度が向上する。蓋部材固定工程によって、塑性化領域W1が形成される。   In the lid member fixing step, friction stir welding is performed on the abutting portion 40 to bond the lid member 30 to the main body 10. In the lid member fixing step, as shown in FIG. 13A, the small rotating tool F rotated to the right is inserted into the start position s2 set on the abutting portion 40, and the end position e2 along the abutting portion 40. Friction stir welding is performed. In the first embodiment, the friction stir welding is performed over the entire circumference of the abutting portion 40, but in the present embodiment, the friction stir welding is performed only on the intermediate portion of each side constituting the abutting portion 40. That is, the start position s2 and the end position e2 are set at one point on each side of the abutting portion 40, and friction stir welding is performed. In the lid member fixing step, it is preferable that after the frictional stir welding is performed on the middle part of one opposite side of the abutting portion 40, the middle part of the other opposite side is friction stir welded. Thereby, the lid member 30 can be fixed with good balance, and the positioning accuracy of the lid member 30 with respect to the main body 10 is improved. The plasticized region W1 is formed by the lid member fixing step.

第二凹部密封工程では、図13の(a)に示すように、第一凹部12の底面12aと、蓋部材30の裏面30bとが重なり合う重ね合わせ部18に対して摩擦攪拌接合を行う。第二凹部密封工程では本体10の上面10aに設定した開始位置SM3に、左回転させた大型回転ツールGを挿入した後、蓋部材30側へ移動させる。大型回転ツールGが突合部40を横断したら、重ね合わせ部18上において、第二凹部51の開口周縁53aの外周に沿って大型回転ツールGを移動させる。大型回転ツールGを移動させることにより、第二凹部51の周囲には、塑性化領域W2が形成される。   In the second recess sealing step, as shown in FIG. 13A, friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a of the first recess 12 and the back surface 30b of the lid member 30 overlap. In the second recess sealing step, the large rotation tool G rotated counterclockwise is inserted into the start position SM3 set on the upper surface 10a of the main body 10, and then moved to the lid member 30 side. When the large rotary tool G crosses the abutting portion 40, the large rotary tool G is moved along the outer periphery of the opening peripheral edge 53 a of the second recess 51 on the overlapping portion 18. By moving the large rotary tool G, a plasticized region W2 is formed around the second recess 51.

大型回転ツールGを第二凹部51の回りに一周させたら、図13の(b)に示すように、塑性化領域W2を横断させて、本体10の上面10aに設定した終了位置EM3まで移動させる。大型回転ツールGが終了位置EM3に達したら、本体10から大型回転ツールGを離脱させる。   When the large-sized rotary tool G makes a round around the second recess 51, as shown in FIG. 13 (b), it is moved across the plasticizing region W2 to the end position EM3 set on the upper surface 10a of the main body 10. . When the large rotary tool G reaches the end position EM3, the large rotary tool G is detached from the main body 10.

次に、本実施形態に係る第二凹部密封工程では、第二凹部51の内側の重ね合わせ部18(図12の(b)参照)に対しても摩擦攪拌接合を行う。図13の(b)に示すように、蓋部材30の中央に摩擦攪拌の開始位置SM4を設定し、第二凹部51の開口周縁53bの内側に沿って大型回転ツールGを移動して摩擦攪拌接合を行う。第二凹部51の内側には、塑性化領域W3が形成される。大型回転ツールGが第二凹部51の内側を一周したら、既存の塑性化領域W3と重複するようにして、蓋部材30の中央に設定した終了位置EM4まで大型回転ツールGを移動させる。   Next, in the second recess sealing step according to the present embodiment, friction stir welding is also performed on the overlapping portion 18 (see FIG. 12B) inside the second recess 51. As shown in FIG. 13B, the friction stirring start position SM4 is set at the center of the lid member 30, and the large rotating tool G is moved along the inner periphery of the opening peripheral edge 53b of the second recess 51 to thereby friction stir. Join. A plasticized region W <b> 3 is formed inside the second recess 51. When the large rotary tool G goes around the inside of the second recess 51, the large rotary tool G is moved to the end position EM4 set at the center of the lid member 30 so as to overlap with the existing plasticizing region W3.

第二凹部密封工程が終了したら、矯正工程を行う。矯正工程では、前記したプレス矯正、衝打矯正、又はロール矯正のいずれかを実行すればよいため、詳細な説明は省略する。   When the second recess sealing process is completed, a correction process is performed. In the correction process, any one of the press correction, the hitting correction, and the roll correction described above may be executed, and thus detailed description thereof is omitted.

以上説明した第二実施形態に係る伝熱板の製造方法によれば、突合部40に対する摩擦攪拌接合に加えて、第二凹部51の周囲において、重ね合わせ部18に対して摩擦攪拌接合を行うことにより、第一凹部12の底面12aと蓋部材30の裏面30bとの微細な隙間を塞ぐことができる。これにより、伝熱板101の水密性及び気密性を高めることができる。本実施形態では、第二凹部51を平面視矩形枠状に形成したため、第二凹部51の内側に形成された重ね合わせ部18に対しても摩擦攪拌接合を行った。これにより、伝熱板101の水密性及び気密性をさらに高めることができる。また、矯正工程を行うことで、伝熱板101の平坦性を高めることができる。   According to the method for manufacturing a heat transfer plate according to the second embodiment described above, in addition to the friction stir welding to the abutting portion 40, the friction stir welding is performed to the overlapping portion 18 around the second recess 51. Thus, a fine gap between the bottom surface 12a of the first recess 12 and the back surface 30b of the lid member 30 can be closed. Thereby, the watertightness and airtightness of the heat transfer plate 101 can be enhanced. In the present embodiment, since the second recess 51 is formed in a rectangular frame shape in plan view, the friction stir welding is also performed on the overlapping portion 18 formed inside the second recess 51. Thereby, the water-tightness and airtightness of the heat transfer plate 101 can be further enhanced. Moreover, the flatness of the heat transfer plate 101 can be improved by performing the correction process.

[第三実施形態]
次に、本発明の第三実施形態について説明する。第三実施形態では、本体10に形成された第二凹部61の形状が、平面視円形状を呈する点で第一実施形態と相違する。なお、第三実施形態の説明においては、第一実施形態と重複する部分については説明を省略する。
[Third embodiment]
Next, a third embodiment of the present invention will be described. In 3rd embodiment, the shape of the 2nd recessed part 61 formed in the main body 10 differs from 1st embodiment by the point which exhibits a planar view circular shape. In the description of the third embodiment, the description of the same parts as those in the first embodiment is omitted.

第三実施形態に係る伝熱板102は、図14に示すように、本体10と、本体10に摩擦攪拌接合される蓋部材30とを備えている。
本体10は、本体10の上面10aに凹設された第一凹部12と、第一凹部12に凹設された第二凹部61と、第二凹部61に連通する貫通孔16とを有する。
As shown in FIG. 14, the heat transfer plate 102 according to the third embodiment includes a main body 10 and a lid member 30 that is friction stir welded to the main body 10.
The main body 10 has a first recess 12 that is recessed in the upper surface 10 a of the main body 10, a second recess 61 that is recessed in the first recess 12, and a through hole 16 that communicates with the second recess 61.

第一凹部12は、本体10の上面10aよりも一段下がった位置に形成されており、蓋部材30が配置される部位である。第一凹部12は、平面視矩形を呈する底面12aと、底面12aから垂直に立設した4つの側壁12bとを有する。   The first recess 12 is formed at a position one level lower than the upper surface 10a of the main body 10, and is a part where the lid member 30 is disposed. The first recess 12 has a bottom surface 12a that has a rectangular shape in plan view, and four side walls 12b that stand vertically from the bottom surface 12a.

第二凹部61は、熱輸送流体(本実施形態では冷却水)が流通する部分である。第二凹部61は、第一凹部12内に凹設されており平面視円形状を呈し、上方に開口している。第二凹部61の開口部には開口周縁62が形成されている。   The second recess 61 is a portion through which the heat transport fluid (cooling water in the present embodiment) flows. The second recess 61 is recessed in the first recess 12 and has a circular shape in plan view, and opens upward. An opening periphery 62 is formed in the opening of the second recess 61.

次に、第三実施形態に係る伝熱板の製造方法について図15を用いて説明する。本実施形態に係る伝熱板の製造方法では、蓋部材固定工程と、第二凹部密封工程と、矯正工程を実行する。   Next, the manufacturing method of the heat exchanger plate which concerns on 3rd embodiment is demonstrated using FIG. In the heat transfer plate manufacturing method according to the present embodiment, a lid member fixing step, a second recess sealing step, and a correction step are executed.

蓋部材固定工程では、突合部40に摩擦攪拌接合を行って、本体10に蓋部材30を接合する。蓋部材固定工程では、図15に示すように、突合部40の四隅に断続的に摩擦攪拌接合を行う。即ち、突合部40の各四隅に設定された開始位置s3から終了位置e3まで小型回転ツールFを右回転させて摩擦攪拌接合を行う。蓋部材固定工程では、突合部40の一方の対角同士を先に摩擦攪拌接合した後に、他方の対角同士を摩擦攪拌することが好ましい。これにより、蓋部材30をバランスよく固定することができ、蓋部材30の本体10に対する位置決め精度が向上する。   In the lid member fixing step, friction stir welding is performed on the abutting portion 40 to bond the lid member 30 to the main body 10. In the lid member fixing step, friction stir welding is intermittently performed at the four corners of the abutting portion 40 as shown in FIG. That is, friction stir welding is performed by rotating the small rotary tool F to the right from the start position s3 set at each of the four corners of the abutting portion 40 to the end position e3. In the lid member fixing step, it is preferable to first frictionally stir one diagonal of the abutting portion 40 and then stir the other diagonal. Thereby, the lid member 30 can be fixed with good balance, and the positioning accuracy of the lid member 30 with respect to the main body 10 is improved.

第二凹部密封工程では、第一凹部12の底面12a(図14参照)と、蓋部材30の裏面30bとが重なり合う重ね合わせ部18に対して摩擦攪拌接合を行う。第二凹部密封工程では、本体10の上面10aに設定した開始位置SM5に、右回転させた大型回転ツールGを挿入した後、蓋部材30側へ移動させる。大型回転ツールGが突合部40を横断したら、重ね合わせ部18上において、第二凹部61の外周に沿って大型回転ツールGを移動させる。大型回転ツールGを移動させることにより、塑性化領域W2が形成される。   In the second recess sealing step, friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a (see FIG. 14) of the first recess 12 and the back surface 30b of the lid member 30 overlap. In the second recess sealing step, the large rotation tool G rotated to the right is inserted into the start position SM5 set on the upper surface 10a of the main body 10, and then moved to the lid member 30 side. When the large rotary tool G crosses the abutting portion 40, the large rotary tool G is moved along the outer periphery of the second recess 61 on the overlapping portion 18. By moving the large rotary tool G, the plasticized region W2 is formed.

大型回転ツールGを第二凹部61回りに一周させたら、図15の矢印にしたがって、塑性化領域W2を横断させ、本体10の上面10aに設定した終了位置EM5まで移動させる。大型回転ツールGが終了位置EM5に達したら、本体10から大型回転ツールGを離脱させる。   When the large rotary tool G makes a round around the second recess 61, the plasticizing region W2 is traversed and moved to the end position EM5 set on the upper surface 10a of the main body 10 according to the arrow in FIG. When the large rotary tool G reaches the end position EM5, the large rotary tool G is detached from the main body 10.

第二凹部密封工程が終了したら、矯正工程を行う。矯正工程では、前記したプレス矯正、衝打矯正、又はロール矯正のいずれかを実行すればよいため、詳細な説明は省略する。   When the second recess sealing process is completed, a correction process is performed. In the correction process, any one of the press correction, the hitting correction, and the roll correction described above may be executed, and thus detailed description thereof is omitted.

以上説明した第三実施形態に係る伝熱板の製造方法によれば、突合部40に対する摩擦攪拌接合に加えて第二凹部61の周囲において、重ね合わせ部18に対して摩擦攪拌接合を行うことにより、第一凹部12の底面12aと蓋部材30の裏面30bとの間の隙間を塞ぐことができる。これにより、伝熱板102の水密性及び気密性を高めることができる。また、矯正工程を行うことで伝熱板102の平坦性を高めることができる。   According to the manufacturing method of the heat transfer plate according to the third embodiment described above, the friction stir welding is performed on the overlapping portion 18 around the second recess 61 in addition to the friction stir welding on the abutting portion 40. Thus, the gap between the bottom surface 12a of the first recess 12 and the back surface 30b of the lid member 30 can be closed. Thereby, the watertightness and airtightness of the heat transfer plate 102 can be enhanced. Further, the flatness of the heat transfer plate 102 can be improved by performing the correction process.

また、本実施形態では、第二凹部61を平面視円形状に形成しているが、第二凹部61の周囲を包囲するように平面視矩形の第一凹部12を形成し、第一凹部12と同等の平面形状からなる蓋部材30で封止している。つまり、第二凹部61の形状が平面視円形であったとしても蓋部材30の形状は平面視矩形のものを用いることができる。これにより、蓋部材30の形状は平面視矩形の単純な形状のものを用いることができるため、蓋部材30の成形を容易に行うことができるとともに、第一凹部12に蓋部材30を精度よく配置することができる。   In the present embodiment, the second recess 61 is formed in a circular shape in plan view, but the first recess 12 having a rectangular shape in plan view is formed so as to surround the second recess 61, and the first recess 12 is formed. It is sealed with a lid member 30 having a planar shape equivalent to the above. That is, even if the shape of the second recess 61 is circular in plan view, the shape of the lid member 30 can be rectangular in plan view. Thereby, since the shape of the lid member 30 can be a simple shape having a rectangular shape in plan view, the lid member 30 can be easily formed, and the lid member 30 can be accurately placed in the first recess 12. Can be arranged.

また、本実施形態に係る蓋部材固定工程では、突合部40の四隅のみに対して摩擦攪拌接合を行うため、作業手間を省略することができる。   Further, in the lid member fixing step according to the present embodiment, since the friction stir welding is performed only on the four corners of the abutting portion 40, work labor can be omitted.

[第四実施形態]
次に、本発明の第四実施形態について説明する。第四実施形態では、本体70に形成された第二凹部71の形状が、平面視U字状を呈する点で第一実施形態と相違する。なお、第四実施形態の説明においては、第一実施形態と重複する部分については説明を省略する。
[Fourth embodiment]
Next, a fourth embodiment of the present invention will be described. In 4th embodiment, the shape of the 2nd recessed part 71 formed in the main body 70 differs from 1st embodiment by the point which exhibits planar view U shape. In the description of the fourth embodiment, the description of the same parts as those in the first embodiment is omitted.

第四実施形態に係る伝熱板103は、図16及び図17に示すように、本体70と、本体70に配置される蓋部材80とを摩擦攪拌接合によって一体成形される。
本体70は、直方体を呈し、平面視直方形を呈する。本体70は、本体70の上面70aに凹設された第一凹部12と、第一凹部12に凹設された第二凹部71と、第二凹部71に連通する貫通孔16とを有する。蓋部材80は、図17に示すように、第一凹部12と略同等の平面形状を呈する板状部材である。
As shown in FIGS. 16 and 17, the heat transfer plate 103 according to the fourth embodiment is integrally formed by friction stir welding of a main body 70 and a lid member 80 disposed on the main body 70.
The main body 70 has a rectangular parallelepiped shape and a rectangular shape in plan view. The main body 70 includes a first recess 12 that is recessed in the upper surface 70 a of the main body 70, a second recess 71 that is recessed in the first recess 12, and a through hole 16 that communicates with the second recess 71. As shown in FIG. 17, the lid member 80 is a plate-like member that has a planar shape substantially equivalent to that of the first recess 12.

第一凹部12は、本体70の上面70aよりも一段下がった位置に形成されており、蓋部材80が配置される部位である。第一凹部12は、平面視矩形を呈する底面12aと底面12aから垂直に立設した4つの側壁12bとを有する。   The first recess 12 is formed at a position lower than the upper surface 70a of the main body 70, and is a part where the lid member 80 is disposed. The first recess 12 has a bottom surface 12a that has a rectangular shape in plan view, and four side walls 12b that are erected vertically from the bottom surface 12a.

第二凹部71は、熱輸送流体(本実施形態では冷却水)が流通する部分である。第二凹部71は、平面視U字状を呈する。第二凹部71は、上方に開口している。第二凹部71の開口部には、開口周縁72が形成されている。   The second recess 71 is a portion through which the heat transport fluid (cooling water in the present embodiment) flows. The second recess 71 has a U shape in plan view. The second recess 71 is open upward. An opening peripheral edge 72 is formed in the opening of the second recess 71.

次に、第四実施形態に係る伝熱板の製造方法について、図17を用いて説明する。本実施形態に係る伝熱板の製造方法では、蓋部材固定工程と、第二凹部密封工程と、矯正工程を実行する。   Next, the manufacturing method of the heat exchanger plate which concerns on 4th embodiment is demonstrated using FIG. In the heat transfer plate manufacturing method according to the present embodiment, a lid member fixing step, a second recess sealing step, and a correction step are executed.

蓋部材固定工程では、突合部40に摩擦攪拌接合を行って、本体70に蓋部材80を接合する。蓋部材固定工程では、図17の(a)に示すように、小型回転ツールFを用いて突合部40の四隅に断続的に摩擦攪拌接合を行うとともに、突合部40を構成する各辺の中間部分に対して摩擦攪拌接合を行う。蓋部材固定工程によって塑性化領域W1が形成される。   In the lid member fixing step, friction stir welding is performed on the abutting portion 40, and the lid member 80 is bonded to the main body 70. In the lid member fixing step, as shown in FIG. 17A, friction stir welding is intermittently performed at the four corners of the abutting portion 40 using a small rotary tool F, and the middle of each side constituting the abutting portion 40 is used. Friction stir welding is performed on the part. The plasticized region W1 is formed by the lid member fixing step.

第二凹部密封工程では、図17に示すように、第一凹部12の底面12aと、蓋部材80の裏面80bとが重なり合う重ね合わせ部18に対して摩擦攪拌接合を行う。第二凹部密封工程では、本体70の上面70aに設定した開始位置SM6に、右回転させた大型回転ツールGを挿入した後、蓋部材80側へ移動させる。大型回転ツールGが突合部40を横断したら、重ね合わせ部18上において、第二凹部71の開口周縁72の外周に沿って大型回転ツールGを移動させる。大型回転ツールGを移動させることにより、塑性化領域W2が形成される。   In the second recess sealing step, friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a of the first recess 12 and the back surface 80b of the lid member 80 overlap as shown in FIG. In the second recess sealing step, the large rotation tool G rotated to the right is inserted into the start position SM6 set on the upper surface 70a of the main body 70, and then moved to the lid member 80 side. When the large rotating tool G crosses the abutting portion 40, the large rotating tool G is moved along the outer periphery of the opening peripheral edge 72 of the second recess 71 on the overlapping portion 18. By moving the large rotary tool G, the plasticized region W2 is formed.

大型回転ツールGを第二凹部71に沿って一周させたら、図17の(a)の矢印にしたがって、塑性化領域W2を横断させ、本体70の上面70aに設定した終了位置EM6まで移動させる。大型回転ツールGが終了位置EM6に達したら、本体70から大型回転ツールGを離脱させる。   When the large rotary tool G makes a round along the second recess 71, the plasticizing region W2 is traversed and moved to the end position EM6 set on the upper surface 70a of the main body 70 in accordance with the arrow in FIG. When the large rotary tool G reaches the end position EM6, the large rotary tool G is detached from the main body 70.

第二凹部密封工程が終了したら、矯正工程を行う。矯正工程では、前記したプレス矯正、衝打矯正、又はロール矯正のいずれかを実行すればよいため、詳細な説明は省略する。   When the second recess sealing process is completed, a correction process is performed. In the correction process, any one of the press correction, the hitting correction, and the roll correction described above may be executed, and thus detailed description thereof is omitted.

以上説明した第四実施形態に係る伝熱板の製造方法によれば、突合部40に対する摩擦攪拌接合に加えて第二凹部71の周囲において、重ね合わせ部18に対して摩擦攪拌接合を行うことにより、第一凹部12の底面12aと蓋部材80の裏面80bとの微細な隙間を塞ぐことができる。これにより、伝熱板103の水密性及び気密性を高めることができる。また、矯正工程を行うことで、伝熱板103の平坦性を高めることができる。   According to the manufacturing method of the heat transfer plate according to the fourth embodiment described above, the friction stir welding is performed on the overlapping portion 18 around the second recess 71 in addition to the friction stir welding on the abutting portion 40. Thus, a fine gap between the bottom surface 12a of the first recess 12 and the back surface 80b of the lid member 80 can be closed. Thereby, the water-tightness and airtightness of the heat transfer plate 103 can be enhanced. Moreover, the flatness of the heat transfer plate 103 can be improved by performing the correction process.

また、本実施形態では、第二凹部71を平面視U字状に形成しているが、第二凹部71の周囲を包囲するように平面視矩形の第一凹部12を形成し、第一凹部12と同等の平面形状からなる蓋部材80で封止している。つまり、第二凹部71の形状が平面視U字状のような複雑な形状であったとしても、蓋部材80は、平面視矩形のものを用いることができる。これにより、蓋部材80の形状は平面視矩形の単純な形状のものを用いることができるため、蓋部材80の成形を容易に行うことができるとともに、第一凹部12に蓋部材80を精度よく配置することができる。   In the present embodiment, the second recess 71 is formed in a U shape in plan view. However, the first recess 12 having a rectangular shape in plan view is formed so as to surround the second recess 71, and the first recess 12 is sealed with a lid member 80 having a planar shape equivalent to 12. That is, even if the shape of the second recess 71 is a complicated shape such as a U shape in plan view, the lid member 80 can be rectangular in plan view. As a result, since the lid member 80 can be a simple shape having a rectangular shape in plan view, the lid member 80 can be easily formed, and the lid member 80 is accurately placed in the first recess 12. Can be arranged.

以上、本発明の実施形態について説明したが、本発明の趣旨に反しない範囲において適宜設計変更が可能である。例えば、第四実施形態のように蓋部材80が比較的大きい場合、蓋部材固定工程を行う前に、仮接合工程を行ってもよい。   Although the embodiments of the present invention have been described above, design changes can be made as appropriate without departing from the spirit of the present invention. For example, when the lid member 80 is relatively large as in the fourth embodiment, the temporary joining step may be performed before the lid member fixing step.

仮接合工程では、図18の(a)及び(b)に示すように、突合部40の内側であって、かつ、第二凹部71の外側において、蓋部材80の上方から回転した回転ツールHを押し込んで、第一凹部12の底面12aと、蓋部材80の裏面80bとが重ね合わされた重ね合わせ部18に対して摩擦攪拌接合を行う。当該摩擦攪拌接合によって塑性化領域W4が形成される。   In the temporary joining step, as shown in FIGS. 18A and 18B, the rotary tool H rotated from above the lid member 80 inside the abutting portion 40 and outside the second concave portion 71. , And the friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a of the first recess 12 and the back surface 80b of the lid member 80 are overlapped. A plasticized region W4 is formed by the friction stir welding.

仮接合工程により、本体70と蓋部材80とが仮接合される。蓋部材80が大きい場合、蓋部材固定工程を行うと、摩擦攪拌接合の熱収縮により蓋部材が反って蓋部材80の中央部分と本体70とが離間してしまい、第二凹部密封工程の作業が煩雑になる可能性がある。しかし、本実施形態の仮接合工程を行うことで、蓋部材80の反りを抑制することができるため、第二凹部密封工程を好適に行うことができる。   The main body 70 and the lid member 80 are temporarily bonded by the temporary bonding step. When the lid member 80 is large, when the lid member fixing step is performed, the lid member warps due to the heat shrinkage of the friction stir welding, and the central portion of the lid member 80 and the main body 70 are separated from each other. Can be cumbersome. However, since the warp of the lid member 80 can be suppressed by performing the temporary joining step of the present embodiment, the second recess sealing step can be suitably performed.

仮接合工程は、重ね合わせ部18において、連続的に摩擦攪拌接合を行ってもよいし、本実施形態のように断続的に行ってもよい。   The temporary joining step may be performed continuously by friction stir welding in the overlapping portion 18 or may be performed intermittently as in the present embodiment.

また、前記した実施形態では、第二凹部密封工程の前に、蓋部材固定工程を行ったが、第二凹部密封工程を行った後に、蓋部材固定工程を行ってもよい。   In the above-described embodiment, the lid member fixing step is performed before the second recess sealing step. However, the lid member fixing step may be performed after the second recess sealing step.

また、大型回転ツールGを挿入する位置に、挿入時の摩擦抵抗を軽減するために、予め下穴を形成しておいてもよい。   Moreover, in order to reduce the frictional resistance at the time of insertion in the position which inserts the large sized rotation tool G, you may form a pilot hole previously.

また、本実施形態では、第一凹部及び蓋部材の平面形状は矩形としたが、これに限定されるものではなく、平面視円形、楕円系、又は角形であってもよい。第一凹部及び蓋部材の形状は、成形しやすく、かつ、精度良く配置可能な形状であることが好ましい。   In the present embodiment, the planar shape of the first concave portion and the lid member is rectangular, but is not limited thereto, and may be circular, elliptical, or rectangular in plan view. The shapes of the first recess and the lid member are preferably shapes that are easy to mold and can be placed with high precision.

1 伝熱板
10 本体
10a 上面
12 第一凹部
12a 底面
12b 側壁
13 第二凹部
14 開口周縁
16 貫通孔
18 重ね合わせ部
30 蓋部材
30a 側面
30b 裏面
40 突合部
F 小型回転ツール
F1 ショルダ部
F2 攪拌ピン
G 大型回転ツール
G1 ショルダ部
G2 攪拌ピン
s1 開始位置
e1 終了位置
SM1 開始位置
EM1 終了位置
W1〜W4 塑性化領域
DESCRIPTION OF SYMBOLS 1 Heat-transfer plate 10 Main body 10a Upper surface 12 1st recessed part 12a Bottom surface 12b Side wall 13 2nd recessed part 14 Opening periphery 16 Through-hole 18 Overlapping part 30 Lid member 30a Side surface 30b Back surface 40 Abutting part F Small rotating tool F1 Shoulder part F2 Stirring pin G Large rotating tool G1 Shoulder part G2 Stirring pin s1 Start position e1 End position SM1 Start position EM1 End position W1-W4 Plasticization region

Claims (8)

表面に凹設された第一凹部と、この第一凹部の底面に凹設され熱発生体が発生する熱を外部に輸送する熱輸送流体が流れる第二凹部とを有する本体に、前記第二凹部を封止する蓋部材を摩擦攪拌接合によって固定して形成される伝熱板の製造方法であって、
前記本体の前記第一凹部の側壁と前記蓋部材の側面との突合部に沿って回転ツールを移動させて少なくとも前記突合部の一部に対して摩擦攪拌接合を行う蓋部材固定工程と、
前記第二凹部の開口周縁に沿って回転ツールを移動させて、前記第一凹部の底面と前記蓋部材の裏面との重ね合わせ部に対して摩擦攪拌接合を行う第二凹部密封工程と、
前記蓋部材固定工程及び前記第二凹部密封工程によって形成された前記本体の裏面側に凸となる反りを、前記本体の表面側に引張応力が発生するような曲げモーメントを作用させることで矯正する矯正工程と、を含むことを特徴とする伝熱板の製造方法。
The main body having a first recess recessed in the surface and a second recess through which a heat transport fluid that transports heat generated by the heat generating body that is recessed in the bottom surface of the first recess flows. A method of manufacturing a heat transfer plate formed by fixing a lid member for sealing a recess by friction stir welding,
A lid member fixing step of performing friction stir welding on at least a part of the abutting portion by moving a rotary tool along the abutting portion between the side wall of the first recess of the main body and the side surface of the lid member;
A second recess sealing step in which a rotary tool is moved along the opening periphery of the second recess, and friction stir welding is performed on the overlapping portion of the bottom surface of the first recess and the back surface of the lid member;
The warping that is convex on the back surface side of the main body formed by the lid member fixing step and the second concave portion sealing step is corrected by applying a bending moment that generates a tensile stress on the front surface side of the main body. A method for producing a heat transfer plate, comprising a straightening step.
前記矯正工程では、前記本体をプレス矯正することにより、前記反りを矯正することを特徴とする請求項1に記載の伝熱板の製造方法。   The method for manufacturing a heat transfer plate according to claim 1, wherein in the correction step, the warpage is corrected by press-correcting the main body. 前記矯正工程では、前記本体の裏面側の中央付近に当接する第一補助部材を配置するとともに、前記本体の表面側の周縁付近に当接する第二補助部材及び第三補助部材を、前記第一補助部材を挟んで両側に配置した状態で、前記反りをプレス矯正することを特徴とする請求項2に記載の伝熱板の製造方法。   In the correction step, the first auxiliary member that contacts the vicinity of the center of the back surface side of the main body is disposed, and the second auxiliary member and the third auxiliary member that contact the vicinity of the peripheral edge of the front surface side of the main body are The method for manufacturing a heat transfer plate according to claim 2, wherein the warp is press-corrected in a state where the auxiliary member is disposed on both sides of the auxiliary member. 前記矯正工程では、前記本体をロール矯正することにより、前記反りを矯正することを特徴とする請求項1に記載の伝熱板の製造方法。   The method for manufacturing a heat transfer plate according to claim 1, wherein, in the correction step, the warp is corrected by roll correction of the main body. 前記矯正工程では、前記本体の裏面側の中央付近に当接する第一補助部材を配置するとともに、前記本体の表面側の周縁付近に当接する第二補助部材及び第三補助部材を、前記第一補助部材を挟んで両側に配置した状態で、前記反りをロール矯正することを特徴とする請求項4に記載の伝熱板の製造方法。   In the correction step, the first auxiliary member that contacts the vicinity of the center of the back surface side of the main body is disposed, and the second auxiliary member and the third auxiliary member that contact the vicinity of the peripheral edge of the front surface side of the main body are The method for manufacturing a heat transfer plate according to claim 4, wherein the warp is roll-corrected in a state where the auxiliary member is disposed on both sides of the auxiliary member. 前記矯正工程では、前記本体を衝打具で衝打することにより、前記反りを矯正することを特徴とする請求項1に記載の伝熱板の製造方法。   The method for manufacturing a heat transfer plate according to claim 1, wherein, in the correction step, the warp is corrected by hitting the main body with a hitting tool. 前記矯正工程では、前記本体の裏面側の中央付近に当接する第一補助部材を配置するとともに、前記本体の表面側の周縁付近に当接する第二補助部材及び第三補助部材を、前記第一補助部材を挟んで両側に配置した状態で、前記反りを矯正することを特徴とする請求項6に記載の伝熱板の製造方法。   In the correction step, the first auxiliary member that contacts the vicinity of the center of the back surface side of the main body is disposed, and the second auxiliary member and the third auxiliary member that contact the vicinity of the peripheral edge of the front surface side of the main body are The method for manufacturing a heat transfer plate according to claim 6, wherein the warpage is corrected in a state where the auxiliary member is disposed on both sides of the auxiliary member. 前記各補助部材は、前記本体よりも硬度が低い材料であることを特徴とする請求項3、請求項5又は請求項7に記載の伝熱板の製造方法。




The method for manufacturing a heat transfer plate according to claim 3, wherein each auxiliary member is made of a material whose hardness is lower than that of the main body.




JP2009048091A 2009-03-02 2009-03-02 Manufacturing method of heat transfer plate Expired - Fee Related JP5177017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048091A JP5177017B2 (en) 2009-03-02 2009-03-02 Manufacturing method of heat transfer plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048091A JP5177017B2 (en) 2009-03-02 2009-03-02 Manufacturing method of heat transfer plate

Publications (2)

Publication Number Publication Date
JP2010201447A true JP2010201447A (en) 2010-09-16
JP5177017B2 JP5177017B2 (en) 2013-04-03

Family

ID=42963469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048091A Expired - Fee Related JP5177017B2 (en) 2009-03-02 2009-03-02 Manufacturing method of heat transfer plate

Country Status (1)

Country Link
JP (1) JP5177017B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207273A (en) * 2011-03-30 2012-10-25 Sumitomo Metal Mining Co Ltd Device for correcting distortion of permanent cathode
WO2013094246A1 (en) * 2011-12-19 2013-06-27 日本軽金属株式会社 Method for manufacturing liquid cooling jacket
CN103769742A (en) * 2012-10-19 2014-05-07 倍亿淂科技股份有限公司 Method for manufacturing water-cooled radiator and water-cooled radiator manufactured thereby
JP2015064132A (en) * 2013-09-24 2015-04-09 株式会社フィルテック Lamination fluid heat exchange device
JP2015080787A (en) * 2013-10-21 2015-04-27 日本軽金属株式会社 Method for manufacturing heat exchanger plate
WO2015060007A1 (en) * 2013-10-21 2015-04-30 日本軽金属株式会社 Method for manufacturing heat transfer plate and joining method
JP2015095561A (en) * 2013-11-12 2015-05-18 株式会社デンソー Semiconductor device and manufacturing method of the same
JP2015104750A (en) * 2013-12-02 2015-06-08 日本軽金属株式会社 Production method of heat transfer plate
JP2015199119A (en) * 2014-01-27 2015-11-12 日本軽金属株式会社 Joint method
CN113351983A (en) * 2020-03-03 2021-09-07 京浜乐梦金属科技株式会社 Method for manufacturing metal structure

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197855A (en) * 1998-01-12 1999-07-27 Nippon Light Metal Co Ltd Annular welding method and hermetically sealed container and viscous damper to be obtained by the method
JPH11197856A (en) * 1998-01-14 1999-07-27 Nippon Light Metal Co Ltd Annular friction-stir-welding method and hermetically sealed container to be obtained by the method
JP2001321966A (en) * 2000-03-06 2001-11-20 Hitachi Ltd Friction stir welding method
JP2004314115A (en) * 2003-04-15 2004-11-11 Nippon Light Metal Co Ltd Heat transfer element, and method for manufacturing the same
JP2005324251A (en) * 2004-04-16 2005-11-24 Showa Denko Kk Friction stir welding method, friction stir welding method for tubular member, and method for manufacturing hollow body
JP2006150454A (en) * 2000-12-22 2006-06-15 Hitachi Cable Ltd Cooling plate, manufacturing method thereof, sputtering target and manufacturing method thereof
JP2006187809A (en) * 2006-01-19 2006-07-20 Hitachi Ltd Method for manufacturing heat-sink plate, and heat-sink structure
JP2006324647A (en) * 2005-04-21 2006-11-30 Nippon Light Metal Co Ltd Liquid-cooled jacket
JP2008188665A (en) * 2007-02-08 2008-08-21 Nippon Light Metal Co Ltd Joining method
JP2008290093A (en) * 2007-05-23 2008-12-04 Nippon Light Metal Co Ltd Joining method
JP2009166079A (en) * 2008-01-15 2009-07-30 Nippon Light Metal Co Ltd Manufacturing method of liquid-cooled jacket, and friction stir welding method
JP2010179349A (en) * 2009-02-09 2010-08-19 Nippon Light Metal Co Ltd Method for manufacturing liquid-cooled jacket, and friction stir welding method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197855A (en) * 1998-01-12 1999-07-27 Nippon Light Metal Co Ltd Annular welding method and hermetically sealed container and viscous damper to be obtained by the method
JPH11197856A (en) * 1998-01-14 1999-07-27 Nippon Light Metal Co Ltd Annular friction-stir-welding method and hermetically sealed container to be obtained by the method
JP2001321966A (en) * 2000-03-06 2001-11-20 Hitachi Ltd Friction stir welding method
JP2006150454A (en) * 2000-12-22 2006-06-15 Hitachi Cable Ltd Cooling plate, manufacturing method thereof, sputtering target and manufacturing method thereof
JP2004314115A (en) * 2003-04-15 2004-11-11 Nippon Light Metal Co Ltd Heat transfer element, and method for manufacturing the same
JP2005324251A (en) * 2004-04-16 2005-11-24 Showa Denko Kk Friction stir welding method, friction stir welding method for tubular member, and method for manufacturing hollow body
JP2006324647A (en) * 2005-04-21 2006-11-30 Nippon Light Metal Co Ltd Liquid-cooled jacket
JP2006187809A (en) * 2006-01-19 2006-07-20 Hitachi Ltd Method for manufacturing heat-sink plate, and heat-sink structure
JP2008188665A (en) * 2007-02-08 2008-08-21 Nippon Light Metal Co Ltd Joining method
JP2008290093A (en) * 2007-05-23 2008-12-04 Nippon Light Metal Co Ltd Joining method
JP2009166079A (en) * 2008-01-15 2009-07-30 Nippon Light Metal Co Ltd Manufacturing method of liquid-cooled jacket, and friction stir welding method
JP2010179349A (en) * 2009-02-09 2010-08-19 Nippon Light Metal Co Ltd Method for manufacturing liquid-cooled jacket, and friction stir welding method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207273A (en) * 2011-03-30 2012-10-25 Sumitomo Metal Mining Co Ltd Device for correcting distortion of permanent cathode
WO2013094246A1 (en) * 2011-12-19 2013-06-27 日本軽金属株式会社 Method for manufacturing liquid cooling jacket
CN103769742A (en) * 2012-10-19 2014-05-07 倍亿淂科技股份有限公司 Method for manufacturing water-cooled radiator and water-cooled radiator manufactured thereby
JP2015064132A (en) * 2013-09-24 2015-04-09 株式会社フィルテック Lamination fluid heat exchange device
KR101881679B1 (en) * 2013-10-21 2018-07-24 니폰게이긴조쿠가부시키가이샤 Method for manufacturing heat transfer plate
WO2015060007A1 (en) * 2013-10-21 2015-04-30 日本軽金属株式会社 Method for manufacturing heat transfer plate and joining method
KR20160050082A (en) * 2013-10-21 2016-05-10 니폰게이긴조쿠가부시키가이샤 Method for manufacturing heat transfer plate and joining method
CN105658370A (en) * 2013-10-21 2016-06-08 日本轻金属株式会社 Method for manufacturing heat transfer plate and joining method
CN105658370B (en) * 2013-10-21 2018-05-01 日本轻金属株式会社 The manufacture method and joint method of heat transfer plate
JP2015080787A (en) * 2013-10-21 2015-04-27 日本軽金属株式会社 Method for manufacturing heat exchanger plate
JP2015095561A (en) * 2013-11-12 2015-05-18 株式会社デンソー Semiconductor device and manufacturing method of the same
JP2015104750A (en) * 2013-12-02 2015-06-08 日本軽金属株式会社 Production method of heat transfer plate
JP2015199119A (en) * 2014-01-27 2015-11-12 日本軽金属株式会社 Joint method
US10335894B2 (en) 2014-01-27 2019-07-02 Nippon Light Metal Company, Ltd. Joining method
CN113351983A (en) * 2020-03-03 2021-09-07 京浜乐梦金属科技株式会社 Method for manufacturing metal structure
CN113351983B (en) * 2020-03-03 2022-12-13 京浜乐梦金属科技株式会社 Method for manufacturing metal structure

Also Published As

Publication number Publication date
JP5177017B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5177017B2 (en) Manufacturing method of heat transfer plate
KR101194097B1 (en) Method of manufacturing heat transfer plate
JP2010125495A (en) Joining method
WO2019150620A1 (en) Method for manufacturing liquid cooling jacket
JP5223326B2 (en) Joining method
TWI579085B (en) The method of manufacturing heat transfer plate and the joining method thereof
WO2019064849A1 (en) Method for producing liquid-cooled jacket
WO2009081731A1 (en) Joining method
JP2019130582A (en) Liquid-cooled jacket manufacturing method
JP5483457B2 (en) Battery, battery container and manufacturing method
JP6834925B2 (en) How to manufacture a liquid-cooled jacket
JP2010075938A (en) Method of manufacturing heat transfer plate
WO2015122093A1 (en) Welding method
JP5177059B2 (en) Manufacturing method of heat transfer plate
JP5401921B2 (en) Manufacturing method of heat transfer plate
JP5177061B2 (en) Manufacturing method of heat transfer plate
JP2012115908A (en) Joining method
JP5233557B2 (en) Joining method
JP5347774B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP2014028402A (en) Method for manufacturing heat exchanger plate
JP4957588B2 (en) Joining method
JP2011041954A (en) Method for manufacturing heat transfer plate
JP2016055317A (en) Manufacturing method of heat exchanger plate
JP5573940B2 (en) Manufacturing method of heat transfer plate
JP2010194557A (en) Method for manufacturing heat transfer plate, and friction stir welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

LAPS Cancellation because of no payment of annual fees