JP2010194430A - Particulate filter with catalyst - Google Patents

Particulate filter with catalyst Download PDF

Info

Publication number
JP2010194430A
JP2010194430A JP2009040624A JP2009040624A JP2010194430A JP 2010194430 A JP2010194430 A JP 2010194430A JP 2009040624 A JP2009040624 A JP 2009040624A JP 2009040624 A JP2009040624 A JP 2009040624A JP 2010194430 A JP2010194430 A JP 2010194430A
Authority
JP
Japan
Prior art keywords
catalyst
filter
catalyst layer
layer
particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009040624A
Other languages
Japanese (ja)
Inventor
Hidemitsu Hayashi
秀光 林
Makoto Saito
誠 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2009040624A priority Critical patent/JP2010194430A/en
Priority to DE102010008969A priority patent/DE102010008969A1/en
Publication of JP2010194430A publication Critical patent/JP2010194430A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/065Surface coverings for exhaust purification, e.g. catalytic reaction for reducing soot ignition temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize simultaneously at a high level a high contact property with a particulate and a catalyst, a high collection property of the particulate, a low pressure loss, and a high ash resistance property, which are four requirements asked in case of using an oxide system catalyst as a catalyst in a particulate filter with a catalyst. <P>SOLUTION: The particulate filter includes a filter partition 14 having a two-layer structure constituted by a catalyst layer 18 of a gas inflow side and a carrier layer 20 of a gas outflow side, in which an exhaust gas is transitable and which have fine pores 22 respectively. The catalyst layer 18 includes further an oxide system catalyst component which reduces an oxidation temperature of a particulate substance 26, which is an exhaust particulate. The average fine pore diameter of the catalyst layer 18 is to be enlarged compared to the average fine pore diameter of the carrier layer 20, and in the catalyst layer 18, the percentage of the volume of all the fine pores 22 having a pore diameter of 30 μm or more in all the fine pores 22 volume in the catalyst layer 18 is to be set so as to be 25% or more. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排気ガスが通過可能で、ガス流入側の触媒層とガス流出側の担体層とからなる二層構造を有するフィルタ隔壁を含む触媒付パティキュレートフィルタに関する。   The present invention relates to a particulate filter with a catalyst that includes a filter partition wall through which exhaust gas can pass and has a two-layer structure including a catalyst layer on the gas inflow side and a carrier layer on the gas outflow side.

内燃機関、例えばディーゼルエンジンから排出される排気ガス中には、炭素質からなるすす等を主成分とする排気微粒子である、パティキュレートや、灰すなわちアッシュ等の燃焼残留物が含まれる。このため、従来から、例えば、ディーゼルエンジンの排気装置等において、ディーゼルパティキュレートフィルタ、すなわちDPFを設けて、パティキュレート及び燃焼残留物を除去することが考えられている。また、DPFの内部にパティキュレートを酸化するための触媒を有する触媒付DPFも考えられている。   The exhaust gas discharged from an internal combustion engine, for example, a diesel engine, includes particulates and combustion residues such as ash, that is, ash, which are exhaust particulates mainly composed of carbonaceous soot. For this reason, conventionally, for example, in diesel engine exhaust systems, it has been considered to provide a diesel particulate filter, that is, a DPF, to remove particulates and combustion residues. Further, a DPF with a catalyst having a catalyst for oxidizing particulates inside the DPF is also considered.

例えば、特許文献1には、ディーゼルパティキュレートを捕集するために用いられる排ガス浄化フィルタであって、多数の流体路を有するハニカムを構成し、多数の細孔を有する基材と、基材の上面及び下面に設けられたコーティング層とを有するフィルタが記載されている。コーティング層は、その表面から基材の表面まで連通する連通孔を有するとされている。また、連通孔の平均細孔径は10〜60μmであり、コーティング層の気孔率は30〜80%であるとされている。また、コーティング層は、その表面及び連通孔の壁面に触媒を担持した活性アルミナからなるとされている。   For example, Patent Document 1 discloses an exhaust gas purification filter used for collecting diesel particulates, which includes a honeycomb having a large number of fluid paths, a large number of pores, and a base material. A filter is described having a coating layer provided on the top and bottom surfaces. The coating layer is supposed to have communication holes that communicate from the surface thereof to the surface of the substrate. The average pore diameter of the communication holes is 10 to 60 μm, and the porosity of the coating layer is 30 to 80%. The coating layer is made of activated alumina carrying a catalyst on the surface and the wall surface of the communication hole.

特許文献2には、すす含有排煙をろ過するフィルタ装置であって、フィルタ装置は、多孔質フィルタ壁が一緒に結合されており、フィルタ壁はガス入口表面及びガス出口表面を有し、すすの酸化を触媒する触媒活性物質は空隙にさらされる、金属及び/またはセラミック粒子の表面部分の少なくとも1部分に堆積され、各フィルタ壁は、50〜400μmの範囲の厚みの膜を出口表面に有し、膜の平均細孔径が1〜50μmで、フィルタ壁の気孔率が30〜90%で、多孔質フィルタ壁フィルタ体の物質が10〜200μmの範囲の平均細孔径を有するフィルタ装置が記載されている。   Patent Document 2 discloses a filter device for filtering soot-containing flue gas, in which a porous filter wall is bonded together, and the filter wall has a gas inlet surface and a gas outlet surface. The catalytically active material that catalyzes the oxidation of the material is deposited on at least one of the surface portions of the metal and / or ceramic particles that are exposed to the voids, and each filter wall has a membrane on the outlet surface with a thickness in the range of 50-400 μm. And a filter device having an average pore size of 1 to 50 μm, a porosity of the filter wall of 30 to 90%, and a material of the porous filter wall filter body of 10 to 200 μm. ing.

特許文献3には、連通気孔を有する多孔質セラミック焼結体であって、連通気孔は、焼結体を構成するセラミック粒子の平均粒径よりも小さな径の小気孔と、この小気孔の気孔径よりも大きな気孔径の大気孔とから構成され、焼結体中に占める大気孔の割合は、体積比にして5〜15%であり、大気孔の平均気孔径は30〜80μmであり、小気孔の平均気孔径は5〜40μmであるセラミック焼結体と、セラミック焼結体からなるセラミック担体の表面に触媒を担持したDPFとが記載されている。   Patent Document 3 discloses a porous ceramic sintered body having continuous air holes, and the continuous air holes include small pores having a diameter smaller than the average particle diameter of ceramic particles constituting the sintered body, and pores of the small pores. The ratio of the atmospheric pores in the sintered body is 5 to 15% in volume ratio, and the average pore diameter of the atmospheric pores is 30 to 80 μm. A ceramic sintered body having an average pore diameter of 5 to 40 μm and a DPF having a catalyst supported on the surface of a ceramic carrier made of the ceramic sintered body are described.

特許文献4には、担体と、担体の上に形成された触媒層とを備える排気ガス触媒であって、触媒層が該層中に空隙を有し、触媒層は排気ガス中の微粒子状物質を補足可能とし、補足された微粒子状物質と、排気ガス中の酸素及び/または二酸化窒素との燃焼反応が行われると考えられる排気ガス触媒が記載されている。触媒層における平均空隙率は5〜70%であり、触媒層における空孔の平均孔径は0.2〜30μmであり、担体における空隙の気孔率が30〜80%であり、担体における空孔の平均孔径は3〜40μmであるとされている。   Patent Document 4 discloses an exhaust gas catalyst including a carrier and a catalyst layer formed on the carrier, the catalyst layer having a void in the layer, and the catalyst layer is a particulate substance in the exhaust gas. An exhaust gas catalyst is described in which a combustion reaction of the captured particulate matter with oxygen and / or nitrogen dioxide in the exhaust gas is performed. The average porosity in the catalyst layer is 5 to 70%, the average pore diameter of the pores in the catalyst layer is 0.2 to 30 μm, the porosity of the voids in the carrier is 30 to 80%, The average pore diameter is said to be 3 to 40 μm.

特許文献5には、自己再生型排気微粒子捕集用フィルタであって、多孔質の格子壁により仕切られた複数のセル空間のうち、入口側が開口し出口側を封止材により封止されている排気流入側セル空間に、触媒を担持させた粒子状物質を収納したフィルタが記載されている。   Patent Document 5 discloses a self-regenerative exhaust particulate collection filter, in which, among a plurality of cell spaces partitioned by a porous lattice wall, an inlet side is opened and an outlet side is sealed with a sealing material. A filter is described in which particulate matter carrying a catalyst is accommodated in the exhaust inflow side cell space.

特許文献6には、パティキュレートフィルタ型排ガス浄化触媒であって、セルを有する構造体と、触媒成分を担持した無機繊維とを備え、無機繊維が構造体のガス流れ方向に対して上流側に開放端を有するセル内に配設されている排ガス浄化触媒が記載されている。
また、特許文献1から特許文献6以外に、本発明に関連する先行技術文献として、特許文献7及び非特許文献1がある。
Patent Document 6 discloses a particulate filter type exhaust gas purification catalyst, which includes a structure having cells and inorganic fibers supporting a catalyst component, and the inorganic fibers are upstream of the gas flow direction of the structure. An exhaust gas purification catalyst is described which is disposed in a cell having an open end.
In addition to Patent Document 1 to Patent Document 6, there are Patent Document 7 and Non-Patent Document 1 as prior art documents related to the present invention.

特開平8−332329号公報JP-A-8-332329 特表2002−519186号公報Special Table 2002-519186 国際公開第02/096827号パンフレットInternational Publication No. 02/096827 Pamphlet 特開2005−21818号公報JP 2005-21818 A 特開2003−56327号公報JP 2003-56327 A 特開2007−244950号公報JP 2007-244950 A 特開2004−42021号公報JP 2004-42021 A

Hidemitsu Hayashi and Shuichi Kubo,「Computer simulation study on filtration of soot particles in diesel particulate filter」,Computers and Mathematics with Applications 55,オランダ国,ELSEVIER,2008,1450-1460頁Hidemitsu Hayashi and Shuichi Kubo, “Computer simulation study on filtration of soot particles in diesel particulate filter”, Computers and Mathematics with Applications 55, Netherlands, ELSEVIER, 2008, 1450-1460

触媒付DPFに使用される触媒には、排ガス中のCOやHCを酸化させ、その際に生じる酸化熱でパティキュレートを燃やす、「白金等の貴金属系の触媒」と、パティキュレートの酸化温度を低減させることにより比較的低温の条件でもパティキュレートを酸化により燃やす、「セリア等の酸化物系の触媒」との、2種類の触媒があることが分かっている。このうち、酸化物系の触媒を使用する場合には、DPFの温度を過度に高くする必要がなくなり、DPFの温度を過度に上昇させるための特別な構造を採用したり、特別な運転条件で運転する必要がなくなる。例えば、貴金属系の触媒を備える触媒付DPFを用いて、パティキュレートを除去するためには、DPFの温度を過度に上昇させる必要があり、このために排気ガス中に燃料を送り込んで、燃料の酸化によりDPFを温度上昇させることも考えられる。ただし、触媒付DPFに酸化物系の触媒を使用する場合には、このように排気ガス中に燃料を送り込む必要がないか、または燃料を送り込む場合でもその使用量を十分に少なくできる。   The catalyst used in the DPF with a catalyst oxidizes CO and HC in the exhaust gas, burns the particulates with the heat of oxidation generated at that time, "Platinum and other precious metal catalysts", and the oxidation temperature of the particulates It has been found that there are two types of catalysts, “oxide-based catalysts such as ceria”, which can burn particulates by oxidation even under relatively low temperature conditions. Among these, when an oxide catalyst is used, it is not necessary to excessively increase the temperature of the DPF, and a special structure for excessively increasing the temperature of the DPF is adopted, or under special operating conditions. No need to drive. For example, in order to remove particulates using a DPF with a catalyst having a noble metal catalyst, it is necessary to excessively raise the temperature of the DPF. For this purpose, fuel is fed into the exhaust gas, It is also conceivable to raise the temperature of the DPF by oxidation. However, when an oxide-based catalyst is used for the DPF with catalyst, it is not necessary to send the fuel into the exhaust gas as described above, or the amount used can be sufficiently reduced even when the fuel is sent.

このような酸化物系の触媒を触媒付DPFに使用する場合、触媒付DPFには、次の(1)〜(4)の4要件が重要なものとして要求される。
(1) パティキュレートと触媒との接触性が高い。
(2) パティキュレートの捕集効率が高い。
(3) パティキュレートが捕集された状態での圧力損失が低い。
(4) アッシュに対する耐性が高い。
When such an oxide catalyst is used for a DPF with a catalyst, the following four requirements (1) to (4) are required for the DPF with a catalyst.
(1) The contact property between the particulate and the catalyst is high.
(2) The particulate collection efficiency is high.
(3) Pressure loss is low when particulates are collected.
(4) High resistance to ash.

まず、(1)について説明すると、上記の2種類の触媒のうち、貴金属系の触媒の場合には、DPFの触媒を内部に有する触媒層本体の表面部分にパティキュレートが捕捉され、パティキュレートと触媒とが直接接触しない、すなわち接触性が低い場合でも、触媒から酸化熱が触媒層本体を介して、パティキュレートに伝達される。このため、パティキュレートを酸化により除去することができる。これに対して、酸化物系の触媒の場合には、DPFの触媒層本体の表面部分にパティキュレートが捕捉され、パティキュレートと触媒とが直接接触しない、または接触性が低い場合には、パティキュレートの酸化温度を低減させることができず、パティキュレートを酸化により有効に除去する効果が得られない。このため、酸化物系の触媒を使用する場合には、触媒層本体の内部にパティキュレートを十分に浸入させ、パティキュレートと触媒との接触面積を十分に高くすることが求められる。   First, (1) will be described. Of the two types of catalysts described above, in the case of a noble metal catalyst, the particulates are captured on the surface portion of the catalyst layer body having the DPF catalyst therein, and the particulates Even when the catalyst is not in direct contact, that is, when the contact property is low, the oxidation heat is transferred from the catalyst to the particulates through the catalyst layer body. For this reason, the particulates can be removed by oxidation. On the other hand, in the case of an oxide-based catalyst, particulates are trapped on the surface portion of the DPF catalyst layer body, and if the particulates and the catalyst are not in direct contact or the contact property is low, the particulates The oxidation temperature of the curate cannot be reduced, and the effect of effectively removing the particulate by oxidation cannot be obtained. For this reason, when an oxide catalyst is used, it is required that the particulates are sufficiently infiltrated into the catalyst layer body to sufficiently increase the contact area between the particulates and the catalyst.

また、(2)について、DPFは種々の国でパティキュレートの排出量の規制に対応することが求められており、特に欧州では厳しい排出粒子数規制の実施が予定されている。このため、DPFにおいて、パティキュレートの捕集効率が高いことが特に求められている。   Regarding (2), the DPF is required to comply with regulations on particulate emissions in various countries, and in Europe, strict regulations on the number of emitted particles are planned. For this reason, in the DPF, it is particularly required that the particulate collection efficiency is high.

また、(3)について、DPFでパティキュレートを捕集した状態での圧力損失が高いと車両の燃費が低下する要因となる。特に、近年は、省エネルギ促進の観点から燃費向上に対する要求が高くなっている。このため、DPFにおいて、パティキュレートが捕集された状態での圧力損失が低いことが特に求められている。   As for (3), if the pressure loss is high when the particulates are collected by the DPF, the fuel consumption of the vehicle will be reduced. In particular, in recent years, there has been a growing demand for improved fuel efficiency from the viewpoint of promoting energy saving. For this reason, in the DPF, it is particularly required that the pressure loss in a state where the particulates are collected is low.

また、(4)について、DPFにはアッシュが捕集され、蓄積されるが、触媒層本体のガス流入側表面等一部に過度に集中してアッシュが蓄積されると、圧力損失が高くなり、この面からもDPFを使用する車両の燃費が低下したり、DPFの寿命が低下する要因となる。このため、アッシュに対する耐性が高い、すなわちアッシュが蓄積してもDPFの性能低下を抑制できることが特に求められている。   As for (4), ash is collected and accumulated in the DPF, but if the ash is excessively concentrated on a part of the catalyst layer body such as the gas inflow side, the pressure loss increases. Also from this aspect, the fuel consumption of a vehicle using the DPF is reduced, or the life of the DPF is reduced. For this reason, it is particularly required that the resistance to ash is high, that is, it is possible to suppress a decrease in the performance of the DPF even if the ash accumulates.

ただし、上記の特許文献1から特許文献6に記載された従来技術では、上記の4要件を同時に高いレベルで実現することが難しい。次にその理由を説明する。まず、(1)について、パティキュレートと触媒との高接触性を実現するために、触媒がコーティングされた細孔中にパティキュレートを堆積させることが考えられる。ただし、上記特許文献1から特許文献4に記載された技術の場合、大多数のパティキュレートが、フィルタ壁のガス流入側表面に堆積し、ガス状の、またはパティキュレートに付着してフィルタ内に浸入するアッシュ成分がフィルタ壁表面を覆うように成長する可能性がある。このため、DPFの圧力損失が高くなるだけでなく、フィルタ内部に存在する触媒とパティキュレートとの接触性を高くできず、さらにアッシュ耐性も低くなる。このため、上記の(1)(3)(4)を実現することができない可能性があり、パティキュレートをフィルタ壁の流入側表面に過度に堆積させず、フィルタ壁の細孔内部に多く堆積させる構成の実現が望まれている。   However, in the prior art described in Patent Document 1 to Patent Document 6 described above, it is difficult to simultaneously realize the above four requirements at a high level. Next, the reason will be described. First, regarding (1), in order to achieve high contact between the particulates and the catalyst, it is conceivable to deposit the particulates in the pores coated with the catalyst. However, in the case of the techniques described in Patent Document 1 to Patent Document 4, most of the particulates accumulate on the gas inflow side surface of the filter wall and adhere to the gaseous or particulates in the filter. The intruding ash component may grow to cover the filter wall surface. For this reason, not only does the pressure loss of the DPF increase, but the contact property between the catalyst and the particulates present in the filter cannot be increased, and the ash resistance also decreases. For this reason, the above (1), (3), and (4) may not be realized, and particulates are not deposited excessively on the inflow side surface of the filter wall, and a large amount is accumulated in the pores of the filter wall. Realization of the configuration to be made is desired.

これに対して、特許文献1から特許文献4に記載された技術で、パティキュレートを細孔内に堆積させるためにフィルタ壁の平均細孔径と、気孔率とを単純に増大させることも考えられる。ただし、この場合には、DPFにおいて、パティキュレートの捕集効率が低下し、パティキュレートの排出数規制に抵触しやすくなる。例えば、上記特許文献2に記載されている技術では、フィルタ壁の出口に膜を設置することにより、捕集効率の低下を抑制しようとしている。ただし、この技術では、気孔率を増大させながら、DPFで要求される機械的強度を確保することは難しい。特許文献2に記載の技術で、DPFで要求される機械的強度を確保する場合、気孔率を低下させる必要があり、この場合には、パティキュレートがフィルタ壁内部に堆積することにより圧力損失が増大してしまう。   On the other hand, it is also conceivable to simply increase the average pore diameter and the porosity of the filter wall in order to deposit the particulates in the pores by the techniques described in Patent Literature 1 to Patent Literature 4. . However, in this case, in the DPF, the particulate collection efficiency is lowered, and it becomes easy to violate the regulation of the number of discharged particulates. For example, in the technique described in Patent Document 2 described above, a reduction in collection efficiency is suppressed by installing a membrane at the outlet of the filter wall. However, with this technique, it is difficult to ensure the mechanical strength required for the DPF while increasing the porosity. In the technique described in Patent Document 2, when the mechanical strength required for the DPF is ensured, the porosity needs to be reduced. In this case, the pressure loss is caused by the accumulation of particulates inside the filter wall. It will increase.

また、特許文献5,6に記載された技術では、DPFの排気ガス流入側の流路である、排気流入側セル空間に、触媒を担持させた粒子状物質を収納したフィルタ(特許文献5)、または、構造体のガス流れ方向に対して上流側に開放端を有する、排気ガス流入側の流路である、セル内に触媒成分を担持した無機繊維が配設された排ガス浄化触媒(文献6)が記載されている。このような技術では、パティキュレートをフィルタ壁の細孔に堆積させることなく、パティキュレートと触媒との接触性を高くできる可能性がないとはいえない。ただし、このようにパティキュレートと触媒との接触性を高くするためには、粒子状物質または無機繊維を微細かつ稠密にしてパティキュレートと触媒との接触面積を増大させる必要があり、この場合、粒子状物質または無機繊維が流路を閉塞して、DPFの圧力損失の増大を招いてしまう。すなわち、一般的に流路に沿って流れる排気ガスの流速がフィルタ壁を通過するガスの流速の100倍程度であることを勘案すると、DPFの圧力損失が大きく増大する可能性がある。このため、特許文献5,6に記載された技術では、上記の(1)(3)の要件である、パティキュレートと触媒との高い接触性と低圧力損失とを同時に実現することができない。   Further, in the techniques described in Patent Documents 5 and 6, a filter in which particulate matter carrying a catalyst is accommodated in an exhaust inflow side cell space, which is a flow path on the exhaust gas inflow side of the DPF (Patent Document 5). Or an exhaust gas purification catalyst having an open end on the upstream side with respect to the gas flow direction of the structure and a flow path on the exhaust gas inflow side, in which inorganic fibers carrying catalyst components are disposed in the cells (references) 6) is described. In such a technique, it cannot be said that there is no possibility that the contact property between the particulate and the catalyst can be improved without depositing the particulate on the pores of the filter wall. However, in order to increase the contact between the particulate and the catalyst in this way, it is necessary to increase the contact area between the particulate and the catalyst by making the particulate matter or inorganic fiber fine and dense. Particulate matter or inorganic fibers block the flow path, leading to an increase in the pressure loss of the DPF. That is, considering that the flow rate of exhaust gas flowing along the flow path is generally about 100 times the flow rate of gas passing through the filter wall, the pressure loss of the DPF may greatly increase. For this reason, with the techniques described in Patent Documents 5 and 6, it is impossible to simultaneously realize the high contactability between the particulates and the catalyst and the low pressure loss, which are the requirements of the above (1) and (3).

このように、上記の特許文献1から特許文献6の場合には、上記の4要件を同時に高いレベルで実現できる構成、特に、触媒付DPFに酸化物系の触媒を使用する場合に触媒とパティキュレートとの接触性を十分に高くできる構成は開示されていない。また、特許文献7には、触媒付DPFのための触媒活性の高いウォッシュコートとして銀及び/またはコバルト安定化セリアを使用することが記載されているが、触媒とパティキュレートとの接触性を十分に高くできる構造を含んで、上記の4要件を同時に高いレベルで実現できる構成は開示されていない。   As described above, in the case of Patent Document 1 to Patent Document 6 described above, the above four requirements can be realized at a high level at the same time, particularly when an oxide-based catalyst is used for the DPF with catalyst. A configuration that can sufficiently increase the contact with the curate is not disclosed. Patent Document 7 describes that silver and / or cobalt-stabilized ceria is used as a wash coat having high catalytic activity for a DPF with a catalyst, but sufficient contact between the catalyst and the particulates is ensured. In other words, a configuration capable of simultaneously realizing the above four requirements at a high level is not disclosed.

本発明の触媒付パティキュレートフィルタは、触媒として酸化物系の触媒を使用する場合に求められる、上記の4要件を同時に高いレベルで実現できる構成を実現することを目的とする。   The particulate filter with catalyst of the present invention aims to realize a configuration that can simultaneously realize the above four requirements at a high level, which are required when an oxide catalyst is used as a catalyst.

本発明に係る触媒付パティキュレートフィルタは、排気ガスが通過可能で、それぞれ細孔を有する、ガス流入側の触媒層とガス流出側の担体層とから構成される二層構造を有するフィルタ隔壁を含み、前記触媒層は、さらに、排気微粒子の酸化温度を低減させる酸化物系の触媒成分が含有されており、かつ、前記触媒層の平均細孔径が前記担体層の平均細孔径よりも大きく、かつ、前記フィルタ隔壁に排気ガスを通過させた場合に、少なくとも排気微粒子の堆積開始時には、前記触媒層と前記担体層との境界付近に排気微粒子が前記フィルタ隔壁中の他の部分よりも最も多く堆積するように、前記触媒層において、前記触媒層中の全細孔体積におけるある孔径以上の全細孔の体積の割合を設定していることを特徴とする触媒付パティキュレートフィルタである。   The particulate filter with a catalyst according to the present invention has a filter partition wall having a two-layer structure that is configured to include a catalyst layer on the gas inflow side and a carrier layer on the gas outflow side, through which exhaust gas can pass. The catalyst layer further contains an oxide-based catalyst component that reduces the oxidation temperature of the exhaust particulates, and the average pore size of the catalyst layer is larger than the average pore size of the support layer, In addition, when exhaust gas is allowed to pass through the filter partition, at least at the start of the deposition of exhaust particulate, the exhaust particulate is the largest in the vicinity of the boundary between the catalyst layer and the carrier layer than the other portions in the filter partition. In the catalyst layer, a proportion of the volume of all pores having a pore diameter equal to or larger than a certain pore diameter in the total pore volume in the catalyst layer is set so as to be deposited. It is a filter.

また、本発明に係る触媒付パティキュレートフィルタは、排気ガスが通過可能で、それぞれ細孔を有する、ガス流入側の触媒層とガス流出側の担体層とから構成される二層構造を有するフィルタ隔壁を含み、前記触媒層は、さらに、排気微粒子の酸化温度を低減させる酸化物系の触媒成分が含有されており、かつ、前記触媒層の平均細孔径が前記担体層の平均細孔径よりも大きく、かつ、前記触媒層において、前記触媒層中の全細孔体積における孔径30μm以上の全細孔の体積の割合を25%以上と設定していることを特徴とする触媒付パティキュレートフィルタである。   Further, the particulate filter with catalyst according to the present invention is a filter having a two-layer structure that includes a catalyst layer on the gas inflow side and a carrier layer on the gas outflow side, through which exhaust gas can pass and each has pores. The catalyst layer further includes an oxide-based catalyst component that reduces the oxidation temperature of the exhaust particulates, and the catalyst layer has an average pore size that is greater than the average pore size of the carrier layer. A particulate filter with catalyst, characterized in that the ratio of the volume of all pores having a pore diameter of 30 μm or more to the total pore volume in the catalyst layer is 25% or more. is there.

また、本発明に係る触媒付パティキュレートフィルタにおいて、好ましくは、触媒成分は、セリアまたはペロプスカイトである。   In the particulate filter with catalyst according to the present invention, preferably, the catalyst component is ceria or perovskite.

また、本発明に係る触媒付パティキュレートフィルタにおいて、好ましくは、複数の有底状の孔部であって、隣り合う孔部同士で長さ方向の異なる側に底部を有する孔部と、隣り合う孔部同士の間に設けられたセル壁とを備え、セル壁がフィルタ隔壁である。   Further, in the particulate filter with catalyst according to the present invention, preferably, the plurality of bottomed holes are adjacent to the holes having the bottoms on the different sides in the length direction between the adjacent holes. A cell wall provided between the holes, and the cell wall is a filter partition wall.

本発明に係る触媒付パティキュレートフィルタによれば、触媒として酸化物系の触媒を使用する場合に求められる4要件である、パティキュレートと触媒との高接触性と、パティキュレートの高捕集率と、低圧力損失と、高アッシュ耐性とを、同時に高いレベルで実現できる。   According to the particulate filter with catalyst according to the present invention, there are four requirements required when an oxide-based catalyst is used as the catalyst, high contact between the particulate and the catalyst, and high particulate collection rate. And low pressure loss and high ash resistance can be realized at a high level at the same time.

本発明の実施の形態の1例のパティキュレートフィルタの全体構成を示す部分切断略斜視図である。1 is a partially cut schematic perspective view showing an entire configuration of a particulate filter as an example of an embodiment of the present invention. 図1に示すフィルタにおいて、排気ガスが孔部とフィルタ隔壁とを通過する様子を示す略断面図である。In the filter shown in FIG. 1, it is a schematic sectional drawing which shows a mode that exhaust gas passes a hole and a filter partition. 図1に示すフィルタを構成するフィルタ隔壁を模式的に示す断面図である。It is sectional drawing which shows typically the filter partition which comprises the filter shown in FIG. 図3において、パティキュレートである粒子状物質がフィルタの内部に堆積する様子を示す図である。In FIG. 3, it is a figure which shows a mode that the particulate matter which is a particulate deposits inside a filter. 本発明による効果を確認できたシミュレーションで用いた比較例1及び比較例2において、フィルタ隔壁のガス流入側表面からガス流出側へ遠ざかる距離と、フィルタ隔壁の気孔率との関係を示す図である。It is a figure which shows the relationship between the distance which goes away from the gas inflow side surface of a filter partition to the gas outflow side, and the porosity of a filter partition in the comparative example 1 and the comparative example 2 which were used in the simulation which has confirmed the effect by this invention. . 本発明による効果を確認できたシミュレーションで用いた実施例1から実施例3において、フィルタ隔壁のガス流入側表面からガス流出側へ遠ざかる距離と、フィルタ隔壁の気孔率との関係を示す図である。In Example 1- Example 3 used in the simulation which has confirmed the effect by this invention, it is a figure which shows the relationship between the distance which goes away from the gas inflow side surface of a filter partition to the gas outflow side, and the porosity of a filter partition. . 本発明による効果を確認できたシミュレーションに用いた、実施例1及び比較例2の、細孔径の分布を示す図である。It is a figure which shows distribution of the pore diameter of Example 1 and Comparative Example 2 used for the simulation which has confirmed the effect by this invention. 本発明による効果を確認できたシミュレーションに用いた、実施例1から実施例3の、細孔径の分布を示す図である。It is a figure which shows distribution of the pore diameter of Example 1- Example 3 used for the simulation which has confirmed the effect by this invention. 本発明による効果を確認できたシミュレーション結果において、比較例1のフィルタでの粒子状物質の堆積粒子数を、粒子状物質が堆積した、フィルタ隔壁のガス流入側表面からガス流出側へ遠ざかる距離との関係で示す図である。In the simulation result in which the effect of the present invention has been confirmed, the number of particulate matter deposited on the filter of Comparative Example 1 is the distance from the gas inflow side surface of the filter partition wall to the gas outflow side where the particulate matter is deposited. FIG. 本発明による効果を確認できたシミュレーション結果において、比較例2のフィルタでの粒子状物質の堆積粒子数を、粒子状物質が堆積した、フィルタ隔壁のガス流入側表面からガス流出側へ遠ざかる距離との関係で示す図である。In the simulation result in which the effect of the present invention has been confirmed, the number of particles deposited in the filter of Comparative Example 2 is the distance from the gas inlet side surface of the filter partition wall to the gas outlet side where the particulate substances are deposited. FIG. 本発明による効果を確認できたシミュレーション結果において、実施例1のフィルタでの粒子状物質の堆積粒子数を、粒子状物質が堆積した、フィルタ隔壁のガス流入側表面からガス流出側へ遠ざかる距離との関係で示す図である。In the simulation result in which the effect of the present invention can be confirmed, the number of particulate matter deposited on the filter of Example 1 is the distance from the gas inflow side surface of the filter partition wall to the gas outflow side where the particulate matter is deposited. FIG. 本発明による効果を確認できたシミュレーション結果において、実施例2のフィルタでの粒子状物質の堆積粒子数を、粒子状物質が堆積した、フィルタ隔壁のガス流入側表面からガス流出側へ遠ざかる距離との関係で示す図である。In the simulation result in which the effect of the present invention was confirmed, the number of particulate matter deposited on the filter of Example 2 was determined as the distance from the gas inlet side surface of the filter partition wall to the gas outlet side where the particulate matter was deposited. FIG. 本発明による効果を確認できたシミュレーション結果において、実施例3のフィルタでの粒子状物質の堆積粒子数を、粒子状物質が堆積した、フィルタ隔壁のガス流入側表面からガス流出側へ遠ざかる距離との関係で示す図である。In the simulation result in which the effect of the present invention was confirmed, the number of particulate matter deposited on the filter of Example 3 is the distance from the gas inflow side surface of the filter partition wall to the gas outflow side where the particulate matter is deposited. FIG. 本発明による効果を確認できたシミュレーション結果において、実施例1及び比較例3の捕集効率を、粒子状物質の単位容積中の堆積量との関係で示す図である。In the simulation result which has confirmed the effect by this invention, it is a figure which shows the collection efficiency of Example 1 and Comparative Example 3 by the relationship with the deposition amount in the unit volume of a particulate matter. 本発明による効果を確認できたシミュレーション結果において、実施例1及び比較例3の圧力損失を、粒子状物質の単位容積中の堆積量との関係で示す図である。In the simulation result which has confirmed the effect by this invention, it is a figure which shows the pressure loss of Example 1 and Comparative Example 3 by the relationship with the deposition amount in the unit volume of a particulate matter.

以下において、図面を用いて本発明に係る実施の形態につき詳細に説明する。図1は、本発明の実施の形態の1例のパティキュレートフィルタの全体構成を示す部分切断略斜視図である。図2は、図1に示すフィルタにおいて、排気ガスが孔部とフィルタ隔壁とを通過する様子を示す略断面図である。図3は、図1に示すフィルタを構成するフィルタ隔壁を模式的に示す断面図である。図4は、図3において、パティキュレートである粒子状物質がフィルタの内部に堆積する様子を示す図である。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a partially cut schematic perspective view showing the entire configuration of a particulate filter as an example of an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view showing how the exhaust gas passes through the hole and the filter partition wall in the filter shown in FIG. FIG. 3 is a sectional view schematically showing a filter partition wall constituting the filter shown in FIG. FIG. 4 is a diagram showing a state where particulate matter as particulates in FIG. 3 is deposited inside the filter.

図1、図2に示すように、本実施の形態の触媒付パティキュレートフィルタ10は、図示しない内燃機関であるディーゼルエンジンの排気ガス中に含まれる排気微粒子である、パティキュレート(粒子状物質)及びアッシュ等の燃焼残留物を捕集し、パティキュレートを酸化、すなわち燃焼により除去するために使用する。パティキュレートフィルタ10は、複数の有底状のガス上流側孔部12及びガス下流側孔部13を有するハニカム状に形成しており、各孔部12,13は、セル壁であるフィルタ隔壁14によって互いに隔てられている。隣り合う孔部12,13同士で、長さ方向(図1、図2の左右方向)に関して底部16が位置する側を異ならせている。このため、パティキュレートフィルタ10の端面は、市松状となる。フィルタ隔壁14は、排気ガスを通過可能とするが、底部16は、排気ガスを通過不能とする封止栓として機能する。   As shown in FIGS. 1 and 2, the particulate filter with catalyst 10 of the present embodiment is a particulate (particulate material) that is exhaust particulate contained in exhaust gas of a diesel engine that is an internal combustion engine (not shown). And combustion residues such as ash are collected and used to remove particulates by oxidation, ie combustion. The particulate filter 10 is formed in a honeycomb shape having a plurality of bottomed gas upstream holes 12 and gas downstream holes 13, and each of the holes 12, 13 is a filter partition wall 14 that is a cell wall. Separated from each other by The side where the bottom part 16 is located in the length direction (left and right direction in FIGS. 1 and 2) is different between the adjacent holes 12 and 13. For this reason, the end surface of the particulate filter 10 has a checkered pattern. The filter partition 14 allows the exhaust gas to pass through, but the bottom 16 functions as a sealing plug that prevents the exhaust gas from passing therethrough.

パティキュレートフィルタ10は、ディーゼルエンジンの排気管の途中に装備された、すなわち取り付けられた状態で使用する。この状態で、図1、図2の矢印α方向に流れるディーゼルエンジンの排気ガスは、一部の孔部である、ガス上流側孔部12の開口端からパティキュレートフィルタ10内に送られ、フィルタ隔壁14に設けられた細孔を通過し、フィルタ隔壁14を通じて隣り合う残部の孔部である、ガス下流側孔部13内に送られる。ガス下流側孔部13に送られた排気ガスは、ガス下流側孔部13の開口端を通じてパティキュレートフィルタ10外に排出される。排気ガス中に含まれるパティキュレート及びアッシュ等の燃焼残留物は、フィルタ隔壁14を通過しにくい。このため、パティキュレートフィルタ10は、少なくともパティキュレートを捕集して、パティキュレートフィルタ10を通過する排気ガスを浄化する。   The particulate filter 10 is used in the state of being installed, that is, attached to the exhaust pipe of the diesel engine. In this state, the exhaust gas of the diesel engine flowing in the direction of the arrow α in FIGS. 1 and 2 is sent into the particulate filter 10 from the opening end of the gas upstream side hole 12 which is a part of the hole. The gas passes through the pores provided in the partition wall 14 and is sent through the filter partition wall 14 into the gas downstream side hole portion 13 which is the remaining hole portion adjacent thereto. The exhaust gas sent to the gas downstream hole 13 is discharged out of the particulate filter 10 through the open end of the gas downstream hole 13. Combustion residues such as particulates and ash contained in the exhaust gas hardly pass through the filter partition wall 14. For this reason, the particulate filter 10 collects at least particulates and purifies the exhaust gas passing through the particulate filter 10.

また、本実施の形態では、フィルタ隔壁14に、パティキュレートの酸化温度を低減させる酸化物系の触媒成分を含有させている。すなわち、図3に示すように、フィルタ隔壁14は、図3の矢印βで表すガス流れ方向に関して、上流側、すなわちガス流入側の触媒層18と、下流側、すなわちガス流出側の担体層20とから構成される二層構造を有する。触媒層18及び担体層20は、それぞれ内部を三次元網目状に貫通させる多数の細孔22(担体層20の場合は図示を省略する。)を有する。触媒層18は、触媒層本体24に存在する多数の細孔22部分に、排気微粒子の酸化温度を低減させる酸化物系の触媒(図示せず)を担持することで、酸化物系の触媒成分を含有させている。   Further, in the present embodiment, the filter partition 14 contains an oxide-based catalyst component that reduces the oxidation temperature of the particulates. That is, as shown in FIG. 3, the filter partition wall 14 has an upstream side, that is, a gas inflow side catalyst layer 18, and a downstream side, that is, a gas outflow side carrier layer 20, with respect to the gas flow direction represented by the arrow β in FIG. Has a two-layer structure. Each of the catalyst layer 18 and the support layer 20 has a large number of pores 22 (not shown in the case of the support layer 20) that penetrate the inside in a three-dimensional network. The catalyst layer 18 supports an oxide-based catalyst component by supporting an oxide-based catalyst (not shown) that reduces the oxidation temperature of exhaust particulates in a large number of pores 22 existing in the catalyst layer body 24. Is contained.

触媒層本体24は、セラミックス等により構成し、フィルタ隔壁14に排気ガスを通過させた場合に、少なくともパティキュレートの堆積開始時には、触媒層18と担体層20との境界付近にパティキュレートがフィルタ隔壁14中の他の部分よりも最も多く堆積するように、触媒層18において、触媒層18中の全細孔22体積におけるある孔径以上の全細孔22の体積の割合を設定している。また、本実施の形態では、孔径30μmの細孔22を触媒層18中の全細孔22の体積の25%以上含んでいる。すなわち、触媒層18中の全細孔22体積における、孔径30μm以上の全細孔22の体積の割合を25%以上と設定している。また、例えば、触媒層本体24の気孔率は、30〜95%程度、好ましくは50〜94%程度とする。ここで、触媒層本体24の気孔率とは、触媒層本体24の細孔22全体の容積と、触媒層本体24の見かけ容積との百分率である。   The catalyst layer main body 24 is made of ceramics or the like, and when exhaust gas is passed through the filter partition 14, at least at the start of particulate deposition, the particulates are near the boundary between the catalyst layer 18 and the carrier layer 20. In the catalyst layer 18, the ratio of the volume of all the pores 22 that is equal to or larger than a certain pore diameter in the total pore 22 volume in the catalyst layer 18 is set so as to be deposited more than the other portions in 14. Further, in the present embodiment, the pores 22 having a pore diameter of 30 μm include 25% or more of the volume of all the pores 22 in the catalyst layer 18. That is, the ratio of the volume of all the pores 22 having a pore diameter of 30 μm or more to the total volume of 22 pores in the catalyst layer 18 is set to 25% or more. Further, for example, the porosity of the catalyst layer body 24 is about 30 to 95%, preferably about 50 to 94%. Here, the porosity of the catalyst layer body 24 is a percentage of the entire volume of the pores 22 of the catalyst layer body 24 and the apparent volume of the catalyst layer body 24.

酸化物系の触媒成分は、触媒層本体24の内部の細孔22部分にコーティングし、担持させている。酸化物系の触媒成分は、例えば、銀(Ag)とコバルト(Co)との少なくとも1つで安定化されたセリア(CeO2)である。また、触媒成分は、これ以外に、希土類金属の酸化物の少なくとも1つでセリウムが一部置換された安定化セリア、または0.02〜0.9のx値と、任意のl値及びy値とをもつペロプスカイト(AgxLal・xMnOy)等を用いることもできる。 The oxide-based catalyst component is coated and supported on the pores 22 inside the catalyst layer body 24. The oxide-based catalyst component is, for example, ceria (CeO 2 ) stabilized with at least one of silver (Ag) and cobalt (Co). In addition, the catalyst component may be stabilized ceria in which cerium is partially substituted with at least one rare earth metal oxide, or an x value of 0.02 to 0.9, an arbitrary l value, and y A perovskite having a value (AgxLal · xMnOy) or the like can also be used.

担体層20は、コーディエライト、多孔質炭化珪素(SiC)等のセラミックス等の多孔質材料により構成している。担体層20の平均細孔径は、5〜50μmで、好ましくは、10〜20μmとするが、触媒層18の平均細孔径は、担体層20の平均細孔径よりも大きいという条件を満たすようにする。   The carrier layer 20 is made of a porous material such as cordierite and ceramics such as porous silicon carbide (SiC). The average pore diameter of the support layer 20 is 5 to 50 μm, and preferably 10 to 20 μm, but the condition that the average pore diameter of the catalyst layer 18 is larger than the average pore diameter of the support layer 20 is satisfied. .

なお、触媒層18に、上記の特許文献1に記載された構成の場合と同様に、その表面から担体層20の表面まで連通する連通孔を有するようにすることもできる。例えば、連通孔の細孔径は、10〜60μmとし、その平均細孔径を30μm程度とすることもできる。この場合、多数の細孔を有する担体層20の表面に、セラミック粉末と連通孔形成材との混合物を被覆し、次いで混合物を加熱することで、セラミック粉末を焼結して触媒層18を担体層20の表面に形成するとともに、連通孔形成材を消失させて触媒層18にその表面から担体層20の表面まで連通する連通孔を形成することもできる。この場合、触媒層18に酸化物系触媒を担持させる。また、連通孔形成材として、例えばブタンガスを熱可塑性樹脂に封入した松本油脂製薬社製のマイクロスフウェア等のガス発生物質を用いることもできる。この場合、加熱によりガス発生物質からガスが発生すると、そのガスを触媒層18の外方に逃がすことで、触媒層18にその表面から担体層20まで連通される連通孔を形成できる。また、連通孔形成材として、その大きさが触媒層18の厚みと同じか、または触媒層18の厚みよりも大きい、カーボン、樹脂、ワックス等の可燃性物質を使用してもよい。可燃性物質が消失することにより、触媒層18の表面から担体層20まで連通する連通孔を形成できる。なお、このように触媒層18に連通孔を形成する場合の気孔率とは、連通孔及び微孔を含む細孔と触媒層本体24の見かけ容積との百分率となる。   The catalyst layer 18 may have a communication hole that communicates from the surface thereof to the surface of the carrier layer 20 as in the case of the configuration described in Patent Document 1. For example, the pore diameter of the communication holes can be 10 to 60 μm, and the average pore diameter can be about 30 μm. In this case, the surface of the support layer 20 having a large number of pores is coated with a mixture of the ceramic powder and the communication hole forming material, and then the mixture is heated, so that the ceramic powder is sintered and the catalyst layer 18 is supported on the support. In addition to being formed on the surface of the layer 20, the communication hole forming material can be eliminated to form a communication hole in the catalyst layer 18 that communicates from the surface to the surface of the carrier layer 20. In this case, the oxide catalyst is supported on the catalyst layer 18. In addition, as the communication hole forming material, for example, a gas generating material such as Microsphere manufactured by Matsumoto Yushi Seiyaku Co., Ltd. in which butane gas is sealed in a thermoplastic resin can be used. In this case, when gas is generated from the gas generating material by heating, the gas is released to the outside of the catalyst layer 18, whereby a communication hole communicating from the surface to the carrier layer 20 can be formed in the catalyst layer 18. Further, as the communication hole forming material, a flammable substance such as carbon, resin, wax or the like having the same size as the thickness of the catalyst layer 18 or larger than the thickness of the catalyst layer 18 may be used. By the disappearance of the combustible substance, a communication hole communicating from the surface of the catalyst layer 18 to the support layer 20 can be formed. The porosity in the case where the communication holes are formed in the catalyst layer 18 as described above is a percentage of the pores including the communication holes and the micropores and the apparent volume of the catalyst layer body 24.

このような本実施の形態の触媒付パティキュレートフィルタは、次のように作用する。すなわち、パティキュレートフィルタ10(図1)をディーゼルエンジンの排気管の途中に取り付けた状態でパティキュレートフィルタ10に排気ガスを通過させると、図4に示すように、排気ガスがフィルタ隔壁14を矢印β方向に流れる。この場合に、排気ガス中に浮遊するパティキュレートである粒子状物質(PM)26がフィルタ隔壁14を構成する触媒層18内に流入し、担体層20のガス流入側表面で多くがさえぎられ、触媒層18の奥側に堆積する。フィルタ隔壁14に堆積する粒子状物質26が少量である間は、触媒層18の内部を通って担体層20の表面付近で捕集される。ただし、粒子状物質26は後から流入する粒子状物質26を捕獲することが知られており、粒子状物質26の量が多くなるのにしたがって、粒子状物質26は担体層20の表面付近まで到達できず、触媒層18の内部中央寄りに堆積する。そして、この状態で、触媒層18にコーティングされた触媒成分と粒子状物質26とが高い接触率で接触するようになる。この結果、触媒成分が粒子状物質26の酸化温度を低減することで、比較的低い温度で粒子状物質26が酸化、すなわち燃焼し、フィルタ隔壁14から粒子状物質26が除去される。   Such a particulate filter with catalyst according to the present embodiment operates as follows. That is, when exhaust gas is passed through the particulate filter 10 with the particulate filter 10 (FIG. 1) attached in the middle of the exhaust pipe of the diesel engine, the exhaust gas passes through the filter partition wall 14 as shown in FIG. It flows in the β direction. In this case, particulate matter (PM) 26, which is a particulate floating in the exhaust gas, flows into the catalyst layer 18 constituting the filter partition wall 14, and is largely blocked on the gas inflow side surface of the carrier layer 20, Deposited on the back side of the catalyst layer 18. While the amount of particulate matter 26 deposited on the filter partition wall 14 is small, it passes through the inside of the catalyst layer 18 and is collected near the surface of the support layer 20. However, it is known that the particulate matter 26 captures the particulate matter 26 that flows in later, and as the amount of the particulate matter 26 increases, the particulate matter 26 reaches the vicinity of the surface of the carrier layer 20. It cannot reach and deposits near the inner center of the catalyst layer 18. In this state, the catalyst component coated on the catalyst layer 18 and the particulate matter 26 come into contact with each other with a high contact rate. As a result, the catalyst component reduces the oxidation temperature of the particulate matter 26, so that the particulate matter 26 is oxidized, ie, burned, at a relatively low temperature, and the particulate matter 26 is removed from the filter partition 14.

このような本実施の形態の触媒付パティキュレートフィルタによれば、触媒として酸化物系の触媒成分を使用する場合に求められる4要件である、パティキュレートである粒子状物質26と触媒成分との高接触性と、粒子状物質26の高捕集率と、低圧力損失と、高アッシュ耐性とを、同時に高いレベルで実現できる。まず、粒子状物質26と触媒成分との高接触性に関しては、後で詳しく説明するように、粒子状物質26の多くを触媒層18の内部に堆積させることができるため、触媒層18の内部に設けられる触媒成分と粒子状物質26との接触性を高くできる。このため、パティキュレートフィルタ10に堆積した粒子状物質26の酸化温度を低減させることができ、フィルタ10の再生に燃料を使用し、フィルタ10の温度を上昇させる場合でもその燃料の使用量を少なくでき、燃費の向上を図れる。   According to such a particulate filter with a catalyst of the present embodiment, the particulate matter 26 that is a particulate and the catalyst component, which are four requirements required when an oxide-based catalyst component is used as a catalyst, are provided. High contactability, high collection rate of the particulate matter 26, low pressure loss, and high ash resistance can be realized at a high level at the same time. First, regarding the high contact property between the particulate matter 26 and the catalyst component, as described later in detail, most of the particulate matter 26 can be deposited inside the catalyst layer 18. The contact property between the catalyst component and the particulate material 26 can be increased. For this reason, the oxidation temperature of the particulate matter 26 deposited on the particulate filter 10 can be reduced, and even when the fuel is used to regenerate the filter 10 and the temperature of the filter 10 is increased, the amount of fuel used is reduced. This can improve fuel efficiency.

また、触媒層18の内部に浸入した粒子状物質26が、触媒層18の気孔率よりも小さい気孔率を有する担体層20の表面部分で多く堆積するため、粒子状物質26の捕集効率を高くできる。このため、例えば、欧州で実施が予定されている厳しい排出粒子数規制に適合可能なフィルタ10をより有効に実現できる。また、本実施の形態のように触媒層18の気孔率を高くしても、フィルタ隔壁14が担体層20との二層構造を有するため、フィルタ10の十分な強度の確保を図れる。   In addition, since the particulate matter 26 that has entered the inside of the catalyst layer 18 is deposited on the surface portion of the carrier layer 20 having a porosity smaller than the porosity of the catalyst layer 18, the collection efficiency of the particulate matter 26 is improved. Can be high. For this reason, for example, the filter 10 which can be adapted to the stringent emission particle number regulation scheduled to be implemented in Europe can be realized more effectively. Further, even if the porosity of the catalyst layer 18 is increased as in the present embodiment, the filter partition 14 has a two-layer structure with the carrier layer 20, so that sufficient strength of the filter 10 can be ensured.

また、粒子状物質26が触媒層18のガス流入側表面に過度に集中して堆積することがなくなり、触媒層18の厚さ方向である、ガス通過方向(図3、図4の矢印β方向)の広い領域に分散されるため、フィルタ10の圧力損失を低くでき、その結果、フィルタ10を用いる車両の燃費のさらなる向上を図れる。   Further, the particulate matter 26 is not excessively concentrated and deposited on the gas inflow side surface of the catalyst layer 18, and the gas passage direction (the direction of arrow β in FIGS. 3 and 4), which is the thickness direction of the catalyst layer 18. ) Is distributed over a wide area, the pressure loss of the filter 10 can be reduced, and as a result, the fuel consumption of the vehicle using the filter 10 can be further improved.

さらに粒子状物質26と一緒に図示しないアッシュも触媒層18の内部に流入するため、高アッシュ耐性、すなわち、アッシュによる圧力損失の上昇を抑制し、フィルタ10を使用する車両の燃費の向上を図れるとともに、フィルタ10の寿命の向上を図れるという、アッシュが蓄積してもフィルタ10の性能低下を抑制できるという効果を得られる。   Further, ash (not shown) together with the particulate matter 26 also flows into the catalyst layer 18, so that high ash resistance, that is, an increase in pressure loss due to ash can be suppressed, and fuel consumption of a vehicle using the filter 10 can be improved. At the same time, it is possible to improve the life of the filter 10, such as an effect that the deterioration in the performance of the filter 10 can be suppressed even if ash accumulates.

このような本実施の形態の構成に対して、上記の特許文献1から特許文献3には、図3に示した構成と一部が似たフィルタ隔壁の構造が記載されている。ただし、これらの文献には、触媒層の内部に粒子状物質を堆積させるためのフィルタ隔壁が備えるべき有効な諸元は開示されていない。これに対して、本発明者は、種々のシミュレーションを行い、触媒層18の内部に粒子状物質26を堆積させるためのフィルタ隔壁14が備えるべき有効な諸元を考え付き、それに基づいて本発明を発明するに至った。   In contrast to the configuration of the present embodiment, Patent Literature 1 to Patent Literature 3 described above describe a structure of a filter partition that is partially similar to the configuration shown in FIG. However, these documents do not disclose effective specifications that a filter partition for depositing particulate matter inside the catalyst layer should have. On the other hand, the present inventor has performed various simulations to come up with effective specifications that the filter partition 14 for depositing the particulate matter 26 in the catalyst layer 18 should have, and based on this, the present invention can be considered. It came to invent.

次に、本発明による効果を確認できたシミュレーションの結果を説明する。このシミュレーションは、次の表1及び図5から図8に示す諸元をそれぞれ有するフィルタ隔壁14を備え、図1に示した構成を有するパティキュレートフィルタ10である、比較例1及び比較例2と実施例1から実施例3を用いて行った。なお、以下の説明においては、図1から図4に示した要素と同一部分または対応部分には同一符号を付して説明する。   Next, the result of the simulation which has confirmed the effect by this invention is demonstrated. This simulation includes the filter partition 14 having the specifications shown in the following Table 1 and FIGS. 5 to 8, and the particulate filter 10 having the configuration shown in FIG. This was carried out using Examples 1 to 3. In the following description, the same or corresponding parts as those shown in FIGS. 1 to 4 are denoted by the same reference numerals.

Figure 2010194430
Figure 2010194430

表1中、比較例1,2は、本発明の範囲から外れる諸元を有するフィルタで、実施例1から実施例3は、本発明の範囲に属する諸元を有するフィルタ10の、触媒層18と担体層20とでの平均細孔径及び気孔率分布と、触媒層18での孔径30μm以上の細孔22の、触媒層18中の全細孔22体積に対する割合とを示している。   In Table 1, Comparative Examples 1 and 2 are filters having specifications outside the scope of the present invention, and Examples 1 to 3 are the catalyst layer 18 of the filter 10 having specifications that fall within the scope of the present invention. The average pore diameter and the porosity distribution in the carrier layer 20 and the ratio of the pores 22 having a pore diameter of 30 μm or more in the catalyst layer 18 to the total pore volume in the catalyst layer 18 are shown.

また、図5では、比較例1及び比較例2での、触媒層18と担体層20とにおける気孔率の分布を、図6では、実施例1、実施例2及び実施例3での、触媒層18と担体層20とにおける気孔率の分布を、それぞれ示している。図5、図6において、担体層20の諸元はすべて同一とし、その気孔率は全体で66.4%とし、フィルタ隔壁14のガス流入側表面からガス流出側へ遠ざかる距離(以下、単に「隔壁ガス流入側表面からの距離」とする。)についての気孔率は60〜70%とした。図5、図6に示した分布から分かるように、単に気孔率の分布だけを見ると、実施例1から実施例3と、比較例1及び比較例2とでは、顕著な違いは表れていない。なお、図5、図6から明らかなように、担体層20のガス流入側表面は、「隔壁ガス流入側表面からの距離」で150μm程度の位置にある。   5 shows the distribution of the porosity in the catalyst layer 18 and the carrier layer 20 in Comparative Example 1 and Comparative Example 2, and FIG. 6 shows the catalyst in Examples 1, 2 and 3 in FIG. The porosity distributions in the layer 18 and the carrier layer 20 are shown respectively. 5 and 6, all the specifications of the carrier layer 20 are the same, the porosity is 66.4% as a whole, and the distance from the gas inflow side surface of the filter partition wall 14 to the gas outflow side (hereinafter simply “ The porosity of the “distance from the partition gas inflow side surface” was 60 to 70%. As can be seen from the distributions shown in FIGS. 5 and 6, when only the porosity distribution is observed, there is no significant difference between Examples 1 to 3 and Comparative Examples 1 and 2. . As is clear from FIGS. 5 and 6, the gas inflow side surface of the carrier layer 20 is at a position of about 150 μm in “distance from the partition wall gas inflow side surface”.

一方、図7は、実施例1及び比較例2での、各細孔径についての細孔径割合、すなわち全細孔22に対する細孔径の分布を示している。図7から明らかなように、比較例2は実施例1に比べて30μm以下の細孔径を有する細孔22が多く存在し、逆に30μm以上の細孔22の割合については、実施例1の場合が比較例2の場合よりも多く存在する。図8では、実施例1から実施例3での、各細孔径についての細孔径割合を示している。図8から明らかなように、図7の場合と異なり、実施例1から実施例3で、細孔径割合が最大となる細孔径(13μm程度)での絶対値自体は異なるが、それぞれの細孔径分布の傾向は、実施例1から実施例3でほぼ同様となっている。すなわち、実施例1から実施例3のいずれの場合も、30μm以上の細孔径を有する細孔22の割合は、図6に示した比較例2の場合に比べて高くなっている。また、上記の表1に、細孔径30μm以上の細孔22が全細孔22体積に占める割合を示しているが、実施例1から実施例3では、細孔径30μm以上の細孔22の、全細孔22体積に占める割合が25%以上であるのに対して、比較例1及び比較例2では、細孔径30μm以上の細孔22の、全細孔22体積に占める割合が25%未満である。   On the other hand, FIG. 7 shows the pore diameter ratio for each pore diameter in Example 1 and Comparative Example 2, that is, the distribution of pore diameters for all pores 22. As is clear from FIG. 7, the comparative example 2 has more pores 22 having a pore diameter of 30 μm or less than the example 1, and conversely, the ratio of the pores 22 of 30 μm or more is the same as that of the example 1. There are more cases than in Comparative Example 2. FIG. 8 shows the pore diameter ratio for each pore diameter in Examples 1 to 3. As is clear from FIG. 8, unlike the case of FIG. 7, the absolute value itself at the pore diameter (about 13 μm) at which the pore diameter ratio becomes maximum is different between Example 1 to Example 3, but each pore diameter is different. The distribution tendency is almost the same in the first to third embodiments. That is, in any of Examples 1 to 3, the proportion of pores 22 having a pore diameter of 30 μm or more is higher than that in Comparative Example 2 shown in FIG. In Table 1 above, the ratio of the pores 22 having a pore diameter of 30 μm or more to the total pore 22 volume is shown. In Examples 1 to 3, the pores 22 having a pore diameter of 30 μm or more Whereas the proportion of the total pores 22 in the volume is 25% or more, in Comparative Example 1 and Comparative Example 2, the proportion of the pores 22 having a pore diameter of 30 μm or more in the total pores 22 volume is less than 25%. It is.

シミュレーションは、このような諸元を有する実施例1から実施例3と比較例1,2のパティキュレートフィルタ10を用いて行った。シミュレーションを行う場合、まず基本となる実際のパティキュレートフィルタ10をX線CTで測定して三次元の基本となるモデルをコンピュータで作成し、その後、作成したモデルの触媒層において気孔の大きさを変化させ、そのモデルを用いてシミュレーションを行った。シミュレーションでは、フィルタ隔壁14の見かけ上の(すなわち、フィルタ隔壁14を内部の細孔22等の孔部がない中実体であると仮定した場合の)単位容積中に予め設定した所定量の粒子状物質26(粒子)を堆積させる、すなわち、単位容積中堆積重量が所定量であると仮定した場合の、フィルタ隔壁14のガス流入側表面からの距離に応じて粒子状物質26が堆積した数(堆積粒子数)を算出した。図9から図13は、フィルタ隔壁14内での粒子状物質26の堆積分布(堆積粒子数分布)のシミュレーション結果を示している。また、図9から図13の各図で、太い実線はフィルタ隔壁14の見かけ上の単位容積中に0.3gの粒子状物質26を堆積させる場合を、破線はフィルタ隔壁14の見かけ上の単位容積中に0.1gの粒子状物質26を堆積させる場合を、それぞれ表している。   The simulation was performed using the particulate filter 10 of Examples 1 to 3 and Comparative Examples 1 and 2 having such specifications. When performing the simulation, first, the actual actual particulate filter 10 is measured by X-ray CT, and a three-dimensional basic model is created by a computer. Thereafter, the pore size is determined in the catalyst layer of the created model. A simulation was performed using the model. In the simulation, a predetermined amount of particulates set in advance in a unit volume of the apparent filter partition 14 (that is, assuming that the filter partition 14 is a solid body having no pores such as the internal pores 22). The number of deposited particulate matter 26 according to the distance from the gas inflow side surface of the filter partition wall 14 when the material 26 (particles) is deposited, that is, when the deposited weight per unit volume is assumed to be a predetermined amount ( The number of deposited particles) was calculated. 9 to 13 show the simulation results of the distribution of the particulate matter 26 in the filter partition wall 14 (the number distribution of the deposited particles). 9 to 13, thick solid lines indicate the case where 0.3 g of particulate matter 26 is deposited in the apparent unit volume of the filter partition wall 14, and broken lines indicate the apparent unit of the filter partition wall 14. Each case where 0.1 g of particulate matter 26 is deposited in the volume is shown.

図9は、比較例1の堆積粒子数分布のシミュレーション結果を示しているが、触媒層18の平均細孔径と気孔率とは、上記の特許文献1から特許文献3に記載された範囲内にある。このような比較例1の場合には、図9に示すように、粒子状物質26は、大部分が触媒層18のガス流入側表面に堆積してしまい、触媒層18の内部にはほとんど堆積されていないことが分かる。   FIG. 9 shows the simulation result of the distribution of the number of deposited particles in Comparative Example 1. The average pore diameter and the porosity of the catalyst layer 18 are within the ranges described in Patent Document 1 to Patent Document 3 described above. is there. In the case of such comparative example 1, as shown in FIG. 9, most of the particulate matter 26 is deposited on the gas inflow side surface of the catalyst layer 18, and is almost deposited inside the catalyst layer 18. You can see that it was not done.

これに対して、図10は、比較例1の場合よりも、触媒層18の平均細孔径と気孔率とを増大させた比較例2についての、堆積粒子数分布のシミュレーション結果を示している。図10に示す結果から明らかなように、比較例2の場合も、比較例1の場合と同様に、粒子状物質26は、大部分が触媒層18の表面に堆積してしまい触媒層18の内部にはほとんど堆積していない。すなわち、このようなシミュレーション結果から、触媒層18の平均細孔径と気孔率とを単純に増大させただけでは、粒子状物質26が触媒層18の内部へ浸入しやすくなることはないことが分かる。   On the other hand, FIG. 10 shows a simulation result of the number distribution of the deposited particles for Comparative Example 2 in which the average pore diameter and the porosity of the catalyst layer 18 are increased as compared with the case of Comparative Example 1. As is apparent from the results shown in FIG. 10, in the case of Comparative Example 2 as well, in the case of Comparative Example 1, most of the particulate matter 26 is deposited on the surface of the catalyst layer 18 and Almost no accumulation inside. That is, from such simulation results, it is understood that the particulate matter 26 does not easily enter the inside of the catalyst layer 18 simply by increasing the average pore diameter and the porosity of the catalyst layer 18. .

次に、図11は、比較例1及び比較例2の細孔構造とは異なる実施例1についての、堆積粒子数分布のシミュレーション結果を示している。図11から明らかなように、本発明の範囲に属する、すなわち、細孔径30μm以上の細孔22の、全細孔22体積に占める割合が25%以上である実施例1の場合には、粒子状物質26が触媒層18の内部に堆積した。ここで、上記の表1、図5、図6で示したように、実施例1と比較例2とで、触媒層18の気孔率、及びその気孔の、隔壁ガス流入側表面からの距離に対する分布割合はほぼ同様であったのにもかかわらず、図11に示すように、いずれの単位容積中堆積重量でも、実施例1では大部分の粒子状物質26が担体層20の表面付近である、触媒層18と担体層20との境界付近、すなわち隔壁ガス流入側表面からの距離が150μm程度の位置に堆積する、より詳しくは、粒子状物質26が触媒層18と担体層20との境界付近に触媒層18の他の部分よりも最も多く堆積することを確認できた。そしてこのような実施例1によれば、触媒層18の内部に設けた触媒成分と粒子状物質26との接触性を高くできることが分かる。   Next, FIG. 11 shows a simulation result of the number distribution of deposited particles for Example 1 different from the pore structures of Comparative Example 1 and Comparative Example 2. As is clear from FIG. 11, in the case of Example 1 belonging to the scope of the present invention, that is, the proportion of the pores 22 having a pore diameter of 30 μm or more in the total pore volume is 25% or more, A particulate material 26 was deposited inside the catalyst layer 18. Here, as shown in Table 1, FIG. 5 and FIG. 6, in Example 1 and Comparative Example 2, the porosity of the catalyst layer 18 and the distance of the pores from the partition wall gas inflow side surface. Although the distribution ratio is almost the same, as shown in FIG. 11, most of the particulate matter 26 is in the vicinity of the surface of the carrier layer 20 in Example 1 regardless of the weight deposited in any unit volume. In the vicinity of the boundary between the catalyst layer 18 and the carrier layer 20, that is, at a distance of about 150 μm from the partition gas inflow side surface, more specifically, the particulate matter 26 is a boundary between the catalyst layer 18 and the carrier layer 20. It was confirmed that the deposit was larger in the vicinity than the other portions of the catalyst layer 18. According to the first embodiment, it can be seen that the contact property between the catalyst component provided in the catalyst layer 18 and the particulate matter 26 can be improved.

また、図12、図13は、それぞれ比較例2の場合よりも触媒層18の気孔率を低くした実施例2と実施例3とでの、堆積粒子数分布のシミュレーション結果を示している。このようなシミュレーション結果によれば、実施例2と実施例3とで、比較例2の場合よりも多くの粒子状物質26が担体層20の表面付近、すなわち隔壁ガス流入側表面からの距離が150μm程度の位置に堆積することを確認できた。しかも、実施例3の平均細孔径は比較例2の場合とほぼ同じ値であるのにもかかわらず、比較例2の場合よりも多くの粒子状物質26が触媒層18の内部に堆積していることが分かる。また、図12に示す実施例2では、いずれの単位容積中堆積重量でも、粒子状物質26が触媒層18と担体層20との境界付近に触媒層18の他の部分よりも最も多く堆積することを確認できた。また、図13に示す実施例3では、単位容積中堆積重量が0.1g/Lで、粒子状物質26が触媒層18と担体層20との境界付近に触媒層18の他の部分よりも最も多く堆積することを確認できた。   12 and 13 show the simulation results of the number distribution of deposited particles in Example 2 and Example 3 in which the porosity of the catalyst layer 18 is lower than that in Comparative Example 2, respectively. According to such a simulation result, in Example 2 and Example 3, a larger amount of the particulate matter 26 is near the surface of the carrier layer 20, that is, the distance from the partition wall gas inflow side surface than in the case of Comparative Example 2. It was confirmed that the film was deposited at a position of about 150 μm. Moreover, although the average pore diameter of Example 3 is almost the same value as in Comparative Example 2, more particulate matter 26 is deposited inside the catalyst layer 18 than in Comparative Example 2. I understand that. In Example 2 shown in FIG. 12, the particulate matter 26 is deposited more in the vicinity of the boundary between the catalyst layer 18 and the carrier layer 20 than in other portions of the catalyst layer 18 at any unit volume. I was able to confirm that. In Example 3 shown in FIG. 13, the deposited weight in the unit volume is 0.1 g / L, and the particulate matter 26 is closer to the boundary between the catalyst layer 18 and the carrier layer 20 than the other parts of the catalyst layer 18. It was confirmed that the most deposits were made.

これらのシミュレーション結果から明らかなように、触媒層18の内部に粒子状物質26を多く浸入させ、多く堆積させるための構成として、単純に触媒層18の気孔率を大きくしたり、単純に平均細孔径を大きくするだけの、例えば、触媒層18の気孔率と平均細孔径とを制御する構成では有効な効果が得られず、例えば、本実施の形態のように、30μm以上の細孔22の割合が全細孔22体積の25%以上であることが必要であることが分かる。本発明の範囲に属する実施例1から実施例3の場合には、この条件を満たしており、この結果、粒子状物質26と触媒成分とが高い接触性を有する効果を得られる。   As is clear from these simulation results, as a configuration for allowing a large amount of the particulate matter 26 to enter and deposit in the catalyst layer 18, simply increase the porosity of the catalyst layer 18 or simply increase the average fineness. For example, in the configuration in which the pore size and the average pore size of the catalyst layer 18 are controlled only by increasing the pore size, an effective effect cannot be obtained. For example, as in the present embodiment, the pores 22 having a size of 30 μm or more can be obtained. It can be seen that the ratio needs to be 25% or more of the total pore 22 volume. In the case of Example 1 to Example 3 belonging to the scope of the present invention, this condition is satisfied, and as a result, the effect that the particulate matter 26 and the catalyst component have high contactability can be obtained.

次に、図14は、実施例1と、本発明から外れる比較例3とのパティキュレートフィルタ10を用いて、粒子状物質26の堆積量についての捕集効率、すなわちある一定量の粒子状物質26をフィルタ10に供給する場合の捕集率を算出したシミュレーション結果を示している。比較例3は、一層構造のフィルタ隔壁を有するパティキュレートフィルタであって、フィルタ隔壁の気孔率は65%で、平均細孔径は25μmである、市販のフィルタとした。図14において、「粒子状物質堆積量」は、パティキュレートフィルタ10のフィルタ隔壁の見かけ上の単位容積当たりに堆積させる粒子状物質26の重量である、単位容積中堆積重量(g/L)を表している。このような図14に示す結果から明らかなように、実施例1では、触媒層18の気孔率が94%と高いのにもかかわらず、それよりも低い気孔率を有する担体層20を備えることで、粒子状物質26の捕集効率を比較例3の場合よりも十分に高くできることを確認できた。   Next, FIG. 14 shows the trapping efficiency with respect to the amount of particulate matter 26 deposited, that is, a certain amount of particulate matter, using the particulate filter 10 of Example 1 and Comparative Example 3 outside the present invention. The simulation result which computed the collection rate in case 26 is supplied to the filter 10 is shown. Comparative Example 3 is a particulate filter having a single-layered filter partition wall, and a commercially available filter having a filter partition wall porosity of 65% and an average pore diameter of 25 μm. In FIG. 14, “particulate matter accumulation amount” is the weight of the particulate matter 26 deposited per apparent unit volume of the filter partition wall of the particulate filter 10 (g / L). Represents. As is apparent from the results shown in FIG. 14, in Example 1, the support layer 20 having a lower porosity than that of the catalyst layer 18 is provided even though the porosity of the catalyst layer 18 is as high as 94%. Thus, it was confirmed that the collection efficiency of the particulate matter 26 can be sufficiently higher than that in the case of Comparative Example 3.

また、図15は、実施例1と、比較例3とのパティキュレートフィルタ10を用いて、粒子状物質26を内部に堆積させた場合の圧力損失を算出したシミュレーション結果を示している。ここで圧力損失は無次元単位(A.U.)で相対値として表している。比較例3の構成については、図14に示したシミュレーション結果で用いたものと同様である。このような図15に示す結果から明らかなように、実施例1では、触媒層18と担体層20との二層構造であるのにもかかわらず、圧力損失を十分に低く抑制できることを確認できた。   FIG. 15 shows a simulation result of calculating the pressure loss when the particulate matter 26 is deposited inside using the particulate filter 10 of Example 1 and Comparative Example 3. Here, the pressure loss is expressed as a relative value in a dimensionless unit (AU). The configuration of Comparative Example 3 is the same as that used in the simulation result shown in FIG. As is apparent from the results shown in FIG. 15, in Example 1, it was confirmed that the pressure loss can be suppressed sufficiently low despite the two-layer structure of the catalyst layer 18 and the support layer 20. It was.

これらのシミュレーション結果から、本実施の形態によれば、触媒として酸化物系の触媒成分を使用する場合に求められる4要件のうち、粒子状物質26と触媒成分との高接触性と、粒子状物質26の高捕集率と、低圧力損失とを、同時に高いレベルで実現できることを確認できた。また、本実施の形態によれば、粒子状物質26が触媒層18のガス流入側表面部分だけでなく、触媒層18の厚さ方向の広い領域に分布させて堆積させることができる。このため、粒子状物質26と一緒にアッシュが触媒層18の内部に流入するため、粒子状物質26が燃焼した後、フィルタ隔壁14にアッシュが堆積することとなっても、アッシュが触媒層18のガス流入側表面に過度に集中して堆積することがなくなり、アッシュによるフィルタの圧力損失の上昇を抑制できるとともに、フィルタ10の寿命を高くでき、高アッシュ耐性を実現できるという効果を得られる。   From these simulation results, according to the present embodiment, among the four requirements required when using an oxide-based catalyst component as the catalyst, the high contact property between the particulate matter 26 and the catalyst component, It was confirmed that a high collection rate of the substance 26 and a low pressure loss can be realized at a high level at the same time. Further, according to the present embodiment, the particulate matter 26 can be distributed and deposited not only on the gas inflow side surface portion of the catalyst layer 18 but also in a wide region in the thickness direction of the catalyst layer 18. For this reason, since ash flows into the catalyst layer 18 together with the particulate matter 26, even if the ash is deposited on the filter partition wall 14 after the particulate matter 26 burns, the ash is deposited on the catalyst layer 18. As a result, excessive concentration on the gas inflow side surface of the gas can be prevented, and an increase in the pressure loss of the filter due to ash can be suppressed, the life of the filter 10 can be increased, and high ash resistance can be achieved.

なお、上記の実施例では、触媒層18において、触媒層18中の全細孔22体積における孔径30μm以上の全細孔22の体積の割合を25%以上と設定した場合であるが、本発明は、これに限定するものではなく、フィルタ隔壁14に排気ガスを通過させた場合に、少なくとも粒子状物質26の堆積開始時には、触媒層18と担体層20との境界付近に粒子状物質26がフィルタ隔壁14中の他の部分よりも最も多く堆積するように、触媒層18において、触媒層18中の全細孔22体積におけるある孔径以上の全細孔22の体積の割合を設定していてもよい。このような構成の場合も、上記の本発明の効果を得られる。   In the above embodiment, in the catalyst layer 18, the ratio of the volume of all pores 22 having a pore diameter of 30 μm or more to the total pore 22 volume in the catalyst layer 18 is set to 25% or more. However, the present invention is not limited to this, and when exhaust gas is allowed to pass through the filter partition 14, at least when the particulate matter 26 starts to be deposited, the particulate matter 26 is present near the boundary between the catalyst layer 18 and the carrier layer 20. In the catalyst layer 18, the ratio of the volume of all the pores 22 that is equal to or larger than a certain pore diameter in the volume of all the pores 22 in the catalyst layer 18 is set so as to deposit more than the other part in the filter partition wall 14. Also good. Even in such a configuration, the effect of the present invention can be obtained.

10 触媒付パティキュレートフィルタ、12 ガス上流側孔部、13 ガス下流側孔部、14 フィルタ隔壁、16 底部、18 触媒層、20 担体層、22 細孔、24 触媒層本体、26 粒子状物質(PM)。 10 particulate filter with catalyst, 12 gas upstream hole, 13 gas downstream hole, 14 filter partition, 16 bottom, 18 catalyst layer, 20 carrier layer, 22 pores, 24 catalyst layer body, 26 particulate matter ( PM).

Claims (4)

排気ガスが通過可能で、それぞれ細孔を有する、ガス流入側の触媒層とガス流出側の担体層とから構成される二層構造を有するフィルタ隔壁を含み、
前記触媒層は、さらに、排気微粒子の酸化温度を低減させる酸化物系の触媒成分が含有されており、かつ、前記触媒層の平均細孔径が前記担体層の平均細孔径よりも大きく、かつ、前記フィルタ隔壁に排気ガスを通過させた場合に、少なくとも排気微粒子の堆積開始時には、前記触媒層と前記担体層との境界付近に排気微粒子が前記フィルタ隔壁中の他の部分よりも最も多く堆積するように、前記触媒層において、前記触媒層中の全細孔体積におけるある孔径以上の全細孔の体積の割合を設定していることを特徴とする触媒付パティキュレートフィルタ。
Including a filter partition wall having a two-layer structure that is configured to include a catalyst layer on the gas inflow side and a carrier layer on the gas outflow side, each of which has exhaust pores and has pores
The catalyst layer further contains an oxide-based catalyst component that reduces the oxidation temperature of the exhaust particulates, and the average pore diameter of the catalyst layer is larger than the average pore diameter of the support layer, and When exhaust gas is allowed to pass through the filter partition, at least at the start of the deposition of exhaust particulate, the exhaust particulate is deposited most in the vicinity of the boundary between the catalyst layer and the carrier layer than in other portions of the filter partition. Thus, in the catalyst layer, the ratio of the volume of all pores having a diameter larger than a certain pore size in the total pore volume in the catalyst layer is set.
排気ガスが通過可能で、それぞれ細孔を有する、ガス流入側の触媒層とガス流出側の担体層とから構成される二層構造を有するフィルタ隔壁を含み、
前記触媒層は、さらに、排気微粒子の酸化温度を低減させる酸化物系の触媒成分が含有されており、かつ、前記触媒層の平均細孔径が前記担体層の平均細孔径よりも大きく、かつ、前記触媒層において、前記触媒層中の全細孔体積における孔径30μm以上の全細孔の体積の割合を25%以上と設定していることを特徴とする触媒付パティキュレートフィルタ。
Including a filter partition wall having a two-layer structure that is configured to include a catalyst layer on the gas inflow side and a carrier layer on the gas outflow side, each of which has exhaust pores and has pores
The catalyst layer further contains an oxide-based catalyst component that reduces the oxidation temperature of the exhaust particulates, and the average pore diameter of the catalyst layer is larger than the average pore diameter of the support layer, and A particulate filter with a catalyst, wherein in the catalyst layer, the ratio of the volume of all pores having a pore diameter of 30 μm or more to the total pore volume in the catalyst layer is set to 25% or more.
請求項1または請求項2に記載の触媒付パティキュレートフィルタにおいて、
前記触媒成分は、セリアまたはペロプスカイトであることを特徴とする触媒付パティキュレートフィルタ。
In the particulate filter with a catalyst according to claim 1 or 2,
The catalyst particulate filter, wherein the catalyst component is ceria or perovskite.
請求項1から請求項3のいずれか1に記載の触媒付パティキュレートフィルタにおいて、
複数の有底状の孔部であって、隣り合う孔部同士で長さ方向の異なる側に底部を有する孔部と、
隣り合う孔部同士の間に設けられたセル壁とを備え、
セル壁がフィルタ隔壁であることを特徴とする触媒付パティキュレートフィルタ。
The particulate filter with a catalyst according to any one of claims 1 to 3,
A plurality of bottomed holes, the holes having adjacent bottoms on the different sides in the length direction; and
A cell wall provided between adjacent holes,
A particulate filter with catalyst, wherein the cell wall is a filter partition.
JP2009040624A 2009-02-24 2009-02-24 Particulate filter with catalyst Pending JP2010194430A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009040624A JP2010194430A (en) 2009-02-24 2009-02-24 Particulate filter with catalyst
DE102010008969A DE102010008969A1 (en) 2009-02-24 2010-02-24 Particle e.g. carbon black, filter for exhaust system of diesel engine, has catalyst layer with catalyst component, where volume percentage of pores is adjusted such that particles are precipitated when exhaust gas transmits through wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009040624A JP2010194430A (en) 2009-02-24 2009-02-24 Particulate filter with catalyst

Publications (1)

Publication Number Publication Date
JP2010194430A true JP2010194430A (en) 2010-09-09

Family

ID=42371894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009040624A Pending JP2010194430A (en) 2009-02-24 2009-02-24 Particulate filter with catalyst

Country Status (2)

Country Link
JP (1) JP2010194430A (en)
DE (1) DE102010008969A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075543A (en) * 2015-10-13 2017-04-20 日本碍子株式会社 Pressure loss analytical method, program for the same, and pressure loss analytical device
JP2018171615A (en) * 2017-03-31 2018-11-08 株式会社キャタラー Catalyst for purifying exhaust gas
CN113530646A (en) * 2020-04-21 2021-10-22 丰田自动车株式会社 Exhaust gas purification device and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518518B2 (en) * 2010-02-15 2014-06-11 日本碍子株式会社 Manufacturing method of honeycomb filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307452A (en) * 1988-06-06 1989-12-12 Matsushita Electric Ind Co Ltd Waste gas purification catalyst
JP2003211001A (en) * 2002-01-28 2003-07-29 Toyota Motor Corp Exhaust gas purification apparatus for internal combustion engine and catalyst supporting method for supporting catalyst on particulate filter of exhaust gas purification apparatus
JP2007253144A (en) * 2005-07-21 2007-10-04 Ibiden Co Ltd Honeycomb structured body and exhaust gas purifying device
JP2008178766A (en) * 2007-01-23 2008-08-07 Mazda Motor Corp Particulate filter
JP2009226376A (en) * 2008-03-25 2009-10-08 Ngk Insulators Ltd Catalyst-carrying filter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750178B2 (en) 1995-04-05 2006-03-01 株式会社デンソー Exhaust gas purification filter and manufacturing method thereof
WO2000001463A1 (en) 1998-07-07 2000-01-13 Silentor Notox A/S Diesel exhaust gas filter
US20040161596A1 (en) 2001-05-31 2004-08-19 Noriyuki Taoka Porous ceramic sintered body and method of producing the same, and diesel particulate filter
JP2003056327A (en) 2001-08-14 2003-02-26 Nissan Motor Co Ltd Exhaust fine particle collecting filter of self- regeneration type
EP1378288A3 (en) 2002-04-18 2004-01-14 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Platinum-group-metal free catalytic washcoats for particulate exhaust gas filter applications
JP2005021818A (en) 2003-07-03 2005-01-27 Johnson Matthey Japan Inc Exhaust gas catalyst for treating particulate matter in exhaust gas
JP2007244950A (en) 2006-03-14 2007-09-27 Nissan Motor Co Ltd Particulate filter type exhaust gas cleaning catalyst and particulate filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307452A (en) * 1988-06-06 1989-12-12 Matsushita Electric Ind Co Ltd Waste gas purification catalyst
JP2003211001A (en) * 2002-01-28 2003-07-29 Toyota Motor Corp Exhaust gas purification apparatus for internal combustion engine and catalyst supporting method for supporting catalyst on particulate filter of exhaust gas purification apparatus
JP2007253144A (en) * 2005-07-21 2007-10-04 Ibiden Co Ltd Honeycomb structured body and exhaust gas purifying device
JP2008178766A (en) * 2007-01-23 2008-08-07 Mazda Motor Corp Particulate filter
JP2009226376A (en) * 2008-03-25 2009-10-08 Ngk Insulators Ltd Catalyst-carrying filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075543A (en) * 2015-10-13 2017-04-20 日本碍子株式会社 Pressure loss analytical method, program for the same, and pressure loss analytical device
JP2018171615A (en) * 2017-03-31 2018-11-08 株式会社キャタラー Catalyst for purifying exhaust gas
JP7023770B2 (en) 2017-03-31 2022-02-22 株式会社キャタラー Exhaust gas purification catalyst
CN113530646A (en) * 2020-04-21 2021-10-22 丰田自动车株式会社 Exhaust gas purification device and method for manufacturing same
CN113530646B (en) * 2020-04-21 2023-10-10 丰田自动车株式会社 Exhaust gas purifying device and method for manufacturing the same

Also Published As

Publication number Publication date
DE102010008969A1 (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP3872384B2 (en) Exhaust gas purification filter catalyst
JP5726414B2 (en) Catalyst-carrying filter and exhaust gas purification system
JP4907860B2 (en) Filter catalyst
KR100747088B1 (en) Dpf with improving heat durability
JP5193437B2 (en) Exhaust gas purification catalyst
JP2004105792A (en) Catalyst for exhaust gas purification filter and method of manufacturing the same
JP2007260618A (en) Exhaust gas purification catalyst and exhaust gas purifier
JP2004216226A (en) Exhaust gas purification filter catalyst
JP2010269205A (en) Catalyst for cleaning exhaust gas
JP2009165922A (en) Exhaust gas purification catalyst
JP2004261644A (en) Base material for exhaust gas cleaning filter catalyst
JP2009160547A (en) Exhaust-gas cleaning catalyst and its production method
JP4006645B2 (en) Exhaust gas purification device
JP6445228B1 (en) Exhaust gas purification catalyst
CN104018916A (en) Ceramic partial wall-flow filter with low deep bed
JP2010194430A (en) Particulate filter with catalyst
JP2005177733A (en) Filter for cleaning exhaust gas containing pm, method and device for cleaning exhaust gas containing pm
JP2005248726A (en) Filter catalyst for exhaust emission control
JP4347120B2 (en) Exhaust gas purification device
JP2006231116A (en) Exhaust gas-cleaning filter catalyst
JP4239864B2 (en) Diesel exhaust gas purification device
JP2007117954A (en) Catalyst for cleaning exhaust gas from diesel engine
JP4218559B2 (en) Diesel exhaust gas purification device
JP2009228618A (en) Exhaust emission control device
JP2006077672A (en) Exhaust emission control filter and exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828