JP2010192230A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010192230A
JP2010192230A JP2009034852A JP2009034852A JP2010192230A JP 2010192230 A JP2010192230 A JP 2010192230A JP 2009034852 A JP2009034852 A JP 2009034852A JP 2009034852 A JP2009034852 A JP 2009034852A JP 2010192230 A JP2010192230 A JP 2010192230A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium
electrolyte secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009034852A
Other languages
Japanese (ja)
Other versions
JP5321116B2 (en
Inventor
Hideki Kitao
英樹 北尾
Akihito Yamato
亮仁 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009034852A priority Critical patent/JP5321116B2/en
Publication of JP2010192230A publication Critical patent/JP2010192230A/en
Application granted granted Critical
Publication of JP5321116B2 publication Critical patent/JP5321116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve output characteristics of a nonaqueous electrolytic solution secondary battery. <P>SOLUTION: The nonaqueous electrolytic solution secondary battery to contain nonaqueous electrolytic solution formed by dissolving an electrolyte into a nonaqueous solvent includes a negative electrode active material layer 122 arranged on a surface of a negative electrode current collector 121, and an additional layer 14 arranged on the surface of the negative electrode active material layer 122 and including lithium to contain titanium oxide. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、一般的に非水系溶媒に電解質を溶解させた非水系電解液を含む非水電解液二次電池に関し、特定的には出力特性を改善した非水電解液二次電池に関するものである。   The present invention generally relates to a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte obtained by dissolving an electrolyte in a non-aqueous solvent, and more particularly to a non-aqueous electrolyte secondary battery having improved output characteristics. is there.

従来から、高出力、高エネルギー密度の二次電池として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて、充放電を行うようにした非水電解液二次電池が利用されている。   Conventionally, a non-aqueous electrolyte secondary battery that uses a non-aqueous electrolyte as a secondary battery with a high output and a high energy density and moves lithium ions between the positive electrode and the negative electrode to perform charge / discharge. Is being used.

また、近年においては、このような非水電解液二次電池を電気自動車の電源など、様々な分野に利用することが検討されている。非水電解液二次電池を電気自動車の電源などの様々な分野に利用する場合、高い出力特性が非水電解液二次電池に要求される。   In recent years, the use of such non-aqueous electrolyte secondary batteries in various fields such as power sources for electric vehicles has been studied. When the nonaqueous electrolyte secondary battery is used in various fields such as a power source of an electric vehicle, high output characteristics are required for the nonaqueous electrolyte secondary battery.

上記の要求に応えるために、たとえば、特開平5−121066号公報(以下、特許文献1という)には、非水電解液二次電池の高容量化のためにドープ量が大きく、電流効率のよい特定の炭素質材料を用いた負極の構成が提案されている。この負極においては、負極の活物質は、炭素網面の面間隔d002が0.337nm未満の黒鉛状炭素質を炭素網面の面間隔d002が0.337nm以上の炭素質で被覆してなる複合炭素質である。このように負極を構成することにより、電流効率が高く、かつ容量の大きな非水電解液二次電池が得られることが特許文献1に記載されている。すなわち、特許文献1では、出力特性を向上させるために、負極を形成する炭素粒子の表面に低結晶性炭素を被覆して、炭素と電解液界面の直流抵抗を低減するという方法が提案されている。 In order to meet the above requirements, for example, Japanese Patent Laid-Open No. 5-121066 (hereinafter referred to as Patent Document 1) has a large dope amount for increasing the capacity of a non-aqueous electrolyte secondary battery, and has a current efficiency. A configuration of a negative electrode using a good specific carbonaceous material has been proposed. In this negative electrode, the active material of the negative electrode is obtained by coating a graphitic carbonaceous material having a carbon network surface spacing d 002 of less than 0.337 nm with a carbonaceous material having a carbon network surface spacing d 002 of 0.337 nm or more. It is a composite carbonaceous material. Patent Document 1 describes that a nonaqueous electrolyte secondary battery with high current efficiency and large capacity can be obtained by configuring the negative electrode in this way. That is, in Patent Document 1, in order to improve output characteristics, a method is proposed in which the surface of carbon particles forming a negative electrode is coated with low crystalline carbon to reduce the DC resistance at the interface between the carbon and the electrolyte. Yes.

特開平5−121066号公報Japanese Patent Laid-Open No. 5-121066

しかし、特許文献1で提案された方法を採用しても、非水電解液二次電池の出力特性を十分に向上させることができなかった。   However, even if the method proposed in Patent Document 1 is adopted, the output characteristics of the non-aqueous electrolyte secondary battery cannot be sufficiently improved.

そこで、この発明の目的は、非水電解液二次電池の出力特性を向上させることである。   Accordingly, an object of the present invention is to improve the output characteristics of a non-aqueous electrolyte secondary battery.

この発明に従った非水電解液二次電池は、非水系溶媒に電解質を溶解させた非水系電解液を含む非水電解液二次電池であって、負極集電体の表面上に配置された負極活物質層と、この負極活物質層の表面上に配置され、リチウム含有チタン酸化物を含む付加層とを備える。   A non-aqueous electrolyte secondary battery according to the present invention is a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte obtained by dissolving an electrolyte in a non-aqueous solvent, and is disposed on the surface of a negative electrode current collector. A negative electrode active material layer, and an additional layer disposed on the surface of the negative electrode active material layer and including a lithium-containing titanium oxide.

この発明の非水電解液二次電池においては、負極活物質層の表面上にリチウム含有チタン酸化物を含む付加層が配置されている。これにより、作動電位の高いリチウム含有チタン酸化物が負極活物質層の表面上に均一に配置されるので、直流抵抗が特異的に低減されるものと推測される。その結果、非水電解液二次電池の出力特性を向上させることができる。   In the non-aqueous electrolyte secondary battery of the present invention, an additional layer containing lithium-containing titanium oxide is disposed on the surface of the negative electrode active material layer. As a result, the lithium-containing titanium oxide having a high operating potential is evenly disposed on the surface of the negative electrode active material layer, so that it is presumed that the direct current resistance is specifically reduced. As a result, the output characteristics of the nonaqueous electrolyte secondary battery can be improved.

この発明の非水電解液二次電池において、付加層の厚みは、10μm以上50μm以下であることが好ましい。   In the nonaqueous electrolyte secondary battery of the present invention, the thickness of the additional layer is preferably 10 μm or more and 50 μm or less.

このように付加層の厚みを限定することにより、直流抵抗をより効果的に低減させることができる。   Thus, by limiting the thickness of the additional layer, the direct current resistance can be more effectively reduced.

また、この発明の非水電解液二次電池において、リチウム含有チタン酸化物の平均粒径が、0.5μm以上10μm以下であることが好ましい。   In the nonaqueous electrolyte secondary battery of the present invention, it is preferable that the lithium-containing titanium oxide has an average particle size of 0.5 μm or more and 10 μm or less.

このようにリチウム含有チタン酸化物の平均粒径を限定することにより、直流抵抗をより効果的に低減させることができる。   Thus, direct current resistance can be reduced more effectively by limiting the average particle diameter of the lithium-containing titanium oxide.

さらに、この発明の非水電解液二次電池において、負極活物質層は炭素材料を含むことが好ましい。さらにまた、炭素材料は、結晶化度の高い炭素からなる芯材と、この芯材の表面の少なくとも一部を被覆し、結晶化度の低い炭素からなる表面層とを含むことが好ましい。   Furthermore, in the nonaqueous electrolyte secondary battery of the present invention, the negative electrode active material layer preferably contains a carbon material. Furthermore, the carbon material preferably includes a core material made of carbon with a high degree of crystallinity and a surface layer made of carbon with a low degree of crystallinity covering at least a part of the surface of the core material.

このように負極活物質層を構成することにより、直流抵抗をより効果的に低減させることができる。   By configuring the negative electrode active material layer in this manner, the direct current resistance can be more effectively reduced.

以上のようにこの発明によれば、非水溶媒に電解質を溶解させた非水系電解液を含む非水電解液二次電池において、直流抵抗を特異的に低減させることができるので、出力特性を向上させることができる。   As described above, according to the present invention, in the non-aqueous electrolyte secondary battery including the non-aqueous electrolyte solution in which the electrolyte is dissolved in the non-aqueous solvent, the direct current resistance can be specifically reduced. Can be improved.

本発明の非水電解液二次電池の一つの実施の形態である非水電解液二次電池の一例としてリチウムイオン二次電池の電池要素を示す断面図である。It is sectional drawing which shows the battery element of a lithium ion secondary battery as an example of the nonaqueous electrolyte secondary battery which is one embodiment of the nonaqueous electrolyte secondary battery of this invention.

以下、この発明の非水電解液二次電池の実施の形態を説明する。   Embodiments of the non-aqueous electrolyte secondary battery of the present invention will be described below.

図1は、本発明の非水電解液二次電池の一つの実施の形態である非水電解液二次電池の一例としてリチウムイオン二次電池の電池要素を示す断面図である。   FIG. 1 is a cross-sectional view showing a battery element of a lithium ion secondary battery as an example of a nonaqueous electrolyte secondary battery which is one embodiment of the nonaqueous electrolyte secondary battery of the present invention.

図1に示すように、電池要素10では、複数の短冊状の正極11と複数の短冊状の負極12とが、複数の短冊状のセパレータ13を介して、交互に積層されて形成されている。   As shown in FIG. 1, in the battery element 10, a plurality of strip-shaped positive electrodes 11 and a plurality of strip-shaped negative electrodes 12 are alternately stacked via a plurality of strip-shaped separators 13. .

ここで、正極11は、正極集電体111の両面に正極活物質層112が積層されて形成されている。一例として、正極集電体111はアルミニウムからなり、正極活物質層112はコバルト酸リチウム複合酸化物(LCO)からなる。   Here, the positive electrode 11 is formed by laminating a positive electrode active material layer 112 on both surfaces of a positive electrode current collector 111. As an example, the positive electrode current collector 111 is made of aluminum, and the positive electrode active material layer 112 is made of lithium cobalt oxide composite oxide (LCO).

一方、負極12は、負極集電体121の両面に負極活物質層122が積層されて形成されている。一例として、負極集電体121は銅からなり、負極活物質層122は炭素材料からなる。   On the other hand, the negative electrode 12 is formed by laminating a negative electrode active material layer 122 on both surfaces of a negative electrode current collector 121. As an example, the negative electrode current collector 121 is made of copper, and the negative electrode active material layer 122 is made of a carbon material.

付加層14が、負極活物質層122の表面上に積層されて形成され、リチウム含有チタン酸化物を含む。言い換えれば、付加層14は、セパレータ13と負極活物質層122との間に形成されている。一例として、付加層14は、チタン酸リチウム層からなる。付加層14の厚みは10μm以上50μm以下であるのが好ましい。付加層14に含まれるリチウム含有チタン酸化物の平均粒径は0.5μm以上10μm以下であるのが好ましい。図1では、付加層14は、負極活物質層122の表面上に直接形成されているが、負極活物質層122の表面上に中間層を介在させて形成されていてもよく、付加層14は、負極活物質層122の表面の上に少なくとも配置されていればよい。   The additional layer 14 is formed by being laminated on the surface of the negative electrode active material layer 122 and includes a lithium-containing titanium oxide. In other words, the additional layer 14 is formed between the separator 13 and the negative electrode active material layer 122. As an example, the additional layer 14 includes a lithium titanate layer. The thickness of the additional layer 14 is preferably 10 μm or more and 50 μm or less. The average particle size of the lithium-containing titanium oxide contained in the additional layer 14 is preferably 0.5 μm or more and 10 μm or less. In FIG. 1, the additional layer 14 is formed directly on the surface of the negative electrode active material layer 122. However, the additional layer 14 may be formed on the surface of the negative electrode active material layer 122 with an intermediate layer interposed therebetween. May be disposed at least on the surface of the negative electrode active material layer 122.

なお、複数の正極11を構成する複数の正極集電体111の端部が集約された正極集端部113は、正極接続端子に電気的に接続されており、複数の負極12を構成する複数の負極集電体121の端部が集約された負極集端部123は、負極接続端子に電気的に接続されている。   The positive electrode collecting end portion 113 in which the end portions of the plurality of positive electrode current collectors 111 constituting the plurality of positive electrodes 11 are aggregated is electrically connected to the positive electrode connection terminal, and the plurality of negative electrode 12 constituting the plurality of negative electrode 12 is configured. The negative electrode collecting end portion 123 in which the end portions of the negative electrode current collector 121 are integrated is electrically connected to the negative electrode connection terminal.

上記の付加層14に含まれるリチウム含有チタン酸化物としては、一般的に組成式LiTi5−xMe12(x=0〜1、Meは、Mg,Al,Ti,Zr,Mo,Nb,Sr,Ni,Co,Mn,Wのうち少なくとも一種)を用いることができる。 The lithium-containing titanium oxide contained in the additional layer 14 is generally represented by the composition formula Li 4 Ti 5-x Me x O 12 (x = 0 to 1, Me is Mg, Al, Ti, Zr, Mo). , Nb, Sr, Ni, Co, Mn, and W).

上記の負極活物質層122の材料としては、炭素材料、シリコン(Si)、スズ(Sn)、ゲルマニウム(Ge)、アルミニウム(Al)、リチウム(Li)などを用いることができる。いずれの材料を用いた場合においても本発明の効果を得ることができるが、コストの観点から負極活物質層122の材料としては炭素材料を使うことが好ましい。炭素材料としては、黒鉛、ソフトカーボン、ハードカーボン、コークスなどを用いることができる。   As a material of the negative electrode active material layer 122, a carbon material, silicon (Si), tin (Sn), germanium (Ge), aluminum (Al), lithium (Li), or the like can be used. Although the effect of the present invention can be obtained when any material is used, it is preferable to use a carbon material as the material of the negative electrode active material layer 122 from the viewpoint of cost. As the carbon material, graphite, soft carbon, hard carbon, coke and the like can be used.

負極活物質層122の材料として炭素材料を用いる場合、負極活物質層122は、結晶化度の高い炭素からなる芯材と、この芯材の表面の少なくとも一部を被覆し、結晶化度の低い炭素からなる表面層とからなる炭素材料を含むことが好ましい。この場合、結晶化度の高い炭素からなる芯材としての黒鉛と、その黒鉛の表面の少なくとも一部を被覆し、結晶化度の低い炭素からなる表面層とからなる低結晶性炭素被覆黒鉛としては、ラマン分光法により求められる1350/cmの強度IAと、1580/cmの強度IBとの強度比(IA/IB)が0.2〜0.3の範囲のものを用いることが好ましい。ここで、1580/cmのピークは黒鉛構造に近い六方対称性をもった積層に起因して得られるピークであり、1350/cmのピークは炭素局部の乱れた低結晶性構造に起因して得られるピークであり、上記のIA/IBの値が大きいほど、表面における低結晶性炭素の割合が大きくなる。そして、上記のIA/IBの値が0.2未満になると、黒鉛の表面における低結晶性炭素の割合が少なくなって、リチウムイオンの受け入れ性を十分に高めることが困難になる。一方、IA/IBの値が0.3を越えると、低結晶性炭素の量が多くなって黒鉛の割合が低下し、負極活物質層122の構成に起因して電池容量が低下する。   In the case where a carbon material is used as the material of the negative electrode active material layer 122, the negative electrode active material layer 122 covers a core material made of carbon having a high degree of crystallinity and at least a part of the surface of the core material. It is preferable to include a carbon material composed of a surface layer composed of low carbon. In this case, as a low-crystalline carbon-coated graphite comprising graphite as a core material made of carbon having a high degree of crystallinity, and a surface layer made of carbon having a low degree of crystallinity, covering at least part of the surface of the graphite. Preferably uses an intensity ratio (IA / IB) between the intensity IA of 1350 / cm determined by Raman spectroscopy and the intensity IB of 1580 / cm in the range of 0.2 to 0.3. Here, the peak of 1580 / cm is a peak obtained due to the lamination having hexagonal symmetry close to the graphite structure, and the peak of 1350 / cm is obtained due to the disordered low crystalline structure of the local carbon. As the IA / IB value increases, the proportion of low crystalline carbon on the surface increases. When the value of IA / IB is less than 0.2, the proportion of low crystalline carbon on the surface of the graphite decreases, and it becomes difficult to sufficiently increase the acceptability of lithium ions. On the other hand, when the value of IA / IB exceeds 0.3, the amount of low crystalline carbon increases, the proportion of graphite decreases, and the battery capacity decreases due to the configuration of the negative electrode active material layer 122.

また、本発明における非水電解液二次電池において、非水電解液の非水系溶媒としては、たとえば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ガンマブチロラクトン(GBL)、1,2−ジメトキシエタン(DME)、メチルアセテート(MA)、メチルプロピネート(MP)、エチルアセテート(EA)等を単独または2種類以上混合させて使用することができる。また、非水電解液二次電池のサイクル性能をさらに向上させるために、非水電解液の非水系溶媒にビニレンカーボネート(VC)やビニルエチレンカーボネート(VEC)を混合させることが好ましい。ビニレンカーボネート(VC)またはビニルエチレンカーボネート(VEC)の混合量は、サイクル性能の観点から、非水電解液の総重量に対し、0.1重量部〜5重量部であることが好ましい。その混合量が0.1重量部より少ないと、サイクル特性向上の効果が得られにくく、5重量部より多いと、負極上で非水系溶媒の還元分解生成物が多くなりすぎて、電池の出力性能が低下する。   In the non-aqueous electrolyte secondary battery of the present invention, examples of the non-aqueous solvent for the non-aqueous electrolyte include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and diethyl carbonate (DEC). Dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), gamma butyrolactone (GBL), 1,2-dimethoxyethane (DME), methyl acetate (MA), methyl propionate (MP), ethyl acetate (EA), etc. It can be used alone or in combination of two or more. In order to further improve the cycle performance of the non-aqueous electrolyte secondary battery, it is preferable to mix vinylene carbonate (VC) or vinyl ethylene carbonate (VEC) with the non-aqueous solvent of the non-aqueous electrolyte. The amount of vinylene carbonate (VC) or vinyl ethylene carbonate (VEC) mixed is preferably 0.1 to 5 parts by weight with respect to the total weight of the non-aqueous electrolyte from the viewpoint of cycle performance. If the mixing amount is less than 0.1 parts by weight, it is difficult to obtain the effect of improving the cycle characteristics. If the mixing amount is more than 5 parts by weight, the reductive decomposition product of the non-aqueous solvent is excessively increased on the negative electrode. Performance decreases.

上記の非水電解液において、非水系溶媒に溶解させる電解質としては、非水電解液二次電池において一般に使用されているものを用いることができ、たとえば、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CSO、LiAsF、LiClO等を単独または2種類以上混合させて使用することができる。電解質の量は溶媒総重量に対して、0.5mol%〜1.5mol%であることが好ましい。電解質の量が0.5mol%以下であると、十分な電解液の伝導率が得られず、出力特性が低下し、1.5mol%以上であると、電解液の粘度が高くなりすぎ、イオン拡散速度が低下し、電池の出力特性が低下する。 In the above non-aqueous electrolyte, as the electrolyte dissolved in the non-aqueous solvent, those generally used in non-aqueous electrolyte secondary batteries can be used. For example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 6 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 LiClO 4 or the like can be used alone or in admixture of two or more. The amount of the electrolyte is preferably 0.5 mol% to 1.5 mol% with respect to the total weight of the solvent. If the amount of the electrolyte is 0.5 mol% or less, sufficient conductivity of the electrolytic solution cannot be obtained, and output characteristics are deteriorated. If the amount is 1.5 mol% or more, the viscosity of the electrolytic solution becomes too high, and the ion The diffusion rate is lowered, and the output characteristics of the battery are lowered.

また、上記の非水電解液に含有させるオキサラト錯体をアニオンとするリチウム塩としては、具体的にはリチウム−ビス(オキサラト)ボレート、ジフルオロ(オキサラト)ホウ酸リチウム、テトラフルオロ(オキサラト)リン酸リチウム等を用いることができる。   Moreover, as lithium salt which uses the oxalato complex contained in said non-aqueous electrolyte as an anion, specifically, lithium-bis (oxalato) borate, difluoro (oxalato) lithium borate, tetrafluoro (oxalato) lithium phosphate Etc. can be used.

正極11と負極12を電気的に絶縁するセパレータ13としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)から選ばれる1種以上から構成される微多孔膜を用いることができる。この微多孔膜には、アルミナ(Al)、シリカ(SiO)、チタニア(TiO)などのフィラーが含まれていてもよい。上記のフィラーとバインダとしての樹脂とのみからセパレータが形成されていてもよい。 As the separator 13 that electrically insulates the positive electrode 11 and the negative electrode 12, a microporous film composed of at least one selected from polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) can be used. This microporous film may contain a filler such as alumina (Al 2 O 3 ), silica (SiO 2 ), and titania (TiO 2 ). The separator may be formed only from the filler and the resin as the binder.

本発明の非水電解液二次電池において、正極11に用いる正極活物質層112の材料としては、非水電解液二次電池において一般に使用されているものを用いることができ、たとえば、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)等のリチウム遷移金属複合酸化物や、リン酸鉄リチウム(LiFePO)等のリチウム含有リン酸塩等を用いることができる。また、正極活物質層112の材料としては、上記のリチウム遷移金属複合酸化物における遷移金属の一部を他の金属元素で置換させたものを用いることも可能であり、このような金属元素としては、コバルト(Co)、ニッケル(Ni)、バナジウム(V)、マンガン(Mn)、ジルコニウム(Zr)、チタン(Ti)、亜鉛(Zn)、アルミニウム(Al)、鉄(Fe)、ニオブ(Nb)、モリブデン(Mo)から選択される1種又は2種以上を用いることができる。さらに、正極活物質層112の材料としては、上記のような正極活物質を混合したものを用いることも可能である。 In the non-aqueous electrolyte secondary battery of the present invention, as the material of the positive electrode active material layer 112 used for the positive electrode 11, those generally used in non-aqueous electrolyte secondary batteries can be used. For example, cobalt acid Lithium transition metal composite oxides such as lithium (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), lithium-containing phosphates such as lithium iron phosphate (LiFePO 4 ), etc. Can be used. Further, as the material of the positive electrode active material layer 112, a material obtained by substituting a part of the transition metal in the lithium transition metal composite oxide with another metal element can be used. Is cobalt (Co), nickel (Ni), vanadium (V), manganese (Mn), zirconium (Zr), titanium (Ti), zinc (Zn), aluminum (Al), iron (Fe), niobium (Nb) 1 type, or 2 or more types selected from molybdenum (Mo). Further, as the material of the positive electrode active material layer 112, a mixture of the positive electrode active materials as described above can be used.

本発明の非水電解液二次電池において、正極11の正極活物質層112を作製するにあたっては、上記のような正極活物質の他に、炭素材料などの導電剤と、ポリフッ化ビニリデンなどの結着剤を加えた正極合剤を用いることができる。そして、この正極合剤中に導電剤として炭素材料を加える場合、正極合剤中における炭素材料の量を3重量%〜15重量%の範囲内にすることが好ましい。また、正極活物質層112中における上記の導電剤と結着剤との合計量は、エネルギー密度を確保する観点から、10重量%以下であることが好ましい。また、導電剤に用いる炭素材料としては、たとえば、アセチレンブラック等の塊状炭素や繊維状炭素等を用いることができる。   In preparing the positive electrode active material layer 112 of the positive electrode 11 in the non-aqueous electrolyte secondary battery of the present invention, in addition to the positive electrode active material as described above, a conductive agent such as a carbon material and polyvinylidene fluoride or the like A positive electrode mixture to which a binder is added can be used. And when adding a carbon material as a electrically conductive agent in this positive electrode mixture, it is preferable to make the quantity of the carbon material in a positive electrode mixture into the range of 3 weight%-15 weight%. Moreover, it is preferable that the total amount of said electrically conductive agent and binder in the positive electrode active material layer 112 is 10 weight% or less from a viewpoint of ensuring an energy density. Further, as the carbon material used for the conductive agent, for example, bulk carbon such as acetylene black, fibrous carbon, or the like can be used.

以下のようにして作製した正極11と負極12と非水電解液とを用いて、付加層14としてのチタン酸リチウム層の厚みやチタン酸リチウムの平均粒径を表1に示すように異ならせることにより、付加層14を形成した実施例1〜12の非水電解液二次電池を作製した。また、付加層14を形成しない比較例1〜2の非水電解液二次電池も作製した。   Using the positive electrode 11, the negative electrode 12, and the non-aqueous electrolyte produced as follows, the thickness of the lithium titanate layer as the additional layer 14 and the average particle diameter of the lithium titanate are varied as shown in Table 1. Thereby, the nonaqueous electrolyte secondary battery of Examples 1-12 in which the additional layer 14 was formed was produced. In addition, non-aqueous electrolyte secondary batteries of Comparative Examples 1 and 2 in which the additional layer 14 was not formed were also produced.

(実施例1)
実施例1においては、以下のようにして作製した正極11と負極12と非水電解液とを用い、図1に示すような積層型の電池要素10を備え、電池容量が20mAhである非水電解液二次電池を作製した。
Example 1
In Example 1, a non-aqueous battery having a stacked battery element 10 as shown in FIG. 1 and a battery capacity of 20 mAh using a positive electrode 11, a negative electrode 12, and a non-aqueous electrolyte prepared as follows. An electrolyte secondary battery was produced.

[正極の作製]
正極活物質としてLi1.01(Ni0.33Co0.33Mn0.33)Oを用い、この正極活物質と、導電剤の炭素材料と、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン(NMP)溶液とを、正極活物質と導電剤と結着剤との重量比が90:5:5になるように調製した。この調製されたものを混練して正極合剤スラリーを作製した。この正極合剤スラリーをアルミニウム箔からなる正極集電体111の上に塗布したものを乾燥させて圧延ローラーにより圧延し、これに集電タブを取り付けて正極11を作製した。
[Production of positive electrode]
Li 1.01 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 was used as the positive electrode active material, and this positive electrode active material, the carbon material of the conductive agent, and the polyvinylidene fluoride of the binder were dissolved. The N-methyl-2-pyrrolidone (NMP) solution was prepared so that the weight ratio of the positive electrode active material, the conductive agent, and the binder was 90: 5: 5. The prepared mixture was kneaded to prepare a positive electrode mixture slurry. What apply | coated this positive mix slurry on the positive electrode collector 111 which consists of aluminum foil was dried, and it rolled with the rolling roller, and the current collection tab was attached to this, and the positive electrode 11 was produced.

このときの単位面積あたりの正極合材の目付け量を6.5mg/cm、充填密度を2.8g/ccとした。正極11の寸法を50mm×50mmとした。この正極11の単位容量を、電解液の電解質として1mol/LのLiPF、溶媒としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で混合した混合溶媒を用い、対極にリチウム金属を用いて、充電10mA−4.3V、放電10mA−2.5Vにて測定した。その結果、1g当たり150mAhの単位容量を得た。 At this time, the basis weight of the positive electrode mixture per unit area was 6.5 mg / cm 2 , and the packing density was 2.8 g / cc. The dimension of the positive electrode 11 was 50 mm × 50 mm. The unit capacity of the positive electrode 11 is 1 mol / L LiPF 6 as an electrolyte of an electrolytic solution, and a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7 as a solvent. Using lithium metal, the measurement was performed at a charge of 10 mA-4.3 V and a discharge of 10 mA-2.5 V. As a result, a unit capacity of 150 mAh per 1 g was obtained.

[負極の作製]
負極活物質として、低結晶性炭素で被覆された平均粒径15μmの球状天然黒鉛粒子を用いた。そして、この低結晶性炭素被覆天然黒鉛からなる負極活物質と、結着剤のポリアクリロニトリル変性体(PAN)をN−メチル−2−ピロリドン溶液に溶解させた溶液とを、負極活物質と結着剤の重量比が95:5になるように調製した。この調製されたものを混練して負極合剤スラリーを作製した。この負極合剤スラリーを銅箔からなる負極集電体121の上に塗布したものを温度120℃で乾燥した。
[Production of negative electrode]
As the negative electrode active material, spherical natural graphite particles having an average particle diameter of 15 μm and coated with low crystalline carbon were used. Then, a negative electrode active material comprising the low crystalline carbon-coated natural graphite and a solution obtained by dissolving a polyacrylonitrile modified PAN (PAN) as a binder in an N-methyl-2-pyrrolidone solution are combined with the negative electrode active material. The weight ratio of the adhesive was adjusted to 95: 5. The prepared mixture was kneaded to prepare a negative electrode mixture slurry. What apply | coated this negative mix slurry on the negative electrode collector 121 which consists of copper foils was dried at the temperature of 120 degreeC.

このときの単位面積あたりの負極合材の目付け量を4mg/cm、充填密度を1.5g/ccとした。負極12の寸法を52mm×52mmとした。この負極12の単位容量は、電解液の電解質として1mol/LのLiPF、溶媒としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で混合した混合溶媒を用い、対極にリチウム金属を用いて、充電10mA−0.01V、放電10mA−1.0Vにて測定した。その結果、1g当たり350mAhの単位容量を得た。 At this time, the basis weight of the negative electrode mixture per unit area was 4 mg / cm 2 , and the packing density was 1.5 g / cc. The dimension of the negative electrode 12 was set to 52 mm × 52 mm. The unit capacity of the negative electrode 12 is 1 mol / L LiPF 6 as the electrolyte of the electrolytic solution, and a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7 as the solvent. Using lithium metal, the measurement was performed at a charge of 10 mA-0.01 V and a discharge of 10 mA-1.0 V. As a result, a unit capacity of 350 mAh per 1 g was obtained.

[リチウム含有チタン酸化物層の作製]
リチウム含有チタン酸化物として平均粒径が5μmのチタン酸リチウム(LiTi12)と、結着剤としてのポリアクリロニトリル変性体とを重量比率が97.5:2.5になるようにN−メチル−2−ピロリドンに溶解させて、固形分濃度が30重量%となるようにN−メチル−2−ピロリドン溶液を作製した。その後、上記で作製した負極12の負極活物質層122の表面上に、ドクターブレード法により、付加層14としてのチタン酸リチウム層の乾燥後厚みが10μmとなるように上記の溶液を塗布した後、温度120℃で乾燥したものをロールプレス機により圧延し、これに集電リードを取り付けて、両面に付加層14が形成された負極12を作製した。
[Preparation of lithium-containing titanium oxide layer]
The lithium titanate (Li 4 Ti 5 O 12 ) having an average particle size of 5 μm as the lithium-containing titanium oxide and the polyacrylonitrile modified product as the binder are adjusted to have a weight ratio of 97.5: 2.5. An N-methyl-2-pyrrolidone solution was prepared by dissolving in N-methyl-2-pyrrolidone to a solid content concentration of 30% by weight. Then, after apply | coating said solution on the surface of the negative electrode active material layer 122 of the negative electrode 12 produced above by the doctor blade method so that the thickness after drying of the lithium titanate layer as the additional layer 14 may become 10 micrometers. What was dried at a temperature of 120 ° C. was rolled with a roll press, and current collecting leads were attached thereto, thereby producing a negative electrode 12 having an additional layer 14 formed on both sides.

[非水電解液の作製]
非水系溶媒として、エチレンカーボネート(EC)と鎖状カーボネートであるジエチルカーボネート(DEC)とを1:2の体積比で混合した混合溶媒を用い、この混合溶媒に電解質のLiPFを1mol/Lの濃度になるように溶解させて、非水電解液を作製した。
[Preparation of non-aqueous electrolyte]
As a non-aqueous solvent, a mixed solvent in which ethylene carbonate (EC) and chain carbonate diethyl carbonate (DEC) were mixed at a volume ratio of 1: 2 was used. In this mixed solvent, electrolyte LiPF 6 was added at 1 mol / L. It was made to melt | dissolve so that it might become a density | concentration, and the nonaqueous electrolyte solution was produced.

[電池の作製]
電池を作製するにあたっては、図1に示すように、上記のようにして作製した正極11と負極12との間に、セパレータ13としてリチウムイオン透過性のポリエチレン製の微多孔膜を介在させ、これらを重ね合わせて、電池要素10を形成した。この電池要素10を、長方形のアルミニウムラミネートフィルムに封入し、三方辺を温度80℃で熱融着した後、上記で作製した0.3gの非水電解液をアルミニウムラミネートフィルムの開口部から注入して、アルミニウムラミネートフィルムの開口部を熱融着することにより、リチウムイオン二次電池を作製した。
[Production of battery]
In producing the battery, as shown in FIG. 1, a lithium ion-permeable polyethylene microporous film is interposed as a separator 13 between the positive electrode 11 and the negative electrode 12 produced as described above, The battery element 10 was formed by superimposing. The battery element 10 was sealed in a rectangular aluminum laminate film, and three sides were heat-sealed at a temperature of 80 ° C., and then 0.3 g of the non-aqueous electrolyte prepared above was injected from the opening of the aluminum laminate film. Thus, a lithium ion secondary battery was manufactured by heat-sealing the opening of the aluminum laminate film.

[電池容量測定]
上記で作製したリチウムイオン二次電池に、充電電流を10mAとして電圧が4.2Vになるまで充電して、10分間放置した後、放電電流を10mAとして電圧が3.0Vになるまで放電した。このときに得られた放電容量を電池容量とした。
[Battery capacity measurement]
The lithium ion secondary battery produced above was charged with a charging current of 10 mA until the voltage reached 4.2 V, allowed to stand for 10 minutes, and then discharged with a discharge current of 10 mA until the voltage reached 3.0 V. The discharge capacity obtained at this time was defined as the battery capacity.

[出力特性測定]
上記の電池容量の測定を5回繰り返した後、リチウムイオン二次電池に、電圧が4.2Vになるまで充電し、10分間放置した。その後、放電電流を10mA、20mA、30mAとして、各放電電流にて10秒間放電した際の到達電圧を電流値に対してプロットしたときの傾きから直流抵抗(DCR)を算出した。
[Output characteristics measurement]
After the above battery capacity measurement was repeated five times, the lithium ion secondary battery was charged until the voltage reached 4.2 V and left for 10 minutes. Thereafter, the discharge current was set to 10 mA, 20 mA, and 30 mA, and the direct current resistance (DCR) was calculated from the slope when the ultimate voltage at the time of discharging for 10 seconds at each discharge current was plotted against the current value.

(実施例2)
付加層14の形成において、チタン酸リチウムの平均粒径を10μmとしたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製し、DCRを算出した。
(Example 2)
In the formation of the additional layer 14, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the average particle size of lithium titanate was 10 μm, and the DCR was calculated.

(実施例3)
付加層14の形成において、チタン酸リチウムの平均粒径を1μmとしたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製し、DCRを算出した。
(Example 3)
In the formation of the additional layer 14, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the average particle size of lithium titanate was 1 μm, and the DCR was calculated.

(実施例4)
付加層14の形成において、チタン酸リチウムの平均粒径を0.5μmとしたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製し、DCRを算出した。
Example 4
In the formation of the additional layer 14, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the average particle size of lithium titanate was 0.5 μm, and the DCR was calculated.

(実施例5)
付加層14の形成において、チタン酸リチウムを含む上記の溶液を塗布するときに、チタン酸リチウム層の乾燥後厚みを30μmとしたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製し、DCRを算出した。
(Example 5)
In the formation of the additional layer 14, a lithium ion secondary battery was fabricated in the same manner as in Example 1 except that when the above solution containing lithium titanate was applied, the thickness after drying of the lithium titanate layer was 30 μm. Prepared and calculated DCR.

(実施例6)
付加層14の形成において、チタン酸リチウムを含む上記の溶液を塗布するときに、チタン酸リチウム層の乾燥後厚みを50μmとしたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製し、DCRを算出した。
(Example 6)
In the formation of the additional layer 14, a lithium ion secondary battery was fabricated in the same manner as in Example 1 except that when the above solution containing lithium titanate was applied, the thickness after drying of the lithium titanate layer was 50 μm. Prepared and calculated DCR.

(実施例7)
チタン酸リチウムを含む上記の溶液を塗布するときに乾燥後厚みが10μmとなるように、付加層14としてのチタン酸リチウム層を、セパレータ13としてのポリエチレン製の微多孔膜の片面に形成したものを作製し、このチタン酸リチウム層が負極12と対向するようにリチウムイオン二次電池を組み立てたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製し、DCRを算出した。
(Example 7)
What formed the lithium titanate layer as the additional layer 14 on one side of the microporous film made of polyethylene as the separator 13 so that the thickness after drying was 10 μm when the above solution containing lithium titanate was applied A lithium ion secondary battery was produced in the same manner as in Example 1 except that the lithium ion secondary battery was assembled so that the lithium titanate layer faced the negative electrode 12, and the DCR was calculated.

(実施例8)
付加層14の形成において、チタン酸リチウムの平均粒径を20μmとしたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製し、DCRを算出した。
(Example 8)
In the formation of the additional layer 14, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the average particle size of lithium titanate was 20 μm, and the DCR was calculated.

(実施例9)
付加層14の形成において、チタン酸リチウムの平均粒径を0.1μmとしたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製し、DCRを算出した。
Example 9
In the formation of the additional layer 14, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the average particle diameter of lithium titanate was 0.1 μm, and the DCR was calculated.

(実施例10)
付加層14の形成において、チタン酸リチウムを含む上記の溶液を塗布するときに、チタン酸リチウム層の乾燥後厚みを5μmとしたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製し、DCRを算出した。
(Example 10)
In the formation of the additional layer 14, a lithium ion secondary battery was fabricated in the same manner as in Example 1 except that when the above solution containing lithium titanate was applied, the thickness after drying of the lithium titanate layer was 5 μm. Prepared and calculated DCR.

(実施例11)
付加層14の形成において、チタン酸リチウムを含む上記の溶液を塗布するときに、チタン酸リチウム層の乾燥後厚みを100μmとしたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製し、DCRを算出した。
(Example 11)
In the formation of the additional layer 14, a lithium ion secondary battery was fabricated in the same manner as in Example 1 except that when the above solution containing lithium titanate was applied, the thickness after drying of the lithium titanate layer was 100 μm. Prepared and calculated DCR.

(実施例12)
負極12の作製において、負極活物質として、低結晶性炭素で被覆していない黒鉛材料を用いたこと以外は実施例1と同様にしてリチウムイオン二次電池を作製し、DCRを算出した。
Example 12
In the production of the negative electrode 12, a lithium ion secondary battery was produced in the same manner as in Example 1 except that a graphite material not coated with low crystalline carbon was used as the negative electrode active material, and DCR was calculated.

(比較例1)
負極12の作製において、付加層14を形成しなかったこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製し、DCRを算出した。
(Comparative Example 1)
In the production of the negative electrode 12, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the additional layer 14 was not formed, and the DCR was calculated.

(比較例2)
負極12の作製において、実施例1で用いた低結晶性炭素で被覆された黒鉛と平均粒径が5μmのチタン酸リチウム粒子とを重量比2:1で混合したものと、結着剤としてのポリアクリロニトリル(PAN)とをN−メチル−2−ピロリドンに溶解させたものを、低結晶性炭素で被覆された黒鉛およびチタン酸リチウムを含有する溶液とした。この溶液においては、低結晶性炭素で被覆された黒鉛とチタン酸リチウムの混合物と結着剤との重量比が95:5になるように調製されている。この調製されたものを混練して負極合剤スラリーを作製したこと以外は、比較例1と同様にしてリチウムイオン二次電池を作製し、DCRを算出した。
(Comparative Example 2)
In the production of the negative electrode 12, a mixture of the graphite coated with the low crystalline carbon used in Example 1 and lithium titanate particles having an average particle diameter of 5 μm in a weight ratio of 2: 1 and a binder A solution of polyacrylonitrile (PAN) dissolved in N-methyl-2-pyrrolidone was used as a solution containing graphite coated with low crystalline carbon and lithium titanate. This solution is prepared so that the weight ratio of the mixture of graphite and lithium titanate coated with low crystalline carbon to the binder is 95: 5. A lithium ion secondary battery was prepared in the same manner as in Comparative Example 1 except that the prepared mixture was kneaded to prepare a negative electrode mixture slurry, and DCR was calculated.

以上の実施例1〜12と比較例1〜2で算出したDCRを表1に示す。   Table 1 shows the DCR calculated in Examples 1-12 and Comparative Examples 1-2.

Figure 2010192230
Figure 2010192230

表1から、付加層14中のチタン酸リチウムの平均粒径が0.5μm〜10μm(実施例1〜実施例4)、チタン酸リチウム層の乾燥後厚みが10μm〜50μm(実施例1、実施例5、実施例6)の範囲において、比較例1に示すように付加層14が形成されない負極12を用いたリチウムイオン二次電池と比べて、飛躍的にDCRが低減され、出力特性が向上することがわかる。   From Table 1, the average particle diameter of lithium titanate in the additional layer 14 is 0.5 μm to 10 μm (Example 1 to Example 4), and the thickness after drying of the lithium titanate layer is 10 μm to 50 μm (Example 1, Implementation). In the range of Example 5 and Example 6), as shown in Comparative Example 1, compared with the lithium ion secondary battery using the negative electrode 12 in which the additional layer 14 is not formed, the DCR is drastically reduced and the output characteristics are improved. I understand that

実施例9では、チタン酸リチウムの平均粒径が小さすぎると、チタン酸リチウムと負極12の表面との接触点が増加し、バインダ量が不足するため、十分な密着ができず、出力特性が低下していることが考えられ、実施例8では、チタン酸リチウムの平均粒径が大きすぎると、負極12の表面への電解液の拡散をチタン酸リチウムが阻害し、出力特性が低下するものと考えられる。また、実施例7では、付加層14としてのチタン酸リチウム層を負極活物質層側ではなく、セパレータに形成した場合でも実施例1と遜色のない結果が得られた。   In Example 9, if the average particle size of lithium titanate is too small, the contact point between the lithium titanate and the surface of the negative electrode 12 increases, and the amount of the binder is insufficient, so that sufficient adhesion cannot be achieved and the output characteristics are low. In Example 8, when the average particle size of lithium titanate is too large, the lithium titanate inhibits the diffusion of the electrolytic solution to the surface of the negative electrode 12 and the output characteristics are deteriorated. it is conceivable that. Moreover, in Example 7, even when the lithium titanate layer as the additional layer 14 was formed not on the negative electrode active material layer side but on the separator, the same result as in Example 1 was obtained.

また、実施例10では、チタン酸リチウム層の乾燥後厚みが薄いと、負極界面抵抗を低減する効果が得られがたく、実施例11では、チタン酸リチウム層の乾燥後厚みが厚いと、正負極の極間距離が大きくなり、出力特性が低下するものと考えられる。   In Example 10, it is difficult to obtain the effect of reducing the negative electrode interface resistance when the thickness of the lithium titanate layer after drying is small. In Example 11, when the thickness of the lithium titanate layer after drying is large, It is considered that the distance between the negative electrodes increases and the output characteristics deteriorate.

さらに、実施例12では、負極活物質として黒鉛の表面を低結晶性炭素で被覆していない材料を用いた場合、出力特性が低減しなかった理由は不明であるが、結晶性の高い黒鉛とチタン酸リチウムが直接接触することによって、チタン酸リチウムが黒鉛の電位と平均化されていることが要因であると推測される。   Furthermore, in Example 12, when the material in which the surface of graphite is not coated with low crystalline carbon is used as the negative electrode active material, it is unclear why the output characteristics were not reduced. It is assumed that the lithium titanate is in direct contact with the lithium titanate and is averaged with the potential of graphite.

なお、比較例2に示すように、黒鉛とチタン酸リチウムを混合した材料からなる負極12を用いたリチウムイオン二次電池では、黒鉛が正極11に対向する負極12の面に露出してしまうために、チタン酸リチウムによる電位降下抑制の効果が得られないので、出力特性が低下するものと考えられる。   As shown in Comparative Example 2, in the lithium ion secondary battery using the negative electrode 12 made of a material in which graphite and lithium titanate are mixed, graphite is exposed on the surface of the negative electrode 12 facing the positive electrode 11. Furthermore, since the effect of suppressing the potential drop by lithium titanate cannot be obtained, it is considered that the output characteristics are deteriorated.

以上のように、表1に示す結果から、本発明の構成を採用することにより、出力特性が飛躍的に向上したリチウムイオン二次電池を作製することが可能となることがわかる。   As described above, it can be seen from the results shown in Table 1 that by adopting the configuration of the present invention, it is possible to manufacture a lithium ion secondary battery with greatly improved output characteristics.

今回開示された実施の形態や実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態や実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものであることが意図される。   It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments or examples but by the scope of claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the scope of claims. .

例えば、電池要素10として短冊状の正極、負極、セパレータが積層されて構成されたものに代えて、長尺状の正極、負極、セパレータを巻回した構造としてもよい。   For example, instead of the battery element 10 formed by laminating strip-shaped positive electrodes, negative electrodes, and separators, a structure in which long positive electrodes, negative electrodes, and separators are wound may be used.

10:電池要素、11:正極、12:負極、13:セパレータ、14:付加層、111:正極集電体、112:正極活物質層、113:正極集端部、121:負極集電体、122:負極活物質層、123:負極集端部。


10: battery element, 11: positive electrode, 12: negative electrode, 13: separator, 14: additional layer, 111: positive electrode current collector, 112: positive electrode active material layer, 113: positive electrode current collector, 121: negative electrode current collector, 122: negative electrode active material layer, 123: negative electrode collecting portion.


Claims (5)

非水系溶媒に電解質を溶解させた非水系電解液を含む非水電解液二次電池であって、
負極集電体の表面上に配置された負極活物質層と、
前記負極活物質層の表面上に配置され、リチウム含有チタン酸化物を含む付加層とを備えた、非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte obtained by dissolving an electrolyte in a non-aqueous solvent,
A negative electrode active material layer disposed on the surface of the negative electrode current collector;
A non-aqueous electrolyte secondary battery comprising an additional layer disposed on a surface of the negative electrode active material layer and including a lithium-containing titanium oxide.
前記付加層の厚みが、10μm以上50μm以下である、請求項1に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the additional layer has a thickness of 10 μm or more and 50 μm or less. 前記リチウム含有チタン酸化物の平均粒径が、0.5μm以上10μm以下である、請求項1または請求項2に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein an average particle size of the lithium-containing titanium oxide is 0.5 µm or more and 10 µm or less. 前記負極活物質層は炭素材料を含む、請求項1に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material layer includes a carbon material. 前記炭素材料は、結晶化度の高い炭素からなる芯材と、前記芯材の表面の少なくとも一部を被覆し、結晶化度の低い炭素からなる表面層とを含む、請求項4に記載の非水電解液二次電池。   5. The carbon material according to claim 4, comprising: a core material made of carbon with a high degree of crystallinity; and a surface layer made of carbon with a low degree of crystallinity covering at least a part of the surface of the core material. Non-aqueous electrolyte secondary battery.
JP2009034852A 2009-02-18 2009-02-18 Non-aqueous electrolyte secondary battery Active JP5321116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009034852A JP5321116B2 (en) 2009-02-18 2009-02-18 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034852A JP5321116B2 (en) 2009-02-18 2009-02-18 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2010192230A true JP2010192230A (en) 2010-09-02
JP5321116B2 JP5321116B2 (en) 2013-10-23

Family

ID=42818047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034852A Active JP5321116B2 (en) 2009-02-18 2009-02-18 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5321116B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160965A1 (en) * 2011-05-25 2012-11-29 株式会社 村田製作所 Method of manufacturing power storage device
WO2013014830A1 (en) * 2011-07-26 2013-01-31 パナソニック株式会社 Lithium-ion secondary cell
WO2014020729A1 (en) * 2012-08-01 2014-02-06 トヨタ自動車株式会社 Non-aqueous electrolyte solution secondary battery
KR20140090226A (en) * 2011-11-10 2014-07-16 도요타 지도샤(주) Lithium secondary battery and method for manufacturing same
JP2015005451A (en) * 2013-06-21 2015-01-08 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
WO2015025915A1 (en) * 2013-08-23 2015-02-26 日本電気株式会社 Secondary cell
US10096821B2 (en) 2011-05-02 2018-10-09 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
CN109256521A (en) * 2017-07-12 2019-01-22 宁德时代新能源科技股份有限公司 Calendering device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121066A (en) * 1991-10-29 1993-05-18 Asahi Chem Ind Co Ltd Negative electrode for nonaqueous battery
JP2010097720A (en) * 2008-10-14 2010-04-30 Toshiba Corp Nonaqueous electrolyte battery and battery pack
JP2010537389A (en) * 2008-02-22 2010-12-02 ビーワイディー カンパニー リミテッド Battery negative electrode and lithium ion battery using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121066A (en) * 1991-10-29 1993-05-18 Asahi Chem Ind Co Ltd Negative electrode for nonaqueous battery
JP2010537389A (en) * 2008-02-22 2010-12-02 ビーワイディー カンパニー リミテッド Battery negative electrode and lithium ion battery using the same
JP2010097720A (en) * 2008-10-14 2010-04-30 Toshiba Corp Nonaqueous electrolyte battery and battery pack

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10096821B2 (en) 2011-05-02 2018-10-09 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
WO2012160965A1 (en) * 2011-05-25 2012-11-29 株式会社 村田製作所 Method of manufacturing power storage device
WO2013014830A1 (en) * 2011-07-26 2013-01-31 パナソニック株式会社 Lithium-ion secondary cell
KR20140090226A (en) * 2011-11-10 2014-07-16 도요타 지도샤(주) Lithium secondary battery and method for manufacturing same
KR101632128B1 (en) 2011-11-10 2016-06-20 도요타 지도샤(주) Lithium secondary battery and method for manufacturing same
US9882218B2 (en) 2011-11-10 2018-01-30 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and method for producing same
WO2014020729A1 (en) * 2012-08-01 2014-02-06 トヨタ自動車株式会社 Non-aqueous electrolyte solution secondary battery
JPWO2014020729A1 (en) * 2012-08-01 2016-07-11 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP2015005451A (en) * 2013-06-21 2015-01-08 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
WO2015025915A1 (en) * 2013-08-23 2015-02-26 日本電気株式会社 Secondary cell
CN109256521A (en) * 2017-07-12 2019-01-22 宁德时代新能源科技股份有限公司 Calendering device
CN109256521B (en) * 2017-07-12 2024-06-07 宁德时代新能源科技股份有限公司 Calendering device

Also Published As

Publication number Publication date
JP5321116B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
US8486566B2 (en) Positive electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
JP4306697B2 (en) Secondary battery
US8178238B2 (en) Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery
JP5255143B2 (en) Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material
JP6193285B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack and car
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6287651B2 (en) Non-aqueous secondary battery
US20090305136A1 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP5321116B2 (en) Non-aqueous electrolyte secondary battery
JP5797993B2 (en) Nonaqueous electrolyte secondary battery
JP2009081049A (en) Nonaqueous electrolyte battery and packed battery
JP2007234565A (en) Nonaqueous electrolyte secondary battery
JP5664685B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JP6769334B2 (en) Method for manufacturing negative electrode for non-aqueous electrolyte storage element, negative electrode for non-aqueous electrolyte storage element and non-aqueous electrolyte storage element
US10680279B2 (en) Lithium ion secondary battery electrode and lithium ion secondary battery
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
JP5526368B2 (en) Nonaqueous electrolyte secondary battery
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2013069579A (en) Lithium ion secondary battery and manufacturing method therefor
JP7003775B2 (en) Lithium ion secondary battery
JP2013197052A (en) Lithium ion power storage device
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP5846031B2 (en) Lithium ion secondary battery and non-aqueous electrolyte
WO2024127668A1 (en) Non-aqueous electrolyte battery and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130311

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5321116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150