JP2010190541A - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP2010190541A
JP2010190541A JP2009037854A JP2009037854A JP2010190541A JP 2010190541 A JP2010190541 A JP 2010190541A JP 2009037854 A JP2009037854 A JP 2009037854A JP 2009037854 A JP2009037854 A JP 2009037854A JP 2010190541 A JP2010190541 A JP 2010190541A
Authority
JP
Japan
Prior art keywords
refrigerant
path
expansion valve
heat exchange
paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009037854A
Other languages
English (en)
Inventor
Masaaki Kitazawa
昌昭 北澤
Hiroyuki Nakano
寛之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009037854A priority Critical patent/JP2010190541A/ja
Publication of JP2010190541A publication Critical patent/JP2010190541A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】膨張弁の上流側および下流側に複数の冷媒パスが形成されている室内熱交換器を備えた空気調和装置において、複数の冷媒パス間での偏流を抑制した空気調和装置を提供する。
【解決手段】空気調和装置1では、第1室内熱交換部31の第1パス61a、第2パス61b、第3パス61cおよび第4パス61dを通過した冷媒が第2ヘッダー52で1つに合流した後、第1膨張弁33a及び第2膨張弁33bに分流する。パス間で生じた冷媒の偏流は、各パスの冷媒が第2ヘッダー52合流することによって解消される。その結果、第2ヘッダー52の上流側の偏流が、第2ヘッダー52の下流側にある第1膨張弁33a及び第2膨張弁33bに継承されることがない。
【選択図】図2

Description

本発明は、空気調和装置に関する
従来、室内を冷やさずに除湿することができる空気調和装置として、膨張弁の上流側および下流側に複数の冷媒パスが形成されている室内熱交換器を備えた空気調和装置が、特許文献1(特開2001−82761号公報)及び特許文献2(特開2003−254555号公報)に開示されている。しかし、そのような空気調和装置は、膨張弁での圧力損失が大きいという問題点を有していた。
そこで、上記膨張弁での圧力損失を低減するため、特許文献3(特開2005−273923号公報)に開示されている空気調和装置では、上流側の冷媒パスごとに対応する膨張弁が配置されている。
しかしながら、特許文献3に開示されている空気調和装置では、膨張弁の上流側で流量の多い冷媒パスと流量の少ない冷媒パスとが発生した場合(以後、偏流と呼ぶ)、冷媒が膨張弁を通過した後もその偏流が維持されるので、室内熱交換器の熱交換性能が低下する。
さらに、近年、冷媒パスを構成する伝熱管の細径化が進み、それに伴う圧力損失の増加を抑制するために冷媒パスが増加する傾向にあり、偏流が発生し易くなる。
本発明の課題は、膨張弁の上流側および下流側に複数の冷媒パスが形成されている室内熱交換器を備えた空気調和装置において、複数の冷媒パス間での偏流を抑制した空気調和装置を提供することにある。
第1発明に係る空気調和装置は、除湿運転時、減圧機構によって、凝縮器として機能する第1熱交換部と蒸発器として機能する第2熱交換部とに分割される室内熱交換器を備えた空気調和装置である。減圧機構は複数の膨張弁を有している。第1熱交換部および第2熱交換部それぞれは、冷媒が分岐して流れる複数のパスを有している。除湿運転時に、第1熱交換部側の複数のパスを出た冷媒が1つに合流した後、複数の膨張弁へ分流する。
この空気調和装置では、上流側の複数のパスを通過した冷媒が1つに合流した後、各膨張弁に分流する。上流側の複数のパス間で生じた冷媒の偏流は、各パスの冷媒が合流することによって解消される。合流した冷媒は各膨張弁に分流する。したがって、パス間での冷媒の偏流が下流側へ継承されないので、室内熱交換器全体としての偏流が抑制され、室内熱交換器の熱交換性能の低下が抑制される。
第2発明に係る空気調和装置は、第1発明に係る空気調和装置であって、1つの膨張弁の上流側および下流側それぞれに、複数のパスがある。
従来の空気調和装置では、冷媒が膨張弁の上流側の複数のパス間で偏流し、偏流によって量が減った冷媒が膨張弁の下流側の複数のパス間でも偏流するので、冷媒がほとんど流れないパスが出現することがある。しかし、この空気調和装置では、上流側の複数のパス間で生じた冷媒の偏流は、各パスの冷媒が合流することによって解消されているので、仮に膨張弁を通過した冷媒が下流側の複数のパス間で偏流した場合でも、その程度は従来の空気調和装置に比べて小さい。
第3発明に係る空気調和装置は、第2発明に係る空気調和装置であって、複数の膨張弁を通過した冷媒が、一旦合流してから第2熱交換部側の複数のパスへ分流する。
この空気調和装置では、膨張弁間で生じた冷媒の偏流が、膨張弁通過後に冷媒が合流することによって解消されるので、その合流点の下流側の複数のパス間で偏流した場合でも、その程度は従来の空気調和装置に比べて小さい。
第4発明に係る空気調和装置は、第1発明から第3発明のいずれか1つに係る空気調和装置であって、ヘッダーをさらに備えている。ヘッダーは、冷媒が流れる複数のパスを集合させ、合流した冷媒を所定流通口へ導く、或は、所定流通口から流入する冷媒を、集合させた複数のパスへ分流させる。
この空気調和装置では、パス数が多くても配管の接続が容易であり、設置位置が安定するので配管接続後の仕上がりが良く、結果的に設置空間の増大が抑制される。
第1発明に係る空気調和装置では、パス間での冷媒の偏流が抑制され、室内熱交換器の熱交換性能の低下が抑制される。
第2発明または第3発明に係る空気調和装置では、冷媒が複数のパス間で偏流した場合でも、その程度は従来の空気調和装置に比べて小さい。
第4発明に係る空気調和装置では、パス数が多くても配管の接続が容易であり、設置位置が安定するので配管接続後の仕上がりが良く、結果的に設置空間の増大が抑制される。
本発明の一実施形態に係る空気調和装置の冷媒回路図。 空気調和装置の室内熱交換器に形成されたパスの説明図。 第1ヘッダーの斜視図。 第1変形例に係る空気調和装置の室内熱交換器に形成されたパスの説明図。 第2変形例に係る空気調和装置の室内熱交換器に形成されたパスの説明図。
以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。
<空気調和装置1の構成>
図1は、本発明の一実施形態に係る空気調和装置の冷媒回路図である。図1において、空気調和装置1は、室外ユニット2と室内ユニット3とを備えている。なお、室内ユニット3は複数台であってもよい。
この空気調和装置1は、冷媒が充填された冷媒回路10を備えている。冷媒回路10は、室外ユニット2に収容された室外側回路と、室内ユニット3に収容された室内側回路とを備えている。室外側回路と室内側回路とは、ガス側連絡配管17a及び液側連絡配管17bによって接続されている。
<室外ユニット2>
室外ユニット2における室外側回路には、圧縮機11、四路切換弁12、室外熱交換器13、及び室外膨張弁14が接続されている。室外側回路の一端には、液側連絡配管17bが接続される液側閉鎖弁19が設けられている。室外側回路の他端には、ガス側連絡配管17aが接続されるガス側閉鎖弁18が設けられている。
圧縮機11の吐出側は、四路切換弁12の第1ポートP1に接続されている。圧縮機11の吸入側は、アキュムレータ20を挟んで四路切換弁12の第3ポートP3に接続されている。アキュムレータ20は、液冷媒とガス冷媒とを分離する。
室外熱交換器13は、クロスフィン式のフィン・アンド・チューブ型熱交換器である。この室外熱交換器13の近傍には、室外空気を送るための室外ファン23が設けられている。室外熱交換器13の一端側は、四路切換弁12の第4ポートP4に接続されている。室外熱交換器13の他端側は、減圧手段である室外膨張弁14に接続されている。
室外膨張弁14は、開度可変の電子膨張弁であり、液側閉鎖弁19に接続されている。また、四路切換弁12の第2ポートP2はガス側閉鎖弁18に接続されている。
四路切換弁12は、第1ポートP1と第4ポートP4が互いに連通して第2ポートP2と第3ポートP3が互いに連通する第1状態(図1の実線で示す状態)と、第1ポートP1と第2ポートP2が互いに連通して第3ポートP3と第4ポートP4が互いに連通する第2状態(図1の点線で示す状態)とが切り換え可能となっている。
<室内ユニット3>
室内側回路には、室内熱交換器30が接続されている。室内熱交換器30はクロスフィン式のフィン・アンド・チューブ型熱交換器であり、第1室内熱交換部31、第2室内熱交換部32及び減圧機構33を含んでいる。第1室内熱交換部31及び第2室内熱交換部32の近傍には、室内空気を送るための室内ファン43が配置されている。
減圧機構33は、第1膨張弁33aと第2膨張弁33bとを有している。第1膨張弁33a及び第2膨張弁33b共に、第1室内熱交換部31と第2室内熱交換部32との間に接続されている。
第2室内熱交換部32は、下側熱交換部32aと上側熱交換部32bに分かれている。第1膨張弁33aは下側熱交換部32aに接続されており、第2膨張弁33bは上側熱交換部32bに接続されている。したがって、第1室内熱交換部31から出た冷媒は、第1膨張弁33aを経て下側熱交換部32aに入る冷媒と、第2膨張弁33bを経て上側熱交換部32bに入る冷媒とに分かれる。
図2は、空気調和装置の室内熱交換器に形成されたパスの説明図である。図2において、除湿運転時、冷媒は第1室内熱交換部31から第1膨張弁33aおよび第2膨張弁33bへ流れる。第1室内熱交換部31へ向う冷媒は、第1ヘッダー51に入ったあと、第1室内熱交換部31に形成されている4つのパスに分かれて流れる。これら4つのパスは、それぞれ第1パス61a、第2パス61b、第3パス61c及び第4パス61dである。
第1パス61a、第2パス61b、第3パス61c及び第4パス61dは、第1室内熱交換部31の下流側で第2ヘッダー52に集合しており、各パスを流れる冷媒は第2ヘッダー52で合流する。第2ヘッダー52から出た冷媒は、第1分流器71を経て第1膨張弁33aに向う冷媒と第2膨張弁33bに向う冷媒とに分かれる。
第1膨張弁33aを通過した冷媒は、下側第1ヘッダー53に入ったあと、第2室内熱交換部32の下側熱交換部32aに形成されている4つのパスに分かれて流れる。これら4つのパスは、下側第1パス63a、下側第2パス63b、下側第3パス63c及び下側第4パス63dである。
下側第1パス63a、下側第2パス63b、下側第3パス63c及び下側第4パス63dは、下側熱交換部32aの下流側で下側第2ヘッダー54に集合しており、各パスを流れる冷媒は下側第2ヘッダー54で合流する。
第2膨張弁33bを通過した冷媒は、上側第1ヘッダー55に入ったあと、第2室内熱交換部32の上側熱交換部32bに形成されている4つのパスに分かれて流れる。これら4つのパスは、上側第1パス65a、上側第2パス65b、上側第3パス65c及び上側第4パス65dである。
上側第1パス65a、上側第2パス65b、上側第3パス65c及び上側第4パス65dは、上側熱交換部32bの下流側で上側第2ヘッダー56に集合しており、各パスを流れる冷媒は上側第2ヘッダー56で合流する。
下側第2ヘッダー54及び上側第2ヘッダー56から出た冷媒は、第2分流器72を経て合流する。
参考として、図3に第1ヘッダーの斜視図を示す。図3において、第1ヘッダー51は
四角柱形状の本体に、第1接続口51a、第2接続口51b、第3接続口51c及び第4接続口51dが形成されており、各接続口にパスが(例えば、第1パス61a、第2パス61b、第3パス61c及び第4パス61d)が接続される。さらに、第1ヘッダー51には、流通口51eが形成されており、各接続口から流入し合流した冷媒が通る。又、流通口51eから流入した冷媒が各接続口へ分かれて流出することもできる。なお、第1ヘッダー51は円柱形状であってもよい。接続口および流通口は何個でもよい。
第2ヘッダー52、下側第1ヘッダー53、下側第2ヘッダー54、上側第1ヘッダー55及び上側第2ヘッダー56は、基本仕様は第1ヘッダー51と同様である。このようなヘッダーを用いることにより、パス数が多くても配管の接続が容易で設置位置が安定するので、配管接続後の仕上がりが良く、結果的に設置空間の増大が抑制される。
<空気調和装置1の動作>
空気調和装置1では、四路切換弁12によって、冷房運転および暖房運転のいずれか一方に切り換えることが可能である。
(冷房運転)
冷房運転では、四路切換弁12が第1状態(図1の実線)に設定され、室内ユニット3の第1膨張弁33a及び第2膨張弁33bは全開状態に設定される。この状態で圧縮機11が運転されると、冷媒回路10では室外熱交換器13が凝縮器となり、室内熱交換器30の第1室内熱交換部31及び第2室内熱交換部32が蒸発器となって、蒸気圧縮冷凍サイクルが行われる。
圧縮機11から吐出された高圧の冷媒は、室外熱交換器13で室外空気と熱交換して凝縮する。室外熱交換器13を通過した冷媒は、室外膨張弁14を通過する際に減圧され、その後に第1室内熱交換部31及び第2室内熱交換部32で空気と熱交換して蒸発する。その熱交換によって温度低下した空気は室内に吹きだされて室内を冷却する。第1室内熱交換部31及び第2室内熱交換部32を通過した冷媒は、圧縮機11へ吸入されて圧縮される。
(暖房運転)
暖房運転では、四路切換弁12が第2状態(図1の点線)に設定され、室内ユニット3の第1膨張弁33a及び第2膨張弁33bは全開状態に設定される。この状態で圧縮機11が運転されると、冷媒回路10では、室外熱交換器13が蒸発器となり、第1室内熱交換部31及び第2室内熱交換部32が凝縮器となって、蒸気圧縮冷凍サイクルが行われる。
圧縮機11から吐出された高圧の冷媒は、第1室内熱交換部31及び第2室内熱交換部32で空気と熱交換して凝縮する。その熱交換によって温度上昇した空気は室内に吹きだされて室内を暖める。凝縮した冷媒は、室外膨張弁14を通過する際に減圧された後、室外熱交換器13で室外空気と熱交換して蒸発する。室外熱交換器13を通過した冷媒は、圧縮機11へ吸入されて圧縮される。
(除湿運転)
除湿運転では、四路切換弁12が第1状態(図1の実線)に設定され、室外膨張弁14が全開状態に設定され、室内ユニット3の第1膨張弁33a及び第2膨張弁33bが所定の開度まで絞られる。この状態で圧縮機11が運転されると、冷媒回路10では室外熱交換器13と第1室内熱交換部31とが凝縮器となり、第2室内熱交換部32が蒸発器となって、蒸気圧縮冷凍サイクルが行われる。
圧縮機11から吐出された高圧の冷媒は、室外熱交換器13で室外空気と熱交換して凝縮し、室外熱交換器13で凝縮しきれなかった冷媒が第1室内熱交換部31で凝縮する。図2に示すように、第1室内熱交換部31では、冷媒は第1パス61a、第2パス61b、第3パス61c及び第4パス61dに分かれて流れるので圧力損失が少ない。また、パス間に偏流が発生した場合でも、各パスを流れる冷媒が第1室内熱交換部31の下流側の第2ヘッダー52で合流するので、その偏流が維持されることはない。第2ヘッダー52から出た冷媒は、第1分流器71を経て第1膨張弁33aに向う冷媒と第2膨張弁33bに向う冷媒とに分かれる。
第1膨張弁33aに入った冷媒は、そこで所定の圧力まで減圧されて下側第1ヘッダー53に入る。下側第1ヘッダー53から出た冷媒は第2室内熱交換部32の下側熱交換部32aで空気と熱交換して蒸発する。下側熱交換部32aでは、冷媒は下側第1パス63a、下側第2パス63b、下側第3パス63c及び下側第4パス63dに分かれて流れるので圧力損失が少ない。また、下側第1パス63a、下側第2パス63b、下側第3パス63c及び下側第4パス63dの各パスを流れる冷媒は上流側の偏流を継承していないので、パス間に偏流が発生した場合でもその偏流の程度は小さい。
第2膨張弁33bに入った冷媒は、そこで所定の圧力まで減圧されて上側第1ヘッダー55に入る。上側第1ヘッダー55から出た冷媒は第2室内熱交換部32の上側熱交換部32bで空気と熱交換して蒸発する。上側熱交換部32bでは、冷媒は上側第1パス65a、上側第2パス65b、上側第3パス65c及び上側第4パス65dに分かれて流れるので圧力損失が少ない。また、上側第1パス65a、上側第2パス65b、上側第3パス65c及び上側第4パス65dの各パスを流れる冷媒は上流側の偏流を継承していないので、パス間に偏流が発生した場合でもその偏流の程度は小さい。
下側熱交換部32a及び上側熱交換部32bを通過した冷媒は、第2分流器72で合流し、圧縮機11へ吸入されて圧縮される。
この除湿運転では、第1室内熱交換部31で温度上昇した空気と、第2室内熱交換部32で除湿され温度低下した空気とが混合されるので、通常の冷房運転による除湿に比べて、室内温度の低下が抑制される。
<特徴>
空気調和装置1では、第1室内熱交換部31の第1パス61a、第2パス61b、第3パス61cおよび第4パス61dを通過した冷媒が第2ヘッダー52で1つに合流した後、第1膨張弁33a及び第2膨張弁33bに分流する。パス間で生じた冷媒の偏流は、各パスの冷媒が第2ヘッダー52合流することによって解消される。その結果、第2ヘッダー52の上流側の偏流が、第2ヘッダー52の下流側にある第1膨張弁33a及び第2膨張弁33bに継承されることがない。
仮に、第1膨張弁33aと第2膨張弁33bとの間で偏流が生じても、第1パス61a、第2パス61b、第3パス61cおよび第4パス61d間の偏流を継承していないので、偏流の程度は小さい。
<第1変形例>
図4は、第1変形例に係る空気調和装置の室内熱交換器に形成されたパスの説明図である。図4において、第1パス61a、第2パス61b、第3パス61c及び第4パス61dを流れる冷媒は第2ヘッダー52に入って合流した後、第2ヘッダー52から2つに分かれ、一方は第1膨張弁33aに向い、他方は第2膨張弁33bに向う。
第1変形例では、第2ヘッダー52が第1膨張弁33aへ向う冷媒と、第2膨張弁33bへ向う冷媒とに分けているので、図2に示すような第1分流器71が不要となり、その分、圧力損失も低減される。
第1膨張弁33a及び第2膨張弁33b以降の冷媒の流れは上記実施形態と同様であるので説明は省略する。
<第2変形例>
図5は、第2変形例に係る空気調和装置の室内熱交換器に形成されたパスの説明図である。図5において、第1膨張弁33aと第2膨張弁33bとの間で生じた偏流が解消されるように、第1膨張弁33a及び第2膨張弁33bを通過した冷媒は、小型ヘッダー150で合流し、再び2つに分かれて下側熱交換部32a及び上側熱交換部32bへ向う。
その結果、冷媒が下側熱交換部32aの下側第1パス63a、下側第2パス63b、下側第3パス63c及び下側第4パス63dに分かれて流れるときに、第1膨張弁33aと第2膨張弁33bとの間で生じた偏流が継承されないので、パス間に偏流が発生した場合でもその偏流の程度は小さい。
同様に、冷媒が上側熱交換部32bの上側第1パス65a、上側第2パス65b、上側第3パス65c及び上側第4パス65dに分かれて流れるときに、第1膨張弁33aと第2膨張弁33bとの間で生じた偏流が継承されていないので、パス間に偏流が発生した場合でもその偏流の程度は小さい。
以上のように、本発明によれば、複数のパス間での偏流が抑制されるので、膨張弁の上流側および下流側に複数のパスが形成されている室内熱交換器に有用である。
1 空気調和装置
30 室内熱交換器
31 第1熱交換部
32 第2熱交換部
32a 下側熱交換部
32b 上側熱交換部
33 減圧機構
33a 第1膨張弁
33b 第2膨張弁
51 第1ヘッダー
52 第2ヘッダー
53 下側第1ヘッダー
54 下側第2ヘッダー
55 上側第1ヘッダー
56 上側第2ヘッダー
61a 第1パス
61b 第2パス
61c 第3パス
61d 第4パス
63a 下側第1パス
63b 下側第2パス
63c 下側第3パス
63d 下側第4パス
65a 上側第1パス
65b 上側第2パス
65c 上側第3パス
65d 上側第4パス
特開2001− 82761号公報 特開2003−254555号公報 特開2005−273923号公報

Claims (4)

  1. 除湿運転時、減圧機構(33)によって、凝縮器として機能する第1熱交換部(31)と蒸発器として機能する第2熱交換部(32)とに分割される室内熱交換器(30)を備えた空気調和装置であって、
    前記減圧機構(33)は複数の膨張弁(33a,33b)を有し、
    前記第1熱交換部(31)および前記第2熱交換部(32)それぞれは、冷媒が分岐して流れる複数のパス(61a〜61d,63a〜63d,65a〜65d)を有し、
    前記除湿運転時に、前記第1熱交換部(31)側の複数の前記パスを出た前記冷媒が1つに合流した後、複数の前記膨張弁(33a,33b)へ分流する、
    空気調和装置(1)。
  2. 1つの前記膨張弁(33a,33b)の上流側および下流側それぞれに、複数の前記パスがある、
    請求項1に記載の空気調和装置(1)。
  3. 複数の前記膨張弁(33a,33b)を通過した前記冷媒は、一旦合流してから前記第2熱交換部(32)側の複数の前記パスへ分流する、
    請求項2に記載の空気調和装置(1)。
  4. 前記冷媒が流れる複数の前記パスを集合させ、合流した前記冷媒を所定流通口へ導く、或は、前記所定流通口から流入する前記冷媒を、集合させた複数の前記パスへ分流させるヘッダー(51〜56)をさらに備えた、
    請求項1から請求項3のいずれか1項に記載の空気調和装置(1)。
JP2009037854A 2009-02-20 2009-02-20 空気調和装置 Pending JP2010190541A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037854A JP2010190541A (ja) 2009-02-20 2009-02-20 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037854A JP2010190541A (ja) 2009-02-20 2009-02-20 空気調和装置

Publications (1)

Publication Number Publication Date
JP2010190541A true JP2010190541A (ja) 2010-09-02

Family

ID=42816774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037854A Pending JP2010190541A (ja) 2009-02-20 2009-02-20 空気調和装置

Country Status (1)

Country Link
JP (1) JP2010190541A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106969547A (zh) * 2017-04-12 2017-07-21 美的集团武汉制冷设备有限公司 蒸发器冷媒流量分配控制方法和控制装置以及空调器***
WO2020152738A1 (ja) 2019-01-21 2020-07-30 三菱電機株式会社 熱交換器及び空気調和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106969547A (zh) * 2017-04-12 2017-07-21 美的集团武汉制冷设备有限公司 蒸发器冷媒流量分配控制方法和控制装置以及空调器***
CN106969547B (zh) * 2017-04-12 2020-12-22 美的集团武汉制冷设备有限公司 蒸发器冷媒流量分配控制方法和控制装置以及空调器***
WO2020152738A1 (ja) 2019-01-21 2020-07-30 三菱電機株式会社 熱交換器及び空気調和装置
US12000633B2 (en) 2019-01-21 2024-06-04 Mitsubishi Electric Corporation Outdoor unit and air-conditioning apparatus

Similar Documents

Publication Publication Date Title
JP3982545B2 (ja) 空気調和装置
WO2018002983A1 (ja) 冷凍サイクル装置
KR101146460B1 (ko) 냉매시스템
JP4444638B2 (ja) 空気調和機及びそれに使用される室外機
JP6179414B2 (ja) 冷凍装置の熱源ユニットの熱交換器、および、それを備えた熱源ユニット
JP4553761B2 (ja) 空気調和装置
WO2012086746A1 (ja) 流路切換弁、及びそれを備えた空気調和機
JP2008128498A (ja) マルチ型空気調和機
JP5875710B2 (ja) 空気調和装置
JP6045489B2 (ja) 空気調和機
JP7034272B2 (ja) 冷凍サイクル装置
JP4303032B2 (ja) 空気調和装置
KR101288745B1 (ko) 공기조화기
JPWO2012085965A1 (ja) 空気調和機
JP2011133133A (ja) 冷凍装置
JP2008070053A (ja) 空気調和装置
JP2009243842A (ja) マルチ型空気調和機および室外機の運転方法
JP3984250B2 (ja) 多室型空気調和機
JP2006170541A (ja) 空気調和装置
JP2005147440A (ja) 多室型空気調和機
JP5968540B2 (ja) 冷媒回路および空気調和装置
JP2010190541A (ja) 空気調和装置
JP2011127785A (ja) 冷凍装置
WO2007040031A1 (ja) 空気調和機用液ガス熱交換器
JP2010127504A (ja) 空気調和装置