JP2010189600A - Thermally conductive and insulative resin molding - Google Patents

Thermally conductive and insulative resin molding Download PDF

Info

Publication number
JP2010189600A
JP2010189600A JP2009037820A JP2009037820A JP2010189600A JP 2010189600 A JP2010189600 A JP 2010189600A JP 2009037820 A JP2009037820 A JP 2009037820A JP 2009037820 A JP2009037820 A JP 2009037820A JP 2010189600 A JP2010189600 A JP 2010189600A
Authority
JP
Japan
Prior art keywords
core
shell
particle
inorganic compound
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009037820A
Other languages
Japanese (ja)
Other versions
JP4793456B2 (en
Inventor
Hiroshi Yanagimoto
博 柳本
Takeshi Bessho
毅 別所
Hideto Minami
秀人 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Toyota Motor Corp
Original Assignee
Kobe University NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, Toyota Motor Corp filed Critical Kobe University NUC
Priority to JP2009037820A priority Critical patent/JP4793456B2/en
Priority to PCT/IB2009/007913 priority patent/WO2010095000A1/en
Publication of JP2010189600A publication Critical patent/JP2010189600A/en
Application granted granted Critical
Publication of JP4793456B2 publication Critical patent/JP4793456B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1233Organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/164Aluminum halide, e.g. aluminium chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly thermally radiative and insulative resin material. <P>SOLUTION: There is provided a core/shell particle (3) including a polymer-containing core particle (2) and a thermally conductive and insulative inorganic compound-containing shell (1). An insulative resin molding (4) molded by pressing and/or heating an aggregate of the core/shell particles (3) has excellent thermal radiation since the molding has a continuous thermal conductive passage (5) in the inside. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子回路基板等の絶縁性と放熱性が求められる部材の材料として有用な、熱伝導性絶縁樹脂成形体およびそれを製造するためのコア/シェル構造を有する粒子を提供する。   The present invention provides a thermally conductive insulating resin molded article and particles having a core / shell structure for producing the same, which are useful as materials for members that are required to have insulation and heat dissipation, such as an electronic circuit board.

高分子化合物からなる樹脂は成形性に優れた安価な絶縁材料であることから、電子回路基板用基材、モータ絶縁材、絶縁接着剤等の様々な電子部品に用いられる。   Since a resin made of a polymer compound is an inexpensive insulating material having excellent moldability, it is used for various electronic parts such as a substrate for an electronic circuit board, a motor insulating material, and an insulating adhesive.

近年、これら電子部品の高密度化・高出力化に伴い、電子部品からの発熱量が増大している。このため電子部品の熱を放出させるための対策が強く求められている。   In recent years, with the increase in density and output of these electronic components, the amount of heat generated from the electronic components has increased. For this reason, measures for releasing heat of electronic components are strongly demanded.

この課題に対し、従来技術では樹脂内部にアルミナやシリカなどの無機物からなるフィラーを充填し、樹脂の熱伝導度を高める方法が用いられている(図2参照)。例えば特開平11-233694号公報、特開平9-270483号公報、および特許第3559137号公報には、結晶性シリカ、酸化アルミニウム等の無機物の粒子を高分子樹脂中に付加して熱伝導性を付与する技術が開示されている。この場合、無機物のフィラー粒子が繋がって形成される連続体が熱の伝導路として機能する。すなわち、樹脂内に充填された無機物のフィラー粒子は相互に接触している必要がある。このため、効率的な熱伝導のためには多量の無機フィラーを充填する必要があった。   In order to deal with this problem, in the prior art, a method is used in which the resin is filled with an inorganic filler such as alumina or silica to increase the thermal conductivity of the resin (see FIG. 2). For example, in Japanese Patent Laid-Open Nos. 11-233694, 9-270483, and 3559137, inorganic particles such as crystalline silica and aluminum oxide are added to a polymer resin to increase thermal conductivity. The technology to grant is disclosed. In this case, a continuous body formed by connecting inorganic filler particles functions as a heat conduction path. That is, the inorganic filler particles filled in the resin must be in contact with each other. For this reason, it was necessary to fill a large amount of inorganic filler for efficient heat conduction.

特開平11-233694号公報Japanese Patent Laid-Open No. 11-233694 特開平9-270483号公報Japanese Patent Laid-Open No. 9-270483 特許第3559137号公報Japanese Patent No. 3559137

無機フィラーを含有する従来の放熱性絶縁樹脂成形体は、無機フィラーを多量に添加する必要があったため以下の技術的課題を有していた。(1)重量が重い。(2) 無機フィラーは硬いため加工性が悪い。(3)無機フィラーと樹脂の界面に空隙が発生し易く水が滞留するため耐湿性が低い。(4)無機フィラーは高価であるため製造コストが高い。(5)無機フィラーの充填量を多く含む樹脂は形状を保持するのに一定の厚みが必要であり、薄肉形成が困難である。   The conventional heat-dissipating insulating resin molding containing an inorganic filler has the following technical problems because it is necessary to add a large amount of the inorganic filler. (1) Heavy. (2) Processability is poor because inorganic filler is hard. (3) The moisture resistance is low because voids are likely to occur at the interface between the inorganic filler and the resin, and water is retained. (4) Manufacturing costs are high because inorganic fillers are expensive. (5) A resin containing a large amount of the inorganic filler needs a certain thickness to maintain its shape, and it is difficult to form a thin wall.

そこで本発明は、無機物フィラーの使用量を高めることなく放熱性の高い樹脂材料を提供することを目的とする。   Then, an object of this invention is to provide the resin material with high heat dissipation, without raising the usage-amount of an inorganic filler.

本発明者らは、高分子化合物を含むコア粒子と、熱伝導性かつ絶縁性の無機化合物を含むシェルとを備えるコア/シェル粒子の集合体を加圧および/または加熱して成形される樹脂成形体が、同量の無機化合物を無機フィラーとして含有する従来の放熱性絶縁樹脂成形体と比較して高い熱伝導性を有することを見出した。この効果は、各コア/シェル粒子の表面の前記無機化合物のシェルが成形時に三次元状にネットワーク化され、連続した熱伝導路を形成することによる効果であると考えられる。本発明者らは、前記コア/シェル粒子自体も新たに提供する。すなわち本発明は以下の発明を包含する。   The present inventors provide a resin molded by pressing and / or heating an aggregate of core / shell particles comprising a core particle containing a polymer compound and a shell containing a thermally conductive and insulating inorganic compound. It has been found that the molded product has higher thermal conductivity than a conventional heat-dissipating insulating resin molded product containing the same amount of an inorganic compound as an inorganic filler. This effect is considered to be due to the fact that the shell of the inorganic compound on the surface of each core / shell particle is networked in a three-dimensional shape during molding to form a continuous heat conduction path. The present inventors newly provide the core / shell particles themselves. That is, the present invention includes the following inventions.

(1) 高分子化合物を含むコア粒子と、該コア粒子を被覆する、熱伝導性かつ絶縁性の無機化合物を含むシェルとを備える、コア/シェル粒子。
(2) 前記高分子化合物が極性官能基を有する高分子化合物である、(1)のコア/シェル粒子。
(3) 前記無機化合物がアルミニウムの酸化物、アルミニウムのフッ化物、またはシリカである、(1)または(2)のコア/シェル粒子。
(4) 前記無機化合物が2〜30重量%含まれる、(1)〜(3)のいずれかのコア/シェル粒子。
(5) 溶媒中に前記コア粒子が分散した分散液を準備する分散液準備工程と、
該分散液中に、前記無機化合物の前駆体、および該前駆体から前記無機化合物を生成する反応の反応開始剤を添加する添加工程と、
前記コア粒子の表面に前記無機化合物を含むシェルを形成させるシェル形成工程と
を含む方法により製造される、(1)〜(4)のいずれかのコア/シェル粒子。
(6) 前記無機化合物の前駆体がケイ素または金属のアルコキシドである、(5)のコア/シェル粒子。
(7) 前記分散液の溶媒がイオン液体である、(5)または(6)のコア/シェル粒子。
(8) 前記分散液準備工程が、前記溶媒中にモノマーおよび重合反応開始剤を添加し、重合反応を進行させ、高分子化合物を含むコア粒子を生成する工程である、(5)〜(7)のいずれかのコア/シェル粒子。
(9) 前記モノマーが、スチレンと、スチレンと共重合可能な、極性官能基を有するモノマーとの混合物である、(8)のコア/シェル粒子。
(10) (1)〜(9)のいずれかのコア/シェル粒子の集合体を加圧および/または加熱して成形される、熱伝導性絶縁樹脂成形体。
(11) 高分子化合物を含むコア粒子と、該コア粒子を被覆する、熱伝導性かつ絶縁性の無機化合物を含むシェルとを備える、コア/シェル粒子の製造方法であって、
溶媒中に前記コア粒子が分散した分散液を準備する分散液準備工程と、
該分散液中に、前記無機化合物の前駆体、および該前駆体から前記無機化合物を生成する反応の反応開始剤を添加する添加工程と、
前記コア粒子の表面に前記無機化合物を含むシェルを形成させるシェル形成工程と
を含む方法。
(12) 前記無機化合物の前駆体がケイ素または金属のアルコキシドである、(11)の方法。
(13) 前記分散液の溶媒がイオン液体である、(11)または(12)の方法。
(14) 前記分散液準備工程が、前記溶媒中にモノマーおよび重合反応開始剤を添加し、重合反応を進行させ、高分子化合物を含むコア粒子を生成する工程である、(11)〜(13)のいずれかの方法。
(15) 前記モノマーが、スチレンと、スチレンと共重合可能な、極性官能基を有するモノマーとの混合物である、(14)の方法。
(1) A core / shell particle comprising: a core particle containing a polymer compound; and a shell containing a thermally conductive and insulating inorganic compound that coats the core particle.
(2) The core / shell particle according to (1), wherein the polymer compound is a polymer compound having a polar functional group.
(3) The core / shell particle according to (1) or (2), wherein the inorganic compound is an oxide of aluminum, an aluminum fluoride, or silica.
(4) The core / shell particle according to any one of (1) to (3), wherein the inorganic compound is contained in an amount of 2 to 30% by weight.
(5) A dispersion preparing step of preparing a dispersion in which the core particles are dispersed in a solvent;
An addition step of adding a precursor of the inorganic compound and a reaction initiator for generating the inorganic compound from the precursor to the dispersion;
A core / shell particle according to any one of (1) to (4), which is produced by a method comprising a shell forming step of forming a shell containing the inorganic compound on the surface of the core particle.
(6) The core / shell particle according to (5), wherein the precursor of the inorganic compound is silicon or a metal alkoxide.
(7) The core / shell particles according to (5) or (6), wherein the solvent of the dispersion is an ionic liquid.
(8) The dispersion preparation step is a step of adding a monomer and a polymerization reaction initiator to the solvent, causing the polymerization reaction to proceed, and generating core particles containing a polymer compound, (5) to (7 ) Any core / shell particles.
(9) The core / shell particle according to (8), wherein the monomer is a mixture of styrene and a monomer having a polar functional group copolymerizable with styrene.
(10) A thermally conductive insulating resin molded article formed by pressing and / or heating the aggregate of core / shell particles according to any one of (1) to (9).
(11) A core / shell particle manufacturing method comprising: a core particle containing a polymer compound; and a shell containing a thermally conductive and insulating inorganic compound that coats the core particle,
A dispersion preparing step of preparing a dispersion in which the core particles are dispersed in a solvent;
An addition step of adding a precursor of the inorganic compound and a reaction initiator for generating the inorganic compound from the precursor to the dispersion;
Forming a shell containing the inorganic compound on the surface of the core particle.
(12) The method according to (11), wherein the precursor of the inorganic compound is silicon or a metal alkoxide.
(13) The method according to (11) or (12), wherein the solvent of the dispersion is an ionic liquid.
(14) The dispersion preparation step is a step of adding a monomer and a polymerization reaction initiator to the solvent and causing the polymerization reaction to proceed to produce core particles containing a polymer compound. ) One of the methods.
(15) The method according to (14), wherein the monomer is a mixture of styrene and a monomer having a polar functional group copolymerizable with styrene.

本発明のコア/シェル粒子の集合体を成形することにより、等量の熱伝導性無機化合物を無機フィラーとして含有する従来の放熱性絶縁樹脂成形体と比較して、熱伝導性が優れた、絶縁性の樹脂成形体が提供される。   By molding the aggregate of core / shell particles of the present invention, compared with a conventional heat-dissipating insulating resin molded body containing an equivalent amount of a thermally conductive inorganic compound as an inorganic filler, the thermal conductivity is excellent. An insulating resin molded body is provided.

図1は、本発明のコア/シェル粒子を成形して伝導性絶縁樹脂成形体を得る場合の、成形前後での形状変化を模式的に示す図である。FIG. 1 is a diagram schematically showing a shape change before and after molding when a core / shell particle of the present invention is molded to obtain a conductive insulating resin molded body. 図2は、無機フィラー粒子を樹脂成形体中に分散させた従来の熱伝導性絶縁樹脂成形体の模式図である。FIG. 2 is a schematic view of a conventional thermally conductive insulating resin molded body in which inorganic filler particles are dispersed in a resin molded body. 図3は、シード分散重合法を用いたポリスチレン(PS)/シリカ(コア/シェル)粒子の合成スキームを模式的に示す図である。FIG. 3 is a diagram schematically showing a synthesis scheme of polystyrene (PS) / silica (core / shell) particles using a seed dispersion polymerization method. 図4は、塩酸(a)またはジメチルアミン(b)水溶液をゾル-ゲル法における開始剤として用いて合成された、PS/アルミニウム化合物粒子を含有する分散液の写真である。FIG. 4 is a photograph of a dispersion containing PS / aluminum compound particles synthesized using an aqueous solution of hydrochloric acid (a) or dimethylamine (b) as an initiator in the sol-gel method. 図5は、塩酸またはジメチルアミン水溶液をゾル-ゲル法における開始剤として用いて合成された、PS/アルミニウム化合物粒子のTGAプロファイルである。FIG. 5 is a TGA profile of PS / aluminum compound particles synthesized using hydrochloric acid or an aqueous dimethylamine solution as an initiator in the sol-gel method. 図6は、アルミニウム化合物析出前(a)および後(b)のPS粒子形態観察像である。FIG. 6 is a PS particle morphology observation image before (a) and after (b) deposition of the aluminum compound. 図7は、アルミニウム化合物析出量と塩酸水溶液濃度との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the amount of precipitated aluminum compound and the concentration of aqueous hydrochloric acid. 図8は、アルミニウム化合物析出量と1 mol/L 塩酸水溶液添加量との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the amount of precipitated aluminum compound and the amount of 1 mol / L hydrochloric acid aqueous solution added. 図9は、イオン液体(a)および有機溶媒(b)中で得られたアルミニウム化合物のXRDプロファイルである。FIG. 9 is an XRD profile of the aluminum compound obtained in the ionic liquid (a) and the organic solvent (b). 図10は、イオン液体で調製されたコアシェル粒子成形体の断面TEM像である。FIG. 10 is a cross-sectional TEM image of a core-shell particle compact prepared with an ionic liquid. 図11は、PSシード粒子にアルミニウム化合物を被覆したコアシェル粒子(a)、およびP(S-HEMA)シード粒子にアルミニウム化合物を被覆したコアシェル粒子(b)のTEM像である。FIG. 11 shows TEM images of core-shell particles (a) in which PS seed particles are coated with an aluminum compound, and core-shell particles (b) in which P (S-HEMA) seed particles are coated with an aluminum compound. 図12は、キャスティング法により形成されたP(S-nBA-AA)/アルミニウム化合物複合膜の断面TEM像である。FIG. 12 is a cross-sectional TEM image of a P (S-nBA-AA) / aluminum compound composite film formed by a casting method. 図13は、P(S-nBA)およびP(S-nBA-AA) シード粒子を用いたコアシェル粒子のTGAプロファイルである。FIG. 13 is a TGA profile of core-shell particles using P (S-nBA) and P (S-nBA-AA) seed particles.

1. コア/シェル粒子の構造
はじめに図1に基づいて本発明のコア/シェル粒子の構造および機能について説明する。コア/シェル粒子3は、高分子化合物を含む(好ましくは、高分子化合物からなる)コア粒子2と、コア粒子2を被覆する、熱伝導性かつ絶縁性の無機化合物を含む(好ましくは、該無機化合物からなる)シェル1とを備える。
1. Structure of Core / Shell Particle First, the structure and function of the core / shell particle of the present invention will be described based on FIG. The core / shell particle 3 includes a core particle 2 containing a polymer compound (preferably made of a polymer compound), and a thermally conductive and insulating inorganic compound covering the core particle 2 (preferably, And shell 1 made of an inorganic compound.

コア/シェル粒子3の集合体は、加圧および/または加熱により成形されて熱伝導性絶縁樹脂成形体4となる。熱伝導性絶縁樹脂成形体4の内部では、無機化合物シェル1が連続して、連続的な熱伝導路5を構成する。熱伝導路5は、熱を伝導する役割を果たす。本発明の熱伝導性絶縁樹脂成形体4の構造は、図2に示す、無機フィラー粒子6が高分子化合物からなる樹脂相7中に分散された従来の熱伝導性絶縁樹脂成形体8とは異なり、無機化合物により三次元的にネットワーク化された熱伝導路5を有する。このため、少量の無機化合物により効率的に熱伝導路を形成することが可能である。   The aggregate of the core / shell particles 3 is molded by pressurization and / or heating to become a thermally conductive insulating resin molded body 4. Inside the thermally conductive insulating resin molded body 4, the inorganic compound shell 1 is continuous to form a continuous heat conduction path 5. The heat conduction path 5 plays a role of conducting heat. The structure of the thermally conductive insulating resin molded body 4 of the present invention is the same as that of the conventional thermally conductive insulating resin molded body 8 shown in FIG. 2 in which the inorganic filler particles 6 are dispersed in the resin phase 7 made of a polymer compound. In contrast, it has a heat conduction path 5 that is three-dimensionally networked with an inorganic compound. For this reason, it is possible to efficiently form a heat conduction path with a small amount of an inorganic compound.

以下、各材料の特徴および製造方法について説明する。   Hereinafter, characteristics and manufacturing methods of each material will be described.

2. コア粒子
コア粒子は直径 50nm〜2,000nmとすることが好ましい。
コア粒子を構成する高分子化合物としては電気絶縁性を有する高分子化合物であれば特に限定されず、スチレン、α-メチルスチレン、ビニルトルエン、ビニルビフェニル、ビニルナフタレン、酢酸ビニル、プロピオン酸ビニル等の極性官能基を有さないモノマー、ならびにアクリル酸、メタクリル酸、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ジメチルアミノエチル、アクリル酸n-ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸i-ブチル、アクリロニトリル、メタクリル酸ベンジル等の極性官能基を有するモノマーから選択される1種以上のモノマーの単独重合体または共重合体を使用することができる。極性官能基を有する高分子化合物からなるコア粒子を用いることにより、無機化合物のシェルを厚く、均一に形成することができる。従って、高分子化合物としては、極性官能基を有する、1種以上のモノマー成分の単独重合体または共重合体、或いは、極性官能基を有する、1種以上のモノマー成分と、スチレン等の極性官能基を有さないモノマー成分との共重合体を使用することが好ましい。共重合する場合は、極性官能基を有するモノマー成分をモノマー成分全量に対して80重量%以下の割合で使用することが好ましい。コア/シェル粒子の集合体を加熱成形(例えばキャスティング法)により熱伝導性絶縁樹脂成形体とする用途のためには、コア粒子を構成する高分子化合物のガラス転移温度Tg(軟化温度)が40℃以下となるようにモノマー成分が組み合わされることが好ましい。
2. Core particle The core particle is preferably 50 nm to 2,000 nm in diameter.
The polymer compound constituting the core particle is not particularly limited as long as it is a polymer compound having electrical insulation properties, such as styrene, α-methylstyrene, vinyl toluene, vinyl biphenyl, vinyl naphthalene, vinyl acetate, vinyl propionate, etc. Monomers that do not have a polar functional group, and acrylic acid, methacrylic acid, 2-hydroxyethyl methacrylate, 2-dimethylaminoethyl methacrylate, n-butyl acrylate, methyl methacrylate, ethyl methacrylate, i-butyl methacrylate A homopolymer or copolymer of one or more monomers selected from monomers having a polar functional group such as acrylonitrile and benzyl methacrylate can be used. By using core particles made of a polymer compound having a polar functional group, the shell of the inorganic compound can be formed thick and uniform. Therefore, the polymer compound includes a homopolymer or copolymer of one or more monomer components having a polar functional group, or one or more monomer components having a polar functional group, and a polar functional group such as styrene. It is preferable to use a copolymer with a monomer component having no group. In the case of copolymerization, it is preferable to use a monomer component having a polar functional group in a proportion of 80% by weight or less based on the total amount of the monomer components. In order to use the aggregate of core / shell particles as a thermally conductive insulating resin molded body by thermoforming (for example, casting method), the glass transition temperature Tg (softening temperature) of the polymer compound constituting the core particle is 40. It is preferable that the monomer components are combined so that the temperature is not higher than ° C.

コア粒子は市販品を購入し使用してもよいし、シェル形成反応の前段階において調製してもよい。好ましくは、溶媒中にモノマー成分および重合反応開始剤を添加し、重合反応を進行させ、高分子化合物を含むコア粒子を生成させる。この工程により得られる、コア粒子が溶媒中に分散した分散液に、引き続き、シェルを構成する無機化合物の前駆体、および該前駆体から前記無機化合物を生成する反応の反応開始剤を添加することにより、後述するシェル形成反応を進行させることができる。高分子化合物粒子の形成反応(重合反応)に用いられる溶媒としては特に限定されず、イオン液体、水、エタノール、メタノール、プロパノール、アセトン、石油エーテル、ヘキサン、酢酸エチル等を使用できる。工程数を少なくするためにはシェル形成反応と同一の溶媒を重合反応にも使用することが好ましいことから、例えばイオン液体を使用することが好ましい。イオン液体については、シェル形成反応に関して後述するものが使用できる。   The core particle may be purchased and used as a commercial product, or may be prepared in the previous stage of the shell formation reaction. Preferably, a monomer component and a polymerization reaction initiator are added to the solvent, the polymerization reaction is allowed to proceed, and core particles containing the polymer compound are generated. Subsequently, a precursor of the inorganic compound constituting the shell and a reaction initiator for generating the inorganic compound from the precursor are added to the dispersion obtained by this step in which the core particles are dispersed in the solvent. Thus, the shell formation reaction described later can be advanced. The solvent used in the polymer compound particle formation reaction (polymerization reaction) is not particularly limited, and ionic liquid, water, ethanol, methanol, propanol, acetone, petroleum ether, hexane, ethyl acetate, and the like can be used. In order to reduce the number of steps, since it is preferable to use the same solvent for the polymerization reaction as that for the shell formation reaction, it is preferable to use, for example, an ionic liquid. As the ionic liquid, those described later regarding the shell formation reaction can be used.

重合反応開始剤は、使用されるモノマーに応じて適宜選択することができ特に限定されないが、例えば2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(V-70)、2,2’-アゾビス(イソブチロニトリル)(AIBN)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン](VA-061)、2,2’-アゾビス(2,4-ジメチルバレロニトリル) (V-65)、1,1’-アゾビス(シクロヘキサン-1-カルボニル) (V-40)等のアゾ化合物、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、クメンヒドロキサイパーオキサイド等の過酸化物、または、過酸化ベンゾイル-ジメチルアニリン等のレドックス開始剤が使用できる。   The polymerization reaction initiator can be appropriately selected depending on the monomer to be used and is not particularly limited. For example, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (V-70), 2,2'-azobis (isobutyronitrile) (AIBN), 2,2'-azobis [2- (2-imidazolin-2-yl) propane] (VA-061), 2,2'-azobis (2 , 4-dimethylvaleronitrile) (V-65), 1,1'-azobis (cyclohexane-1-carbonyl) (V-40) and other azo compounds, benzoyl peroxide, potassium persulfate, ammonium persulfate, cumene hydrox A peroxide such as peroxide or a redox initiator such as benzoyl peroxide-dimethylaniline can be used.

重合により生成したコア粒子を分散させるために溶媒中には分散安定剤を添加することが好ましい。分散安定剤としてはポリビニルピロリドン(PVP)、部分ケン化ポリビニルアルコール、ポリアクリル酸、およびポリエチレングリコールや、ドデシル硫酸ナトリウム等の低分子界面活性剤を使用できる。   In order to disperse the core particles generated by polymerization, it is preferable to add a dispersion stabilizer in the solvent. As the dispersion stabilizer, polyvinyl pyrrolidone (PVP), partially saponified polyvinyl alcohol, polyacrylic acid, polyethylene glycol, and low molecular surfactants such as sodium dodecyl sulfate can be used.

3. 無機化合物のシェル
上記コア粒子表面は、熱伝導性かつ絶縁性の無機化合物を含む(好ましくは該無機化合物からなる)シェルにより被覆される。
「熱伝導性かつ絶縁性の無機化合物」としては、アルミニウム、マグネシウム、ゲルマニウム、インジウム、チタン等の金属、ホウ素、またはケイ素を含む無機化合物、特にこれらの酸化物、フッ化物、窒化物、炭化物挙げられ、なかでも、シリカ(二酸化ケイ素)、アルミナ(酸化アルミニウム)、フッ化アルミニウム、酸化マグネシウム、および酸化チタンが好ましい。これらの無機化合物はシェル中において結晶状態であってもアモルファス状態であってもよいが、結晶状態であることがより好ましい。
3. Shell of Inorganic Compound The surface of the core particle is covered with a shell containing an inorganic compound that is thermally conductive and insulating (preferably made of the inorganic compound).
Examples of the “thermally conductive and insulating inorganic compound” include inorganic compounds containing metals such as aluminum, magnesium, germanium, indium, and titanium, boron, or silicon, particularly oxides, fluorides, nitrides, and carbides thereof. Among these, silica (silicon dioxide), alumina (aluminum oxide), aluminum fluoride, magnesium oxide, and titanium oxide are preferable. These inorganic compounds may be in a crystalline state or an amorphous state in the shell, but are more preferably in a crystalline state.

熱伝導性かつ絶縁性の無機化合物の含有量は、コア粒子の全重量に対して、2〜30重量%であることが好ましく、3〜20重量%であることがより好ましい。無機化合物の含有量は、TGA (Thermal Gravimetric Analysis, 熱重量)分析によりコア/シェル粒子を分析することにより算出することができる。   The content of the thermally conductive and insulating inorganic compound is preferably 2 to 30% by weight and more preferably 3 to 20% by weight with respect to the total weight of the core particles. The content of the inorganic compound can be calculated by analyzing the core / shell particles by TGA (Thermal Gravimetric Analysis, thermogravimetric) analysis.

無機化合物のシェルは、コア粒子をシードとするシード分散重合法により形成することが好ましい。シード分散重合法では、コア粒子を溶媒中に分散させた分散液に、無機化合物の前駆体、および該前駆体から前記無機化合物を生成する反応の反応開始剤を添加し、コア粒子表面に無機化合物を析出させてシェル層とする。コア粒子の分散液としては、上述の、コア粒子の形成反応後の反応混合物をそのまま使用することができる。   The shell of the inorganic compound is preferably formed by a seed dispersion polymerization method using core particles as seeds. In the seed dispersion polymerization method, a precursor of an inorganic compound and a reaction initiator for generating the inorganic compound from the precursor are added to a dispersion in which the core particles are dispersed in a solvent, and the surface of the core particles is inorganic. A compound is deposited to form a shell layer. As the core particle dispersion, the above-described reaction mixture after the core particle formation reaction can be used as it is.

コア粒子を無機化合物で被覆するために特に好ましい方法が、ゾル-ゲル法である。ゾル−ゲル法は溶液中で、前駆体から脱水縮合反応を用いて無機化合物を生成する方法である。前駆体としては、ケイ素または金属のアルコキシド(例えば炭素数5以下の一価アルコールとのアルコキシド)を使用することができる。ゾル-ゲル法においてアルコキシド化合物等の前駆体から無機化合物を生成する反応の反応開始剤としては、塩酸、酢酸、ギ酸等の酸開始剤と、ジメチルアミン、水酸化ナトリウム、水酸化カリウム、アンモニア水等のアルカリ開始剤とがあり、いずれも好適に使用できる。   A particularly preferred method for coating the core particles with the inorganic compound is a sol-gel method. The sol-gel method is a method of generating an inorganic compound from a precursor using a dehydration condensation reaction in a solution. As the precursor, silicon or metal alkoxide (for example, alkoxide with monohydric alcohol having 5 or less carbon atoms) can be used. In the sol-gel method, as a reaction initiator for generating an inorganic compound from a precursor such as an alkoxide compound, an acid initiator such as hydrochloric acid, acetic acid, formic acid, dimethylamine, sodium hydroxide, potassium hydroxide, aqueous ammonia Etc., and any of them can be suitably used.

コア粒子を含む分散液の溶媒は、アルコール、イオン液体、水、ヘキサン、石油エーテル、アセトン、酢酸エチル等が使用できる。   As the solvent of the dispersion liquid containing the core particles, alcohol, ionic liquid, water, hexane, petroleum ether, acetone, ethyl acetate, or the like can be used.

アルコールとしては2-プロパノール、エタノール、メタノール、ブタノール等を使用することができる。   As the alcohol, 2-propanol, ethanol, methanol, butanol and the like can be used.

ゾル-ゲル法により、前駆体から無機化合物を析出させる場合、得られる無機化合物はアモルファスであることが通常である。このため、無機化合物の析出直後では熱伝導度が低い可能性がある。一方、イオン液体中でのゾルゲル法により析出する金属酸化物は結晶性が優れているという報告がある(M. Antonietti et. al, Angew. Chem. Int. Ed. 43, 4988-4992 (2004))。本発明者らは、コア粒子の分散液の溶媒としてイオン液体を用いて無機化合物のシェル形成を行った場合、結晶性の高い無機化合物のシェルが得られることを見出した。   When depositing an inorganic compound from a precursor by a sol-gel method, the resulting inorganic compound is usually amorphous. For this reason, the thermal conductivity may be low immediately after the precipitation of the inorganic compound. On the other hand, it has been reported that metal oxides deposited by the sol-gel method in ionic liquids have excellent crystallinity (M. Antonietti et. Al, Angew. Chem. Int. Ed. 43, 4988-4992 (2004)). ). The present inventors have found that when an inorganic compound shell is formed using an ionic liquid as the solvent for the core particle dispersion, a highly crystalline inorganic compound shell can be obtained.

イオン液体はカチオンとアニオンとからなる。カチオンとしては、例えば   An ionic liquid consists of a cation and an anion. Examples of cations include:

Figure 2010189600
Figure 2010189600

(R1〜R7の基は好ましくは、それぞれ独立に、炭素数1〜10のアルキル基(例えばメチル、エチル、ブチル、ペンチル、ヘキシル基)、エトキシメチル基、またはアリル基である)
で表されるカチオンが使用できる。アニオンとしては、例えば
(The groups R 1 to R 7 are preferably each independently an alkyl group having 1 to 10 carbon atoms (eg, methyl, ethyl, butyl, pentyl, hexyl group), ethoxymethyl group, or allyl group).
The cation represented by these can be used. Examples of anions include

Figure 2010189600
で表されるアニオンが使用できる。実施例では水と相溶性がある1-ブチル-3-メチルイミダゾリウムテトラフルオロボレート([Bmin][BF4])を使用した。
Figure 2010189600
An anion represented by can be used. In the examples, 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmin] [BF 4 ]) compatible with water was used.

コア粒子分散液中への無機化合物の前駆体の添加量、開始剤の量、シェル形成反応の反応温度、反応時間等の各条件は特に限定されないが、好適な条件としては以下の条件が挙げられる。無機化合物前駆体はコア粒子に対して重量比で2〜50%であることが好ましい。触媒としての酸またはアルカリ開始剤は必須ではないが使用する場合には無機化合物前駆体1モルに対して1〜80モルが好ましい。シェル形成反応の反応温度は室温〜90℃、時間は3〜48時間であればよい。粒子が沈降または浮上しないように攪拌を行うことができる。   Each condition such as the amount of the inorganic compound precursor added to the core particle dispersion, the amount of the initiator, the reaction temperature of the shell formation reaction, and the reaction time is not particularly limited, but preferred conditions include the following conditions. It is done. The inorganic compound precursor is preferably 2 to 50% by weight with respect to the core particles. An acid or alkali initiator as a catalyst is not essential, but when used, it is preferably 1 to 80 mol per 1 mol of the inorganic compound precursor. The reaction temperature of the shell formation reaction may be room temperature to 90 ° C., and the time may be 3 to 48 hours. Stirring can be performed so that the particles do not settle or float.

図3には、ポリスチレン粒子(コア粒子)の表面にシリカのシェル層を、シード分散重合法を用いたゾル-ゲル法により形成する工程の一例を模式的に示す。水中でポリスチレン(PS)粒子を分散させた分散液に、シリカの前駆体としてのテトラエトキシシランと、反応開始剤である水酸化ナトリウムを添加し、70℃で24時間反応させることにより、緩慢な速度でゾル-ゲル反応が進行してコア粒子表面にシリカのシェル層が形成される。   FIG. 3 schematically shows an example of a process of forming a silica shell layer on the surface of polystyrene particles (core particles) by a sol-gel method using a seed dispersion polymerization method. By adding tetraethoxysilane as a silica precursor and sodium hydroxide as a reaction initiator to a dispersion liquid in which polystyrene (PS) particles are dispersed in water, and reacting at 70 ° C. for 24 hours, a slow reaction is achieved. The sol-gel reaction proceeds at a rate to form a silica shell layer on the core particle surface.

4. 樹脂成形体
本発明のコア/シェル粒子の集合体を加圧および/または加熱して成形することにより、熱伝導性絶縁樹脂成形体が得られる。加圧および/または加熱を伴う成形加工により、個々のコア/シェル粒子が変形して相互に密着し、シェル層による連続した熱伝導路が形成される(図1参照)。加圧および/または加熱による成形方法としてはホットプレス法、キャスティング法、混練法等が挙げられる。
4. Resin Molded Body A thermally conductive insulating resin molded body is obtained by molding the core / shell particle aggregate of the present invention by pressurization and / or heating. By molding with pressure and / or heating, the individual core / shell particles are deformed and adhered to each other, and a continuous heat conduction path is formed by the shell layer (see FIG. 1). Examples of the molding method by pressurization and / or heating include a hot press method, a casting method, and a kneading method.

ホットプレス法の条件は特に限定されないが、例えば温度条件としては50〜120℃が挙げられ、圧力条件としては10〜80MPaが挙げられ、処理時間としては1〜20分間が挙げられる。   The conditions of the hot press method are not particularly limited. For example, the temperature condition is 50 to 120 ° C., the pressure condition is 10 to 80 MPa, and the treatment time is 1 to 20 minutes.

キャスティング法の条件は特に限定されないが、例えば温度条件としては10〜120℃が挙げられ、処理時間としては12〜48時間が挙げられる。   Although the conditions of the casting method are not particularly limited, for example, the temperature condition is 10 to 120 ° C., and the treatment time is 12 to 48 hours.

成形体の形状は用途に応じて自在に選択することができる。例えば、板状、フィルム状、ブロック等の形状とすることができる。   The shape of the molded body can be freely selected according to the application. For example, it can be a plate shape, a film shape, a block shape or the like.

1. コア/シェル粒子の合成
アルミニウムアルコキシドを前駆体としたゾル−ゲル反応を応用して、ポリスチレン(PS)のコア表面に、アルミニウム化合物のシェルが被覆された構造物(コア/シェル粒子)を合成した。
1. Synthesis of core / shell particles By applying a sol-gel reaction using aluminum alkoxide as a precursor, a structure (core / shell particles) in which the core of polystyrene (PS) is coated with an aluminum compound shell is applied. Synthesized.

1.1. ゾル-ゲル反応開始剤の比較
実験を行った配合比を表1に示す。
1.1. Table 1 shows the mixing ratio of the sol-gel reaction initiator for comparison experiments.

Figure 2010189600
Figure 2010189600

最初に、コアとなるシード粒子(ポリスチレン粒子)の合成を行った。所定量のスチレンモノマーと分散安定剤PVP(ポリビニルピロリドン)をイオン液体([Bmim][BF4])中に溶解させ、反応開始剤V-40を添加してPS粒子を合成した。重合反応は、ガラス容器中で、90℃、攪拌速度400rpmにて24時間行った。 First, the seed particles (polystyrene particles) serving as the core were synthesized. A predetermined amount of styrene monomer and a dispersion stabilizer PVP (polyvinylpyrrolidone) were dissolved in an ionic liquid ([Bmim] [BF 4 ]), and a reaction initiator V-40 was added to synthesize PS particles. The polymerization reaction was carried out in a glass container at 90 ° C. and a stirring speed of 400 rpm for 24 hours.

得られたPS粒子分散液中にアルミニウムイソプロポキシド(AliPO)を加え、130℃×3時間に加熱し液中に溶解させた。室温まで冷却後、ゾル−ゲル反応開始剤である塩酸(表1, No.1)もしくはジメチルアミン水溶液(表1, No.2)を滴下し、ガラス容器中で、70℃、攪拌速度400rpmにて24時間反応を行った。最後にメタノール及び水で遠心洗浄し、減圧乾燥することでサンプルを得た。   Aluminum isopropoxide (AliPO) was added to the obtained PS particle dispersion, heated at 130 ° C. for 3 hours, and dissolved in the liquid. After cooling to room temperature, hydrochloric acid (Table 1, No. 1) or dimethylamine aqueous solution (Table 1, No. 2), which is a sol-gel reaction initiator, is added dropwise to a glass container at 70 ° C. with a stirring speed of 400 rpm. For 24 hours. Finally, the sample was obtained by centrifugal washing with methanol and water and drying under reduced pressure.

それぞれのゾルゲル反応開始系において、得られた分散液の色調を目視で確認した(図4)。塩酸を開始剤としたとき分散液は白濁していたのに対して、アルカリ系開始剤であるジメチルアミン水溶液を用いた場合、分散液は透明であった。この結果から、塩酸を用いた場合にPS粒子表面により多くのアルミニウム化合物が析出していることが推定される。そこで、両系でPS粒子表面に析出したアルミニウム化合物量を測定するために、TGA (Thermal Gravimetric Analysis, 熱重量)分析を行った。図5に示されるように、塩酸を使用する酸性条件でシェル形成反応を行った場合のほうがPS粒子表面に付着したアルミニウム化合物量が多いことが確認された。   In each sol-gel reaction initiation system, the color tone of the obtained dispersion was visually confirmed (FIG. 4). When hydrochloric acid was used as an initiator, the dispersion was cloudy, whereas when an aqueous dimethylamine solution that was an alkaline initiator was used, the dispersion was transparent. From this result, when hydrochloric acid is used, it is estimated that many aluminum compounds have precipitated on the PS particle surface. Therefore, TGA (Thermal Gravimetric Analysis, thermogravimetric) analysis was performed to measure the amount of aluminum compound deposited on the PS particle surface in both systems. As shown in FIG. 5, it was confirmed that the amount of aluminum compound adhering to the PS particle surface was larger when the shell formation reaction was performed under acidic conditions using hydrochloric acid.

そこで、塩酸を用いて得られた粒子表面がアルミニウム化合物で均一に被覆されているかを確認するために、シェル層形成前後でのSEM(走査型電子顕微鏡)による形態観察を行った(図6)。PS粒子表面に凹凸が確認されたのに対して、シェル形成後(アルミニウム化合物析出後)では粒子表面が平滑に変化していることが認められるまた、その粒径はアルミニウム析出後に大きくなっていることが明確である。以上の結果から、アルミニウム化合物はPS粒子全面に均一に析出し、良好なシェル層を形成していることがわかった。   Therefore, in order to confirm whether the particle surfaces obtained using hydrochloric acid were uniformly coated with an aluminum compound, morphological observation was performed by SEM (scanning electron microscope) before and after shell layer formation (Fig. 6). . Contrast was confirmed on the PS particle surface, but after the shell formation (after the aluminum compound precipitation), it was found that the particle surface changed smoothly, and the particle size became larger after aluminum precipitation It is clear. From the above results, it was found that the aluminum compound was uniformly deposited on the entire surface of the PS particles and formed a good shell layer.

1.2. 塩酸濃度及び水分量の検討
ゾル−ゲル法で得られる無機化合物は、触媒量および水分量により析出速度および形態が大きく変化する可能性がある。そこでシェル層を形成するアルミニウム化合物量が最大となる触媒量および水分量を算出し、本系における最適条件の設定を試みた。
1.2. Examination of hydrochloric acid concentration and water content The precipitation rate and morphology of inorganic compounds obtained by the sol-gel method may vary greatly depending on the catalyst amount and water content. Therefore, the amount of catalyst and the amount of water that maximized the amount of aluminum compound forming the shell layer were calculated, and the optimum conditions in this system were set.

触媒量最適化のため、濃度0.5〜5mol/Lに変量した塩酸水溶液を同一量添加した際のシェル構成アルミニウム化合物重量をTGAにて測定した。なお、PSシード粒子の合成条件およびAliPO濃度は上記1及び表1に記載するのと同一の条件を用いた。結果を図7に示す。図7に示されるように、塩酸濃度 1 mol/L以上で、アルミニウム化合物の析出重量は一定となった。この結果から、開始剤として使用する塩酸濃度は1 mol/Lとした。   In order to optimize the amount of the catalyst, the weight of the shell-constituting aluminum compound when the same amount of hydrochloric acid aqueous solution changed to a concentration of 0.5 to 5 mol / L was added was measured by TGA. The synthesis conditions for PS seed particles and the AliPO concentration were the same as those described in 1 and Table 1 above. The results are shown in FIG. As shown in FIG. 7, the precipitation weight of the aluminum compound became constant when the hydrochloric acid concentration was 1 mol / L or more. From this result, the concentration of hydrochloric acid used as an initiator was set to 1 mol / L.

次に、水分量の最適化を図るために 1 mol/L塩酸水溶液添加量を変量し、アルミニウム化合物の析出量が最大となる水分量を算出した。得られた結果を図8に示す。なお、図8中のX軸数値は塩酸/AliPOモル比で表現している。この結果、塩酸/AliPOモル比 72のとき、すなわち 1 mol/L塩酸水溶液を1.0g添加時にアルミニウム化合物析出量が最大となることが分かった。   Next, in order to optimize the amount of water, the amount of 1 mol / L hydrochloric acid aqueous solution added was varied, and the amount of water that maximized the amount of precipitated aluminum compound was calculated. The obtained results are shown in FIG. In addition, the X-axis numerical value in FIG. 8 is expressed by hydrochloric acid / AliPO molar ratio. As a result, it was found that when the hydrochloric acid / AliPO molar ratio was 72, that is, when 1.0 g of a 1 mol / L aqueous hydrochloric acid solution was added, the amount of precipitated aluminum compound was maximized.

2. イオン液体と非イオン有機溶媒の比較
本実験では、ゾル-ゲル法によるアルミニウム化合物の析出反応に用いる溶媒としてイオン液体([Bmim][BF4])または非イオン有機溶媒(2-プロパノール)を用い、形成されるアルミニウム化合物の結晶性を比較した。
2. Comparison between ionic liquid and nonionic organic solvent In this experiment, ionic liquid ([Bmim] [BF 4 ]) or nonionic organic solvent (2-propanol) was used as the solvent for the precipitation reaction of aluminum compounds by the sol-gel method. Were used to compare the crystallinity of the formed aluminum compounds.

イオン液体([Bmim][BF4])を使用した実験は、上記1及び表1のNo.1と同じ条件でコア粒子の形成反応と、無機化合物の析出反応を[Bmim][BF4]中で行った。得られた粒子の表面のX線回折分析を行った。 Ionic liquids ([Bmim] [BF 4] ) experiments using the formation reaction core particles under the same conditions as No.1 of the 1 and Table 1, the precipitation reaction of inorganic compound [Bmim] [BF 4] Went in. The surface of the obtained particle was subjected to X-ray diffraction analysis.

非イオン有機溶媒(2-プロパノール)を使用した実験は、イオン液体([Bmim][BF4])の代わりに2-プロパノールを用いた点を除いて、イオン液体を使用した実験と同様の方法で行った。得られた粒子の表面のX線回折分析を行った。 The experiment using a nonionic organic solvent (2-propanol) was the same as the experiment using an ionic liquid except that 2-propanol was used instead of the ionic liquid ([Bmim] [BF 4 ]). I went there. The surface of the obtained particle was subjected to X-ray diffraction analysis.

得られたX線回折(XRD)プロファイルを図9に示す。図9に示すとおりイオン液体を用いた系では非常に鋭いピークが現れたのに対して、一般的なゾルゲル法で溶媒として使われるプロパノールを用いた系ではブロードなピークしか現れなかった。この結果から、イオン液体を用いることで結晶性の高いアルミニウム化合物が得られることが明らかとなった。XRDプロファイルに基づき、析出した無機化合物を同定したころ、AlF3・H2Oに帰属された。すなわち、本方法により、ポリスチレン粒子が結晶性のアルミニウムフッ化物により被覆されたコア/シェル構造の粒子が得られた。 The obtained X-ray diffraction (XRD) profile is shown in FIG. As shown in FIG. 9, a very sharp peak appeared in the system using the ionic liquid, whereas only a broad peak appeared in the system using propanol used as a solvent in the general sol-gel method. From this result, it became clear that an aluminum compound having high crystallinity can be obtained by using an ionic liquid. When the deposited inorganic compound was identified based on the XRD profile, it was assigned to AlF 3 · H 2 O. That is, by this method, particles having a core / shell structure in which polystyrene particles were coated with crystalline aluminum fluoride were obtained.

3. 熱伝導度の測定
上記2で得られた、イオン液体または有機溶媒中でシェル形成された2種類のコア/シェル粒子を加熱成形し、熱伝導度を測定した。成形は、40MPaの加圧下、150℃、10分間の条件にて実施して、1 cm 四方の樹脂板サンプルを得た。サンプル両面にカーボンスプレーを塗布して黒化処理を施した後、レーザフラッシュ法にて熱拡散率を測定した。サンプル密度はアルキメデス法により、比熱はDSC法によりそれぞれ算出した。こうして測定された熱拡散率α (m2・s-1)、密度ρ (kg・m-3)、比熱Cp (J・kg-1・K-1)から熱伝導率λ(W・m-1・K-1)を次式:
λ = αρCp
から算出した。
3. Measurement of thermal conductivity Two types of core / shell particles shell-formed in ionic liquid or organic solvent obtained in 2 above were thermoformed and the thermal conductivity was measured. Molding was carried out under conditions of 150 ° C. and 10 minutes under a pressure of 40 MPa to obtain a 1 cm square resin plate sample. After carbon black was applied to both surfaces of the sample to perform blackening treatment, the thermal diffusivity was measured by a laser flash method. The sample density was calculated by Archimedes method, and the specific heat was calculated by DSC method. Thus the measured thermal diffusivity α (m 2 · s -1) , the density ρ (kg · m -3), the thermal conductivity from the specific heat Cp (J · kg -1 · K -1) λ (W · m - 1 · K -1 )
λ = αρCp
Calculated from

比較対象として、PS粒子とアルミナ粉体とを混合し、同様の方法で圧縮して樹脂板としたサンプル(アルミナフィラーを配合した絶縁部材の例)についても熱伝導度測定を行った。   As a comparative object, PS particles and alumina powder were mixed and compressed in the same manner to obtain a resin plate (an example of an insulating member containing an alumina filler), and the thermal conductivity was measured.

各サンプル中のポリスチレン(PS)とアルミニウム化合物との組成比はTGAにより算出した。   The composition ratio of polystyrene (PS) and aluminum compound in each sample was calculated by TGA.

Figure 2010189600
Figure 2010189600

表2に示すように、コア/シェル粒子の圧縮成形体は、同等の組成比の粉体混合物の成形体と比較して熱伝導度が向上する傾向が認められた。イオン液体中でシェル形成されたコア/シェル粒子の圧縮成形体の断面の透過型電子顕微鏡像を図10に示す。黒色で示されるアルミニウム化合物のシェルが相互に連繋して熱伝導路を形成していると考えられる。   As shown in Table 2, the core / shell particle compression-molded body was found to have a tendency to improve thermal conductivity as compared with the powder-mixture molded body having an equivalent composition ratio. FIG. 10 shows a transmission electron microscope image of a cross section of the core / shell particle compression-molded body shell-formed in the ionic liquid. It is considered that the shells of aluminum compounds shown in black are connected to each other to form a heat conduction path.

4. コア粒子への極性基の導入
コア粒子表面に、より均一なシェル層を析出させることを目的として、コア粒子を形成する高分子化合物に極性基を導入した。極性基の導入は以下の手順で行った。極性基を有するモノマーとして、-OH基を有するメタクリル酸2-ヒドロキシエチル(HEMA)、-NH2基を有するメタクリル酸2-ジメチルアミノエチル(DM)、または-COOH基を有するアクリル酸(AA)を用い、スチレンと分散共重合させて、三種類の共重合体:ポリ(スチレン-HEMA)共重合体(P(S-HEMA))、ポリ(スチレン-DM) 共重合体(P(S-DM))、ポリ(スチレン-AA) 共重合体(P(S-AA))のコア粒子を得た。スチレンと各官能性モノマーとの共重合時のモル比を96:4とした。スチレンを単独で使用した上記1及び表1のNo.1と同様の条件で、コア形成反応(重合反応)を行った(ただし、モノマーを変更した点、イオン液体([Bmim][BF4])中にてガラス容器を用いて70℃、24時間重合を行った点、および、重合開始剤としてAIBNを使用した点は異なる)。シェル形成反応は上記1及び表1のNo.1と同様の条件で行った。
4. Introduction of polar groups into core particles For the purpose of precipitating a more uniform shell layer on the surface of the core particles, polar groups were introduced into the polymer compound forming the core particles. The polar group was introduced by the following procedure. As the monomer having a polar group, 2-hydroxyethyl methacrylate having an -OH group (HEMA), - methacrylate 2-dimethylaminoethyl with NH 2 group (DM), or acrylic acid having a -COOH group (AA) Is used to disperse and copolymerize with styrene to produce three types of copolymers: poly (styrene-HEMA) copolymer (P (S-HEMA)), poly (styrene-DM) copolymer (P (S- DM)) and poly (styrene-AA) copolymer (P (S-AA)) core particles were obtained. The molar ratio during the copolymerization of styrene and each functional monomer was 96: 4. The core formation reaction (polymerization reaction) was performed under the same conditions as in No. 1 in Table 1 and Table 1 using styrene alone (however, the monomer was changed, the ionic liquid ([Bmim] [BF 4 ] The difference was that the polymerization was performed at 70 ° C. for 24 hours in a glass container and AIBN was used as the polymerization initiator). The shell formation reaction was performed under the same conditions as No. 1 in Table 1 and Table 1.

FT-IRにてアルミニウム化合物が複合化されていることを確認し、アルミニウム化合物の量をTGAにて測定したところ、重量比にしてそれぞれ P(S-HEMA):アルミニウム化合物が82:18、P(S-DM):アルミニウム化合物が88:12、P(S-AA):アルミニウム化合物が76:24であった。コア粒子としてポリスチレン(PS)粒子を使用して同一組成でシェル被覆した場合、PS:アルミニウム化合物が96:4であったことから、極性基を有するコア粒子を用いることでシェルを形成するアルミニウム化合物量が増加することが明らかとなった。   After confirming that the aluminum compound was complexed by FT-IR and measuring the amount of the aluminum compound by TGA, P (S-HEMA): aluminum compound was 82:18, P The (S-DM): aluminum compound was 88:12, and the P (S-AA): aluminum compound was 76:24. When the shell is coated with the same composition using polystyrene (PS) particles as the core particles, the PS: aluminum compound was 96: 4, so the aluminum compound that forms the shell by using the core particles having a polar group It became clear that the amount increased.

PS粒子をコアとするコア/シェル粒子と、P(S-HEMA)粒子をコアとするコア/シェル粒子の形態を観察し、比較した(図11)。PS粒子をコアとするコア/シェル粒子と比較して、P(S-HEMA)粒子をコアとするコア/シェル粒子は粒子径が均一であるうえ、粒子径がより大きいことがわかる。   The morphology of core / shell particles with PS particles as the core and core / shell particles with P (S-HEMA) particles as the core were observed and compared (FIG. 11). It can be seen that the core / shell particles having P (S-HEMA) particles as the core have a uniform particle size and a larger particle size than the core / shell particles having PS particles as the core.

すなわち、コア粒子に極性基を付与することによりシェル層が、比較的厚く均一に形成されることがわかる。   That is, it can be seen that the shell layer is formed relatively thick and uniform by adding a polar group to the core particles.

5. 極性基が導入されたコア/シェル粒子の成形
極性基を有するモノマーとして、アクリル酸 n-ブチル (nBA) および/またはアクリル酸 (AA) を用いた。nBAのガラス転移温度(Tg)は-54℃であることから、nBAを構成単位に含む高分子化合物をコアとするコア/シェル粒子は、圧縮成形を行わなくとも、熱処理により変形して複合膜を形成すると考えられる。
5. Molding of core / shell particles into which polar groups have been introduced As monomers having polar groups, n-butyl acrylate (nBA) and / or acrylic acid (AA) were used. Since the glass transition temperature (Tg) of nBA is -54 ° C, the core / shell particles whose core is a polymer compound containing nBA as a structural unit are deformed by heat treatment without being subjected to compression molding. It is thought to form.

表3に従い、nBAの単独重合体(PnBA)、スチレンとnBAとの共重合体(P(S-nBA))、スチレンとnBAとAAとの共重合体(P(S-nBA-AA))のコア粒子をイオン液体[Bmim作成し、引き続きアルミニウム化合物のシェル層を形成した。コア粒子形成反応も、シェル層形成反応も、それぞれ70℃、24時間、攪拌速度400rpmの条件で行った。   According to Table 3, homopolymer of nBA (PnBA), copolymer of styrene and nBA (P (S-nBA)), copolymer of styrene, nBA and AA (P (S-nBA-AA)) The core particles of the ionic liquid [Bmim were prepared, and then an aluminum compound shell layer was formed. Both the core particle formation reaction and the shell layer formation reaction were performed under conditions of 70 ° C., 24 hours, and a stirring speed of 400 rpm.

得られた三種類のコア/シェル粒子を、圧縮することなくキャスティング法により複合膜に形成した。キャスティング条件は、70℃、24時間の熱処理とした。   The obtained three types of core / shell particles were formed into a composite membrane by casting method without compression. The casting conditions were heat treatment at 70 ° C. for 24 hours.

Figure 2010189600
Figure 2010189600

図12には、P(S-nBA-AA)のシード粒子にアルミニウム化合物のシェルを被覆した表3, No.3のコア/シェル粒子を用いてキャスティング法で作製された複合膜の断面TEM像を示す。図12から、キャスティング法で作製された複合膜では、個々の粒子を被覆していたシェル層が繋がって連続体を構成していることが確認された。   Figure 12 shows a cross-sectional TEM image of a composite film prepared by casting using the core / shell particles in Table 3 and No. 3 in which P (S-nBA-AA) seed particles are coated with an aluminum compound shell. Indicates. From FIG. 12, it was confirmed that in the composite film produced by the casting method, the shell layers covering individual particles were connected to form a continuous body.

次に、得られた複合膜の熱伝導度を測定した。測定方法は上記3において説明したのと同様である。高分子/アルミニウム化合物の組成比は、図13に示すTGAプロファイルに基づき算出した。結果を表4に示す。   Next, the thermal conductivity of the obtained composite film was measured. The measurement method is the same as described in 3 above. The composition ratio of the polymer / aluminum compound was calculated based on the TGA profile shown in FIG. The results are shown in Table 4.

Figure 2010189600
Figure 2010189600

P(S-nBA)/アルミニウム化合物の複合膜の熱伝導度は0.771 W・m-1・K-1という高い値であった。この値は同一組成比のPS-アルミナフィラー混合系で得られた値である 0.151 W・m-1・K-1(表2参照)の約5倍である。このことから、本発明のコア/シェル粒子を形成することにより熱伝導度が顕著に向上することが明らかとなった。 The thermal conductivity of the composite film of P (S-nBA) / aluminum compound was as high as 0.771 W · m −1 · K −1 . This value is about 5 times the value obtained with the PS-alumina filler mixed system of the same composition ratio, 0.151 W · m −1 · K −1 (see Table 2). From this, it has been clarified that the thermal conductivity is remarkably improved by forming the core / shell particles of the present invention.

なお、P(S-nBA-AA)/アルミニウム化合物の複合膜の熱伝導度は0.369 W・m-1・K-1であり、P(S-nBA)/アルミニウム化合物の複合膜の半分程度であった。しかし、組成比を比較すると、アルミニウム化合物の含有量が後者では前者の半分程度であったことから、両者とも熱伝導度の改善効果としては同等であると推定される。 The thermal conductivity of the composite film of P (S-nBA-AA) / aluminum compound is 0.369 W ・ m −1・ K −1 , about half that of the composite film of P (S-nBA) / aluminum compound. there were. However, when the composition ratio is compared, since the content of the aluminum compound is about half of the former in the latter, it is estimated that both are equivalent in improving the thermal conductivity.

1・・・熱伝導性かつ絶縁性の無機化合物のシェル
2・・・コア粒子
3・・・コア/シェル粒子
4・・・熱伝導性絶縁樹脂成形体
5・・・熱伝導路
6・・・無機フィラー
7・・・高分子化合物の相
8・・・従来の熱伝導性絶縁樹脂成形体
DESCRIPTION OF SYMBOLS 1 ... Shell of inorganic compound of heat conductivity and insulation 2 ... Core particle 3 ... Core / shell particle 4 ... Heat conductive insulating resin molding 5 ... Heat conduction path 6 ...・ Inorganic filler 7 ・ ・ ・ Phase of polymer compound 8 ・ ・ ・ Conventional thermally conductive insulating resin molding

Claims (15)

高分子化合物を含むコア粒子と、該コア粒子を被覆する、熱伝導性かつ絶縁性の無機化合物を含むシェルとを備える、コア/シェル粒子。   A core / shell particle comprising: a core particle containing a polymer compound; and a shell containing a thermally conductive and insulating inorganic compound that coats the core particle. 前記高分子化合物が極性官能基を有する高分子化合物である、請求項1のコア/シェル粒子。   The core / shell particle according to claim 1, wherein the polymer compound is a polymer compound having a polar functional group. 前記無機化合物がアルミニウムの酸化物、アルミニウムのフッ化物、またはシリカである、請求項1または2のコア/シェル粒子。   The core / shell particle according to claim 1 or 2, wherein the inorganic compound is an oxide of aluminum, an aluminum fluoride, or silica. 前記無機化合物が2〜30重量%含まれる、請求項1〜3のいずれかのコア/シェル粒子。   The core / shell particle according to any one of claims 1 to 3, wherein the inorganic compound is contained in an amount of 2 to 30% by weight. 溶媒中に前記コア粒子が分散した分散液を準備する分散液準備工程と、
該分散液中に、前記無機化合物の前駆体、および該前駆体から前記無機化合物を生成する反応の反応開始剤を添加する添加工程と、
前記コア粒子の表面に前記無機化合物を含むシェルを形成させるシェル形成工程と
を含む方法により製造される、請求項1〜4のいずれかのコア/シェル粒子。
A dispersion preparing step of preparing a dispersion in which the core particles are dispersed in a solvent;
An addition step of adding a precursor of the inorganic compound and a reaction initiator for generating the inorganic compound from the precursor to the dispersion;
The core / shell particle according to any one of claims 1 to 4, wherein the core / shell particle is produced by a method comprising a shell forming step of forming a shell containing the inorganic compound on a surface of the core particle.
前記無機化合物の前駆体がケイ素または金属のアルコキシドである、請求項5のコア/シェル粒子。   6. The core / shell particle according to claim 5, wherein the precursor of the inorganic compound is silicon or a metal alkoxide. 前記分散液の溶媒がイオン液体である、請求項5または6のコア/シェル粒子。   The core / shell particles according to claim 5 or 6, wherein the solvent of the dispersion is an ionic liquid. 前記分散液準備工程が、前記溶媒中にモノマーおよび重合反応開始剤を添加し、重合反応を進行させ、高分子化合物を含むコア粒子を生成する工程である、請求項5〜7のいずれかのコア/シェル粒子。   The dispersion liquid preparation step is a step of adding a monomer and a polymerization reaction initiator to the solvent, causing the polymerization reaction to proceed, and generating core particles containing a polymer compound. Core / shell particles. 前記モノマーが、スチレンと、スチレンと共重合可能な、極性官能基を有するモノマーとの混合物である、請求項8のコア/シェル粒子。   9. The core / shell particle according to claim 8, wherein the monomer is a mixture of styrene and a monomer having a polar functional group that can be copolymerized with styrene. 請求項1〜9のいずれかのコア/シェル粒子の集合体を加圧および/または加熱して成形される、熱伝導性絶縁樹脂成形体。   A thermally conductive insulating resin molded article formed by pressurizing and / or heating the aggregate of core / shell particles according to claim 1. 高分子化合物を含むコア粒子と、該コア粒子を被覆する、熱伝導性かつ絶縁性の無機化合物を含むシェルとを備える、コア/シェル粒子の製造方法であって、
溶媒中に前記コア粒子が分散した分散液を準備する分散液準備工程と、
該分散液中に、前記無機化合物の前駆体、および該前駆体から前記無機化合物を生成する反応の反応開始剤を添加する添加工程と、
前記コア粒子の表面に前記無機化合物を含むシェルを形成させるシェル形成工程と
を含む方法。
A core / shell particle manufacturing method comprising: a core particle including a polymer compound; and a shell including a thermally conductive and insulating inorganic compound that covers the core particle,
A dispersion preparing step of preparing a dispersion in which the core particles are dispersed in a solvent;
An addition step of adding a precursor of the inorganic compound and a reaction initiator for generating the inorganic compound from the precursor to the dispersion;
Forming a shell containing the inorganic compound on the surface of the core particle.
前記無機化合物の前駆体がケイ素または金属のアルコキシドである、請求項11の方法。   12. The method of claim 11, wherein the inorganic compound precursor is a silicon or metal alkoxide. 前記分散液の溶媒がイオン液体である、請求項11または12の方法。   The method of claim 11 or 12, wherein the solvent of the dispersion is an ionic liquid. 前記分散液準備工程が、前記溶媒中にモノマーおよび重合反応開始剤を添加し、重合反応を進行させ、高分子化合物を含むコア粒子を生成する工程である、請求項11〜13のいずれかの方法。   14. The method according to claim 11, wherein the dispersion preparation step is a step of adding a monomer and a polymerization reaction initiator to the solvent, causing the polymerization reaction to proceed, and generating core particles containing a polymer compound. Method. 前記モノマーが、スチレンと、スチレンと共重合可能な、極性官能基を有するモノマーとの混合物である、請求項14の方法。   15. The method of claim 14, wherein the monomer is a mixture of styrene and a monomer having a polar functional group that is copolymerizable with styrene.
JP2009037820A 2009-02-20 2009-02-20 Thermally conductive insulating resin molding Expired - Fee Related JP4793456B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009037820A JP4793456B2 (en) 2009-02-20 2009-02-20 Thermally conductive insulating resin molding
PCT/IB2009/007913 WO2010095000A1 (en) 2009-02-20 2009-12-30 Thermal conductive insulating resin molded material, core-shell particle for producing thermal conductive insulating resin molded material, and method of producing core-shell particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037820A JP4793456B2 (en) 2009-02-20 2009-02-20 Thermally conductive insulating resin molding

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011104091A Division JP5278488B2 (en) 2011-05-09 2011-05-09 Thermally conductive insulating resin molding

Publications (2)

Publication Number Publication Date
JP2010189600A true JP2010189600A (en) 2010-09-02
JP4793456B2 JP4793456B2 (en) 2011-10-12

Family

ID=42289604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037820A Expired - Fee Related JP4793456B2 (en) 2009-02-20 2009-02-20 Thermally conductive insulating resin molding

Country Status (2)

Country Link
JP (1) JP4793456B2 (en)
WO (1) WO2010095000A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012104689A1 (en) 2011-02-01 2012-08-09 Toyota Jidosha Kabushiki Kaisha Method of fabricating insulating resin material
JP2013229534A (en) * 2012-04-27 2013-11-07 Mitsubishi Electric Corp Semiconductor device
JP2013229535A (en) * 2012-04-27 2013-11-07 Mitsubishi Electric Corp Semiconductor device
KR101487780B1 (en) * 2010-10-28 2015-01-29 쿄세라 코포레이션 Electronic device
JP2015096587A (en) * 2013-10-09 2015-05-21 株式会社豊田中央研究所 Composite material and production method thereof
JP2018523267A (en) * 2015-07-01 2018-08-16 エイチ.イー.エフ. Conductive composites produced from coating powders
WO2021065248A1 (en) * 2019-10-02 2021-04-08 株式会社オートネットワーク技術研究所 Thermally-conductive filler, thermally-conductive composite material, wire harness, and production method for thermally-conductive filler
CN113993962A (en) * 2019-03-25 2022-01-28 斯皮拉技术有限公司 Multicomponent system and method for producing a multicomponent system, in particular for microelectronic applications

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103965535A (en) * 2014-04-02 2014-08-06 芜湖浙鑫新能源有限公司 Preparation method of heat-conductive plastic adopting ordered space network structure
CN109791813B (en) * 2016-09-30 2020-08-14 积水化成品工业株式会社 Conductive resin particles and use thereof
CN109054758B (en) * 2018-06-21 2020-10-27 昆明理工大学 Preparation method of high-temperature phase change heat storage material with core-shell structure
CN111548444B (en) * 2020-06-05 2021-06-15 北京化工大学 Preparation method of surface ionic liquid functionalized polymer microspheres
CN114891456A (en) * 2022-06-20 2022-08-12 江苏科技大学 anti-PID white heat-conducting adhesive film and preparation method thereof
CN116462971A (en) * 2023-04-24 2023-07-21 宁波能之光新材料科技股份有限公司 Preparation method of heat-conducting insulating silicon gel composite material for lithium battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130429A (en) * 2002-10-10 2004-04-30 National Institute For Materials Science Core shell structure, hollow oxide shell structure derived from the same, and method of manufacturing structures
JP2007169347A (en) * 2005-12-19 2007-07-05 Shiga Pref Gov Inorganic oxide structure and method of manufacturing the same
WO2008028641A2 (en) * 2006-09-06 2008-03-13 Dsm Ip Assets B.V. Novel nanoparticles
JP2009024158A (en) * 2007-04-06 2009-02-05 European Aeronautic Defence & Space Co Eads France Specific nanostructured material as protective coating for metal surface
JP2010116455A (en) * 2008-11-12 2010-05-27 Nitto Denko Corp Organic-inorganic composite molded product
JP2010144152A (en) * 2008-12-22 2010-07-01 Nitto Denko Corp Organic-inorganic composite molded article

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699667B2 (en) * 1986-04-18 1994-12-07 日本ペイント株式会社 Composite three-dimensional resin particles and method for producing the same
US5298833A (en) * 1992-06-22 1994-03-29 Copytele, Inc. Black electrophoretic particles for an electrophoretic image display
JPH09270483A (en) 1996-01-30 1997-10-14 Hitachi Ltd Semiconductor device and its manufacture and power converter
JP3559137B2 (en) 1997-02-27 2004-08-25 日立化成工業株式会社 Heat conductive adhesive composition and heat conductive adhesive film using the composition
JPH11233694A (en) 1998-02-18 1999-08-27 Toshiba Chem Corp High thermal-conductivity resin encapsulated semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130429A (en) * 2002-10-10 2004-04-30 National Institute For Materials Science Core shell structure, hollow oxide shell structure derived from the same, and method of manufacturing structures
JP2007169347A (en) * 2005-12-19 2007-07-05 Shiga Pref Gov Inorganic oxide structure and method of manufacturing the same
WO2008028641A2 (en) * 2006-09-06 2008-03-13 Dsm Ip Assets B.V. Novel nanoparticles
JP2009024158A (en) * 2007-04-06 2009-02-05 European Aeronautic Defence & Space Co Eads France Specific nanostructured material as protective coating for metal surface
JP2010116455A (en) * 2008-11-12 2010-05-27 Nitto Denko Corp Organic-inorganic composite molded product
JP2010144152A (en) * 2008-12-22 2010-07-01 Nitto Denko Corp Organic-inorganic composite molded article

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101487780B1 (en) * 2010-10-28 2015-01-29 쿄세라 코포레이션 Electronic device
US9165849B2 (en) 2010-10-28 2015-10-20 Kyocera Corporation Electronic device
JP2012157828A (en) * 2011-02-01 2012-08-23 Toyota Motor Corp Method of fabricating insulating resin material
CN103339173A (en) * 2011-02-01 2013-10-02 丰田自动车株式会社 Method of fabricating insulating resin material
WO2012104689A1 (en) 2011-02-01 2012-08-09 Toyota Jidosha Kabushiki Kaisha Method of fabricating insulating resin material
US8771566B2 (en) 2011-02-01 2014-07-08 Toyota Jidosha Kabushiki Kaisha Method of fabricating insulating resin material
JP2013229534A (en) * 2012-04-27 2013-11-07 Mitsubishi Electric Corp Semiconductor device
JP2013229535A (en) * 2012-04-27 2013-11-07 Mitsubishi Electric Corp Semiconductor device
JP2015096587A (en) * 2013-10-09 2015-05-21 株式会社豊田中央研究所 Composite material and production method thereof
JP2018523267A (en) * 2015-07-01 2018-08-16 エイチ.イー.エフ. Conductive composites produced from coating powders
US11001678B2 (en) 2015-07-01 2021-05-11 H.E.F. Conductive composite produced from coated powders
CN113993962A (en) * 2019-03-25 2022-01-28 斯皮拉技术有限公司 Multicomponent system and method for producing a multicomponent system, in particular for microelectronic applications
WO2021065248A1 (en) * 2019-10-02 2021-04-08 株式会社オートネットワーク技術研究所 Thermally-conductive filler, thermally-conductive composite material, wire harness, and production method for thermally-conductive filler

Also Published As

Publication number Publication date
JP4793456B2 (en) 2011-10-12
WO2010095000A1 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP4793456B2 (en) Thermally conductive insulating resin molding
CN102649835B (en) Organic-inorganic hybrid high-silicon-content acrylic ester emulsion and preparation method thereof
CN101168609B (en) Special-purpose material for beta nucleater modified random copolymerization polypropylene pipe and preparation method thereof
TWI295997B (en)
TW201200553A (en) Method for fabrication of functionalized graphene reinforced composite conducting plate
JP5278488B2 (en) Thermally conductive insulating resin molding
CN102702700B (en) High-fluidity low-warpage liquid crystal polymer composition and preparation method as well as application thereof
CN108929576B (en) Preparation method of corrosion-resistant ultraviolet aging-resistant coated modified aluminum pigment
CN103642335B (en) A kind of polyvinyl butyral acetal heat-conductive coating and preparation method thereof
TW201144254A (en) Slurry composition for ceramic green sheet, ceramic green sheet, and multilayer ceramic capacitor
Fangqiang et al. ZrO2/PMMA nanocomposites: preparation and its dispersion in polymer matrix
CN107641135B (en) Organosilane compound, filler, resin composition and copper-clad plate
CN111909516B (en) Heat-conducting composite material and preparation method thereof
JP4222724B2 (en) Acrylic SMC or BMC
CN112080137A (en) Heat-conducting, electromagnetic-shielding and high-strength nylon 6 composite material and preparation method thereof
TW200427806A (en) Heat-conductive pressure sensitive adhesive composition, heat-conductive sheet-form shaped article, and process for producing the shaped article
CN107522961B (en) Polystyrene-based high-heat-conductive composite material and preparation method thereof
JP3561410B2 (en) Method for producing (meth) acrylic premix, (meth) acrylic SMC or BMC, and (meth) acrylic artificial marble
JP5353916B2 (en) Insulating resin material manufacturing method
JP6024228B2 (en) Boron nitride coated polymer resin and method for producing the same
Qiao et al. Room-temperature repeatedly processable baroplastic/boron nitride thermal management composite
JP3433890B2 (en) Method for producing acrylic resin composition, acrylic premix, acrylic SMC or BMC, and acrylic artificial marble
JP3545944B2 (en) Method for producing (meth) acrylic premix, (meth) acrylic SMC or BMC, and (meth) acrylic artificial marble
CN115850544B (en) Ag@PMMA nanocomposite, preparation method thereof and preparation method of PVDF-based dielectric composite
JP3361034B2 (en) Method for producing acrylic resin composition, acrylic premix, acrylic SMC or BMC, and acrylic artificial marble

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110525

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R151 Written notification of patent or utility model registration

Ref document number: 4793456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees