JP2010186900A - Solar cell and method of manufacturing the same - Google Patents

Solar cell and method of manufacturing the same Download PDF

Info

Publication number
JP2010186900A
JP2010186900A JP2009030603A JP2009030603A JP2010186900A JP 2010186900 A JP2010186900 A JP 2010186900A JP 2009030603 A JP2009030603 A JP 2009030603A JP 2009030603 A JP2009030603 A JP 2009030603A JP 2010186900 A JP2010186900 A JP 2010186900A
Authority
JP
Japan
Prior art keywords
diffusion layer
type
concentration
receiving surface
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009030603A
Other languages
Japanese (ja)
Other versions
JP5414298B2 (en
Inventor
Shintaro Tsukigata
信太郎 月形
Takenori Watabe
武紀 渡部
Hiroyuki Otsuka
寛之 大塚
Naoki Ishikawa
直揮 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009030603A priority Critical patent/JP5414298B2/en
Publication of JP2010186900A publication Critical patent/JP2010186900A/en
Application granted granted Critical
Publication of JP5414298B2 publication Critical patent/JP5414298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell which can have a p-type selective emitter layer formed by an easy method and has high energy conversion efficiency by controlling dopant density, and to provide a method of manufacturing the same. <P>SOLUTION: The solar cell includes: a silicon substrate 1; a p-type selective emitter layer 2 formed on a light reception surface side of the silicon substrate 1 and having a dopant high-density diffusion layer 3 and a low-density diffusion layer 4 having lower dopant density than the high-density diffusion layer 3; a light-receiving surface electrode 6 electrically connected to the high-density diffusion layer 3 of the p-type selective emitter layer 2; an n-type diffusion layer 5 formed on the reverse surface side of the silicon substrate 1; and a back electrode 7 electrically connected to the n-type diffusion layer 5, wherein the high-density diffusion layer 3 right below the light-receiving surface electrode comes into contact with a silicon nitride film 8 and the low-density diffusion layer 4 comes into contact with a silicon oxide film 9. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、p型セレクティブエミッタ層を有する太陽電池及びその製造方法に関するものである。   The present invention relates to a solar cell having a p-type selective emitter layer and a method for manufacturing the solar cell.

現在、民生用の太陽電池を製造するにあたって、その製造コストの低減が重要課題であり、一般的には以下のような工程で太陽電池を製造する方法が広く採用されている。   Currently, in manufacturing consumer-use solar cells, reduction of the manufacturing cost is an important issue, and generally, a method of manufacturing solar cells by the following processes is widely adopted.

まず、チョクラルスキー(CZ)法により作製した単結晶シリコンインゴットやキャスト法により作製した多結晶シリコンインゴットをマルチワイヤー法でスライスすることにより得られたn型シリコン基板を用意する。次に、アルカリ溶液で基板表面のスライスによるダメージを取り除いた後、最大高さ10μm程度の微細凹凸(テクスチャ)を受光面と裏面との両面に形成する。続いて、種々の方法により基板の両面にドーパントを熱拡散させて受光面となる第1主面に基板とは逆導電型となるp型ドーパントを拡散させることによりp型セレクティブエミッタ層を形成し、裏面となる第2主面に基板と同導電型であるn型ドーパントを拡散させて銀電極とのオーミックコンタクトを取れるようにする。次に、表面のパッシベーション能力を向上させるために、受光面側及び裏面側に酸化膜を50〜100Å形成させる。さらに受光面及び裏面にはTiO2又はSiNを、例えば、70nm程度の膜厚で堆積させて、反射防止膜を形成する。次に銀を主成分とする裏面電極用ペーストを裏面全面に櫛型状又は格子状に印刷し、焼成することにより裏面電極を形成する。一方、受光面電極は、銀を主成分とする受光面電極用ペーストを例えば幅100〜150μm程度の櫛形状に印刷、焼成することにより形成する。 First, an n-type silicon substrate obtained by slicing a single crystal silicon ingot produced by a Czochralski (CZ) method or a polycrystalline silicon ingot produced by a cast method by a multi-wire method is prepared. Next, after removing damage caused by slicing of the substrate surface with an alkaline solution, fine irregularities (textures) having a maximum height of about 10 μm are formed on both the light receiving surface and the back surface. Subsequently, a p-type selective emitter layer is formed by thermally diffusing the dopant on both surfaces of the substrate by various methods and diffusing a p-type dopant having a conductivity type opposite to that of the substrate on the first main surface serving as the light receiving surface. Then, an n-type dopant having the same conductivity type as that of the substrate is diffused in the second main surface which is the back surface so that an ohmic contact with the silver electrode can be obtained. Next, in order to improve the passivation capability of the front surface, 50 to 100 mm of an oxide film is formed on the light receiving surface side and the back surface side. Further, TiO 2 or SiN is deposited on the light receiving surface and the back surface, for example, with a film thickness of about 70 nm to form an antireflection film. Next, a back electrode paste mainly composed of silver is printed on the entire back surface in a comb shape or a lattice shape, and is baked to form a back electrode. On the other hand, the light-receiving surface electrode is formed by printing and baking a light-receiving surface electrode paste mainly composed of silver in a comb shape having a width of about 100 to 150 μm, for example.

このような手法は、デバイスを構成する上で必要最小限の工程数となっているにもかかわらず、エネルギー変換効率等の太陽電池の特性を高める様々な効果が付随している点で優れた手法である。例えば、基板に拡散層を形成する際のドーパントの熱拡散はゲッタリング作用によりバルク内の少数キャリヤの拡散長を改善する働きがある。さらに、酸化膜及びTiO2又はSiN等の反射防止膜の形成は、光学的効果(反射率低減)とともにシリコン表面近傍で発生するキャリヤの再結合速度を低減する働きがある。 Such a technique is excellent in that it has various effects that enhance the characteristics of solar cells such as energy conversion efficiency, despite the minimum number of steps necessary for configuring the device. It is a technique. For example, thermal diffusion of a dopant when forming a diffusion layer on a substrate serves to improve the diffusion length of minority carriers in the bulk by a gettering action. Furthermore, the formation of an oxide film and an antireflection film such as TiO 2 or SiN has the effect of reducing the recombination rate of carriers generated in the vicinity of the silicon surface as well as the optical effect (reflectance reduction).

しかしながら、受光面電極のコンタクト抵抗を充分に低くするためには、ボロン等の拡散層表面ドーパント濃度を2.0〜3.0×1020cm-3程度にするとよいが、基板の表面がこれ程の高濃度となると表面準位が非常に高くなるので、受光面近傍でのキャリヤ再結合が促進され、短絡電流、開放電圧が制限され、変換効率が頭打ちとなる。また、ボロン拡散層は酸化膜形成時に表面ドーパント濃度が低下することが知られている。 However, in order to sufficiently reduce the contact resistance of the light-receiving surface electrode, the dopant concentration on the surface of the diffusion layer such as boron may be set to about 2.0 to 3.0 × 10 20 cm −3. Since the surface level becomes very high at a high concentration, the carrier recombination in the vicinity of the light receiving surface is promoted, the short-circuit current and the open-circuit voltage are limited, and the conversion efficiency reaches its peak. Further, it is known that the boron dopant layer has a lower surface dopant concentration when forming an oxide film.

そこで、受光面側に形成する拡散層の表面ドーパント濃度を低減することにより変換効率を改善する方法が発案されている(例えば、特許文献1参照)。この技術によると拡散層の表面ドーパント濃度が1.0×1020cm-3程度又はそれ以下でも、低オーミックコンタクトを形成可能である。これは、電極用ペーストに含まれる銀フィラーの周りにドーパントを含む化合物を添加しておくことによるもので、これにより、電極焼成時、ドーパントが電極直下に高濃度層を形成する。しかしながら、このように電極用ペーストに含まれる銀フィラーの周りにドーパントを含む化合物を添加する方法では、安定的に拡散層と電極のコンタクトを形成することができないため、フィルファクタが低く、かつ、信頼性が低い太陽電池となってしまうといった問題がある。 In view of this, a method has been devised to improve the conversion efficiency by reducing the surface dopant concentration of the diffusion layer formed on the light receiving surface side (see, for example, Patent Document 1). According to this technique, a low ohmic contact can be formed even when the surface dopant concentration of the diffusion layer is about 1.0 × 10 20 cm −3 or less. This is due to the addition of a compound containing a dopant around the silver filler contained in the electrode paste, whereby the dopant forms a high-concentration layer directly under the electrode during electrode firing. However, in the method of adding a compound containing a dopant around the silver filler contained in the electrode paste as described above, since the contact between the diffusion layer and the electrode cannot be stably formed, the fill factor is low, and There is a problem that the solar cell has low reliability.

また、電極直下のみにドーパントを高濃度に含む高濃度拡散層を形成し、受光面の他の部分の拡散層の表面ドーパント濃度を下げること、つまりセレクティブエミッタを形成することにより変換効率を向上させる方法として、例えば「光電変換装置及びその製造方法」が提案されている(例えば、特許文献2参照)。この方法は、埋め込み型電極太陽電池の電極形成方法(例えば、特許文献3,4参照)を、電解メッキ法からスクリーン印刷法へ変更したものである。これにより、製造管理を容易とし、併せて製造コストも低減することが可能とされている。   In addition, a high-concentration diffusion layer containing a high concentration of dopant is formed only directly under the electrode, and the conversion efficiency is improved by lowering the surface dopant concentration of the diffusion layer in the other part of the light-receiving surface, that is, by forming a selective emitter. As a method, for example, “a photoelectric conversion device and a manufacturing method thereof” have been proposed (see, for example, Patent Document 2). In this method, the electrode forming method (for example, see Patent Documents 3 and 4) of the embedded electrode solar cell is changed from the electrolytic plating method to the screen printing method. As a result, manufacturing management can be facilitated, and manufacturing costs can be reduced.

しかしながら、埋め込み型電極太陽電池の製造方法において、セレクティブエミッタを得るためには、n型拡散層を形成する熱処理を行った後、高濃度n型拡散層を形成する熱処理を行うため、最低2回のドーパントの熱拡散を行う必要があり、工程が煩雑となって製造コストの増加を招く。   However, in the method for manufacturing a buried electrode solar cell, in order to obtain a selective emitter, a heat treatment for forming an n-type diffusion layer is performed, and then a heat treatment for forming a high-concentration n-type diffusion layer is performed. It is necessary to perform thermal diffusion of the dopant, which complicates the process and increases the manufacturing cost.

また別のセレクティブエミッタを形成することにより変換効率を向上させる方法としては、「太陽電池の製造方法」(例えば、特許文献5参照)が提案されている。この方法では、インクジェット方式により複数の種類の塗布剤の塗り分けを同時に行い、ドーパント濃度やドーパント種類が異なる領域を簡単な工程で作り出すことを提案している。しかしながら、このようなインクジェット方式において、ドーパントとしてリン酸等を用いると腐食対策が必要であり、装置が複雑となる上に、メンテナンスも煩雑となる。また、ドーパント濃度や種類が異なる塗布剤をインクジェットで塗り分けても、1回の熱処理で拡散させると、オートドープにより所望の濃度差が得られなくなってしまう。   As a method for improving the conversion efficiency by forming another selective emitter, a “solar cell manufacturing method” (see, for example, Patent Document 5) has been proposed. In this method, it is proposed that a plurality of types of coating agents are separately applied by an ink jet method and regions having different dopant concentrations and dopant types are created by a simple process. However, in such an ink jet system, when phosphoric acid or the like is used as a dopant, a countermeasure against corrosion is necessary, and the apparatus becomes complicated and maintenance becomes complicated. Further, even if coating agents having different dopant concentrations and types are applied separately by inkjet, if the diffusion is performed by a single heat treatment, a desired concentration difference cannot be obtained by autodoping.

さらに、電極直下のみに高濃度拡散層を形成し、受光面の他の部分の拡散層の表面ドーパント濃度を下げることにより変換効率を向上させる別の方法としては、例えば「太陽電池の製造方法」(例えば、特許文献6参照)が提案されている。しかしながら、この方法では、低濃度拡散層と高濃度拡散層を形成するための拡散熱処理を2回施す必要があり、簡便でない。だからといって熱処理を1回にすると、オートドーピングにより受光面の電極直下以外の部分もドーパントが高濃度となり、高変換効率を示さなくなる。   Furthermore, as another method for improving the conversion efficiency by forming a high-concentration diffusion layer only directly under the electrode and lowering the surface dopant concentration of the diffusion layer in the other part of the light receiving surface, for example, a “solar cell manufacturing method” (See, for example, Patent Document 6). However, this method is not simple because it is necessary to perform diffusion heat treatment twice for forming the low concentration diffusion layer and the high concentration diffusion layer. However, if the heat treatment is performed once, the dopant is highly concentrated in portions other than the portion immediately below the electrode on the light receiving surface due to autodoping, and high conversion efficiency is not exhibited.

受光面がp型となる太陽電池においても、高変換効率とするにはセレクティブエミッタの形成は必要不可欠であり、表面ドーパント濃度のコントロールが重要である。しかしながら、ボロンのセレクティブエミッタを形成することは容易ではなく、従来の方法では複数回の拡散マスク形成や熱処理が必要であり、工程が複雑かつ煩雑であった。   Even in a solar cell having a p-type light-receiving surface, the formation of a selective emitter is indispensable for high conversion efficiency, and control of the surface dopant concentration is important. However, it is not easy to form a boron selective emitter, and the conventional method requires a plurality of diffusion mask formations and heat treatments, and the process is complicated and complicated.

米国特許第6180869号明細書US Pat. No. 6,180,869 特開2004−273826号公報JP 2004-273826 A 特開平8−37318号公報JP-A-8-37318 特開平8−191152号公報JP-A-8-191152 特開2004−221149号公報JP 2004-221149 A 特開2004−281569号公報JP 2004-28169 A

本発明は上記問題点に鑑みてなされたものであって、簡便な方法でp型セレクティブエミッタ層を形成することができ、表面ドーパント濃度がコントロールされて、高いエネルギー変換効率を有する太陽電池及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and a p-type selective emitter layer can be formed by a simple method, the surface dopant concentration is controlled, and a solar cell having high energy conversion efficiency and its An object is to provide a manufacturing method.

本発明者らは、上記目的を達成するため鋭意検討した結果、高濃度のp型拡散層を形成し、このp型拡散層の一部をシリコン窒化膜でマスクした後、酸化することにより、濃度差をつけた複数回の熱処理工程を必要とせず、簡便かつ確実にp型セレクティブエミッタ層を形成することができることを知見し、本発明をなすに至ったものである。   As a result of intensive studies to achieve the above object, the present inventors formed a high-concentration p-type diffusion layer, masked a part of this p-type diffusion layer with a silicon nitride film, and then oxidized, It has been found that a p-type selective emitter layer can be formed easily and reliably without requiring a plurality of heat treatment steps with different concentrations, and the present invention has been made.

p型のボロン拡散層は、酸化処理時にSiO2とSi中の偏析係数と拡散速度の差からボロンドーパントが酸化膜に移ってしまい、拡散層のドーパント低濃度化の現象が起こる。太陽電池において、短波長領域での変換効率を向上させるためには、受光面における表面ドーパント濃度は低いほうがよいが、電極接触抵抗を低減するためには、ドーパント濃度を高くする必要がある。拡散層中のドーパント濃度が低下すると、オーミックコンタクトが得られないこととなる。本発明においては、酸化処理前にシリコン窒化膜を電極直下(電極接続位置)となるp型拡散層の表面のみにパターン状に堆積させることで、シリコン窒化膜が酸化防止膜として働き、酸化処理時にシリコン窒化膜形成部分において、表面ドーパント濃度の低減を抑えることが可能となる。結果として、電極直下(電極接続位置)となる領域に高濃度拡散層が形成されていることから電極接触抵抗を低減できる一方、前記シリコン窒化膜非形成領域の表面ドーパント濃度は低くなり、短波長領域での変換効率を向上させることができると共に、酸化処理時に表面のシリコン酸化膜(パッシベーション膜)が形成され、p型拡散層において高濃度拡散層と低濃度拡散層とを有するp型セレクティブエミッタ層を簡便に形成することができる。 In the p-type boron diffusion layer, the boron dopant moves to the oxide film due to the difference between the segregation coefficient and the diffusion rate in SiO 2 and Si during the oxidation treatment, and the dopant concentration in the diffusion layer is lowered. In a solar cell, the surface dopant concentration on the light receiving surface should be low in order to improve the conversion efficiency in the short wavelength region, but in order to reduce the electrode contact resistance, it is necessary to increase the dopant concentration. When the dopant concentration in the diffusion layer decreases, ohmic contact cannot be obtained. In the present invention, the silicon nitride film functions as an anti-oxidation film by depositing the silicon nitride film in a pattern only on the surface of the p-type diffusion layer immediately below the electrode (electrode connection position) before the oxidation treatment. Sometimes, it is possible to suppress the reduction of the surface dopant concentration in the silicon nitride film forming portion. As a result, since the high concentration diffusion layer is formed in the region directly under the electrode (electrode connection position), the electrode contact resistance can be reduced, while the surface dopant concentration in the non-silicon nitride film formation region is low, and the short wavelength The p-type selective emitter which can improve the conversion efficiency in the region, has a silicon oxide film (passivation film) on the surface during the oxidation process, and has a high-concentration diffusion layer and a low-concentration diffusion layer in the p-type diffusion layer A layer can be formed easily.

従って、本発明は下記太陽電池及びその製造方法を提供する。
[1].シリコン基板と、
前記シリコン基板の受光面側に形成され、ドーパント高濃度拡散層とこの高濃度拡散層よりもドーパント濃度が低い低濃度拡散層とを有するp型セレクティブエミッタ層と、
前記p型セレクティブエミッタ層の高濃度拡散層と電気的に接続する受光面電極と、
前記シリコン基板の裏面側に形成されたn型拡散層と、
前記n型拡散層と電気的に接続する裏面電極と、
を備える太陽電池であって、前記受光面電極直下となる高濃度拡散層がシリコン窒化膜と接し、前記低濃度拡散層がシリコン酸化膜と接することを特徴とする太陽電池。
[2].p型セレクティブエミッタ層のドーパントがボロンであることを特徴とする[1]記載の太陽電池。
[3].高濃度拡散層の表面ドーパント濃度が1.0×1018cm-3〜5.0×1020cm-3であり、低濃度拡散層の表面ドーパント濃度が1.0×1017cm-3〜1.0×1019cm-3であることを特徴とする[1]又は[2]記載の太陽電池。
[4].シリコン基板がn型であることを特徴とする[1]、[2]又は[3]記載の太陽電池。
[5].シリコン基板の裏面側にn型拡散層を形成すると共に、シリコン基板の受光面側に高濃度p型拡散層を形成し、このp型拡散層の受光面電極接続位置となる領域を部分的にシリコン窒化膜でマスクした後、前記p型拡散層の酸化処理を行って、前記シリコン窒化膜形成領域に接するp型拡散層を高濃度拡散層として保持すると共に、前記酸化処理によりp型拡散層のシリコン窒化膜非形成領域にシリコン酸化膜を形成し、このシリコン酸化膜に接するp型拡散層を低濃度拡散層として形成したことを特徴とする[1]記載の太陽電池の製造方法。
Therefore, this invention provides the following solar cell and its manufacturing method.
[1]. A silicon substrate;
A p-type selective emitter layer formed on the light-receiving surface side of the silicon substrate and having a dopant high-concentration diffusion layer and a low-concentration diffusion layer having a dopant concentration lower than that of the high-concentration diffusion layer;
A light-receiving surface electrode electrically connected to the high concentration diffusion layer of the p-type selective emitter layer;
An n-type diffusion layer formed on the back side of the silicon substrate;
A back electrode electrically connected to the n-type diffusion layer;
A high-concentration diffusion layer immediately below the light-receiving surface electrode is in contact with a silicon nitride film, and the low-concentration diffusion layer is in contact with a silicon oxide film.
[2]. The solar cell according to [1], wherein the dopant of the p-type selective emitter layer is boron.
[3]. The surface dopant concentration of the high concentration diffusion layer is 1.0 × 10 18 cm −3 to 5.0 × 10 20 cm −3 , and the surface dopant concentration of the low concentration diffusion layer is 1.0 × 10 17 cm −3 to The solar cell according to [1] or [2], which is 1.0 × 10 19 cm −3 .
[4]. The solar cell according to [1], [2] or [3], wherein the silicon substrate is n-type.
[5]. An n-type diffusion layer is formed on the back surface side of the silicon substrate, and a high-concentration p-type diffusion layer is formed on the light-receiving surface side of the silicon substrate, and a region serving as a light-receiving surface electrode connection position of the p-type diffusion layer is partially formed. After the masking with the silicon nitride film, the p-type diffusion layer is oxidized to hold the p-type diffusion layer in contact with the silicon nitride film forming region as a high-concentration diffusion layer, and the p-type diffusion layer is formed by the oxidation process. The method for manufacturing a solar cell according to [1], wherein a silicon oxide film is formed in the silicon nitride film non-formation region, and a p-type diffusion layer in contact with the silicon oxide film is formed as a low concentration diffusion layer.

本発明の太陽電池及びその製造方法によれば、高濃度拡散層と低濃度拡散層とを有するp型セレクティブエミッタ層を有する太陽電池を簡便に製造することができ、容易に低オーミックコンタクトが形成でき、製造歩留まりを高レベルで維持しながら高性能の太陽電池及びその製造方法を提供することができる。   According to the solar cell and the manufacturing method thereof of the present invention, a solar cell having a p-type selective emitter layer having a high-concentration diffusion layer and a low-concentration diffusion layer can be easily manufactured, and a low ohmic contact is easily formed. It is possible to provide a high-performance solar cell and a method for manufacturing the same while maintaining the manufacturing yield at a high level.

本発明の太陽電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the solar cell of this invention. 本発明の太陽電池の製造方法の一例について説明する概略断面図である。 (A)はシリコン基板、(B)は裏面にn型拡散層を形成した状態、(C)は受光面にp型拡散層を形成した状態、(D)はシリコン窒化膜を電極直下となるp型高濃度拡散層の領域に形成した状態、(E)は表面にシリコン酸化膜を形成することで、前記p型拡散層の前記シリコン窒化膜形成領域に接する部分をp型高濃度拡散層、シリコン窒化膜非形成領域をp型低濃度拡散層とした状態、(F)はさらに反射防止シリコン窒化膜を形成した状態、(G)は受光面電極及び裏面電極を形成した状態を示す。It is a schematic sectional drawing explaining an example of the manufacturing method of the solar cell of this invention. (A) is a silicon substrate, (B) is a state where an n-type diffusion layer is formed on the back surface, (C) is a state where a p-type diffusion layer is formed on the light-receiving surface, and (D) is a silicon nitride film immediately below the electrode. The state formed in the region of the p-type high concentration diffusion layer, (E) is forming a silicon oxide film on the surface, so that the portion of the p-type diffusion layer in contact with the silicon nitride film formation region is the p-type high concentration diffusion layer The state where the silicon nitride film non-formation region is a p-type low-concentration diffusion layer, (F) shows a state where an antireflection silicon nitride film is further formed, and (G) shows the state where a light-receiving surface electrode and a back electrode are formed. 比較例の太陽電池の製造方法の一例について説明する概略断面図である。 (A)はシリコン基板、(B)は裏面にn型拡散層を形成した状態、(C)はp型高濃度拡散層を形成した状態、(D)はp型低濃度拡散層を形成した状態、(E)はシリコン酸化膜を形成した状態、(F)はさらに反射防止シリコン窒化膜を形成した状態、(G)は受光面電極及び裏面電極を形成した状態を示す。It is a schematic sectional drawing explaining an example of the manufacturing method of the solar cell of a comparative example. (A) is a silicon substrate, (B) is a state where an n-type diffusion layer is formed on the back surface, (C) is a state where a p-type high concentration diffusion layer is formed, and (D) is a p-type low concentration diffusion layer. (E) shows a state where a silicon oxide film is formed, (F) shows a state where an antireflection silicon nitride film is further formed, and (G) shows a state where a light-receiving surface electrode and a back electrode are formed.

本発明の太陽電池の実施形態及び製造方法について、図1及び図2に基づき説明する。図1は本発明に係る太陽電池の概略断面図であり、図2は本発明の太陽電池の製造方法を説明する概略断面図である。本発明の太陽電池は、シリコン基板1と、前記シリコン基板1の受光面側に形成され、ドーパント高濃度拡散層3とこの高濃度拡散層3よりもドーパント濃度が低い低濃度拡散層4とを有するp型セレクティブエミッタ層2と、前記p型セレクティブエミッタ層2の高濃度拡散層3と電気的に接続する受光面電極6と、前記シリコン基板1の裏面側に形成されたn型拡散層5と、前記n型拡散層5と電気的に接続する裏面電極7とを備えた太陽電池であって、前記受光面電極6直下となる高濃度拡散層3がシリコン窒化膜8と接し、前記低濃度拡散層4がシリコン酸化膜9と接するものであり、この太陽電池の製造方法は、シリコン基板の裏面側にn型拡散層を形成すると共に、シリコン基板の受光面側に高濃度p型拡散層を形成し、このp型拡散層の電極接続位置となる領域を部分的にシリコン窒化膜でマスクした後、前記p型拡散層の酸化処理を行って、前記シリコン窒化膜形成領域に接するp型拡散層を高濃度拡散層として保持すると共に、前記酸化処理によりp型拡散層のシリコン窒化膜非形成領域にシリコン酸化膜を形成し、このシリコン酸化膜に接するp型拡散層を低濃度拡散層として形成するものである。   The embodiment and manufacturing method of the solar cell of the present invention will be described with reference to FIGS. FIG. 1 is a schematic cross-sectional view of a solar cell according to the present invention, and FIG. 2 is a schematic cross-sectional view illustrating a method for manufacturing a solar cell of the present invention. The solar cell of the present invention includes a silicon substrate 1, a light-receiving surface side of the silicon substrate 1, and a dopant high concentration diffusion layer 3 and a low concentration diffusion layer 4 having a dopant concentration lower than that of the high concentration diffusion layer 3. A p-type selective emitter layer 2, a light-receiving surface electrode 6 electrically connected to the high-concentration diffusion layer 3 of the p-type selective emitter layer 2, and an n-type diffusion layer 5 formed on the back side of the silicon substrate 1. And a back electrode 7 electrically connected to the n-type diffusion layer 5, wherein the high-concentration diffusion layer 3 immediately below the light-receiving surface electrode 6 is in contact with the silicon nitride film 8, and The concentration diffusion layer 4 is in contact with the silicon oxide film 9, and this solar cell manufacturing method forms an n-type diffusion layer on the back surface side of the silicon substrate and a high concentration p-type diffusion on the light receiving surface side of the silicon substrate. Forming a layer, this p A region serving as an electrode connection position of the diffusion layer is partially masked with a silicon nitride film, and then the p-type diffusion layer is oxidized so that the p-type diffusion layer in contact with the silicon nitride film formation region becomes a high concentration diffusion layer. The silicon oxide film is formed in the silicon nitride film non-formation region of the p-type diffusion layer by the oxidation treatment, and the p-type diffusion layer in contact with the silicon oxide film is formed as a low concentration diffusion layer.

以下、本発明の太陽電池の製造方法について詳細に説明する。
(1)シリコン基板1はn型でもp型でも本手法を用いてp型拡散層の濃度差を与えることができるが、p型セレクティブエミッタ層を形成する本発明においてはn型基板を使用する。このシリコン単結晶基板はチョクラルスキー(CZ)法及びフロートゾーン(FZ)法のいずれの方法によって作製されていてもよい。シリコン基板1の比抵抗は、高性能の太陽電池を作る点から、0.1〜20Ω・cmが好ましく、0.5〜2.0Ω・cmがより好ましい。シリコン基板としては、リンドープn型単結晶シリコン基板が好ましい。リンドープのドーパント濃度は1×1015cm-3〜5×1016cm-3が好ましい。
Hereinafter, the manufacturing method of the solar cell of this invention is demonstrated in detail.
(1) Whether the silicon substrate 1 is an n-type or a p-type, the concentration difference of the p-type diffusion layer can be given using this method, but the n-type substrate is used in the present invention for forming the p-type selective emitter layer. . This silicon single crystal substrate may be produced by any of the Czochralski (CZ) method and the float zone (FZ) method. The specific resistance of the silicon substrate 1 is preferably 0.1 to 20 Ω · cm, and more preferably 0.5 to 2.0 Ω · cm from the viewpoint of producing a high-performance solar cell. As the silicon substrate, a phosphorus-doped n-type single crystal silicon substrate is preferable. The dopant concentration of phosphorus doping is preferably 1 × 10 15 cm −3 to 5 × 10 16 cm −3 .

(2)ダメージエッチング/テクスチャ形成
例えば、シリコン基板1を水酸化ナトリウム水溶液に浸し、ダメージ層をエッチングで取り除く。この基板のダメージ除去は、水酸化カリウム等の強アルカリ水溶液を用いてもよく、フッ硝酸等の酸水溶液でも同様の目的を達成することが可能である。ダメージエッチングを行った基板1にランダムテクスチャを形成する。太陽電池は通常、表面に凹凸形状を形成するのが好ましい。その理由は,可視光域の反射率を低減させるために、できる限り2回以上の反射を受光面で行わせる必要があるためである。これら一つ一つの山のサイズは1〜20μm程度が好ましい。代表的な表面凹凸構造としてはV溝、U溝が挙げられる。これらは,研削機を利用して形成可能である。また、ランダムな凹凸構造を作るには、水酸化ナトリウムにイソプロピルアルコールを加えた水溶液に浸してウェットエッチングしたり、他には、酸エッチングやリアクティブ・イオン・エッチング等を用いることができる。なお、図1,2では両面に形成したテクスチャ構造は微細なため省略する。
(2) Damage etching / texture formation For example, the silicon substrate 1 is immersed in an aqueous sodium hydroxide solution, and the damaged layer is removed by etching. For removing damage from the substrate, a strong alkaline aqueous solution such as potassium hydroxide may be used, and a similar purpose can be achieved with an acid aqueous solution such as hydrofluoric acid. A random texture is formed on the substrate 1 subjected to damage etching. In general, a solar cell preferably has an uneven shape on the surface. The reason is that in order to reduce the reflectance in the visible light region, it is necessary to cause the light receiving surface to perform reflection at least twice as much as possible. The size of each of these peaks is preferably about 1 to 20 μm. Typical surface uneven structures include V-grooves and U-grooves. These can be formed using a grinding machine. In order to create a random uneven structure, wet etching can be performed by dipping in an aqueous solution obtained by adding isopropyl alcohol to sodium hydroxide, or acid etching, reactive ion etching, or the like can be used. In FIGS. 1 and 2, the texture structure formed on both sides is fine and will be omitted.

(3)n型拡散層形成
シリコン基板1全体に酸化膜21を形成する。次に、裏面の酸化膜21aをフッ酸等の薬液を用いて除去し、受光面側のみをマスクした状態にする。さらに、裏面にドーパントを含む塗布剤を塗布した後に熱処理を行うことでn型拡散層5を裏面に形成する。熱処理後、シリコン基板1に付いたガラス成分はガラスエッチング等により洗浄する。ドーパントはリンが好ましい。n型拡散層5の表面ドーパント濃度は、1.0×1018cm-3〜5.0×1020cm-3が好ましく、1.0×1019cm-3〜5.0×1020cm-3がより好ましい。
(3) Formation of n-type diffusion layer An oxide film 21 is formed on the entire silicon substrate 1. Next, the oxide film 21a on the back surface is removed using a chemical solution such as hydrofluoric acid so that only the light receiving surface side is masked. Furthermore, after apply | coating the coating agent containing a dopant on the back surface, the n-type diffused layer 5 is formed in a back surface by performing heat processing. After the heat treatment, the glass component attached to the silicon substrate 1 is washed by glass etching or the like. The dopant is preferably phosphorus. The surface dopant concentration of the n-type diffusion layer 5 is preferably 1.0 × 10 18 cm −3 to 5.0 × 10 20 cm −3 , and 1.0 × 10 19 cm −3 to 5.0 × 10 20 cm. -3 is more preferable.

(4)p型拡散層形成
同様の処理を受光面で行い、p型拡散層10を受光面全体に形成する。具体的には、裏面側のみをマスク処理し、受光面の酸化膜21bを除去した後、受光面にドーパントを含む塗布剤をスクリーン印刷又はスピン塗布して熱処理を行い、p型拡散層10を形成する。p型拡散層10の表面ドーパント濃度は、1.0×1018cm-3〜5.0×1020cm-3が好ましく、1.0×1019cm-3〜5.0×1020cm-3がより好ましい。ドーパントはボロンが好ましい。
(4) Formation of p-type diffusion layer The same process is performed on the light-receiving surface to form the p-type diffusion layer 10 over the entire light-receiving surface. Specifically, only the back surface side is masked and the oxide film 21b on the light receiving surface is removed, and then a coating agent containing a dopant is screen printed or spin coated on the light receiving surface to perform heat treatment, and the p-type diffusion layer 10 is formed. Form. The surface dopant concentration of the p-type diffusion layer 10 is preferably 1.0 × 10 18 cm −3 to 5.0 × 10 20 cm −3 , and 1.0 × 10 19 cm −3 to 5.0 × 10 20 cm. -3 is more preferable. The dopant is preferably boron.

(5)pn接合分離
プラズマエッチャーを用い、pn接合分離を行う。このプロセスではプラズマやラジカルが受光面や裏面に侵入しないよう、サンプルをスタックし、その状態で端面を数ミクロン削る。接合分離後、基板に付いたガラス成分、シリコン粉等はガラスエッチング等により洗浄する。
(5) Pn junction isolation Pn junction isolation is performed using a plasma etcher. In this process, the sample is stacked so that plasma and radicals do not enter the light-receiving surface and the back surface, and the end surface is cut by several microns in that state. After bonding and separation, glass components, silicon powder, and the like attached to the substrate are washed by glass etching or the like.

(6)p型拡散層の受光面電極接続位置となる領域を部分的にシリコン窒化膜でマスクし、受光面電極6直下で受光面電極接続位置となる領域のみに窒化膜が形成されるようにパターニングされたガラスマスク又はシリコン基板のマスクを用い、窒化膜デポジションの際に受光面側と合わせてパターン開口部のみにシリコン窒化膜のCVD膜を堆積させることで、シリコン窒化膜のパターニングが可能である。 (6) The region that becomes the light receiving surface electrode connection position of the p-type diffusion layer is partially masked with a silicon nitride film so that the nitride film is formed only in the region directly under the light receiving surface electrode 6 that becomes the light receiving surface electrode connection position. Using a patterned glass mask or silicon substrate mask, a silicon nitride CVD film is deposited only on the pattern opening in alignment with the light receiving surface during the nitride film deposition, so that the silicon nitride film can be patterned. Is possible.

(7)酸化処理
p型拡散層の酸化処理は酸素雰囲気下で800〜1000℃で0.5〜2時間行うことが好ましい。酸化処理前にシリコン窒化膜8を、受光面電極6直下で受光面電極接続位置となるp型拡散層10の表面のみにパターン状に堆積させることで、シリコン窒化膜8が酸化防止膜として働き、ドーパントの表面濃度の低減を抑えることが可能となる。つまり、その後酸化処理をすることにより、シリコン窒化膜8形成部分はシリコン酸化膜が形成されず、シリコン窒化膜8と接する部分は、ドーパント濃度が維持されて高濃度拡散層3が形成される。それ以外の部分(シリコン窒化膜非形成領域)には、シリコン酸化膜9が形成され、これにより、シリコン窒化膜8形成部分以外の表面ドーパント濃度が低くなり、低濃度拡散層4が形成される。このようにして、受光面における高濃度拡散層3と低濃度拡散層4の表面濃度差を確実に形成することが可能となる。p型セレクティブエミッタ層2は、受光面電極6直下となる高濃度拡散層3がシリコン窒化膜8と接し、低濃度拡散層がシリコン酸化膜9と接する。また、p型セレクティブエミッタ層2を形成するのに熱処理を一回で済ますことができるため、非常に簡便な方法でありながら、高性能な太陽電池を得ることができる。
(7) Oxidation treatment The oxidation treatment of the p-type diffusion layer is preferably performed at 800 to 1000 ° C for 0.5 to 2 hours in an oxygen atmosphere. The silicon nitride film 8 functions as an antioxidant film by depositing the silicon nitride film 8 in a pattern form only on the surface of the p-type diffusion layer 10 which is the light receiving surface electrode connection position immediately below the light receiving surface electrode 6 before the oxidation treatment. Therefore, it is possible to suppress a reduction in the surface concentration of the dopant. That is, by performing an oxidation process thereafter, a silicon oxide film is not formed in a portion where the silicon nitride film 8 is formed, and a dopant concentration is maintained and a high concentration diffusion layer 3 is formed in a portion in contact with the silicon nitride film 8. In other portions (silicon nitride film non-formation region), a silicon oxide film 9 is formed, whereby the surface dopant concentration other than the portion where the silicon nitride film 8 is formed is lowered, and the low concentration diffusion layer 4 is formed. . In this way, it is possible to reliably form a surface concentration difference between the high concentration diffusion layer 3 and the low concentration diffusion layer 4 on the light receiving surface. In the p-type selective emitter layer 2, the high concentration diffusion layer 3 immediately below the light receiving surface electrode 6 is in contact with the silicon nitride film 8, and the low concentration diffusion layer is in contact with the silicon oxide film 9. In addition, since the heat treatment can be performed only once to form the p-type selective emitter layer 2, a high-performance solar cell can be obtained with a very simple method.

高濃度拡散層3の表面ドーパント濃度は、1.0×1018cm-3〜5.0×1020cm-3が好ましく、1.0×1019cm-3〜5.0×1020cm-3がより好ましい。また、低濃度拡散層4の表面ドーパント濃度は1.0×1017cm-3〜1.0×1019cm-3が好ましく、1.0×1018cm-3〜1.0×1019cm-3がより好ましい。高濃度拡散層の表面ドーパント濃度と、低濃度拡散層の表面ドーパント濃度との比(高濃度拡散層の表面ドーパント濃度/低濃度拡散層の表面ドーパント濃度)は、5〜200が好ましく、10〜100がより好ましい。また、シリコン窒化膜8の膜厚は10〜100nmが好ましく、20〜50nmがより好ましい。シリコン酸化膜9の膜厚は50〜200nmが好ましく、60〜120nmがより好ましい。 The surface dopant concentration of the high-concentration diffusion layer 3 is preferably 1.0 × 10 18 cm −3 to 5.0 × 10 20 cm −3 , and 1.0 × 10 19 cm −3 to 5.0 × 10 20 cm. -3 is more preferable. Further, the surface dopant concentration of the low concentration diffusion layer 4 is preferably 1.0 × 10 17 cm −3 to 1.0 × 10 19 cm −3 , and 1.0 × 10 18 cm −3 to 1.0 × 10 19. cm −3 is more preferable. The ratio of the surface dopant concentration of the high concentration diffusion layer to the surface dopant concentration of the low concentration diffusion layer (surface dopant concentration of the high concentration diffusion layer / surface dopant concentration of the low concentration diffusion layer) is preferably 5 to 200, 100 is more preferable. The film thickness of the silicon nitride film 8 is preferably 10 to 100 nm, and more preferably 20 to 50 nm. The thickness of the silicon oxide film 9 is preferably 50 to 200 nm, and more preferably 60 to 120 nm.

高濃度拡散層3の表面ドーパント濃度と、低濃度拡散層4の表面ドーパント濃度については、上記範囲での組合せとして、高濃度部分と低濃度部分が存在すればよく数値範囲の重複については適切な範囲内で高低関係が成立すればよい。   As for the surface dopant concentration of the high concentration diffusion layer 3 and the surface dopant concentration of the low concentration diffusion layer 4, as long as there is a high concentration portion and a low concentration portion as a combination in the above range, the overlap of the numerical ranges is appropriate. It is only necessary that the elevation relationship is established within the range.

(8)保護膜形成
引き続き、ダイレクトプラズマCVD装置を用い、p型セレクティブエミッタ層2上に反射防止シリコン窒化膜11を堆積する。この膜厚は、70〜100nmが好ましい。他の反射防止膜として酸化膜、二酸化チタン膜、酸化亜鉛膜、酸化スズ膜等があり、代替が可能である。また、形成法も上記以外にリモートプラズマCVD法、コーティング法、真空蒸着法等があるが、経済的な観点から、上記、窒化膜をプラズマCVD法によって形成するのが好適である。
(8) Formation of protective film Subsequently, an antireflection silicon nitride film 11 is deposited on the p-type selective emitter layer 2 using a direct plasma CVD apparatus. This film thickness is preferably 70 to 100 nm. Other antireflection films include oxide films, titanium dioxide films, zinc oxide films, tin oxide films, and the like, which can be substituted. In addition to the above, the formation method includes a remote plasma CVD method, a coating method, a vacuum deposition method, and the like. From the economical viewpoint, it is preferable to form the nitride film by the plasma CVD method.

(9)電極形成
スクリーン印刷装置等を用い、受光面側及び裏面側に、例えば銀からなるペーストを、スクリーン印刷装置を用いてp型高濃度拡散層及びn型拡散層上に印刷し、櫛形電極パターン状に塗布して乾燥させる。最後に、焼成炉において、500〜900℃で1〜30分焼成を行い、前記p型拡散層及びn型拡散層と電気的に接続する受光面電極6、裏面電極7を形成する。この場合、焼成中に電極ペースト中のガラスフリットがシリコン窒化膜8、反射防止シリコン窒化膜11及びシリコン酸化膜9をファイアスルーすることにより、電極と拡散層との電気的な導通が達成される。
(9) Electrode formation Using a screen printing device or the like, a paste made of, for example, silver is printed on the p-type high-concentration diffusion layer and the n-type diffusion layer using a screen printing device on the light-receiving surface side and the back surface side. Apply to electrode pattern and dry. Finally, firing is performed at 500 to 900 ° C. for 1 to 30 minutes in a firing furnace to form the light-receiving surface electrode 6 and the back electrode 7 that are electrically connected to the p-type diffusion layer and the n-type diffusion layer. In this case, the glass frit in the electrode paste fires through the silicon nitride film 8, the antireflection silicon nitride film 11 and the silicon oxide film 9 during firing, thereby achieving electrical conduction between the electrode and the diffusion layer. .

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術範囲に包含される。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. The embodiment is an exemplification, and any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and has the same operational effects can be used. Included in the technical scope.

[実施例1]
図2及び表1に示す製造方法フローチャートにより、図1に示す太陽電池を製造した。
結晶面方位(100)、15.65cm角200μm厚、アズスライス比抵抗2Ω・cm(ドーパント濃度7.2×1015cm-3)リンドープn型単結晶シリコン基板を、水酸化ナトリウム水溶液に浸してダメージ層をエッチングで取り除き、水酸化カリウム水溶液にイソプロピルアルコールを加えた水溶液に浸してアルカリエッチングすることでテクスチャ形成を行った。得られたシリコン基板1全体を1000℃・1時間処理して酸化膜21を形成した。次に、裏面の酸化膜21aをフッ酸等の薬液を用いて除去し、裏面にリンドーパントを含む塗布剤を塗布した後に、900℃・1時間熱処理を行い、n型拡散層5を裏面に形成した。熱処理後、基板に付いたガラス成分は高濃度フッ酸溶液等により除去後、洗浄した。
再度、シリコン基板全体にシリコン酸化膜を形成し、受光面のシリコン酸化膜21bをフッ酸等の薬液を用いて除去し、受光面にボロンドーパントを含む塗布剤を塗布した後に、1000℃・1時間熱処理を行い、p型高濃度拡散層10を受光面全体に形成した。
次に、プラズマエッチャーを用い、pn接合分離を行った。プラズマやラジカルが受光面や裏面に侵入しないよう、対象をスタックした状態で端面を数ミクロン削った。基板に付いたガラス成分を高濃度フッ酸溶液等により除去後、洗浄した。
次に、p型高濃度拡散層10の受光面電極直下となる領域のみにシリコン窒化膜が形成されるように、CVD法によりシリコン窒化膜8を常法によりパターン形成した。次に、酸化熱処理を酸素雰囲気下で900℃・10分の時間で行った。p型拡散層10は、受光面電極6直下となるp型高濃度拡散層3、p型低濃度拡散層4を有し、p型セレクティブエミッタ層2が形成された。また、p型高濃度拡散層3上にシリコン窒化膜8が形成され、p型低濃度拡散層4上にシリコン酸化膜9が形成された。酸化処理後のシリコン窒化膜8(マスク)の膜厚は20nmであり、シリコン酸化膜9の膜厚は100nmであった。
酸化熱処理後のn型拡散層5、p型高濃度拡散層3、p型低濃度拡散層4におけるドーパント濃度は、それぞれ4.2×1020cm-3、2.8×1020cm-3、5.8×1018cm-3であった(高濃度拡散層の表面ドーパント濃度/低濃度拡散層の表面ドーパント濃度=48)。なお、ドーパント濃度は、SIMS測定で分析を行ったが、拡散層表面を角度研摩して広がり抵抗測定によりドーピングプロファイルを得ることもできる。
引き続き、ダイレクトプラズマCVD装置を用い、シリコン窒化膜8上及び、受光面と裏面のシリコン酸化膜9上に反射防止シリコン窒化膜11を積層した。この膜厚は70nmであった。
受光面側及び裏面側にそれぞれ銀ペーストを電極印刷し、乾燥後800℃で20分焼成を行い、受光面電極6及び裏面電極7を形成した。この場合、焼成中に電極ペースト中のガラスフリットがシリコン酸化膜及びシリコン窒化膜をファイアスルーすることにより、電極と拡散層との電気的な導通を達成した。
[Example 1]
The solar cell shown in FIG. 1 was manufactured according to the manufacturing method flowchart shown in FIG.
Crystal plane orientation (100), 15.65 cm square 200 μm thickness, as-slice specific resistance 2 Ω · cm (dopant concentration 7.2 × 10 15 cm −3 ) Phosphorus-doped n-type single crystal silicon substrate is immersed in an aqueous sodium hydroxide solution The damaged layer was removed by etching, and texture formation was performed by soaking in an aqueous solution obtained by adding isopropyl alcohol to an aqueous potassium hydroxide solution and performing alkali etching. The entire obtained silicon substrate 1 was treated at 1000 ° C. for 1 hour to form an oxide film 21. Next, the oxide film 21a on the back surface is removed using a chemical solution such as hydrofluoric acid, and after applying a coating agent containing a phosphorus dopant on the back surface, heat treatment is performed at 900 ° C. for 1 hour, and the n-type diffusion layer 5 is formed on the back surface. Formed. After the heat treatment, the glass component attached to the substrate was removed by high concentration hydrofluoric acid solution and then washed.
Again, a silicon oxide film is formed on the entire silicon substrate, the silicon oxide film 21b on the light-receiving surface is removed using a chemical solution such as hydrofluoric acid, and a coating agent containing boron dopant is applied to the light-receiving surface. A time heat treatment was performed to form the p-type high concentration diffusion layer 10 over the entire light receiving surface.
Next, pn junction isolation was performed using a plasma etcher. In order to prevent plasma and radicals from entering the light-receiving surface and back surface, the end face was cut several microns with the target stacked. The glass component attached to the substrate was removed with a high-concentration hydrofluoric acid solution and then washed.
Next, the silicon nitride film 8 was patterned by a conventional method by the CVD method so that the silicon nitride film was formed only in the region immediately below the light receiving surface electrode of the p-type high concentration diffusion layer 10. Next, an oxidation heat treatment was performed in an oxygen atmosphere at 900 ° C. for 10 minutes. The p-type diffusion layer 10 has a p-type high-concentration diffusion layer 3 and a p-type low-concentration diffusion layer 4 immediately below the light-receiving surface electrode 6, and the p-type selective emitter layer 2 is formed. A silicon nitride film 8 was formed on the p-type high concentration diffusion layer 3, and a silicon oxide film 9 was formed on the p-type low concentration diffusion layer 4. The thickness of the silicon nitride film 8 (mask) after the oxidation treatment was 20 nm, and the thickness of the silicon oxide film 9 was 100 nm.
The dopant concentration in the n-type diffusion layer 5, the p-type high concentration diffusion layer 3, and the p-type low concentration diffusion layer 4 after the oxidation heat treatment is 4.2 × 10 20 cm −3 and 2.8 × 10 20 cm −3, respectively. It was 5.8 × 10 18 cm −3 (surface dopant concentration of high-concentration diffusion layer / surface dopant concentration of low-concentration diffusion layer = 48). The dopant concentration was analyzed by SIMS measurement, but the diffusion profile surface can be angle-polished and spread to obtain a doping profile by resistance measurement.
Subsequently, an antireflection silicon nitride film 11 was laminated on the silicon nitride film 8 and the silicon oxide film 9 on the light receiving surface and the back surface using a direct plasma CVD apparatus. This film thickness was 70 nm.
A silver paste was electrode-printed on each of the light-receiving surface side and the back surface side, dried, and baked at 800 ° C. for 20 minutes to form the light-receiving surface electrode 6 and the back electrode 7. In this case, the glass frit in the electrode paste fires through the silicon oxide film and the silicon nitride film during firing, thereby achieving electrical conduction between the electrode and the diffusion layer.

[比較例1]
図3及び表2に示す製造方法フローチャートにより、太陽電池を製造した。
結晶面方位(100)、15.65cm角200μm厚、アズスライス比抵抗2Ω・cm(ドーパント濃度7.2×1015cm-3)リンドープn型単結晶シリコン基板101を、水酸化ナトリウム水溶液に浸してダメージ層をエッチングで取り除き、水酸化カリウム水溶液にイソプロピルアルコールを加えた水溶液に浸してアルカリエッチングすることでテクスチャ形成を行った。得られたシリコン基板101全体を1000℃・1時間処理して酸化膜121を形成した。次に、裏面の酸化膜121をフッ酸等の薬液を用いて除去し、裏面にリンドーパントを含む塗布剤を塗布した後に、900℃・1時間熱処理を行い、n型拡散層105を裏面に形成した。熱処理後、基板に付いたガラス成分は高濃度フッ酸溶液等により除去後、洗浄した。
次に、受光面側の電極直下となる部分にp型高濃度拡散層103を形成した。具体的には、シリコン基板101全体を酸化膜マスク処理し、受光面側の電極直下となる部分の酸化膜のみフッ酸等の薬液を用いて除去、パターニングして、基板が露出した部分にボロンドーパントを含む塗布剤をスクリーン印刷するか又は受光面全体にスピン塗布して、1000℃・1時間熱処理を行った。熱処理後、基板に付いたガラス成分は高濃度フッ酸溶液等により除去後、洗浄した。
次に、受光面側の電極直下となる部分以外の所にp型低濃度拡散層104を形成した。具体的には、シリコン基板1全体を酸化膜マスク処理し、受光面側のみフッ酸等の薬液を用いて除去し、受光面全体にボロンドーパントを含む塗布剤をスクリーン印刷するか又は受光面全体にスピン塗布して、950℃・1時間熱処理を行った。これにより、p型低濃度拡散層104を受光面側の電極直下以外となる部分に均一に形成した。
次に、プラズマエッチャーを用い、pn接合分離を行った。プラズマやラジカルが受光面や裏面に侵入しないよう、対象をスタックした状態で端面を数ミクロン削った。基板に付いたガラス成分を高濃度フッ酸溶液等により除去後、洗浄した。
次に、酸化熱処理を、酸素雰囲気下で900℃・10分の時間で行い、p型高濃度拡散層103及びp型低濃度拡散層104上にシリコン酸化膜109を形成した。シリコン酸化膜109の膜厚は100nmであった。
酸化熱処理後のn型拡散層105、p型高濃度拡散層103、p型低濃度拡散層104におけるドーパント濃度は、それぞれ4.1×1020cm-3、1.1×1020cm-3、6.7×1019cm-3であった。
[Comparative Example 1]
The solar cell was manufactured according to the manufacturing method flowchart shown in FIG.
Crystal plane orientation (100), 15.65 cm square 200 μm thickness, as slice specific resistance 2 Ω · cm (dopant concentration 7.2 × 10 15 cm −3 ) Phosphorus-doped n-type single crystal silicon substrate 101 is immersed in an aqueous sodium hydroxide solution Then, the damaged layer was removed by etching, and texture formation was performed by dipping in an aqueous solution obtained by adding isopropyl alcohol to an aqueous potassium hydroxide solution and performing alkali etching. The entire obtained silicon substrate 101 was processed at 1000 ° C. for 1 hour to form an oxide film 121. Next, the oxide film 121 on the back surface is removed using a chemical solution such as hydrofluoric acid, and after applying a coating agent containing a phosphorus dopant on the back surface, heat treatment is performed at 900 ° C. for 1 hour, and the n-type diffusion layer 105 is formed on the back surface. Formed. After the heat treatment, the glass component attached to the substrate was removed by high concentration hydrofluoric acid solution and then washed.
Next, a p-type high-concentration diffusion layer 103 was formed in a portion directly under the electrode on the light receiving surface side. Specifically, the entire silicon substrate 101 is subjected to an oxide film mask process, and only the oxide film directly under the electrode on the light receiving surface side is removed and patterned using a chemical solution such as hydrofluoric acid, and boron is exposed to the exposed portion of the substrate. The coating agent containing the dopant was screen-printed or spin-coated on the entire light receiving surface, and heat treatment was performed at 1000 ° C. for 1 hour. After the heat treatment, the glass component attached to the substrate was removed by high concentration hydrofluoric acid solution and then washed.
Next, a p-type low-concentration diffusion layer 104 was formed in a portion other than the portion directly below the electrode on the light receiving surface side. Specifically, the entire silicon substrate 1 is subjected to an oxide film mask process, and only the light-receiving surface side is removed using a chemical solution such as hydrofluoric acid, and the entire light-receiving surface is screen-printed with a coating agent containing boron dopant or the entire light-receiving surface. Then, heat treatment was performed at 950 ° C. for 1 hour. As a result, the p-type low-concentration diffusion layer 104 was uniformly formed in a portion other than directly under the electrode on the light receiving surface side.
Next, pn junction isolation was performed using a plasma etcher. In order to prevent plasma and radicals from entering the light-receiving surface and back surface, the end face was cut several microns with the target stacked. The glass component attached to the substrate was removed with a high-concentration hydrofluoric acid solution and then washed.
Next, an oxidation heat treatment was performed in an oxygen atmosphere at 900 ° C. for 10 minutes to form a silicon oxide film 109 on the p-type high concentration diffusion layer 103 and the p-type low concentration diffusion layer 104. The film thickness of the silicon oxide film 109 was 100 nm.
The dopant concentrations in the n-type diffusion layer 105, the p-type high concentration diffusion layer 103, and the p-type low concentration diffusion layer 104 after the oxidation heat treatment are 4.1 × 10 20 cm −3 and 1.1 × 10 20 cm −3, respectively. 6.7 × 10 19 cm −3 .

次に、ダイレクトプラズマCVD装置を用い、受光面及び裏面のシリコン酸化膜109上に反射防止シリコン窒化膜111を積層した。この膜厚は70nmであった。   Next, using a direct plasma CVD apparatus, an antireflection silicon nitride film 111 was laminated on the silicon oxide film 109 on the light receiving surface and the back surface. This film thickness was 70 nm.

受光面側及び裏面側にそれぞれ銀ペーストを電極印刷し、乾燥後800℃で20分焼成を行い、受光面電極106及び裏面電極107を、実施例1と同様の方法で形成した。
実施例1の製造フローチャートを表1に、比較例1の製造フローチャートを表2に示す。
A silver paste was electrode-printed on each of the light-receiving surface side and the back surface side, dried, and baked at 800 ° C. for 20 minutes. The light-receiving surface electrode 106 and the back electrode 107 were formed in the same manner as in Example 1.
The production flowchart of Example 1 is shown in Table 1, and the production flowchart of Comparative Example 1 is shown in Table 2.

Figure 2010186900
Figure 2010186900

Figure 2010186900
Figure 2010186900

実施例及び比較例で得られた太陽電池を、25℃の雰囲気の中、ソーラーシミュレータ(光強度:1kW/m2,スペクトル:AM1.5グローバル)の下で電流電圧特性を測定した。結果を表3に示す。なお、表中の数字は実施例及び比較例で試作したセル10枚の平均値である。 The current-voltage characteristics of the solar cells obtained in the examples and comparative examples were measured in a 25 ° C. atmosphere under a solar simulator (light intensity: 1 kW / m 2 , spectrum: AM1.5 global). The results are shown in Table 3. In addition, the number in a table | surface is an average value of ten cells made as an experiment in an Example and a comparative example.

Figure 2010186900
Figure 2010186900

上記のように、実施例によるセレクティブエミッタを有する太陽電池は、p型高濃度拡散層濃度を保持した効果により、比較例のp型セレクティブエミッタ形成と比較して、開放電圧とフィルファクタが向上した結果となった。p型高濃度拡散層による拡散電位の向上に加えて、電極とのコンタクト抵抗が低減したことにより変換効率が向上している。これにより、p型高濃度拡散層の濃度保持において窒化膜によるマスクが有用であり、さらに少ない工程数でp型セレクティブエミッタを形成することが可能であることが分かる。なお、上記では半導体装置の一つである太陽電池について詳述したが、本発明は太陽電池だけに限定されるものでなく、面内に表面濃度の異なる拡散層を形成しなければならない、又は所望の拡散濃度を保持しなければならない他の半導体装置についても、本発明の窒化膜マスクが適用できることはいうまでもない。   As described above, the solar cell having the selective emitter according to the example has an improved open-circuit voltage and fill factor compared to the p-type selective emitter formation of the comparative example due to the effect of maintaining the p-type high concentration diffusion layer concentration. As a result. In addition to the improvement of the diffusion potential due to the p-type high concentration diffusion layer, the conversion efficiency is improved by reducing the contact resistance with the electrode. Thus, it can be seen that a mask made of a nitride film is useful in maintaining the concentration of the p-type high-concentration diffusion layer, and a p-type selective emitter can be formed with a smaller number of steps. In the above, the solar cell which is one of the semiconductor devices has been described in detail, but the present invention is not limited to the solar cell, and diffusion layers having different surface concentrations must be formed in the plane, or It goes without saying that the nitride film mask of the present invention can also be applied to other semiconductor devices that must maintain a desired diffusion concentration.

1 シリコン基板
2 p型セレクティブエミッタ層
3 p型高濃度拡散層
4 p型低濃度拡散層
5 n型拡散層
6 受光面電極
7 裏面電極
8 シリコン窒化膜
9 シリコン酸化膜
10 p型拡散層
11 反射防止シリコン窒化膜
1 silicon substrate 2 p-type selective emitter layer 3 p-type high-concentration diffusion layer 4 p-type low-concentration diffusion layer 5 n-type diffusion layer 6 light-receiving surface electrode 7 back electrode 8 silicon nitride film 9 silicon oxide film 10 p-type diffusion layer 11 reflection Prevention silicon nitride film

Claims (5)

シリコン基板と、
前記シリコン基板の受光面側に形成され、ドーパント高濃度拡散層とこの高濃度拡散層よりもドーパント濃度が低い低濃度拡散層とを有するp型セレクティブエミッタ層と、
前記p型セレクティブエミッタ層の高濃度拡散層と電気的に接続する受光面電極と、
前記シリコン基板の裏面側に形成されたn型拡散層と、
前記n型拡散層と電気的に接続する裏面電極と、
を備える太陽電池であって、前記受光面電極直下となる高濃度拡散層がシリコン窒化膜と接し、前記低濃度拡散層がシリコン酸化膜と接することを特徴とする太陽電池。
A silicon substrate;
A p-type selective emitter layer formed on the light-receiving surface side of the silicon substrate and having a dopant high-concentration diffusion layer and a low-concentration diffusion layer having a dopant concentration lower than that of the high-concentration diffusion layer;
A light-receiving surface electrode electrically connected to the high concentration diffusion layer of the p-type selective emitter layer;
An n-type diffusion layer formed on the back side of the silicon substrate;
A back electrode electrically connected to the n-type diffusion layer;
A high-concentration diffusion layer immediately below the light-receiving surface electrode is in contact with a silicon nitride film, and the low-concentration diffusion layer is in contact with a silicon oxide film.
p型セレクティブエミッタ層のドーパントがボロンであることを特徴とする請求項1記載の太陽電池。   The solar cell according to claim 1, wherein the dopant of the p-type selective emitter layer is boron. 高濃度拡散層の表面ドーパント濃度が1.0×1018cm-3〜5.0×1020cm-3であり、低濃度拡散層の表面ドーパント濃度が1.0×1017cm-3〜1.0×1019cm-3であることを特徴とする請求項1又は2記載の太陽電池。 The surface dopant concentration of the high concentration diffusion layer is 1.0 × 10 18 cm −3 to 5.0 × 10 20 cm −3 , and the surface dopant concentration of the low concentration diffusion layer is 1.0 × 10 17 cm −3 to It is 1.0 * 10 < 19 > cm <-3> , The solar cell of Claim 1 or 2 characterized by the above-mentioned. シリコン基板がn型であることを特徴とする請求項1、2又は3記載の太陽電池。   The solar cell according to claim 1, 2 or 3, wherein the silicon substrate is n-type. シリコン基板の裏面側にn型拡散層を形成すると共に、シリコン基板の受光面側に高濃度p型拡散層を形成し、このp型拡散層の受光面電極接続位置となる領域を部分的にシリコン窒化膜でマスクした後、前記p型拡散層の酸化処理を行って、前記シリコン窒化膜形成領域に接するp型拡散層を高濃度拡散層として保持すると共に、前記酸化処理によりp型拡散層のシリコン窒化膜非形成領域にシリコン酸化膜を形成し、このシリコン酸化膜に接するp型拡散層を低濃度拡散層として形成したことを特徴とする請求項1記載の太陽電池の製造方法。   An n-type diffusion layer is formed on the back surface side of the silicon substrate, and a high-concentration p-type diffusion layer is formed on the light-receiving surface side of the silicon substrate, and a region serving as a light-receiving surface electrode connection position of the p-type diffusion layer is partially formed. After masking with the silicon nitride film, the p-type diffusion layer is oxidized to hold the p-type diffusion layer in contact with the silicon nitride film formation region as a high-concentration diffusion layer, and the oxidation treatment is used to form the p-type diffusion layer. 2. The method of manufacturing a solar cell according to claim 1, wherein a silicon oxide film is formed in the silicon nitride film non-formation region, and a p-type diffusion layer in contact with the silicon oxide film is formed as a low concentration diffusion layer.
JP2009030603A 2009-02-13 2009-02-13 Manufacturing method of solar cell Active JP5414298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009030603A JP5414298B2 (en) 2009-02-13 2009-02-13 Manufacturing method of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009030603A JP5414298B2 (en) 2009-02-13 2009-02-13 Manufacturing method of solar cell

Publications (2)

Publication Number Publication Date
JP2010186900A true JP2010186900A (en) 2010-08-26
JP5414298B2 JP5414298B2 (en) 2014-02-12

Family

ID=42767365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030603A Active JP5414298B2 (en) 2009-02-13 2009-02-13 Manufacturing method of solar cell

Country Status (1)

Country Link
JP (1) JP5414298B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232530A (en) * 2009-03-27 2010-10-14 Sharp Corp Method of manufacturing photoelectric conversion element, and photoelectric conversion element
JP2012049424A (en) * 2010-08-30 2012-03-08 Shin Etsu Chem Co Ltd Solar cell and method of manufacturing the same
WO2012039831A1 (en) * 2010-09-24 2012-03-29 Sunpower Corporation Method of fabricating an emitter region of a solar cell
WO2012077797A1 (en) 2010-12-10 2012-06-14 帝人株式会社 Semiconductor laminate, semiconductor device, method for producing semiconductor laminate, and method for manufacturing semiconductor device
KR20130111605A (en) 2011-03-03 2013-10-10 미쓰비시덴키 가부시키가이샤 Photovoltaic device, manufacturing method thereof, and photovoltaic module
WO2014024297A1 (en) * 2012-08-09 2014-02-13 三菱電機株式会社 Solar cell manufacturing method
JP2015516115A (en) * 2012-05-11 2015-06-04 アポロン、ソーラーApollonsolar Solar cell comprising n-type doped silicon
KR101538602B1 (en) 2012-04-25 2015-07-21 미쓰비시덴키 가부시키가이샤 Solar cell, method for producing solar cell, and solar cell module
WO2015151288A1 (en) * 2014-04-04 2015-10-08 三菱電機株式会社 Solar cell manufacturing method and solar cell
CN111370539A (en) * 2020-03-19 2020-07-03 泰州中来光电科技有限公司 Preparation method of solar cell with selective emitter
US11222991B2 (en) 2014-11-05 2022-01-11 Shin-Etsu Chemical Co., Ltd. Solar cell and method for manufacturing the same
CN114497242A (en) * 2021-06-01 2022-05-13 常州时创能源股份有限公司 Preparation method and application of boron-doped selective emitter
CN117199186A (en) * 2023-09-27 2023-12-08 淮安捷泰新能源科技有限公司 Manufacturing method of N-TOPCON battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306620A (en) * 1989-05-20 1990-12-20 Fujitsu Ltd Manufacture of semiconductor device
JPH10261810A (en) * 1997-03-18 1998-09-29 Hitachi Ltd Solar cell and manufacture thereof
JPH10303423A (en) * 1997-02-27 1998-11-13 Seiko Epson Corp Manufacture of semiconductor device and semiconductor device
JP2005183867A (en) * 2003-12-24 2005-07-07 Mitsumi Electric Co Ltd Semiconductor element and its manufacturing method
JP2007208052A (en) * 2006-02-02 2007-08-16 Fujifilm Corp Solid-state image pickup device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306620A (en) * 1989-05-20 1990-12-20 Fujitsu Ltd Manufacture of semiconductor device
JPH10303423A (en) * 1997-02-27 1998-11-13 Seiko Epson Corp Manufacture of semiconductor device and semiconductor device
JPH10261810A (en) * 1997-03-18 1998-09-29 Hitachi Ltd Solar cell and manufacture thereof
JP2005183867A (en) * 2003-12-24 2005-07-07 Mitsumi Electric Co Ltd Semiconductor element and its manufacturing method
JP2007208052A (en) * 2006-02-02 2007-08-16 Fujifilm Corp Solid-state image pickup device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232530A (en) * 2009-03-27 2010-10-14 Sharp Corp Method of manufacturing photoelectric conversion element, and photoelectric conversion element
JP2012049424A (en) * 2010-08-30 2012-03-08 Shin Etsu Chem Co Ltd Solar cell and method of manufacturing the same
WO2012039831A1 (en) * 2010-09-24 2012-03-29 Sunpower Corporation Method of fabricating an emitter region of a solar cell
CN102959738A (en) * 2010-09-24 2013-03-06 太阳能公司 Method of fabricating an emitter region of a solar cell
US10629760B2 (en) 2010-09-24 2020-04-21 Sunpower Corporation Method of fabricating an emitter region of a solar cell
EP3046136A1 (en) 2010-12-10 2016-07-20 Teijin Limited Dispersion containing semiconductor particles
WO2012077797A1 (en) 2010-12-10 2012-06-14 帝人株式会社 Semiconductor laminate, semiconductor device, method for producing semiconductor laminate, and method for manufacturing semiconductor device
US9577050B2 (en) 2010-12-10 2017-02-21 Teijin Limited Semiconductor laminate, semiconductor device, and production method thereof
EP2701182A2 (en) 2010-12-10 2014-02-26 Teijin Limited Semiconductor laminate, semiconductor device, method for producing semiconductor laminate, and method for manufacturing semiconductor device
DE112012001067T5 (en) 2011-03-03 2013-11-28 Mitsubishi Electric Corp. Photovoltaic device, manufacturing method for this, and photovoltaic module
KR20130111605A (en) 2011-03-03 2013-10-10 미쓰비시덴키 가부시키가이샤 Photovoltaic device, manufacturing method thereof, and photovoltaic module
US9252305B2 (en) 2011-03-03 2016-02-02 Mitsubishi Electric Corporation Photovoltaic device, manufacturing method thereof, and photovoltaic module
KR101538602B1 (en) 2012-04-25 2015-07-21 미쓰비시덴키 가부시키가이샤 Solar cell, method for producing solar cell, and solar cell module
JP2015516115A (en) * 2012-05-11 2015-06-04 アポロン、ソーラーApollonsolar Solar cell comprising n-type doped silicon
WO2014024297A1 (en) * 2012-08-09 2014-02-13 三菱電機株式会社 Solar cell manufacturing method
CN104521002A (en) * 2012-08-09 2015-04-15 三菱电机株式会社 Solar cell manufacturing method
JPWO2014024297A1 (en) * 2012-08-09 2016-07-21 三菱電機株式会社 Manufacturing method of solar cell
JP5905966B2 (en) * 2012-08-09 2016-04-20 三菱電機株式会社 Manufacturing method of solar cell
CN106133922A (en) * 2014-04-04 2016-11-16 三菱电机株式会社 The manufacture method of solaode and solaode
JPWO2015151288A1 (en) * 2014-04-04 2017-04-13 三菱電機株式会社 Solar cell manufacturing method and solar cell
WO2015151288A1 (en) * 2014-04-04 2015-10-08 三菱電機株式会社 Solar cell manufacturing method and solar cell
US11222991B2 (en) 2014-11-05 2022-01-11 Shin-Etsu Chemical Co., Ltd. Solar cell and method for manufacturing the same
US11227965B2 (en) 2014-11-05 2022-01-18 Shin-Etsu Chemical Co., Ltd. Solar cell and method for manufacturing the same
CN111370539A (en) * 2020-03-19 2020-07-03 泰州中来光电科技有限公司 Preparation method of solar cell with selective emitter
CN114497242A (en) * 2021-06-01 2022-05-13 常州时创能源股份有限公司 Preparation method and application of boron-doped selective emitter
CN117199186A (en) * 2023-09-27 2023-12-08 淮安捷泰新能源科技有限公司 Manufacturing method of N-TOPCON battery

Also Published As

Publication number Publication date
JP5414298B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5414298B2 (en) Manufacturing method of solar cell
US20220123158A1 (en) Efficient black silicon photovoltaic devices with enhanced blue response
JP4481869B2 (en) SOLAR CELL MANUFACTURING METHOD, SOLAR CELL, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
US20090020156A1 (en) Method for manufacturing solar cell and solar cell
US20110139231A1 (en) Back junction solar cell with selective front surface field
JP5737204B2 (en) Solar cell and manufacturing method thereof
JP2012049424A (en) Solar cell and method of manufacturing the same
JP5991945B2 (en) Solar cell and solar cell module
US9018520B2 (en) Solar cell and manufacturing method thereof
KR102420807B1 (en) Solar cell and solar cell manufacturing method
JP6144778B2 (en) Manufacturing method of solar cell
JP2011228529A (en) Solar battery cell and manufacturing method thereof
JP6021392B2 (en) Method for manufacturing photoelectric conversion device
KR20100089473A (en) High efficiency back contact solar cell and method for manufacturing the same
US11222991B2 (en) Solar cell and method for manufacturing the same
JP2015106624A (en) Method for manufacturing solar cell
KR101321538B1 (en) Bulk silicon solar cell and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120229

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131112

R150 Certificate of patent or registration of utility model

Ref document number: 5414298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150