JP2010185665A - Material for x-ray transmission window, and x-ray transmission window with the material - Google Patents

Material for x-ray transmission window, and x-ray transmission window with the material Download PDF

Info

Publication number
JP2010185665A
JP2010185665A JP2009028008A JP2009028008A JP2010185665A JP 2010185665 A JP2010185665 A JP 2010185665A JP 2009028008 A JP2009028008 A JP 2009028008A JP 2009028008 A JP2009028008 A JP 2009028008A JP 2010185665 A JP2010185665 A JP 2010185665A
Authority
JP
Japan
Prior art keywords
window material
diamond
ray
window
ray transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009028008A
Other languages
Japanese (ja)
Inventor
Takeshi Tachibana
武史 橘
Yoshihiro Yokota
嘉宏 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009028008A priority Critical patent/JP2010185665A/en
Publication of JP2010185665A publication Critical patent/JP2010185665A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material for an X-ray transmission window which hinders a diffraction in the transmission of X rays even if a diamond window material is thick and an X-ray transmission window with the window material. <P>SOLUTION: The material 1 for the X-ray transmission window is made of polycrystal diamond where the average size Za of diamond particles is ≥0.1 μm and ≤10 μm, the thickness of the window material 1 is ≥8Za<SP>1/3</SP>and the average roughness Ra of both sides of the window material 1 is set at ≤100 nm. Preferably, its thermal conductivity is ≥400 W/mK, as to the polycrystal diamond. More preferably, the thickness of the window material 1 is ≥100 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、多結晶ダイヤモンドで形成されたX線透過窓材及びその窓材を備えたX線透過窓に関する。   The present invention relates to an X-ray transmission window material formed of polycrystalline diamond and an X-ray transmission window including the window material.

放射光X線施設やX線測定器のX線取出し用開口部や観察用開口部にはX線透過窓が設けられる。このX線透過窓は、X線を透過する薄板状のX線透過窓材を備える。従来のX線透過窓材は、特開昭63−263488号公報(特許文献1)に記載されているように、主にベリリウムによって形成されていた。ベリリウムは軽元素であり、またX線透過性に優れるためである。   An X-ray transmission window is provided in the X-ray extraction opening and the observation opening of the synchrotron radiation X-ray facility and the X-ray measuring instrument. This X-ray transmission window includes a thin plate-like X-ray transmission window material that transmits X-rays. Conventional X-ray transmissive window materials have been mainly formed of beryllium as described in JP-A-63-263488 (Patent Document 1). This is because beryllium is a light element and has excellent X-ray transparency.

最近ではX線の高輝度化に伴い、例えば特開平9−68599号公報(特許文献2)に記載されているように、熱伝導性に優れる多結晶ダイヤモンドで形成された窓材が試用され始めている。多結晶ダイヤモンドは、X線透過率がベリリウムに及ばないが、機械強度に優れるため、窓材の厚さを薄くすることができ、トータルの透過度はベリリウム製の窓材に較べて遜色がない。さらに熱伝導性がよいため、X線の一部を吸収しても熱を貯めることがなく、透過X線に影響するような窓の変形を回避することができる。   Recently, as X-ray brightness increases, for example, as described in JP-A-9-68599 (Patent Document 2), a window material made of polycrystalline diamond having excellent thermal conductivity has begun to be used. Yes. Polycrystalline diamond does not have X-ray transmittance comparable to that of beryllium, but because of its excellent mechanical strength, the thickness of the window material can be reduced, and the total transmittance is comparable to the window material made of beryllium. . Furthermore, since heat conductivity is good, heat is not stored even if a part of X-rays is absorbed, and deformation of the window that affects transmitted X-rays can be avoided.

上記特許文献2に記載のX線透過窓は、多結晶ダイヤモンドで形成したX線透過窓材(以下、単に「ダイヤモンド窓材」という場合がある。)を、溝を設けたリング状の支持枠にエポキシ系接着剤により固定し、これをフランジに取り付けた構造を有している。前記溝のある支持枠を用いることにより、ダイヤモンド窓材を薄く形成しても、支持枠に取り付ける際の応力を緩和することができ、ダイヤモンド窓材の損傷を防止することができるという。   The X-ray transmissive window described in Patent Document 2 is an X-ray transmissive window material formed of polycrystalline diamond (hereinafter sometimes simply referred to as “diamond window material”), and a ring-shaped support frame provided with grooves. It is fixed with an epoxy adhesive and is attached to the flange. By using the support frame having the groove, even when the diamond window material is formed thin, stress at the time of attachment to the support frame can be relieved, and damage to the diamond window material can be prevented.

特開昭63−263488号公報JP-A 63-263488 特開平9−68599号公報JP-A-9-68599

上記特許文献1に記載のX線透過窓では、厚さの薄いダイヤモンド窓材を用いることができるが、それ自体の耐久性が低く、また支持枠との接合も合成樹脂接着材によるため熱伝導性に劣り、総じて信頼性に欠けるところがある。これに対して、ダイヤモンド窓材の厚さを厚くすることにより窓材自体の耐久性を向上させることができ、またこれを支持枠にろう付けすることにより熱伝導性を向上させることができ、X線透過窓としての信頼性が向上する。   In the X-ray transmission window described in Patent Document 1, a thin diamond window material can be used. However, its durability is low, and the connection with the support frame is made of a synthetic resin adhesive. Inferior in nature and generally lacks reliability. On the other hand, the durability of the window material itself can be improved by increasing the thickness of the diamond window material, and the thermal conductivity can be improved by brazing this to the support frame, Reliability as an X-ray transmission window is improved.

X線透過窓材として機械的な強度を確保するためには、X線透過部の口径が小さい場合はともかく、通常の口径(2〜10mmφ程度)では最低でも100μm 程度の厚さが欲しいところである。また熱伝導の観点からも窓材の厚さは厚いほうが望ましい。このような厚いダイヤモンド窓材は、通常、成膜効率の高いマイクロ波プラズマ法、熱フィラメントCVD法により、原料ガスとしてメタン及び水素ガスを用いて製作することができる。   In order to ensure mechanical strength as an X-ray transmission window material, it is necessary to have a thickness of at least about 100 μm at the normal diameter (about 2 to 10 mmφ), regardless of the small diameter of the X-ray transmission part. . From the viewpoint of heat conduction, it is desirable that the window material is thick. Such a thick diamond window material can be manufactured by using methane and hydrogen gas as source gases by a microwave plasma method and a hot filament CVD method with high film formation efficiency.

しかしながら、実際に上記方法で成膜したダイヤモンド窓材を設けたX線透過窓を用いてX線を透過させると、X線が透過する際に回折像が発生するため、放射光X線施設やX線測定器において、分析しようとする対象から発生するX線回折像を見えないようにしたり、解析し難くするという問題がある。   However, when X-rays are transmitted using an X-ray transmission window provided with a diamond window material actually formed by the above method, a diffraction image is generated when the X-rays are transmitted. In an X-ray measuring device, there is a problem that an X-ray diffraction image generated from an object to be analyzed is made invisible or difficult to analyze.

本発明はかかる問題に鑑みなされたものであり、ダイヤモンド窓材の厚さが厚くてもX線が透過する際に回折が生じ難いX線透過窓材、同窓材を備えたX線透過窓を提供することを目的とする。   The present invention has been made in view of such a problem. An X-ray transmission window material that is difficult to cause diffraction when X-rays are transmitted even when the diamond window material is thick, and an X-ray transmission window including the window material are provided. The purpose is to provide.

本発明者は、上記の課題を解決するため鋭意研究を進めた結果、上記成膜法により通常の条件でダイヤモンド窓材を成膜すると、多結晶ダイヤモンドを構成する多数のダイヤモンド粒子(単結晶ダイヤモンド)の大きさが20μm 以上になり、ダイヤモンド窓材中に存在する、X線回折条件を満たすダイヤモンド粒子の割合が高くなるため、窓材を透過する際にX線回折が生じることを見出した。本発明はかかる知見を基に完成されたものである。   As a result of intensive research to solve the above-mentioned problems, the present inventor has found that when a diamond window material is formed under normal conditions by the above-described film forming method, a large number of diamond particles (single crystal diamond) constituting polycrystalline diamond are obtained. ) Is 20 μm or more, and the ratio of diamond particles satisfying the X-ray diffraction condition existing in the diamond window material is increased, so that it has been found that X-ray diffraction occurs when passing through the window material. The present invention has been completed based on such knowledge.

すなわち、本発明のX線透過窓材は、ダイヤモンド粒子の平均サイズZaが0.1μm 以上、10μm 以下の多結晶ダイヤモンドで形成され、かつ窓材の厚さが8Za1/3 以上であり、さらに窓材の両面の平均粗さRaが100nm以下とされたものである。前記ダイヤモンド粒子の平均サイズ(「平均粒子サイズ」という場合がある。)とは、試料を電子顕微鏡で観察して、断面あるいは表面の観察画像において、線として現れるダイヤモンドの粒子と粒子とを隔てる界面(粒界)を、あるいは回折方位像において面として現れる粒子を、各々画像情報として認識して粒子数を決定し、観察範囲の面積を粒子数で除した値の平方根として算出した値を意味する。 That is, the X-ray transmission window material of the present invention is formed of polycrystalline diamond having an average diamond particle size Za of 0.1 μm or more and 10 μm or less, and the thickness of the window material is 8 Za 1/3 or more. The average roughness Ra of both surfaces of the window material is 100 nm or less. The average size of the diamond particles (sometimes referred to as “average particle size”) refers to an interface that separates diamond particles appearing as lines in a cross-sectional or surface observation image when the sample is observed with an electron microscope. It means the value calculated as the square root of the value obtained by recognizing (grain boundary) or particles appearing as a plane in the diffraction orientation image as image information, determining the number of particles, and dividing the area of the observation range by the number of particles. .

このX線透過窓材によれば、ダイヤモンド粒子の平均サイズZaが10μm 以下の多結晶ダイヤモンドで形成されるため、窓材を透過するX線が窓材を形成する多結晶ダイヤモンドによって回折し難くなり、観察対象からのX線回折像の質の低下を防止することができる。また、ダイヤモンド粒子の平均サイズを0.1μm 以上とするので、非晶質化を防止することができ、多結晶ダイヤモンドとしての強度や熱伝導性の低下を防止することができる。また、窓材の機械的強度は、窓材を構成するダイヤモンドの平均粒子サイズと窓材のサイズ(口径)に依存するが、窓材の厚さtを8Za1/3 以上とするので、X線透過窓材として十分な機械的強度を確保することができる。また、窓材の両面の平均粗さRaを100nm以下とするので、窓材の表面の凹凸を抑えることができ、窓材表面でのX線の反射、散乱、回折を抑制することができる。その結果、観察対象から窓を透過して観察されるX線の質の低下を招来することなく、高輝度X線ビームの長時間使用にも対応することができるようになる。 According to this X-ray transmission window material, since the diamond particles are formed of polycrystalline diamond having an average size Za of 10 μm or less, X-rays transmitted through the window material are hardly diffracted by the polycrystalline diamond forming the window material. It is possible to prevent the quality of the X-ray diffraction image from the observation object from being deteriorated. In addition, since the average size of the diamond particles is 0.1 μm or more, amorphization can be prevented, and a decrease in strength and thermal conductivity as polycrystalline diamond can be prevented. Further, the mechanical strength of the window material depends on the average particle size of the diamond constituting the window material and the size (caliber) of the window material, but the thickness t of the window material is 8 Za 1/3 or more. Sufficient mechanical strength can be ensured as a line transmissive window material. Moreover, since the average roughness Ra of both surfaces of the window material is set to 100 nm or less, irregularities on the surface of the window material can be suppressed, and reflection, scattering, and diffraction of X-rays on the surface of the window material can be suppressed. As a result, it is possible to cope with long-time use of a high-intensity X-ray beam without causing deterioration in the quality of X-rays observed through the window from the observation target.

前記多結晶ダイヤモンドとしては熱伝導率が400W/mK以上のものが好ましい。ダイヤモンド粒子のサイズが小さ過ぎると非晶質としての性質が強くなり、熱伝導性に優れ、硬くて強いという多結晶ダイヤモンドとしての本来の特性が低下するようになる。ダイヤモンド粒子サイズと熱伝導率とは比例しており、熱伝導率が400W/mK以上の多結晶ダイヤモンドで窓材を形成することにより、多結晶ダイヤモンドの特性の低下を防止することができ、より信頼性の高い窓材を提供することができる。また、窓材の厚さは100μm 以上とすることが好ましい。100μm 以上あればX線透過窓材として十分な強度、耐久性を備えることができ、また熱伝導性についてもより向上させることができる。   The polycrystalline diamond preferably has a thermal conductivity of 400 W / mK or more. If the size of the diamond particles is too small, the property as an amorphous material becomes strong, and the original properties as polycrystalline diamond, which is excellent in thermal conductivity, hard and strong, are deteriorated. The diamond particle size is proportional to the thermal conductivity, and by forming the window material with polycrystalline diamond having a thermal conductivity of 400 W / mK or more, deterioration of the characteristics of the polycrystalline diamond can be prevented. A highly reliable window material can be provided. The thickness of the window material is preferably 100 μm or more. If it is 100 micrometers or more, sufficient intensity | strength and durability as an X-ray transmissive window material can be provided, and thermal conductivity can be improved more.

また、本発明のX線透過窓は、開口部を有するフランジと、前記フランジの開口部に接合されるリング状の支持枠と、前記支持枠に固定されたX線透過窓材を備え、前記X線透過窓材として上記本発明に係るX線透過窓材が用いられたものである。   Further, the X-ray transmission window of the present invention includes a flange having an opening, a ring-shaped support frame joined to the opening of the flange, and an X-ray transmission window material fixed to the support frame, The X-ray transmissive window material according to the present invention is used as the X-ray transmissive window material.

このX線透過窓において、X線透過窓材と支持枠とを自己伝搬発熱反応による発熱によりろう付けすることができる。自己伝搬発熱反応による発熱は実質的に瞬時に生じるため、ダイヤモンド窓材や支持枠をほぼ雰囲気温度に保ったままろう付けすることができる。このため、熱膨張差に起因する応力や損傷が生じ難く、X線透過窓の耐久性が向上する。前記自己伝搬発熱反応による発熱は800K以下、あるいは800K以上で発熱持続時間を10秒以下とすることが好ましい。また、前記支持枠は熱伝導性の良好な銅材で形成することが好ましい。前記自己伝搬発熱反応はAl層とNi層とが交互に積層されたAlNi多層膜を用いて容易に行うことができる。   In this X-ray transmission window, the X-ray transmission window material and the support frame can be brazed by heat generated by a self-propagating exothermic reaction. Since heat generation due to the self-propagating exothermic reaction occurs substantially instantaneously, the diamond window material and the support frame can be brazed while being kept at substantially the ambient temperature. For this reason, the stress and damage resulting from a difference in thermal expansion hardly occur, and the durability of the X-ray transmission window is improved. It is preferable that the heat generated by the self-propagating exothermic reaction is 800K or less, or 800K or more and the heat generation duration is 10 seconds or less. The support frame is preferably formed of a copper material having good thermal conductivity. The self-propagating exothermic reaction can be easily performed using an AlNi multilayer film in which Al layers and Ni layers are alternately stacked.

本発明に係るX線透過窓材及びこの窓材を備えたX線透過窓によれば、窓材を厚く形成しても、多結晶ダイヤモンドの本来の優れた強度、熱伝導性を生かしながら、窓材を透過するX線の回折のみならず、窓材表面でのX線の反射、散乱、回折を抑制することができる。その結果、観察対象からの透過X線の質を低下させることなく、耐久性に優れたX線透過窓材、X線透過窓を提供することができる。   According to the X-ray transmissive window material according to the present invention and the X-ray transmissive window provided with this window material, while utilizing the original excellent strength and thermal conductivity of polycrystalline diamond, even if the window material is formed thick, In addition to diffraction of X-rays that pass through the window material, reflection, scattering, and diffraction of X-rays on the surface of the window material can be suppressed. As a result, an X-ray transmissive window material and an X-ray transmissive window excellent in durability can be provided without deteriorating the quality of transmitted X-rays from the observation target.

実施形態に係るX線透過窓の概略断面図である。It is a schematic sectional drawing of the X-ray transmissive window which concerns on embodiment. 実施例における窓材の表面粗度と回折スポット密度との関係を示すグラフである。It is a graph which shows the relationship between the surface roughness of the window material in an Example, and a diffraction spot density. 実施例における窓材のダイヤモンド粒子の平均サイズ(平均粒子サイズ)と回折スポット密度との関係を示すグラフである。It is a graph which shows the relationship between the average size (average particle size) of the diamond particle of a window material in an Example, and a diffraction spot density.

図1は本発明の実施形態に係るX線透過窓を示しており、このX線透過窓は、開口部を有するフランジ3と、前記フランジ3の開口部に接合されるリング状をなした、金属製の支持枠2と、前記支持枠2にろう付けされたダイヤモンド窓材1を備えている。前記フランジ3には、装置本体に取り付けるための取付け穴4が設けられている。   FIG. 1 shows an X-ray transmission window according to an embodiment of the present invention. The X-ray transmission window has a flange 3 having an opening and a ring shape joined to the opening of the flange 3. A metal support frame 2 and a diamond window material 1 brazed to the support frame 2 are provided. The flange 3 is provided with a mounting hole 4 for mounting to the apparatus main body.

前記ダイヤモンド窓材1は、ダイヤモンド粒子の平均サイズZaが0.1μm 以上、10μm 以下、好ましくは3μm 以下の多結晶ダイヤモンドで形成され、かつ前記窓材1の厚さが100μm 以上とされている。さらに前記窓材1の両面の平均粗さRaが100nm以下とされている。ダイヤモンド窓材の厚さは、通常の開口では100μm 程度あれば十分であるが、口径が数mmと小さいものでは、少なくとも8Za1/3 以上を満足する限り、より薄くしてもよい。窓材の厚さの上限は特に限定されないが、生産性を考慮すると、500μm 程度あれば十分である。 The diamond window material 1 is formed of polycrystalline diamond having an average size Za of diamond particles of 0.1 μm or more and 10 μm or less, preferably 3 μm or less, and the thickness of the window material 1 is 100 μm or more. Furthermore, the average roughness Ra of both surfaces of the window material 1 is 100 nm or less. As for the thickness of the diamond window material, a thickness of about 100 μm is sufficient for a normal opening. However, when the diameter is as small as several millimeters, it may be made thinner as long as at least 8 Za 1/3 or more is satisfied. The upper limit of the thickness of the window material is not particularly limited, but considering the productivity, about 500 μm is sufficient.

前記ダイヤモンド窓材1は、従来のダイヤモンド窓材と同様、マイクロ波プラズマ法、熱フィラメントCVD法により、メタン及び水素ガスを原料ガスとして成膜されるが、厚さが100μm 以上と厚い場合、特に制御することなく通常条件で成膜すると、膜厚の増大にしたがって、ダイヤモンド粒子が大きく成長し、粒子サイズが20μm 以上になってしまう。これを回避するためには、成膜表面温度を1000K以下に保ってダイヤモンド粒子の成長を抑制しながら、原料ガス中の炭素濃度を3〜5%の範囲として、ダイヤモンドの成長種を成長表面に供給することによって、平均粒子サイズを10μm 以下、好ましくは3μm 以下の範囲に抑えながら、所望の厚さに多結晶ダイヤモンドを堆積する。   Like the conventional diamond window material, the diamond window material 1 is formed using methane and hydrogen gas as raw material gases by the microwave plasma method and the hot filament CVD method. Especially, when the thickness is as thick as 100 μm or more, If the film is formed under normal conditions without control, diamond particles grow larger as the film thickness increases, and the particle size becomes 20 μm or more. In order to avoid this, while keeping the film formation surface temperature at 1000 K or less and suppressing the growth of diamond particles, the carbon concentration in the source gas is set within the range of 3 to 5%, and the diamond growth species is set on the growth surface. By supplying, polycrystalline diamond is deposited to a desired thickness while keeping the average particle size within a range of 10 μm or less, preferably 3 μm or less.

上記のように、ダイヤモンド粒子のサイズを小さくすることにより、窓材を透過するX線が回折する現象を回避することができるが、ダイヤモンドの平均粒子サイズを小さくし過ぎると、非晶質成分が支配するようになり、結晶性炭素としてのダイヤモンド自体の品質が低下する。このようになると、本来の多結晶ダイヤモンドとしての特性、すなわち機械強度や熱伝導性が低下するようになる。ダイヤモンド粒子のサイズと、測定再現性の良好な熱伝導率とは比例しており、多結晶ダイヤモンドの熱伝導率を400W/mK以上とすることにより、熱伝導率、機械的強度の良好な多結晶ダイヤモンドが得られる。   As described above, by reducing the size of the diamond particles, it is possible to avoid the phenomenon that X-rays transmitted through the window material are diffracted. However, if the average particle size of the diamond is too small, the amorphous component is reduced. As a result, the quality of diamond as crystalline carbon itself is degraded. If it becomes like this, the characteristic as an original polycrystalline diamond, ie, mechanical strength, thermal conductivity will come to fall. The size of diamond particles is proportional to the thermal conductivity with good measurement reproducibility. By setting the thermal conductivity of polycrystalline diamond to 400 W / mK or more, the thermal conductivity and mechanical strength are high. Crystalline diamond is obtained.

ところで、厚さが100μm 程度以上の多結晶ダイヤモンド膜を成膜する場合、通常では生産性の観点から成膜速度はある程度速く設定される。ダイヤモンドを堆積する基板の温度を上げるほど成膜速度は速くなるので、通常、基板温度は1050〜1250K程度に調整して成膜される。従って、実施形態における上記成膜条件は通常の成膜速度と比較するとかなり遅いものになっている。   By the way, when a polycrystalline diamond film having a thickness of about 100 μm or more is formed, the film formation speed is usually set to be high to some extent from the viewpoint of productivity. Since the deposition rate increases as the temperature of the substrate on which diamond is deposited increases, the substrate temperature is usually adjusted to about 1050 to 1250K. Therefore, the film forming conditions in the embodiment are considerably slower than the normal film forming speed.

また、実施形態のダイヤモンド窓材は、その両表面の平均粗さRaが100nm以下とされる。これは、ダイヤモンド粒子を微細化して回折現象を抑制しても、平均粗さが100nm超では窓材の表面にできた凹凸によりX線が反射、散乱、回折を起こし、試料から観察されるX線回折像の質を低下させるようになるからである。   Moreover, the diamond window material of the embodiment has an average roughness Ra of both surfaces of 100 nm or less. This is because X-rays are reflected, scattered and diffracted by the irregularities formed on the surface of the window material when the average roughness exceeds 100 nm, even if the diamond particles are refined to suppress the diffraction phenomenon. This is because the quality of the line diffraction image is deteriorated.

前記フランジ3は、通常、ステンレス鋼などの鉄鋼材で製作され、前記支持枠2は銅や鉄鋼材などの強度、熱伝導性の良好な金属材で形成される。前記支持枠2は前記フランジ3の開口部に固着されており、前記支持枠2の開口部の周縁に前記ダイヤモンド窓材3の周縁部がろう付けされている。X線透過窓の製造工程としては、まず支持枠2にダイヤモンド窓材1をろう付けし、その後、ダイヤモンド窓材1を備えた支持枠2をフランジ3に組み込み、両者を接合し、固定する。この接合は、機械的に気密に固定する方法を採ることができるが、通常、ろう付けにより行われる。この際、ろう付け温度が高くならないように、またろう付け時間が長くならないように慎重に行うことが望まれる。このため、ろう材としては粉末状のものを用いたり、固定方法を工夫したり、温度制御を綿密に行うなどの方策が採られる。   The flange 3 is usually made of a steel material such as stainless steel, and the support frame 2 is formed of a metal material having good strength and thermal conductivity such as copper or steel material. The support frame 2 is fixed to the opening of the flange 3, and the periphery of the diamond window material 3 is brazed to the periphery of the opening of the support frame 2. As a manufacturing process of the X-ray transmission window, first, the diamond window material 1 is brazed to the support frame 2, and then the support frame 2 provided with the diamond window material 1 is assembled into the flange 3, and both are joined and fixed. This joining can be performed in a mechanically airtight manner, but is usually performed by brazing. At this time, it is desirable to perform carefully so that the brazing temperature does not become high and the brazing time does not become long. For this reason, measures such as using a powdery brazing material, devising a fixing method, and performing temperature control closely are taken.

前記ダイヤモンド窓材1と支持枠2とのろう付けは、この実施形態では自己伝搬発熱反応による発熱を利用したろう付けを行っている。これによると、ろう材の溶融、凝固が実質的に瞬時に行われるため、ダイヤモンド窓材1と金属製の支持枠2とは熱膨張率が異なるにも拘わらず、その影響をほとんど受けずに両者を固着することができる。このため、高価なダイヤモンド窓材の損傷を防止することができる。なお、銅の線膨張係数は16ppm程度、多結晶ダイヤモンドのそれは1.1ppm程度である。   In this embodiment, the diamond window material 1 and the support frame 2 are brazed using heat generated by a self-propagating exothermic reaction. According to this, since the melting and solidification of the brazing material is carried out substantially instantaneously, the diamond window material 1 and the metal support frame 2 are hardly affected even though they have different coefficients of thermal expansion. Both can be fixed. For this reason, damage to an expensive diamond window material can be prevented. The linear expansion coefficient of copper is about 16 ppm, and that of polycrystalline diamond is about 1.1 ppm.

前記ダイヤモンド窓材1と支持枠2とを通常の方法でろう付けすることもできるが、機械的な剛性が高く、熱膨張率の小さなダイヤモンド窓材1と、熱膨張率の大きな金属製の支持枠2とを、通常のように高温に加熱し、ろう付け(はんだ接合)すると、ろう付け後に室温に冷却する際に大きな残留応力が発生して、ダイヤモンド窓材や金属支持枠が変形したり、ろう付け部が剥離したり、著しい場合にはダイヤモンド窓材に割損が生じるおそれがある。このため、常法でろう付けする場合は、加熱温度、加熱冷却速度を厳格に制御するなど、慎重を要する。なお、常法では、支持枠とダイヤモンド窓材の間にろう材を配して、全体を高温炉に入れ、ろう材の融点以上に温度を上げ、ろう材を一旦溶融させた後、全体を冷却してろう材を凝固させる。   The diamond window material 1 and the support frame 2 can be brazed by an ordinary method, but the diamond window material 1 having high mechanical rigidity and a low thermal expansion coefficient and a metal support having a high thermal expansion coefficient are supported. When the frame 2 is heated to a high temperature as usual and brazed (soldered), a large residual stress is generated when the frame 2 is cooled to room temperature after brazing, and the diamond window material and the metal support frame are deformed. The brazed part may be peeled off or, if it is remarkable, the diamond window material may be damaged. For this reason, when brazing by a conventional method, it is necessary to carefully control the heating temperature and heating / cooling rate. In the ordinary method, a brazing material is arranged between the support frame and the diamond window material, the whole is put in a high temperature furnace, the temperature is raised above the melting point of the brazing material, the brazing material is once melted, Cool to solidify the brazing material.

前記自己伝搬発熱反応による発熱を利用したろう付けは、ダイヤモンド窓材1と支持枠2との熱膨張差を考慮する必要がないので、ろう付け作業性に優れる。このろう付けは、ダイヤモンド窓材1の外周縁部と支持枠2に内周縁部に予めろう材を塗布しておき、ろう材の間に、例えばAl層とNi層とを交互に積層したAlNi多層膜を挟み、接合部を密着、加圧した状態で、AlNi多層膜の一端に着火することにより実施される。これにより、AlNi多層膜の一端から他端に沿って瞬間的に自己伝搬発熱反応が生じ、これによって放散される熱エネルギーによりろう材が溶融し、ダイヤモンド窓材1と支持枠2とがろう付けされる。   The brazing using the heat generated by the self-propagating exothermic reaction is excellent in brazing workability because it is not necessary to consider the difference in thermal expansion between the diamond window material 1 and the support frame 2. This brazing is performed by applying a brazing material in advance to the outer peripheral edge of the diamond window material 1 and the inner peripheral edge of the support frame 2 and, for example, AlNi in which Al layers and Ni layers are alternately laminated between the brazing materials. It is carried out by igniting one end of the AlNi multilayer film with the multilayer film sandwiched and the joints in close contact and pressure. As a result, a self-propagating exothermic reaction occurs instantaneously from one end to the other end of the AlNi multilayer film, the brazing material is melted by the heat energy dissipated thereby, and the diamond window material 1 and the support frame 2 are brazed. Is done.

前記AlNi多層膜の各層の厚さと総数、予め塗布するろう材の厚さを調整し、バランスを取ることにより、ダイヤモンド窓材1や支持枠2をほぼ雰囲気温度に保ったままで接合することができる。通常、Al層、Ni層の厚さはそれぞれ20〜200nm程度とされ、Al層とNi層のそれぞれの合計厚さの比(Al層の厚さ合計:Ni層の厚さ合計)は1:1〜4:1程度に設定される。また、AlNi多層膜の各層の厚さ、積層数により、インジウム合金や銀合金などのろう材を溶融させるのに必要な発熱量が決まるが、ろう材を完全に溶融させる必要は必ずしもなく、また接合する材料(熱伝導率や熱容量)や接合構造によっても必要な熱量は増減する。通常、積層総数は200〜1000、ろう材の厚さは材料によらず5〜300μm 程度とされる。AlNi多層膜の着火は、多層膜の表面や端部をライターで着火したり、電池などの電源を近づけてスパークさせたり、静電気などにより電気ショックを与えることにより行うことができる。   By adjusting and balancing the thickness and total number of each layer of the AlNi multilayer film and the thickness of the brazing material to be applied in advance, the diamond window material 1 and the support frame 2 can be joined while maintaining substantially the ambient temperature. . Usually, the thicknesses of the Al layer and the Ni layer are about 20 to 200 nm, respectively, and the ratio of the total thickness of the Al layer and the Ni layer (the total thickness of the Al layer: the total thickness of the Ni layer) is 1: It is set to about 1-4: 1. The amount of heat generated to melt the brazing material such as an indium alloy or silver alloy is determined by the thickness of each layer of the AlNi multilayer film and the number of layers, but it is not always necessary to completely melt the brazing material. The amount of heat required also varies depending on the material to be joined (thermal conductivity and heat capacity) and the joining structure. Usually, the total number of layers is 200 to 1000, and the thickness of the brazing material is about 5 to 300 μm regardless of the material. The AlNi multilayer film can be ignited by igniting the surface or end of the multilayer film with a lighter, sparking by bringing a power source such as a battery close, or applying an electric shock due to static electricity or the like.

ろう付けの際、ろう材を介して支持枠2やダイヤモンド窓材1に熱エネルギーが伝搬してくるので、温度は幾分上昇するが、発生する熱量に対してこれらの部材の熱容量は大きく、またAlとNiの自己伝搬発熱反応は6m/sec 以上の高速で起きるために実質的に瞬時に終わることから、接合部の温度は、通常、最高でも800Kを越えることはない。最高温度800Kを超える場合でも、その持続時間はせいぜい1秒以下、最も長くても10秒以下である。支持枠2を銅で形成した場合、前記AlNi多層膜を用いて自己伝搬発熱反応によるろう付けを行うと、支持枠2とダイヤモンド窓材1との接合部には、Al、Ni及び銅を含むことになる。   When brazing, thermal energy propagates to the support frame 2 and the diamond window material 1 through the brazing material, so the temperature rises somewhat, but the heat capacity of these members is large relative to the amount of heat generated, In addition, since the self-propagating exothermic reaction between Al and Ni occurs at a high speed of 6 m / sec or more, it ends substantially instantaneously, so that the temperature of the junction usually does not exceed 800 K at the maximum. Even when the maximum temperature exceeds 800 K, the duration is at most 1 second or less and at most 10 seconds or less. When the support frame 2 is made of copper, when the brazing is performed by the self-propagating exothermic reaction using the AlNi multilayer film, the joint between the support frame 2 and the diamond window material 1 contains Al, Ni, and copper. It will be.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はかかる実施例により限定的に解釈されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limitedly interpreted by this Example.

種々のダイヤモンド窓材を以下の要領で製作した。まず、ダイヤモンド粉末で傷付け処理を行った多結晶シリコン基板(厚さ3mm×平面サイズ18mmφ)にマイクロ波プラズマCVD法または熱フィラメントCVD法を用いて、メタンおよび水素ガスを原料ガスとして多結晶ダイヤモンドを成膜した。成膜条件は、メタン濃度3〜5%、圧力50〜120Torr、基板温度900〜1000Kとした。厚さ280μm の多結晶ダイヤモンドを成膜した後、先ず凹凸の著しい成長面を10〜20μm 程度研削及び研磨した。さらに多結晶シリコン基板を弗酸と硝酸の混合液に浸漬して溶解除去し、基板側のダイヤモンドを10μm 程度研削及び研磨して、厚さ230〜240μm のダイヤモンド窓材を製作した。これらの窓材の熱伝導率を周期加熱サーモリフレクタンス法で測定したところ、測定点によるばらつきを含めて、650〜1100W/mKであった。   Various diamond window materials were produced as follows. First, a polycrystalline silicon substrate (thickness 3 mm × planar size 18 mmφ) that has been scratched with diamond powder is subjected to microwave diamond CVD or hot filament CVD, and polycrystalline diamond using methane and hydrogen gas as source gases. A film was formed. The film formation conditions were a methane concentration of 3 to 5%, a pressure of 50 to 120 Torr, and a substrate temperature of 900 to 1000K. After a polycrystalline diamond having a thickness of 280 μm was formed, first, a growth surface with marked irregularities was ground and polished to about 10 to 20 μm. Further, the polycrystalline silicon substrate was immersed in a mixed solution of hydrofluoric acid and nitric acid to be dissolved and removed, and the diamond on the substrate side was ground and polished by about 10 μm to produce a diamond window material having a thickness of 230 to 240 μm. When the thermal conductivity of these window materials was measured by the periodic heating thermoreflectance method, it was 650 to 1100 W / mK including variations due to measurement points.

次に、ダイヤモンド窓材と銅製の支持枠とをろう付けにより接合した。窓材及び支持枠のそれぞれの接合面にニッケル薄膜をスバッタ蒸着して濡れ性を高めた上で、インジウム−錫合金のろう材を超音波ゴテを用いて塗布し、塗布したろう材層の表面を機械的に研磨して平坦性を高めた。このようにして形成したろう材層の厚さは 5〜300μm であった。   Next, the diamond window material and the copper support frame were joined by brazing. A nickel thin film is sputter deposited on each joint surface of the window material and the support frame to improve wettability, and then an indium-tin alloy brazing material is applied using an ultrasonic trowel, and the surface of the applied brazing material layer Was mechanically polished to improve flatness. The brazing filler metal layer thus formed had a thickness of 5 to 300 μm.

そして、窓材及び支持枠のそれぞれのろう材層の間にAlNi多層膜(厚さがそれぞれ0.1μm のAl層、Ni層を交互に400層積層した多層膜)を挟み込んだ組立体を固定枠に挟み、前記組立体を圧縮するようにして固定枠をネジ止めした。この状態でAlNi多層膜の一端に着火し、AlNi多層膜に自己伝搬発熱反応を起こしてろう材を瞬時に溶融、凝固し、窓材と支持枠とを接合した。接合の際、ろう材の端部に貼り付けて固定した熱電対によって、温度変化を記録したところ、測定温度は最高でも600Kを越えることはなかった。尚、AlNi多層膜の自己伝搬発熱反応は体積収縮を伴う相変化のため、反応後に形成されるAlNiの混成層は完全な連続膜にはならないが、非連続になっている部分にはろう材が回り込んでいるために、接合部の機械的強度、信頼性、接合界面の熱伝導性に問題がなかった。   Then, an assembly in which an AlNi multilayer film (a multilayer film in which 400 layers of Al layers each having a thickness of 0.1 μm and Ni layers are alternately laminated) is sandwiched between the brazing material layers of the window material and the support frame is fixed. The fixing frame was screwed so as to be sandwiched between the frames and to compress the assembly. In this state, one end of the AlNi multilayer film was ignited, a self-propagating exothermic reaction was caused in the AlNi multilayer film, and the brazing material was instantaneously melted and solidified to join the window material and the support frame. At the time of joining, the temperature change was recorded by a thermocouple attached and fixed to the end of the brazing material. As a result, the measured temperature did not exceed 600 K at the maximum. Since the self-propagating exothermic reaction of the AlNi multilayer film is a phase change accompanied by volume shrinkage, the AlNi hybrid layer formed after the reaction does not become a complete continuous film, but the discontinuous part is a brazing material. Therefore, there was no problem in the mechanical strength, reliability, and thermal conductivity of the bonding interface.

このようにして支持枠に固定したダイヤモンド窓材と、比較プロセスにより銅製支持枠にろう付けしたダイヤモンド窓材との際立った差異は、ダイヤモンド窓材の応力分布とそれに起因する機械的強度に顕著に反映された。すなわち、支持枠に接合した後のダイヤモンド窓材の状態を触針式高さ変位計で測定すると、走査範囲5mmで比較プロセスで接合したダイヤモンド窓材では最大で120μm の高低差(湾曲)が計測されたが、実施例のものでは最大高低差は10μm 未満であった。さらにダイヤモンド窓材を、大気雰囲気と真空装置内部との隔壁として使用するべく、気密試験を実施すると、比較プロセスのものでは経験的に数%〜数十%の割合でクラックが生じていたが、実施例のものではクラック発生の割合がその1/10程度以下に減少した。なお、比較プロセスにより銅製支持枠にろう付けしたダイヤモンド窓材は、実施例と同様の成膜法で同様の厚さに成膜したものであるが、成膜の際の基板温度を1050〜1100K程度の通常レベルとして成膜したものである。また、窓材と銅製支持板とのろう付けは、接合部表面に金錫合金粉末を30〜100μm厚で塗布し、真空中で650℃に60分間保持後、冷却することによって行ったものである。   The remarkable difference between the diamond window material fixed to the support frame in this way and the diamond window material brazed to the copper support frame by the comparison process is notable in the stress distribution of the diamond window material and the resulting mechanical strength. Reflected. That is, when the state of the diamond window material after bonding to the support frame is measured with a stylus-type height displacement meter, the maximum height difference (curvature) of 120 μm is measured for the diamond window material bonded by the comparison process in a scanning range of 5 mm. However, in the examples, the maximum height difference was less than 10 μm. Furthermore, when a hermetic test was carried out to use the diamond window material as a partition between the air atmosphere and the inside of the vacuum device, cracks occurred empirically at a rate of several percent to several tens of percent in the comparative process. In the example, the crack generation ratio was reduced to about 1/10 or less. The diamond window material brazed to the copper support frame by the comparative process was formed to the same thickness by the same film forming method as in the example, but the substrate temperature during film formation was 1050 to 1100K. The film is formed at a normal level of about. Also, the brazing of the window material and the copper support plate was performed by applying a gold-tin alloy powder to the joint surface at a thickness of 30 to 100 μm, holding it at 650 ° C. for 60 minutes in a vacuum, and then cooling. is there.

さらに、実施例で試作した種々のダイヤモンド窓材を用いて、ダイヤモンド窓材の表面粗度(触針式高さ変位計および原子間力顕微鏡で計測した数値)とX線ビームを透過させた時に観察される回折スポットの面密度との関係を調べた。その結果を図1に示す。図1より表面粗度が100nm以下としたダイヤモンド窓材(発明材)ではX線の回折が認めらなかったが、100nm超では回折が生じ、粗度が高いほど回折の程度も高いことが確認された。   Furthermore, when various diamond window materials prototyped in the examples were used, the surface roughness of the diamond window material (numerical values measured with a stylus height displacement meter and an atomic force microscope) and an X-ray beam were transmitted. The relationship with the surface density of the observed diffraction spots was investigated. The result is shown in FIG. From FIG. 1, X-ray diffraction was not observed in the diamond window material (invention material) with a surface roughness of 100 nm or less, but it was confirmed that diffraction occurred at a thickness exceeding 100 nm, and the degree of diffraction was higher as the roughness was higher. It was done.

また、試作した種々のダイヤモンド窓材を用いて、ダイヤモンド粒子の平均粒子サイズとX線ビームを透過させた時に観察される回折スポットの面密度との関係を調べた。平均粒子サイズは、既述のとおり、走査型電子顕微鏡および透過型電子顕微鏡で得られた観察像を画像解析して統計的に算出した値である。その結果を図2に示す。図2より平均粒子サイズが10μm 以下ではX線の回折は殆ど生じていないことが確認された。   In addition, using various types of prototyped diamond window materials, the relationship between the average particle size of diamond particles and the surface density of diffraction spots observed when transmitting an X-ray beam was examined. As described above, the average particle size is a value that is statistically calculated by image analysis of observation images obtained with a scanning electron microscope and a transmission electron microscope. The result is shown in FIG. From FIG. 2, it was confirmed that almost no X-ray diffraction occurred when the average particle size was 10 μm or less.

1 X線透過窓材(ダイヤモンド窓材)
2 支持枠
3 フランジ
1 X-ray transmission window material (diamond window material)
2 Support frame 3 Flange

Claims (7)

X線透過窓に設けられるX線透過窓材であって、
ダイヤモンド粒子の平均サイズZaが0.1μm 以上、10μm 以下の多結晶ダイヤモンドで形成され、かつ窓材の厚さが8Za1/3 以上であり、さらに窓材の両面の平均粗さRaが100nm以下である、X線透過窓材。
An X-ray transmissive window material provided in the X-ray transmissive window,
The diamond particles are formed of polycrystalline diamond having an average size Za of 0.1 μm or more and 10 μm or less, the thickness of the window material is 8 Za 1/3 or more, and the average roughness Ra of both surfaces of the window material is 100 nm or less. X-ray transmissive window material.
前記多結晶ダイヤモンドは熱伝導率が400W/mK以上である、請求項1に記載したX線透過窓材。   The X-ray transmissive window material according to claim 1, wherein the polycrystalline diamond has a thermal conductivity of 400 W / mK or more. 窓材の厚さが100μm 以上である、請求項1又は2に記載したX線透過窓材。   The X-ray transmissive window material according to claim 1, wherein the window material has a thickness of 100 μm or more. 開口部を有するフランジと、前記フランジの開口部に接合されるリング状の支持枠と、前記支持枠に固定されたX線透過窓材を備えたX線透過窓であって、
前記X線透過窓材として請求項1から3に記載したいずれかのX線透過窓材が用いられた、X線透過窓。
An X-ray transmission window comprising a flange having an opening, a ring-shaped support frame joined to the opening of the flange, and an X-ray transmission window material fixed to the support frame,
An X-ray transmission window, wherein the X-ray transmission window material according to any one of claims 1 to 3 is used as the X-ray transmission window material.
前記X線透過窓材と前記支持枠とが自己伝搬発熱反応による発熱によりろう付けされた、請求項4に記載したX線透過窓。   The X-ray transmission window according to claim 4, wherein the X-ray transmission window material and the support frame are brazed by heat generated by a self-propagating exothermic reaction. 前記自己伝搬発熱反応による発熱が800K以下、あるいは800K以上で発熱持続時間が10秒以下である、請求項5に記載したX線透過窓。   The X-ray transmissive window according to claim 5, wherein the self-propagating exothermic reaction generates 800 K or less, or 800 K or more and the heat generation duration is 10 seconds or less. 前記支持枠は銅材で形成され、前記自己伝搬発熱反応はAl層とNi層とが交互に積層されたAlNi多層膜によるものである、請求項5又は6に記載したX線透過窓。   The X-ray transmission window according to claim 5 or 6, wherein the support frame is made of a copper material, and the self-propagating exothermic reaction is based on an AlNi multilayer film in which Al layers and Ni layers are alternately stacked.
JP2009028008A 2009-02-10 2009-02-10 Material for x-ray transmission window, and x-ray transmission window with the material Pending JP2010185665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028008A JP2010185665A (en) 2009-02-10 2009-02-10 Material for x-ray transmission window, and x-ray transmission window with the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028008A JP2010185665A (en) 2009-02-10 2009-02-10 Material for x-ray transmission window, and x-ray transmission window with the material

Publications (1)

Publication Number Publication Date
JP2010185665A true JP2010185665A (en) 2010-08-26

Family

ID=42766421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028008A Pending JP2010185665A (en) 2009-02-10 2009-02-10 Material for x-ray transmission window, and x-ray transmission window with the material

Country Status (1)

Country Link
JP (1) JP2010185665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021127274A (en) * 2020-02-14 2021-09-02 株式会社デンソー Method for producing electrical device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263488A (en) * 1987-04-21 1988-10-31 ペトロ−カナダ・インコ−ポレ−テツド Radiation transmitting window
JPH03170033A (en) * 1989-11-29 1991-07-23 Nec Corp X-ray transmission window and production thereof
JPH03282400A (en) * 1990-03-30 1991-12-12 Seiko Instr Inc Window material for optical purpose
JPH04127100A (en) * 1990-09-18 1992-04-28 Sumitomo Electric Ind Ltd X-ray window material and its production
JPH07294700A (en) * 1994-04-09 1995-11-10 Uk Atomic Energy Authority X-ray window
JPH0968599A (en) * 1995-08-31 1997-03-11 Canon Inc Radiation window, and radiation device using it
JP2003529781A (en) * 2000-04-03 2003-10-07 デ ビアス インダストリアル ダイアモンズ (プロプライエタリイ)リミテッド Composite diamond window
JP2005509528A (en) * 2001-11-21 2005-04-14 ダナ カナダ コーポレーション Improvements in fluxless brazing.
JP2005116534A (en) * 2004-11-11 2005-04-28 Hamamatsu Photonics Kk X ray generation apparatus
JP2006090873A (en) * 2004-09-24 2006-04-06 Kobe Steel Ltd Electron beam transmission window, its manufacturing method, and electron beam irradiation apparatus
JP2007305565A (en) * 2006-04-11 2007-11-22 Takasago Thermal Eng Co Ltd Device for generating soft x-rays and destaticizer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263488A (en) * 1987-04-21 1988-10-31 ペトロ−カナダ・インコ−ポレ−テツド Radiation transmitting window
JPH03170033A (en) * 1989-11-29 1991-07-23 Nec Corp X-ray transmission window and production thereof
JPH03282400A (en) * 1990-03-30 1991-12-12 Seiko Instr Inc Window material for optical purpose
JPH04127100A (en) * 1990-09-18 1992-04-28 Sumitomo Electric Ind Ltd X-ray window material and its production
JPH07294700A (en) * 1994-04-09 1995-11-10 Uk Atomic Energy Authority X-ray window
JPH0968599A (en) * 1995-08-31 1997-03-11 Canon Inc Radiation window, and radiation device using it
JP2003529781A (en) * 2000-04-03 2003-10-07 デ ビアス インダストリアル ダイアモンズ (プロプライエタリイ)リミテッド Composite diamond window
JP2005509528A (en) * 2001-11-21 2005-04-14 ダナ カナダ コーポレーション Improvements in fluxless brazing.
JP2006090873A (en) * 2004-09-24 2006-04-06 Kobe Steel Ltd Electron beam transmission window, its manufacturing method, and electron beam irradiation apparatus
JP2005116534A (en) * 2004-11-11 2005-04-28 Hamamatsu Photonics Kk X ray generation apparatus
JP2007305565A (en) * 2006-04-11 2007-11-22 Takasago Thermal Eng Co Ltd Device for generating soft x-rays and destaticizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021127274A (en) * 2020-02-14 2021-09-02 株式会社デンソー Method for producing electrical device
JP7421189B2 (en) 2020-02-14 2024-01-24 株式会社デンソー Method of manufacturing electrical devices

Similar Documents

Publication Publication Date Title
KR100764269B1 (en) Method for forming sputter target assemblies
US9816887B2 (en) Ceramic pressure measuring cell and method for its manufacture
EP0807839B1 (en) Optical window and method of manufacturing the same
JP6231428B2 (en) Li-containing oxide target bonded body and manufacturing method thereof
JPWO2007074720A1 (en) Semiconductor device mounting substrate, semiconductor device using the same, and method of manufacturing semiconductor device mounting substrate
JP2008270353A (en) Power semiconductor module
KR101934134B1 (en) Method for manufacturing a high-temperature ultrasonic transducer using a lithium niobate crystal brazed with gold and indium
JPWO2011010394A1 (en) Seed axis for single crystal growth by solution method
WO2009151060A1 (en) Cylindrical sputtering target and method for manufacturing the same
JPWO2006088065A1 (en) Heat dissipation member and manufacturing method thereof
KR100745437B1 (en) Spattering target and method of manufacturing the same
GB2491685A (en) Composite diamond bodies
KR19980040098A (en) Manufacturing Method of Titanium Target Assembly for Sputtering and Titanium Target Assembly for Sputtering
JP2010185665A (en) Material for x-ray transmission window, and x-ray transmission window with the material
JPWO2004067812A1 (en) Diamond composite substrate and manufacturing method thereof
KR20230073328A (en) Manufacturing method of load-indicating connection components and load-indicating connection component corresponding thereto
JPH09143704A (en) Titanium target for sputtering and its production
WO2020148911A1 (en) Deformable mirror and method for manufacturing same
EP3805630A1 (en) Optical device
JP5466578B2 (en) Diamond-aluminum bonded body and manufacturing method thereof
TW201518527A (en) Structure of silicon target and method of producing the same
EP3805629A1 (en) Optical device
JP2010045184A (en) Thermally conductive plate component and electronic component with the same
JP5441094B2 (en) Semiconductor substrate manufacturing method and semiconductor substrate
JP5375809B2 (en) Heat insulation cylinder, heat insulation cylinder manufacturing method and single crystal manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130104