JP2010185560A - Gear transmission - Google Patents

Gear transmission Download PDF

Info

Publication number
JP2010185560A
JP2010185560A JP2009031817A JP2009031817A JP2010185560A JP 2010185560 A JP2010185560 A JP 2010185560A JP 2009031817 A JP2009031817 A JP 2009031817A JP 2009031817 A JP2009031817 A JP 2009031817A JP 2010185560 A JP2010185560 A JP 2010185560A
Authority
JP
Japan
Prior art keywords
engagement
gear
elastic
shifter
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009031817A
Other languages
Japanese (ja)
Other versions
JP5222176B2 (en
Inventor
Takashi Ozeki
孝 大関
Yoshiaki Tsukada
善昭 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009031817A priority Critical patent/JP5222176B2/en
Publication of JP2010185560A publication Critical patent/JP2010185560A/en
Application granted granted Critical
Publication of JP5222176B2 publication Critical patent/JP5222176B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gear-Shifting Mechanisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce cost of a gear transmission and improve reduction effects of impact and impulsive sound during transmission by a buffer structure including an elastic engagement part provided in an engagement clutch in the gear transmission. <P>SOLUTION: The engagement clutch 31 of the transmission has a plurality of gear side engagement parts 38 provided in a transmission gear 11b and a plurality of shifter side engagement parts 39 provided in a shifter 21. The gear side engagement part 38 includes: the elastic engagement part B having an elastic part 80 formed of an elastic material; and a rigid engagement part A having rigidity larger than that of the elastic engagement part B. The elastic engagement parts B are arranged, so that the gear side engagement parts 38 as the elastic engagement parts B and the shifter side engagement parts 39 as the rigid engagement parts A are made to abut on each other to elastically deform the elastic engagement parts B and then, the gear side engagement parts 38 and the shifter side engagement parts 39 both of which serve as the rigid engagement parts A are made to abut on each other, until the shifter 21 operated by a transmission operation device 26 is moved to the axial direction and the engagement clutch 31 becomes an engagement completion state. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転軸に設けられた変速歯車と、該回転軸に軸方向に移動可能に設けられると共に変速操作装置により操作されるシフタと、変速歯車に設けられた歯車側係合部とシフタに設けられたシフタ側係合部とを有する係合クラッチとを備える歯車変速機に関し、さらに詳細には、係合クラッチの係合部の構造に関する。そして、該歯車変速機は、例えば車両に搭載される。   The present invention relates to a transmission gear provided on a rotation shaft, a shifter provided on the rotation shaft so as to be movable in the axial direction and operated by a transmission operation device, a gear side engagement portion provided on the transmission gear, and a shifter. The present invention relates to a gear transmission including an engagement clutch having a shifter-side engagement portion provided on the shifter, and more particularly to a structure of an engagement portion of the engagement clutch. The gear transmission is mounted on a vehicle, for example.

例えば車両に搭載される歯車変速機であって、係合クラッチ(いわゆるドッグクラッチ)を備えるものにおいては、変速時に、変速操作装置で操作されたシフタが軸方向に移動して、係合クラッチの歯車側係合部とシフタ側係合部とが互いに周方向で当接することより、変速歯車およびシフタが一体に回転して該変速歯車で規定される変速比が確立される。
しかしながら、係合クラッチの係合部同士が当接する直前での変速歯車の回転速度とシフタの回転速度とが異なるため、歯車側係合部とシフタ側係合部との当接の際に、衝撃および該衝撃に起因する衝撃音が発生する。そこで、この衝撃および衝撃音を低減するために、変速歯車が設けられる回転軸を囲むリング状の緩衝部材が該変速歯車に取り付けられた歯車変速機が知られている(例えば、特許文献1参照)。
For example, in a gear transmission that is mounted on a vehicle and includes an engagement clutch (a so-called dog clutch), the shifter operated by the shift operation device moves in the axial direction at the time of shifting, and the engagement clutch The gear-side engaging portion and the shifter-side engaging portion abut on each other in the circumferential direction, whereby the transmission gear and the shifter rotate together to establish a transmission ratio defined by the transmission gear.
However, since the rotational speed of the transmission gear and the rotational speed of the shifter immediately before the engaging portions of the engaging clutch contact each other are different, when the gear side engaging portion and the shifter side engaging portion are in contact, An impact and an impact sound resulting from the impact are generated. Therefore, a gear transmission in which a ring-shaped buffer member surrounding a rotation shaft provided with a transmission gear is attached to the transmission gear in order to reduce the impact and the impact noise is known (see, for example, Patent Document 1). ).

特開2002−98164号公報JP 2002-98164 A

ところで、緩衝部材が、リング状で金属製の内側スリーブおよび外側スリーブと、径方向で該1対のスリーブの間に固着されて設けられたリング状でゴム製の弾性部材とから構成される場合、緩衝部材自体の部品点数が多く、さらに該緩衝部材を変速歯車に圧入により取り付ける必要があるため、該緩衝部材が設けられた歯車変速機の製造コストが増加する。
さらに、緩衝部材がリング状であることや金属製のスリーブを備えることから、緩衝部材自体の重量が大きくなるので、緩衝部材を設けることが、衝撃および衝撃音の増大の原因となる変速歯車の慣性質量の増加を招来して、緩衝部材による衝撃および衝撃音の低減効果が減じることになる。
また、前述の緩衝部材では、リング状の弾性部材の捩れによる剪断方向での弾性変形を利用して緩衝作用が行われるため、弾性部材がスリーブから剥離することがあり、耐久性の点で改善の余地がある。
By the way, when the buffer member is composed of a ring-shaped metal inner sleeve and an outer sleeve, and a ring-shaped rubber elastic member fixedly provided between the pair of sleeves in the radial direction. In addition, since the number of parts of the buffer member itself is large and the buffer member needs to be attached to the transmission gear by press-fitting, the manufacturing cost of the gear transmission provided with the buffer member increases.
Furthermore, since the buffer member has a ring shape or a metal sleeve, the weight of the buffer member itself increases. Therefore, the provision of the buffer member may cause an increase in impact and impact sound. The inertial mass is increased, and the effect of reducing the impact and impact sound by the buffer member is reduced.
Further, in the above-described buffer member, since the buffer action is performed by utilizing elastic deformation in the shearing direction due to the twist of the ring-shaped elastic member, the elastic member may be peeled off from the sleeve, which is improved in terms of durability. There is room for.

本発明は、このような事情に鑑みてなされたものであり、請求項1〜6記載の発明は、歯車変速機において、係合クラッチに設けられた弾性係合部を有する緩衝構造により、歯車変速機のコスト削減を図ると共に変速時の衝撃および衝撃音の低減効果の向上を図ることを目的とする。そして、請求項2記載の発明は、さらに、複数の弾性係合部が設けられる場合の変速の迅速性の向上を図ることを目的とし、請求項3〜6記載の発明は、さらに、弾性係合部の耐久性の向上を図ることを目的とする。   The present invention has been made in view of such circumstances, and the invention according to claims 1 to 6 is characterized in that in the gear transmission, a gear structure is provided by a buffer structure having an elastic engagement portion provided in an engagement clutch. An object of the present invention is to reduce the cost of the transmission and to improve the effect of reducing the impact and impact noise during the shift. The invention described in claim 2 is intended to further improve the speed of shifting when a plurality of elastic engagement portions are provided, and the invention described in claims 3 to 6 further provides an elastic engagement. The purpose is to improve the durability of the joint.

請求項1記載の発明は、回転軸(4)に設けられた変速歯車(11b)と、前記回転軸(4)に軸方向に移動可能に設けられると共に変速操作装置(26)により操作されるシフタ(21)と、前記変速歯車(11b)に設けられた複数である所定数の歯車側係合部(38)からなる歯車側係合群と前記シフタ(21)に設けられた前記所定数のシフタ側係合部(39)からなるシフタ側係合群とを有する係合クラッチ(31)とを備え、前記係合クラッチ(31)が、前記所定数の前記歯車側係合部(38)と前記所定数の前記シフタ側係合部(39)とがそれぞれ互いに周方向で当接している接続完了状態にあるとき、前記変速歯車(11b)および前記シフタ(21)が一体に回転することにより前記変速歯車(11b)で規定される変速比が確立される歯車変速機(M)において、前記歯車側係合群または前記シフタ側係合群は、弾性材料から形成された1以上の弾性係合部(B)と、前記弾性係合部(B)よりも剛性が大きい1以上の剛性係合部(A)とから構成され、前記変速操作装置(26)により操作された前記シフタ(21)が軸方向に移動して前記係合クラッチ(31)が前記接続完了状態になるまでの間に、少なくとも一方が前記弾性係合部(B)である前記歯車側係合部(38)および前記シフタ側係合部(39)が互いに当接することにより前記弾性係合部(B)が弾性変形した後に、いずれも前記剛性係合部(A)である前記歯車側係合部(38)および前記シフタ側係合部(39)が互いに当接するように、前記弾性係合部(B)が配置される歯車変速機(M)である。
請求項2記載の発明は、請求項1記載の歯車変速機(M)において、前記弾性係合部(B)の周方向形成範囲(W5,W5a)は、前記剛性係合部(A)の周方向形成範囲(W3,W3a)よりも大きく、周方向で1対の前記剛性係合部(A)の間に1つの前記弾性係合部(B)が配置されるものである。
請求項3記載の発明は、請求項1または2記載の歯車変速機(M)において、前記弾性係合部(B)は、前記変速歯車(11b)または前記シフタ(21)に一体に設けられて径方向に延びているコア部(70)と、前記弾性材料から形成されると共に前記コア部(70)に固着された弾性部(80)とを有し、前記弾性部(80)は、周方向での前記コア部(70)の両側の少なくとも一方の側に配置され、前記弾性部(80)は、前記シフタ側係合部(39)または前記歯車側係合部(38)が周方向で当接すると共に前記接続完了状態で前記コア部(70)との間において周方向に圧縮されて弾性変形する緩衝部(81)を有し、前記弾性変形前の前記緩衝部(81)の径方向での延長上には、前記緩衝部(81)が前記シフタ側係合部(39)または前記歯車側係合部(38)により圧縮されたときに前記弾性部(80)が弾性変形して膨出することを許容する空間(91)が形成されるものである。
請求項4記載の発明は、請求項3記載の歯車変速機(M)において、前記コア部(70)は、前記変速歯車(11b)または前記シフタ(21)に設けられた周壁(42)から径方向に延びており、前記弾性部(80)は、前記緩衝部(81)に連なると共に径方向で前記周壁(42)との間に配置されて前記緩衝部(81)に対して周方向で括れた括れ部(82)を有し、前記空間(91)は、前記括れ部(82)により形成され、前記コア部(70)に固着された前記括れ部(82)の周方向形成範囲(W6,W6a)は、径方向で前記周壁(42)に近づくにつれて大きくなるものである。
請求項5記載の発明は、請求項4記載の歯車変速機(M)において、前記コア部(70)は、前記弾性部(80)が固着される固着面(F1)となる周方向でのコア側面(71)を有し、前記コア側面(71)は、前記コア側面(71)と軸方向に直交する平面とのコア交線(L3)が円弧状となるコア湾曲面(71a)を有し、周方向での前記括れ部(82)の括れ側面(82a)は、前記括れ側面(82a)と前記直交平面との括れ交線(L4)が円弧状となる括れ湾曲面(82e)を有し、前記コア交線L3の曲率は、前記括れ交線(L4)の曲率よりも小さく、前記コア部(70)の周方向形成範囲(W4,W4a)は、径方向で前記周壁(42)に近づくにつれて大きくなるものである。
請求項6記載の発明は、請求項5記載の歯車変速機(M)において、前記コア交線(L3)の一部は、径方向で前記緩衝部(81)と重なる位置にあるものである。
According to the first aspect of the present invention, a transmission gear (11b) provided on the rotary shaft (4), and a rotary gear (4) provided so as to be movable in the axial direction and operated by a transmission operating device (26). A shifter (21) and a gear-side engagement group including a plurality of gear-side engagement portions (38) provided on the transmission gear (11b) and the predetermined number of gears on the shifter (21). An engagement clutch (31) having a shifter-side engagement group including a shifter-side engagement portion (39), and the engagement clutch (31) includes the predetermined number of the gear-side engagement portions (38). When the predetermined number of shifter-side engaging portions (39) are in contact with each other in the circumferential direction, the transmission gear (11b) and the shifter (21) rotate integrally. In the gear transmission (M) in which the gear ratio defined by the transmission gear (11b) is established. The gear-side engagement group or the shifter-side engagement group includes at least one elastic engagement portion (B) formed of an elastic material and at least one rigidity higher than the elastic engagement portion (B). An engagement portion (A), and the shifter (21) operated by the shift operation device (26) moves in the axial direction until the engagement clutch (31) is in the connection completion state. In between, the gear-side engagement portion (38) and the shifter-side engagement portion (39), at least one of which is the elastic engagement portion (B), come into contact with each other, so that the elastic engagement portion (B) After the elastic deformation, the elastic engagement portion (B) is such that the gear side engagement portion (38) and the shifter side engagement portion (39), both of which are the rigid engagement portions (A), come into contact with each other. ) Is a gear transmission (M).
According to a second aspect of the present invention, in the gear transmission (M) according to the first aspect, the circumferential direction formation range (W5, W5a) of the elastic engagement portion (B) is that of the rigid engagement portion (A). One elastic engagement portion (B) is arranged between the pair of rigid engagement portions (A) in the circumferential direction, which is larger than the circumferential direction formation range (W3, W3a).
According to a third aspect of the present invention, in the gear transmission (M) according to the first or second aspect, the elastic engagement portion (B) is provided integrally with the transmission gear (11b) or the shifter (21). A core portion (70) extending in the radial direction, and an elastic portion (80) formed of the elastic material and fixed to the core portion (70), wherein the elastic portion (80) It is arranged on at least one side of both sides of the core part (70) in the circumferential direction, and the elastic part (80) is surrounded by the shifter side engaging part (39) or the gear side engaging part (38). A buffer portion (81) that abuts in the direction and is elastically deformed by being compressed in the circumferential direction between the core portion (70) in the connected state, and the buffer portion (81) before the elastic deformation On the extension in the radial direction, the buffer portion (81) is connected to the shifter side engaging portion (39) or the gear side engaging portion (38). The elastic portion (80) in which space (91) that allows bulges elastically deformed are formed when compressed Ri.
According to a fourth aspect of the present invention, in the gear transmission (M) according to the third aspect, the core (70) is formed from a peripheral wall (42) provided in the transmission gear (11b) or the shifter (21). The elastic portion (80) extends in the radial direction, and is connected to the buffer portion (81) and is disposed between the elastic wall (42) and the peripheral wall (42) in the radial direction, with respect to the buffer portion (81). And the space (91) is formed by the constricted portion (82) and is formed in the circumferential direction of the constricted portion (82) fixed to the core portion (70). (W6, W6a) becomes larger as it approaches the peripheral wall (42) in the radial direction.
According to a fifth aspect of the present invention, in the gear transmission (M) according to the fourth aspect of the invention, the core portion (70) is a circumferential surface that serves as a fixing surface (F1) to which the elastic portion (80) is fixed. The core side surface (71) has a core curved surface (71a) in which a core intersection line (L3) between the core side surface (71) and a plane orthogonal to the axial direction has an arc shape. And the constricted side surface (82a) of the constricted portion (82) in the circumferential direction has a constricted curved surface (82e) in which a constricted intersection line (L4) between the constricted side surface (82a) and the orthogonal plane has an arc shape. The curvature of the core intersection line L3 is smaller than the curvature of the constricted intersection line (L4), and the circumferential formation range (W4, W4a) of the core part (70) is the circumferential wall ( It becomes larger as it gets closer to 42).
A sixth aspect of the present invention is the gear transmission (M) according to the fifth aspect, wherein a part of the core intersection line (L3) is in a position overlapping the buffer portion (81) in the radial direction. .

請求項1記載の発明によれば、係合クラッチの歯車側係合群およびシフタ側係合群の少なくとも一方の係合群は、弾性係合部および剛性係合部の2種類の係合部から構成される該所定数の係合部を有し、変速時には、歯車側係合群およびシフタ側係合群の剛性係合部同士が当接して変速歯車とシフタとが一体に回転する係合クラッチの接続完了状態に先だって、歯車側係合群およびシフタ側係合群の少なくとも一方の係合群の弾性係合部が他方の係合群の係合部との当接により弾性変形することで、歯車側係合部およびシフタ側係合部が当接する際に発生する衝撃が緩和されて、該衝撃および衝撃音が低減する。
そして、この衝撃および衝撃音を低減する緩衝構造では、弾性変形するのは、係合部自体である弾性係合部であるので、回転軸を囲むリング状の緩衝部材を設ける場合に比べて、構造が簡単化されて、コスト削減ができる。しかも、該緩衝構造を設けたことによる変速歯車またはシフタの軽量化または重量増の防止が可能になるので、緩衝構造に起因する変速歯車またはシフタの慣性質量の減少または増加防止が可能になって、緩衝構造による衝撃および衝撃音の低減効果を向上できる。さらに、弾性係合部の個数を変更することにより、衝撃および衝撃音の低減効果を調整することができる。
請求項2記載の事項によれば、周方向で1対の剛性係合部の間に1つの弾性係合部が配置されることから、周方向で弾性係合部に隣接する係合部は、弾性係合部の周方向形成範囲に比べて小さい周方向形成範囲を有する剛性係合部であるので、周方向で隣接する係合部間の間隔は、弾性係合部が周方向で隣接している場合に比べて大きくなる。この結果、歯車側係合群およびシフタ側係合群において、弾性係合部を有する一方の係合群の周方向で隣接する係合部の間に、他方の係合群の係合部が入り易くなるので、変速に要する時間が短くなって、変速が迅速化される。
請求項3記載の事項によれば、弾性係合部において、弾性材料から形成された弾性部の緩衝部は、係合部との当接により、周方向でコア部との間で周方向に圧縮されるので、弾性部とコア部とが剥離し難くなって弾性係合部の耐久性が向上し、ひいては歯車変速機の耐久性が向上する。
また、緩衝部が圧縮されて弾性部が弾性変形したとき、弾性部の一部が空間に膨出することから、弾性部の弾性変形が容易になって、弾性部に過大な応力の発生が抑制されるので、この点でも弾性係合部の耐久性が向上する。
請求項4記載の事項によれば、括れ部の周方向幅がコア部が突出する周壁に近づくほど大きくなることにより、弾性部の弾性変形を容易にする空間を形成する括れ部を利用して、弾性部とコア部との固着面、または、弾性部とコア部および周壁との固着面を大きくできる。この結果、コア部と弾性部との固着力が大きくなって、コア部と弾性部とが剥離し難くなるので、弾性係合部の耐久性が向上する。
請求項5記載の事項によれば、周壁から径方向に延びているコア部において、その側面の形状を規定するコア交線の曲率は、括れ部の側面を規定する括れ交線の曲率よりも小さく、しかもコア部の周方向幅は径方向で周壁に近づくほど大きくなるので、コア部の剛性が高められて、弾性係合部の耐久性が向上する。
また、弾性部の固着面となるコア部の側面が、径方向で周壁に近づくにつれて周方向に大きくなるので、コア部と弾性部との固着力が大きくなり、コア部と弾性部とが剥離し難くなって、弾性係合部の耐久性が向上する。
請求項6記載の事項によれば、コア部は、径方向で緩衝部と重なる部分から周方向幅が次第に大きくなるので、緩衝部に当接するシフタ側係合部または歯車側係合部が加える周方向での力が緩衝部を介して作用するコア部の剛性が高められて、弾性係合部の耐久性が向上する。
According to the first aspect of the present invention, at least one of the gear-side engagement group and the shifter-side engagement group of the engagement clutch is composed of two types of engagement portions, that is, an elastic engagement portion and a rigid engagement portion. When the gear is shifted, the engagement of the engaging clutch in which the gear engaging portion and the shifter engaging group abut against each other and the transmission gear and the shifter rotate together is completed. Prior to the state, the elastic engagement portion of at least one of the gear side engagement group and the shifter side engagement group is elastically deformed by contact with the engagement portion of the other engagement group, so that the gear side engagement portion and The impact generated when the shifter side engaging portion comes into contact is alleviated, and the impact and impact sound are reduced.
And in this shock absorbing structure that reduces impact and impact sound, it is the elastic engaging portion that is the engaging portion itself that is elastically deformed, so compared to the case where a ring-shaped buffer member surrounding the rotating shaft is provided, The structure is simplified and the cost can be reduced. In addition, since the transmission gear or shifter can be reduced in weight or prevented from increasing in weight due to the provision of the buffer structure, it is possible to prevent reduction or increase in inertia mass of the transmission gear or shifter due to the buffer structure. In addition, the effect of reducing impact and impact sound by the buffer structure can be improved. Furthermore, the effect of reducing impact and impact sound can be adjusted by changing the number of elastic engagement portions.
According to the second aspect of the present invention, since one elastic engagement portion is disposed between the pair of rigid engagement portions in the circumferential direction, the engagement portion adjacent to the elastic engagement portion in the circumferential direction is Since the rigid engagement portion has a circumferential formation range smaller than the circumferential formation range of the elastic engagement portion, the interval between the engagement portions adjacent in the circumferential direction is adjacent to the elastic engagement portion in the circumferential direction. It will be larger than if you are. As a result, in the gear side engagement group and the shifter side engagement group, the engagement portion of the other engagement group can easily enter between the engagement portions adjacent to each other in the circumferential direction of the one engagement group having the elastic engagement portion. The time required for shifting is shortened and the shifting is speeded up.
According to the third aspect of the present invention, in the elastic engagement portion, the buffer portion of the elastic portion formed of an elastic material is circumferentially contacted with the core portion in the circumferential direction by contact with the engagement portion. Since it is compressed, the elastic part and the core part are difficult to peel off, the durability of the elastic engagement part is improved, and as a result, the durability of the gear transmission is improved.
Further, when the buffer portion is compressed and the elastic portion is elastically deformed, a part of the elastic portion swells into the space, so that the elastic portion is easily elastically deformed and excessive stress is generated in the elastic portion. Since it is suppressed, the durability of the elastic engagement portion is improved in this respect as well.
According to the fourth aspect of the present invention, by using the constricted portion that forms a space that facilitates elastic deformation of the elastic portion by increasing the circumferential width of the constricted portion as it approaches the peripheral wall from which the core portion protrudes. The fixing surface between the elastic portion and the core portion or the fixing surface between the elastic portion, the core portion, and the peripheral wall can be increased. As a result, the fixing force between the core portion and the elastic portion is increased, and the core portion and the elastic portion are difficult to peel off, so that the durability of the elastic engagement portion is improved.
According to the fifth aspect, in the core portion extending in the radial direction from the peripheral wall, the curvature of the core intersection line defining the shape of the side surface is more than the curvature of the constriction intersection line defining the side surface of the constriction portion. Since the circumferential width of the core portion is smaller and closer to the peripheral wall in the radial direction, the rigidity of the core portion is increased and the durability of the elastic engagement portion is improved.
Moreover, since the side surface of the core part, which becomes the fixing surface of the elastic part, increases in the circumferential direction as it approaches the peripheral wall in the radial direction, the fixing force between the core part and the elastic part increases, and the core part and the elastic part peel off. This makes it difficult to improve the durability of the elastic engagement portion.
According to the sixth aspect of the present invention, since the circumferential width of the core portion gradually increases from the portion that overlaps the buffer portion in the radial direction, the shifter side engaging portion or the gear side engaging portion that contacts the buffer portion is added. The rigidity of the core part to which the force in the circumferential direction acts via the buffer part is enhanced, and the durability of the elastic engagement part is improved.

本発明が適用された歯車変速機の断面図であり、係合クラッチの弾性係合部が設けられた変速歯車について、図2のI−I線断面図である。It is sectional drawing of the gear transmission to which this invention was applied, and is the II sectional view taken on the line of FIG. 2 about the transmission gear provided with the elastic engagement part of the engagement clutch. 弾性係合部が設けられた変速歯車を軸方向から見たときの図1のII矢視での拡大図である。FIG. 2 is an enlarged view taken along the line II in FIG. 1 when a transmission gear provided with an elastic engagement portion is viewed from the axial direction. 図2の弾性係合部からなる歯車側係合部付近の拡大図であり、対比のために剛性係合部からなる歯車側係合部が二点鎖線で示されている。FIG. 3 is an enlarged view of the vicinity of a gear side engaging portion formed of an elastic engaging portion in FIG. 2, and a gear side engaging portion formed of a rigid engaging portion is indicated by a two-dot chain line for comparison. 図3のIV−IV線断面図である。It is the IV-IV sectional view taken on the line of FIG. 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2. 本発明の別の実施形態を示し、図3に相当する図である。FIG. 4 shows another embodiment of the present invention and corresponds to FIG. 3. 図6のVII−VII線断面図である。It is the VII-VII sectional view taken on the line of FIG.

以下、本発明の実施形態を図1〜図7を参照して説明する。
図1〜図5は、本発明の一実施形態を説明する図である。
図1を参照すると、本発明が適用された歯車変速機Mは、常時噛合式の歯車変速機であり、該変速機Mに入力される動力を発生する動力発生装置としての内燃機関Eと共に、機械である車両としての自動二輪車に搭載される。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
1-5 is a figure explaining one Embodiment of this invention.
Referring to FIG. 1, a gear transmission M to which the present invention is applied is a constantly meshing gear transmission, and an internal combustion engine E as a power generation device that generates power input to the transmission M. It is mounted on a motorcycle as a machine.

変速機Mは、内燃機関Eの出力軸である駆動回転軸としてのクランク軸1からの動力が変速クラッチ2を介して入力される入力回転軸としてのメイン軸3と、メイン軸3の回転速度が変速された後の回転速度で回転する出力回転軸としてのカウンタ軸4と、メイン軸3の回転速度を変速してカウンタ軸4に伝達する複数である設定数の変速歯車対11〜16から構成される変速歯車群10と、変速操作装置26により操作される1以上のシフタ21〜24と、前記設定数の変速比を確立するための変速比確立手段としての該設定数の係合クラッチ31〜36とを備える。
ここで、変速機ケース(図示されず)に軸受5を介して回転可能に支持されるメイン軸3およびカウンタ軸4は、内燃機関Eにより回転駆動される回転軸であり、その回転中心線L1,L2が互いに平行となるように配置される。
The transmission M includes a main shaft 3 as an input rotation shaft to which power from a crankshaft 1 as a drive rotation shaft that is an output shaft of the internal combustion engine E is input via a transmission clutch 2, and a rotation speed of the main shaft 3. Counter shaft 4 as an output rotating shaft that rotates at a rotational speed after the gear is shifted, and a plurality of transmission gear pairs 11 to 16 that have a plurality of set numbers that shift the rotational speed of main shaft 3 and transmit it to counter shaft 4. The transmission gear group 10 configured, one or more shifters 21 to 24 operated by the transmission operation device 26, and the set number of engagement clutches as the transmission ratio establishment means for establishing the set number of transmission ratios 31-36.
Here, the main shaft 3 and the counter shaft 4 that are rotatably supported by a transmission case (not shown) via a bearing 5 are rotating shafts that are rotationally driven by the internal combustion engine E, and the rotation center line L1 thereof. , L2 are arranged in parallel to each other.

なお、明細書または特許請求の範囲の記載において、軸方向は、回転軸の回転中心線に平行な方向であるとし、径方向および周方向は、それぞれ、該回転中心線を中心とする径方向および周方向であるとし、中心半平面とは、前記回転中心線を含むと共に該回転中心線から径方向に延びている平面であるとする。   In the description of the specification or claims, the axial direction is a direction parallel to the rotation center line of the rotation shaft, and the radial direction and the circumferential direction are radial directions centered on the rotation center line, respectively. The center half plane is a plane including the rotation center line and extending in the radial direction from the rotation center line.

クランク軸1の動力をメイン軸3に伝達する動力伝達経路に配置される変速クラッチ2は、制御装置7により制御されることでメイン軸3へのクランク軸1の動力の伝達および遮断を行う動力断続手段であり、この実施形態では、第1,第2変速クラッチ2a,2bから構成される。
メイン軸3は、第1変速クラッチ2aを介してクランク軸1からの動力が入力される第1メイン軸3aと、第2変速クラッチ2bを介してクランク軸1からの動力が入力される第2メイン軸3bとから構成される。第2メイン軸3bは、第1メイン軸3aと同軸に配置されて、第1メイン軸3aの外周に相対回転可能に支持される。
カウンタ軸4の動力は、該カウンタ軸4に設けられてカウンタ軸4と一体に回転する出力回転体としての出力歯車6を有する減速機構を介して、自動二輪車の駆動輪である後輪に伝達される。
なお、別の例として、変速クラッチおよびメイン軸はそれぞれ1つであってもよい。
The speed change clutch 2 disposed in the power transmission path for transmitting the power of the crankshaft 1 to the main shaft 3 is controlled by the control device 7 so that the power of the crankshaft 1 is transmitted to and cut off from the main shaft 3. In this embodiment, it is constituted by first and second transmission clutches 2a and 2b.
The main shaft 3 has a first main shaft 3a to which power from the crankshaft 1 is input via the first transmission clutch 2a and a second to which power from the crankshaft 1 is input via the second transmission clutch 2b. And a main shaft 3b. The second main shaft 3b is disposed coaxially with the first main shaft 3a and is supported on the outer periphery of the first main shaft 3a so as to be relatively rotatable.
The power of the counter shaft 4 is transmitted to a rear wheel, which is a driving wheel of the motorcycle, through a reduction mechanism having an output gear 6 as an output rotating body provided on the counter shaft 4 and rotating integrally with the counter shaft 4. Is done.
As another example, there may be one transmission clutch and one main shaft.

変速歯車群10は、前記設定数としての6つの変速歯車対である第1〜第6変速歯車対11〜16から構成される。各変速歯車対11〜16は、メイン軸3に設けられる第1〜第6入力側変速歯車11a〜16aと、カウンタ軸4に設けられると共に第1〜第6入力側変速歯車11a〜16aとそれぞれ常時噛み合う第1〜第6出力側変速歯車11b〜16bとからなる。各変速歯車11a〜16a,11b〜16bの外周には、多数の歯を有する歯部19が形成されている。
第1〜第6変速歯車対11〜16は、最大変速比としての第1変速比から、最小変速比としての第6変速比まで、同一のメイン軸3の回転速度に対してカウンタ軸4の回転速度が順次大きくなる変速比をそれぞれ確立する。
なお、変速時には、第1,第2変速クラッチ2a,2bが、それぞれ第1,第2メイン軸3a,3bに対するクランク軸1の動力の伝達を遮断する。
The transmission gear group 10 includes first to sixth transmission gear pairs 11 to 16, which are six transmission gear pairs as the set number. The transmission gear pairs 11 to 16 are respectively provided with first to sixth input side transmission gears 11a to 16a provided on the main shaft 3 and first to sixth input side transmission gears 11a to 16a provided to the counter shaft 4 respectively. The first to sixth output side transmission gears 11b to 16b are always meshed. A tooth portion 19 having a large number of teeth is formed on the outer periphery of each of the transmission gears 11a to 16a and 11b to 16b.
The first to sixth transmission gear pairs 11 to 16 are arranged such that the counter shaft 4 has the same rotational speed of the main shaft 3 from the first transmission ratio as the maximum transmission ratio to the sixth transmission ratio as the minimum transmission ratio. Each gear ratio is established so that the rotational speed increases sequentially.
At the time of shifting, the first and second shift clutches 2a and 2b interrupt transmission of power from the crankshaft 1 to the first and second main shafts 3a and 3b, respectively.

第1,第3変速歯車11a,13aは、第1メイン軸3aと一体に回転するように設けられ、第5変速歯車15aは、第1メイン軸3aに回転可能に設けられる。第2,第4変速歯車12a,14aは、第2メイン軸3bと一体に回転するように設けられ、第6変速歯車16aは、第2メイン軸3bに回転可能に設けられる。
一方、第1〜第4変速歯車11b〜14bは、カウンタ軸4に相対回転可能に設けられ、第5,第6変速歯車15b,16bは、カウンタ軸4と一体に回転するように設けられる。
The first and third transmission gears 11a and 13a are provided so as to rotate integrally with the first main shaft 3a, and the fifth transmission gear 15a is provided rotatably on the first main shaft 3a. The second and fourth transmission gears 12a and 14a are provided so as to rotate integrally with the second main shaft 3b, and the sixth transmission gear 16a is provided rotatably on the second main shaft 3b.
On the other hand, the first to fourth transmission gears 11b to 14b are provided to be rotatable relative to the counter shaft 4, and the fifth and sixth transmission gears 15b and 16b are provided to rotate integrally with the counter shaft 4.

この実施形態では、複数のシフタ21〜24は、カウンタ軸4に軸方向に移動可能に設けられる第1,第2シフタ21,22と、第1メイン軸3aに軸方向に移動可能に設けられる第3シフタ23と、第2メイン軸3bに軸方向に移動可能に設けられる第4シフタ24である。各シフタ21〜24は、カウンタ軸4、第1メイン軸3aまたは第2メイン軸3bにスプライン結合されて、それら軸4,3a,3bと一体に回転する。変速操作装置26が備える複数のシフトフォーク29(図1には、第1,第2シフタ21,22をそれぞれ操作するシフトフォーク29が模式的に示されている。)が係合する係合部としての環状溝25が設けられた各シフタ21〜24は、シフトフォーク29により駆動されて軸方向に平行に移動する。
第1シフタ21は第5変速歯車15bに、第2シフタ22は第6変速歯車16bに、第3シフタ23は第3変速歯車13aに、第4シフタ24は第4変速歯車14aに、それぞれ一体成形により一体に設けられて、各変速歯車15b,16b,13a,14aが各シフタ21,22,23,24を兼ねる。
In this embodiment, the plurality of shifters 21 to 24 are provided on the counter shaft 4 so as to be movable in the axial direction, and on the first main shaft 3a so as to be movable in the axial direction. A third shifter 23 and a fourth shifter 24 provided on the second main shaft 3b so as to be movable in the axial direction. The shifters 21 to 24 are splined to the counter shaft 4, the first main shaft 3a, or the second main shaft 3b, and rotate integrally with the shafts 4, 3a, 3b. Engagement part with which a plurality of shift forks 29 (shift forks 29 for respectively operating the first and second shifters 21 and 22 are shown schematically in FIG. 1) with which the speed change operation device 26 is provided are engaged. Each of the shifters 21 to 24 provided with the annular groove 25 is driven by a shift fork 29 and moves parallel to the axial direction.
The first shifter 21 is integrated with the fifth transmission gear 15b, the second shifter 22 is integrated with the sixth transmission gear 16b, the third shifter 23 is integrated with the third transmission gear 13a, and the fourth shifter 24 is integrated with the fourth transmission gear 14a. The gears 15b, 16b, 13a, and 14a are integrally formed by molding, and serve as the shifters 21, 22, 23, and 24, respectively.

変速操作装置26は、シフトフォーク29のほかに、軸方向でのシフトフォーク29の位置を定める案内用カム溝が設けられたシフトドラム28と、シフトドラム28を回転駆動するアクチュエータとしての電動モータ27とを備える自動式の変速操作装置である。ここで、シフトフォーク29およびシフトドラム28は、軸方向での各シフタ21〜24の位置を設定するシフタ位置設定部材を構成する。
電動モータ27は、シフトドラム28の回転位置としての位置を検出する位置検出手段8と、車速および内燃機関Eの機関運転状態を含む運転状態を検出する運転状態検出手段9からの検出信号が入力される制御装置7により制御される。
制御装置7は、検出手段8,9により検出されるシフトドラム28の回転位置、車速および機関運転状態に基づいて、第1,第2変速クラッチ2a,2bを制御する一方、電動モータ27の作動を制御することにより、シフトドラム28の回転位置を設定し、したがってシフトフォーク29の位置を設定する。
In addition to the shift fork 29, the transmission operating device 26 includes a shift drum 28 provided with a guide cam groove for determining the position of the shift fork 29 in the axial direction, and an electric motor 27 as an actuator for rotationally driving the shift drum 28. Is an automatic shift operation device. Here, the shift fork 29 and the shift drum 28 constitute a shifter position setting member that sets the positions of the shifters 21 to 24 in the axial direction.
The electric motor 27 receives detection signals from the position detection means 8 for detecting the position of the shift drum 28 as the rotational position and the operation state detection means 9 for detecting the operation state including the vehicle speed and the engine operation state of the internal combustion engine E. Controlled by the control device 7.
The control device 7 controls the first and second transmission clutches 2a and 2b based on the rotational position of the shift drum 28 detected by the detection means 8 and 9, the vehicle speed and the engine operating state, while the operation of the electric motor 27 is performed. Is set, the rotational position of the shift drum 28 is set, and thus the position of the shift fork 29 is set.

係合クラッチ31〜36は、変速機Mで得られる変速比の数と同数の6つの第1〜第6係合クラッチ31〜36であり、基本構造として、それぞれクラッチ本体と係合部とを有する。そして、第1〜第6係合クラッチ31〜36のそれぞれは、クラッチ本体としての第1,第6,第3,第4,第5,第6変速歯車11b,16b,13b,14b,15a,16aのそれぞれに一体に、かつ周方向に間隔をおいて設けられた複数の歯車側係合部38からなる歯車側係合群と、クラッチ本体としての第1,第2,第1,第2,第3,第4シフタ21,22,21,22,23,24のそれぞれに一体に、かつ周方向に間隔をおいて設けられて歯車側係合部38と同数のシフタ側係合部39からなるシフタ側係合群とを有する。   The engagement clutches 31 to 36 are six first to sixth engagement clutches 31 to 36 having the same number as the speed ratio obtained by the transmission M. As a basic structure, each of the clutches 31 to 36 includes a clutch body and an engagement portion. Have. Each of the first to sixth engagement clutches 31 to 36 includes first, sixth, third, fourth, fifth and sixth transmission gears 11b, 16b, 13b, 14b, 15a as clutch bodies. 16a, a gear-side engagement group composed of a plurality of gear-side engagement portions 38 provided at intervals in the circumferential direction, and first, second, first, second, and second clutch bodies. From the same number of shifter side engaging portions 39 as the gear side engaging portions 38 provided integrally with each of the third and fourth shifters 21, 22, 21, 22, 23, 24 and spaced in the circumferential direction. And a shifter side engagement group.

図2を併せて参照すると、各変速歯車11b,16b,13b,14b,15a,16aに一体成形された各歯車側係合部38は、変速歯車11b,16b,13b,14b,15a,16aの、軸方向でシフタ21,22,21,22,23,24に対向する面において、軸方向でシフタ21,22,21,22,23,24に向かって開口して各シフタ側係合部39を1つずつ収容可能な複数の収容空間41を形成する形成部である凹部40の、周方向での側壁である。各歯車側係合部38は、周方向で隣接する収容空間41の間に位置して、径方向に延びていている。そして、各変速歯車11b,16b,13b,14b,15a,16aの凹部40は、歯車側係合部38のほかに、径方向外方および径方向内方でそれぞれ歯車側係合部38に連なる外周壁42および内周壁43を、その周壁として有し、さらに、軸方向での歯車側係合部38と外周壁42と内周壁43の、軸方向での各端部に連なる底壁44を有する。各外周壁42の外周には歯部19が形成されている。
各シフタ21,22,21,22,23,24に一体成形された各シフタ側係合部39は、シフタ21,22,21,22,23,24の、軸方向で変速歯車11b,16b,13b,14b,15a,16aに対向する面において、軸方向に突出する凸部である。
Referring also to FIG. 2, each gear-side engaging portion 38 integrally formed with each of the transmission gears 11b, 16b, 13b, 14b, 15a, 16a is connected to the transmission gears 11b, 16b, 13b, 14b, 15a, 16a. In the surface facing the shifters 21, 22, 21, 22, 23, 24 in the axial direction, the shifter side engaging portions 39 are opened in the axial direction toward the shifters 21, 22, 21, 22, 23, 24. It is the side wall in the circumferential direction of the recessed part 40 which is a formation part which forms the some accommodation space 41 which can accommodate each. Each gear side engagement portion 38 is located between the accommodation spaces 41 adjacent in the circumferential direction and extends in the radial direction. The recesses 40 of the transmission gears 11b, 16b, 13b, 14b, 15a, and 16a are connected to the gear-side engaging portion 38 in the radially outward direction and the radially inward direction, in addition to the gear-side engaging portion 38. An outer peripheral wall 42 and an inner peripheral wall 43 are provided as the peripheral walls, and further, a bottom wall 44 connected to each end in the axial direction of the gear side engaging portion 38 in the axial direction, the outer peripheral wall 42 and the inner peripheral wall 43 is provided. Have. A tooth portion 19 is formed on the outer periphery of each outer peripheral wall 42.
Each shifter side engaging portion 39 integrally formed with each shifter 21, 22, 21, 22, 23, 24 is a transmission gear 11b, 16b, 16b in the axial direction of the shifters 21, 22, 21, 22, 23, 24. In the surface facing 13b, 14b, 15a, 16a, it is a convex part which protrudes in an axial direction.

係合クラッチ31〜36が接続完了状態(以下、「接続完了状態」という。)にあるとき、すなわち同数の歯車側係合部38およびシフタ側係合部39がそれぞれ互いに周方向で当接または係合している状態にあるとき、変速歯車11b,16b,13b,14b,15a,16aとシフタ21,22,21,22,23,24とが相対回転することなく一体に回転して、該変速歯車11b,16b,13b,14b,15a,16aにより規定される変速比が確立され、該変速比でメイン軸3の回転速度が変速された回転速度でカウンタ軸4が回転する。ここで、互いに当接する1つの歯車側係合部38と1つのシフタ側係合部39とは、1組の係合対を構成する。
一方、係合クラッチ31〜36が非接続状態(以下、「非接続状態」という。)にあるとき、すなわち各歯車側係合部38と各シフタ側係合部39とが周方向で互いに当接していない状態にあるとき、通常、変速歯車11b,16b,13b,14b,15a,16aとシフタ21,22,21,22,23,24とは異なる回転速度となる。
When the engagement clutches 31 to 36 are in a connection completion state (hereinafter referred to as “connection completion state”), that is, the same number of gear side engagement portions 38 and shifter side engagement portions 39 abut each other in the circumferential direction. When in the engaged state, the transmission gears 11b, 16b, 13b, 14b, 15a, 16a and the shifters 21, 22, 21, 22, 23, 24 rotate integrally without relative rotation, A transmission gear ratio defined by the transmission gears 11b, 16b, 13b, 14b, 15a, 16a is established, and the counter shaft 4 rotates at a rotational speed obtained by shifting the rotational speed of the main shaft 3 with the transmission gear ratio. Here, one gear-side engagement portion 38 and one shifter-side engagement portion 39 that are in contact with each other constitute one set of engagement pair.
On the other hand, when the engagement clutches 31 to 36 are in a non-connected state (hereinafter referred to as “non-connected state”), that is, each gear side engaging portion 38 and each shifter side engaging portion 39 are in contact with each other in the circumferential direction. When not in contact, the transmission gears 11b, 16b, 13b, 14b, 15a, 16a and the shifters 21, 22, 21, 22, 23, 24 usually have different rotational speeds.

第1〜第6係合クラッチ31〜36のうちで、任意の、少なくとも1つの係合クラッチ、ここでは最大変速比を確立する第1係合クラッチ31は、該係合クラッチ31が非接続状態から接続完了状態になるときに、歯車側係合部38およびシフタ側係合部39が当接する際に発生する衝撃および衝撃音を低減する緩衝構造を有する。
図2を参照すると、該緩衝構造は、歯車側係合群およびシフタ側係合群の少なくとも一方、この実施形態では歯車側係合群を構成する複数である所定数の、ここでは5つの歯車側係合部38が、弾性材料から形成された弾性係合部Bと、弾性係合部Bよりも剛性が大きい剛性係合部Aとの、それぞれ別個の2種類の係合部から構成される構造である。このため、歯車側係合群は、1以上の、この実施形態では同一形状の2つの弾性係合部Bと、1以上の、この実施形態では同一形状の3つの剛性係合部Aとを有する。そして、周方向で1対の剛性係合部Aの間に1つの弾性係合部Bが配置される。
一方、シフタ側係合群では、前記所定数としての5つのシフタ側係合部39の全てが剛性係合部Aから構成される。そして、係合クラッチ31におけるトルク伝達のための強度は、これら剛性係合部Aにより確保される。なお、各第2〜第6係合クラッチ32〜36(図1参照)の全ての歯車側係合部38および全てのシフタ側係合部39は、剛性係合部Aから構成される。
Of the first to sixth engagement clutches 31 to 36, any at least one engagement clutch, here, the first engagement clutch 31 that establishes the maximum gear ratio, is in the disengaged state. When the gear-side engagement portion 38 and the shifter-side engagement portion 39 are brought into contact with each other when the connection is completed, the shock-absorbing structure that reduces the impact and the impact sound generated when the gear-side engagement portion 38 and the shifter-side engagement portion 39 come into contact with each other is provided.
Referring to FIG. 2, the buffer structure has a predetermined number of five gear-side engagements in this embodiment, which are a plurality of the gear-side engagement groups, in this embodiment, at least one of the gear-side engagement group and the shifter-side engagement group. The portion 38 has a structure composed of two different types of engaging portions, ie, an elastic engaging portion B formed of an elastic material and a rigid engaging portion A having higher rigidity than the elastic engaging portion B. is there. For this reason, the gear side engagement group has one or more elastic engagement portions B having the same shape in this embodiment and one or more three rigid engagement portions A having the same shape in this embodiment. . And one elastic engagement part B is arrange | positioned between a pair of rigid engagement parts A in the circumferential direction.
On the other hand, in the shifter-side engagement group, all the five shifter-side engagement portions 39 as the predetermined number are composed of the rigid engagement portions A. The rigidity for torque transmission in the engagement clutch 31 is ensured by these rigid engagement portions A. In addition, all the gear side engaging parts 38 and all the shifter side engaging parts 39 of each of the second to sixth engaging clutches 32 to 36 (see FIG. 1) are configured by the rigid engaging part A.

また、各歯車側係合部38は、該歯車側係合部38と交わる1つの中心半平面である基準面P1を対称面とした面対称な形状であり、同様に各シフタ側係合部39も、該シフタ側係合部39と交わる1つの中心半平面である基準面P2を対称面とした面対称な形状である。そして、歯車側係合群およびシフタ側係合群の各係合群の全ての基準面P1,P2は、周方向に等しい間隔を形成するように、または回転中心線L2を中心として等しい角度を形成するように配置され、クラッチ31が有する全ての歯車側係合部38および全てのシフタ側係合部39は周方向に等しい間隔で配置されている。なお、第1係合クラッチ31以外の、係合部38,39の数が前記所定数と同数または異なる数である係合クラッチ32〜36においても、基準面P1,P2に相当する基準面は周方向に等間隔または等角度で配置されている。
このように、基準面P1は、歯車側係合群における歯車側係合部38の周方向での配置を定める面であり、基準面P2は、シフタ側係合群におけるシフタ側係合部39の周方向での配置を定める面である。なお、別の例として、各係合部38,39は基準面P1,P2に対して面対称でなくてもよい。
Each gear-side engagement portion 38 has a plane-symmetric shape with a reference plane P1 that is one central half plane intersecting with the gear-side engagement portion 38 as a symmetry plane. Similarly, each shifter-side engagement portion 39 also has a plane-symmetric shape with a reference plane P2 that is one central half plane intersecting the shifter-side engaging portion 39 as a plane of symmetry. And all the reference surfaces P1, P2 of each engagement group of the gear side engagement group and the shifter side engagement group form an equal interval in the circumferential direction, or form an equal angle around the rotation center line L2. All the gear side engaging portions 38 and all the shifter side engaging portions 39 of the clutch 31 are arranged at equal intervals in the circumferential direction. In addition, in the engagement clutches 32 to 36 in which the number of the engagement portions 38 and 39 other than the first engagement clutch 31 is the same as or different from the predetermined number, the reference surfaces corresponding to the reference surfaces P1 and P2 are They are arranged at equal intervals or at equal angles in the circumferential direction.
As described above, the reference surface P1 is a surface that determines the circumferential arrangement of the gear-side engagement portion 38 in the gear-side engagement group, and the reference surface P2 is the periphery of the shifter-side engagement portion 39 in the shifter-side engagement group. It is a surface that determines the arrangement in the direction. As another example, the engaging portions 38 and 39 may not be plane-symmetric with respect to the reference planes P1 and P2.

図2〜図4を参照すると、第1係合クラッチ31の歯車側係合群の剛性係合部Aからなる歯車側係合部38は、周方向での両側の側面51,52の一部としての、シフタ側係合部39と周方向で当接可能な第1,第2当接面51a,52aを有する。第1当接面51aは、シフタ側係合部39が剛性係合部Aに対して相対的に第1回転方向R1に回転するときに、シフタ側係合部39の第1当接面61aと当接し、第2当接面52aは、シフタ側係合部39が剛性係合部Aに対して相対的に第1回転方向R1とは反対方向の第2回転方向R2に回転するときに、シフタ側係合部39の第2当接面62aと当接する。
第1,第2当接面51a,52aは、シフタ側係合部39の周方向での両側の側面61,62の一部としての第1,第2当接面61a,62aとのそれぞれの当接開始時に、各当接面61a,62aと面接触する形状に形成されている。
Referring to FIGS. 2 to 4, the gear-side engagement portion 38 formed of the rigid engagement portion A of the gear-side engagement group of the first engagement clutch 31 is a part of the side surfaces 51 and 52 on both sides in the circumferential direction. The first and second contact surfaces 51a and 52a that can contact the shifter side engaging portion 39 in the circumferential direction are provided. The first abutment surface 51a is formed when the shifter side engaging portion 39 rotates relative to the rigid engaging portion A in the first rotation direction R1. The second abutment surface 52a is formed when the shifter side engagement portion 39 rotates relative to the rigid engagement portion A in the second rotation direction R2 opposite to the first rotation direction R1. The second contact surface 62a of the shifter side engaging portion 39 contacts.
The first and second contact surfaces 51a and 52a are respectively the first and second contact surfaces 61a and 62a as part of the side surfaces 61 and 62 on both sides in the circumferential direction of the shifter side engaging portion 39. At the start of contact, the contact surfaces 61a and 62a are formed in surface contact with each other.

弾性係合部Bは、該弾性係合部Bによるトルク伝達を可能とする剛性を確保するためのコア部70と、周方向でのコア部70の両側に配置されてコア部70に一体に設けられる弾性部80とを有する。コア部70および弾性部80は、基準面P1に対して面対称の形状である。
剛性係合部Aと同様に変速歯車11bに一体成形されて一体に設けられるコア部70は、径方向に延びており、ここでは外周壁42から径方向内方に突出している。コア部70は、周方向での両コア側面71と、径方向での内側端面72とを有する。
The elastic engagement part B is disposed on both sides of the core part 70 in the circumferential direction and the core part 70 for ensuring rigidity that enables torque transmission by the elastic engagement part B, and is integrated with the core part 70. And an elastic part 80 provided. The core portion 70 and the elastic portion 80 have a shape that is plane-symmetric with respect to the reference plane P1.
Similarly to the rigid engagement portion A, the core portion 70 integrally formed with the transmission gear 11b extends in the radial direction, and protrudes radially inward from the outer peripheral wall 42 here. The core portion 70 has both core side surfaces 71 in the circumferential direction and an inner end surface 72 in the radial direction.

図3〜図5を参照すると、前記弾性材料から形成される弾性部80は、コア部70および凹部40(したがって該凹部40を構成する変速歯車11b)に、固着手段、例えば焼付けにより固着される。より具体的には、弾性部80は、周方向での両側および径方向内方からコア部70を覆うように、径方向で、コア部70に、またはコア部70と外周壁42とに渡って固着され、軸方向で凹部40の底壁44に固着される。そして、この実施形態では、弾性部80は、両側面71および内側端面72をコア部70での固着面F1として、径方向でコア部70のみに固着され、底壁44の壁面である底面44aを固着面F2として、軸方向で底壁40に固着される。   3 to 5, the elastic portion 80 formed of the elastic material is fixed to the core portion 70 and the concave portion 40 (therefore, the transmission gear 11b constituting the concave portion 40) by fixing means, for example, baking. . More specifically, the elastic portion 80 spans the core portion 70 or the core portion 70 and the outer peripheral wall 42 in the radial direction so as to cover the core portion 70 from both sides in the circumferential direction and radially inward. And fixed to the bottom wall 44 of the recess 40 in the axial direction. In this embodiment, the elastic portion 80 is fixed to only the core portion 70 in the radial direction with the side surfaces 71 and the inner end surface 72 as the fixing surfaces F1 on the core portion 70, and is a bottom surface 44a that is the wall surface of the bottom wall 44. Is fixed to the bottom wall 40 in the axial direction with the fixing surface F2.

ここで、前記弾性材料は、ゴム状弾性を有する材料、例えばゴムであり、剛性係合部Aは、変形しないまたは弾性係合部Bの変形量に比べて変形しないに等しい程度の剛性を有し、ここでは金属、例えば鋼で形成されている。   Here, the elastic material is a material having rubber-like elasticity, for example, rubber, and the rigid engagement portion A does not deform or has a rigidity equal to that which does not deform compared to the deformation amount of the elastic engagement portion B. Here, it is made of metal, for example, steel.

そして、コア部70の軸方向幅W1および弾性部80の軸方向幅W2(図4参照)は等しく、コア部70の軸方向端面73および弾性部80の軸方向端面84は、回転中心線L2に直交する平面(以下、「直交平面」という。)のうちの一つである特定の直交平面P3に位置する平面である。なお、別の例として、両軸方向幅W1、W2は異なっていてもよく、軸方向端面73,84が同一の直交平面上になくてもよい。   The axial width W1 of the core portion 70 and the axial width W2 of the elastic portion 80 (see FIG. 4) are equal, and the axial end surface 73 of the core portion 70 and the axial end surface 84 of the elastic portion 80 are the rotation center line L2. Is a plane located on a specific orthogonal plane P3 which is one of planes orthogonal to the plane (hereinafter referred to as “orthogonal plane”). As another example, the axial widths W1 and W2 may be different, and the axial end faces 73 and 84 may not be on the same orthogonal plane.

弾性部80は、周方向での両側に、シフタ側係合部39が周方向で当接すると共に係合クラッチ31の接続完了状態でシフタ側係合部39により周方向に圧縮されて弾性変形する1対の緩衝部81と、各緩衝部81に連なると共に緩衝部81に対して周方向で括れた1対の括れ部82とを有する。括れ部82は、緩衝部81に対して径方向に、ここでは径方向外方に位置し、径方向で緩衝部81と外周壁42との間に位置する。   The elastic portion 80 is elastically deformed by being compressed in the circumferential direction by the shifter side engaging portion 39 when the shifter side engaging portion 39 abuts on both sides in the circumferential direction and the engagement clutch 31 is connected. A pair of buffer portions 81 and a pair of constricted portions 82 that are connected to the respective buffer portions 81 and are constricted in the circumferential direction with respect to the buffer portions 81 are provided. The constricted portion 82 is positioned in the radial direction with respect to the buffer portion 81, here, radially outward, and is positioned between the buffer portion 81 and the outer peripheral wall 42 in the radial direction.

図5に示されるように、各緩衝部81は、係合クラッチ31が接続完了状態にあるときと仮定したときのシフタ側係合部39と弾性部80とが重なる部分であり、シフタ側係合部39との当接開始(図5に、そのときのシフタ側係合部39が一点鎖線で示される。)の後に、シフタ側係合部39により押圧された弾性部80が弾性変形して、接続完了状態でのシフタ側係合部39(図5に、二点鎖線で示される。)により押し込められる部分である。
このため、弾性係合部Bの基準面P1と剛性係合部Aの基準面P1とを一致させたと仮定した場合の剛性係合部A(以下、「仮想剛性係合部」という。)が二点鎖線で示される図3を参照することで明らかなように、緩衝部81が形成されている径方向範囲S1において、弾性係合部Bの、後述する第1,第2当接面81a,81bにより規定される周方向形成範囲(または周方向角度)W5は、各剛性係合部Aの周方向形成範囲(または周方向角度)W3よりも大きく、また両コア側面71により規定されるコア部70の周方向形成範囲(または周方向角度)W4は、周方向形成範囲W3よりも小さい。同様に、基準面P1に対する第1,第2当接面81a,81bの周方向形成範囲(または周方向角度)W5aは、基準面P1に対する各剛性係合部Aの周方向形成範囲(または周方向角度)W3aよりも大きく、また基準面P2に対するコア部70の周方向形成範囲(または周方向角度)W4aは、周方向形成範囲W3aよりも小さい。
As shown in FIG. 5, each buffer portion 81 is a portion where the shifter side engaging portion 39 and the elastic portion 80 overlap when it is assumed that the engagement clutch 31 is in the connection completed state. After the start of contact with the joint portion 39 (in FIG. 5, the shifter side engaging portion 39 at that time is indicated by a one-dot chain line), the elastic portion 80 pressed by the shifter side engaging portion 39 is elastically deformed. Thus, it is a portion that is pushed in by the shifter side engaging portion 39 (indicated by a two-dot chain line in FIG. 5) in the connection completed state.
Therefore, the rigid engagement portion A (hereinafter referred to as “virtual rigid engagement portion”) when it is assumed that the reference surface P1 of the elastic engagement portion B and the reference surface P1 of the rigid engagement portion A are matched. As is apparent from referring to FIG. 3 indicated by a two-dot chain line, first and second contact surfaces 81a of the elastic engagement portion B, which will be described later, in the radial range S1 where the buffer portion 81 is formed. , 81b, the circumferential formation range (or circumferential angle) W5 is larger than the circumferential formation range (or circumferential angle) W3 of each rigid engagement portion A, and is defined by both core side surfaces 71. The circumferential direction formation range (or circumferential direction angle) W4 of the core part 70 is smaller than the circumferential direction formation range W3. Similarly, the circumferential direction formation range (or circumferential angle) W5a of the first and second contact surfaces 81a and 81b with respect to the reference surface P1 is the circumferential direction formation range (or circumferential direction) of each rigid engagement portion A with respect to the reference surface P1. (Direction angle) W3a is larger, and the circumferential formation range (or circumferential angle) W4a of the core portion 70 with respect to the reference plane P2 is smaller than the circumferential formation range W3a.

図3〜図5を参照すると、1対の緩衝部81は、周方向での両側にシフタ側係合部39と周方向で当接可能な第1,第2当接面81a,81bをそれぞれ有する。第1当接面81aは、シフタ側係合部39が弾性係合部Bに対して相対的に第1回転方向R1に回転するときに、シフタ側係合部39の第1当接面61aと当接し、第2当接面81bは、シフタ側係合部39が弾性係合部Bに対して相対的に第2回転方向R2に回転するときに、シフタ側係合部39の第2当接面62aと当接する。
第1,第2当接面81a,81bは、シフタ側係合部39の第1,第2当接面61a,62aとのそれぞれの当接開始時に、該第1,第2当接面61a,62aとそれぞれ面接触する形状に形成されている。
Referring to FIGS. 3 to 5, the pair of buffer portions 81 includes first and second contact surfaces 81 a and 81 b that can contact the shifter side engaging portion 39 in the circumferential direction on both sides in the circumferential direction. Have. The first abutting surface 81a is formed when the shifter side engaging portion 39 rotates relative to the elastic engaging portion B in the first rotation direction R1. The second abutment surface 81b is configured such that when the shifter side engaging portion 39 rotates relative to the elastic engaging portion B in the second rotation direction R2, the second contact surface 81b It contacts the contact surface 62a.
The first and second contact surfaces 81a and 81b are formed at the start of contact with the first and second contact surfaces 61a and 62a of the shifter side engaging portion 39, respectively. , 62a are in surface contact with each other.

図5に示されるように、各緩衝部81は、係合クラッチ31の非接続状態での第1,第2当接面81a,81bにおいて基準面P1から周方向で最も遠い部位と交わる中心半平面P4と、緩衝部81で基準面P1に周方向で最も近い部位と交わる中心半平面P5とがなす角度である緩衝範囲θ内で、シフト側係合部39により、周方向でコア部70との間において周方向に圧縮されて、弾性部80が弾性変形する。この実施形態では、周方向でコア部70または基準面P1の両側で、緩衝範囲θは同じ値であるが、異なる値に設定されてもよい。そして、この緩衝範囲θを調整することにより、弾性係合部Bによる衝撃の緩和の程度を調整でき、また過大な応力の発生を防止して耐久性を向上させるための圧縮量の調整が簡単にできる。   As shown in FIG. 5, each buffer portion 81 has a central half that intersects a portion farthest in the circumferential direction from the reference plane P <b> 1 in the first and second contact surfaces 81 a and 81 b when the engagement clutch 31 is not connected. Within the buffer range θ, which is an angle formed by the plane P4 and the central half plane P5 that intersects the reference surface P1 closest to the reference surface P1 in the buffer portion 81, the core portion 70 is circumferentially formed by the shift side engaging portion 39 within the buffer range θ. The elastic portion 80 is elastically deformed by being compressed in the circumferential direction. In this embodiment, the buffering range θ is the same value on both sides of the core portion 70 or the reference plane P1 in the circumferential direction, but may be set to a different value. By adjusting the buffering range θ, the degree of impact relaxation by the elastic engagement portion B can be adjusted, and the compression amount can be easily adjusted to prevent the generation of excessive stress and improve durability. Can be.

そして、この弾性変形を生じさせるために、弾性係合部Bは、変速機Mの変速時に、変速操作装置26(図1参照)により駆動された第1シフタ21が軸方向に移動して第1係合クラッチ31が非接続状態から接続完了状態に達するまでの間に、少なくとも一方が弾性係合部Bである歯車側係合部38およびシフタ側係合部39からなる係合対である緩衝係合対(この実施形態では、歯車側係合部38およびシフタ側係合部39のうちで歯車側係合部38のみが弾性係合部Bである。)において歯車側係合部38とシフタ側係合部39とが当接して弾性係合部Bが弾性変形した後に、いずれも剛性係合部Aである歯車側係合部38およびシフタ側係合部39からなる係合対である剛性係合対において歯車側係合部38とシフタ側係合部39とが当接するように、配置される。
このため、変速時の第1係合クラッチ31における歯車側係合群およびシフタ側係合群の係合部38,39同士の当接の際の衝撃が、弾性部80の前述の弾性変形により緩和されて、該当接時に発生する衝撃および衝撃音が低減する。
In order to cause this elastic deformation, the elastic engagement portion B is configured such that when the transmission M is shifted, the first shifter 21 driven by the shift operation device 26 (see FIG. 1) moves in the axial direction. Between the non-connected state and the connected complete state, at least one of the engaging clutch 31 is an engaging pair including a gear side engaging portion 38 and a shifter side engaging portion 39, which are elastic engaging portions B. In the buffer engagement pair (in this embodiment, only the gear side engagement portion 38 of the gear side engagement portion 38 and the shifter side engagement portion 39 is the elastic engagement portion B). And the shifter side engaging portion 39 are brought into contact with each other and the elastic engaging portion B is elastically deformed, and then the engagement pair comprising the gear side engaging portion 38 and the shifter side engaging portion 39 which are both rigid engaging portions A. In such a rigid engagement pair, the gear side engagement portion 38 and the shifter side engagement portion 39 are arranged to contact each other.
For this reason, the impact at the time of contact between the engagement portions 38 and 39 of the gear side engagement group and the shifter side engagement group in the first engagement clutch 31 at the time of shifting is mitigated by the elastic deformation of the elastic portion 80 described above. Thus, the impact and impact sound generated at the time of contact are reduced.

弾性部80において周方向で凹んいると共に周方向で基準面P1から遠ざかる方向に開放している各括れ部82は、第1,第2当接面81a,81bに対して周方向で基準面P1寄りに位置し、周方向での括れ部82の側面である凹状の括れ側面82aにおいて、その最奥部82c寄りの一部である最奥部82c付近は、周方向で前記仮想剛性係合部の側面51,52よりも基準面P1寄りに位置する(図3参照)。
そして、弾性部80は周方向での両側に1対の側面83を有し、緩衝部81の当接面81aおよび括れ側面82aのそれぞれは、一方の側面83の一部であり、緩衝部81の当接面81bおよび括れ側面82aのそれぞれは、他方の側面83の一部である。
In the elastic portion 80, each constricted portion 82 that is recessed in the circumferential direction and opened in a direction away from the reference surface P1 in the circumferential direction has a reference surface P1 in the circumferential direction with respect to the first and second contact surfaces 81a and 81b. In the concave constricted side surface 82a that is located closer to the constricted portion 82 in the circumferential direction, the vicinity of the innermost portion 82c that is close to the innermost portion 82c is the virtual rigid engagement portion in the circumferential direction. Are located closer to the reference plane P1 than the side surfaces 51, 52 (see FIG. 3).
The elastic portion 80 has a pair of side surfaces 83 on both sides in the circumferential direction, and each of the contact surface 81a and the constricted side surface 82a of the buffer portion 81 is a part of one side surface 83, and the buffer portion 81 Each of the contact surface 81b and the constricted side surface 82a is a part of the other side surface 83.

また、係合クラッチ31が非接続状態にあって、シフタ側係合部39との当接による弾性変形が生じる前の各緩衝部81に対して、径方向での延長上には、緩衝部81が押し込められたことにより弾性変形した弾性部80が膨出することを許容する径方向空間91が軸方向に延びて形成されている。該空間91は括れ部82により形成される。   Further, with respect to each buffer portion 81 before the elastic deformation due to the contact with the shifter side engaging portion 39 when the engagement clutch 31 is in the disconnected state, the buffer portion A radial space 91 is formed extending in the axial direction to allow the elastic portion 80 elastically deformed by being pushed in 81 to bulge. The space 91 is formed by the constricted portion 82.

図5を参照すると、括れ部82の、両括れ側面52aにより規定される周方向形成範囲(または周方向角度)W6、および、基準面P1に対する周方向形成範囲(または周方向角度)W6aは、径方向で最奥部82cから外周壁42に近づくにつれて大きくなる。   Referring to FIG. 5, the circumferential direction formation range (or circumferential angle) W6 defined by the narrow side surfaces 52a of the narrowed portion 82 and the circumferential direction formation range (or circumferential angle) W6a with respect to the reference plane P1 are: It becomes large as it approaches the outer peripheral wall 42 from the innermost part 82c in radial direction.

各コア側面71は、コア側面71と直交平面との交線であるコア交線L3が円弧状となるコア湾曲面71aを有する。コア交線L3は、括れ部82の径方向での形成範囲S2(図5参照)の全体に渡って、径方向で外周壁42に近づくにつれて、両コア交線L3の周方向間隔(または周方向角度)である周方向形成範囲W4および基準面P1と各コア交線L3との周方向間隔(または周方向角度)である周方向形成範囲W4aが、連続的に大きくなる円弧状である。このため、コア部70において、その周方向形成範囲W4および基準面P1からの周方向形成範囲W4aは、径方向で外周壁42に近づくにつれて連続的に大きくなる。   Each core side surface 71 has a core curved surface 71a in which a core intersection line L3, which is an intersection line between the core side surface 71 and the orthogonal plane, has an arc shape. The core crossing line L3 extends in the circumferential direction between the core crossing lines L3 (or the circumference) as it approaches the outer peripheral wall 42 in the radial direction over the entire formation range S2 (see FIG. 5) in the radial direction of the constricted portion 82. The circumferential direction formation range W4 that is the direction angle) and the circumferential direction formation range W4a that is the circumferential interval (or circumferential direction angle) between the reference plane P1 and each core intersection line L3 are arcuately increasing. For this reason, in the core part 70, the circumferential direction formation range W4 and the circumferential direction formation range W4a from the reference plane P1 continuously increase as the outer peripheral wall 42 is approached in the radial direction.

一方、各括れ側面52aは、括れ側面52aと直交平面との交線である括れ交線L4が円弧状となる括れ湾曲面82eを有する。そして、コア交線L3の曲率は、括れ交線L4の曲率よりも小さい。括れ部82は、外周壁42の壁面である内周面42aから径方向でのコア湾曲面71aの形成範囲S3(図5参照)の過半に渡って形成されている。
また、図5に示されるように、コア交線L3の一部(したがって、コア湾曲面71aの一部)は、径方向で緩衝部81と重なる位置、換言すれば、径方向で、径方向での緩衝部81の位置と同じ位置にある。
On the other hand, each constricted side surface 52a has a constricted curved surface 82e in which a constricted intersection line L4, which is an intersection line between the constricted side surface 52a and the orthogonal plane, has an arc shape. The curvature of the core intersection line L3 is smaller than the curvature of the constriction intersection line L4. The constricted portion 82 is formed over the majority of the formation range S3 (see FIG. 5) of the core curved surface 71a in the radial direction from the inner peripheral surface 42a which is the wall surface of the outer peripheral wall 42.
Further, as shown in FIG. 5, a part of the core intersection line L3 (and thus a part of the core curved surface 71a) overlaps with the buffer portion 81 in the radial direction, in other words, in the radial direction and in the radial direction. It is in the same position as the position of the buffer part 81 in FIG.

次に、前述のように構成された実施形態の作用および効果について説明する。
変速機Mにおいて、変速歯車11bに周方向に間隔を置いて設けられた前記所定数の歯車側係合部38とシフタ21に周方向に間隔を置いて設けられた前記所定数のシフタ側係合部39とを有する係合クラッチ31の該所定数の歯車側係合部38は、弾性材料から形成された1以上の、ここでは2つの弾性係合部Bと、弾性係合部Bよりも剛性が大きい1以上の、ここでは弾性係合部Bの数よりも多い数の剛性係合部Aとから構成され、変速操作装置26により操作されたシフタ21が軸方向に移動して係合クラッチ31が接続完了状態になるまでの間に、弾性係合部Bである歯車側係合部38と、剛性係合部Aであるシフタ側係合部39が互いに当接することにより弾性係合部Bが弾性変形した後に、いずれも剛性係合部Aである歯車側係合部38およびシフタ側係合部39が互いに当接するように、弾性係合部Bが配置される。
この構造により、係合クラッチ31の歯車側係合群は、弾性係合部Bおよび剛性係合部Aの2種類の係合部から構成される所定数の歯車側係合部38を有し、変速時には、歯車側係合群およびシフタ側係合群の剛性係合部A同士が当接して変速歯車11bとシフタ21とが一体に回転する係合クラッチ31の接続完了状態に先だって、歯車側係合群の弾性係合部Bがシフタ側係合群の剛性係合部Aとの当接により弾性変形することで、歯車側係合部38およびシフタ側係合部39が当接する際に発生する衝撃が緩和されて、該衝撃および衝撃音が低減する。
そして、この衝撃および衝撃音を低減する前記緩衝構造では、弾性変形するのは、係合部自体である弾性係合部Bであるので、例えばカウンタ軸4を囲むリング状の緩衝部材を設ける場合に比べて、構造が簡単化されて、コスト削減ができる。しかも、該緩衝構造を設けたことによる変速歯車11bまたはシフタ21の軽量化または重量増の防止が可能になるので、該緩衝構造に起因する変速歯車11bまたはシフタ21の慣性質量の減少または増加防止が可能になって、該緩衝構造による衝撃および衝撃音の低減効果を向上できる。さらに、歯車側係合群での弾性係合部Bの個数を変更することにより、衝撃および衝撃音の低減効果を調整することができる。
Next, operations and effects of the embodiment configured as described above will be described.
In the transmission M, the predetermined number of gear side engaging portions 38 provided at intervals in the circumferential direction on the transmission gear 11b and the predetermined number of shifter side engagements provided at intervals in the circumferential direction on the shifter 21. The predetermined number of the gear side engaging portions 38 of the engaging clutch 31 having the joint portion 39 is composed of one or more, here two elastic engaging portions B and elastic engaging portions B formed of an elastic material. The shifter 21 operated by the speed change operation device 26 is moved in the axial direction and is engaged by the number of the rigid engagement portions A which are greater than the number of the elastic engagement portions B. Until the engagement clutch 31 is in the connected completion state, the gear side engagement portion 38 that is the elastic engagement portion B and the shifter side engagement portion 39 that is the rigid engagement portion A are in contact with each other, so that the elastic engagement is achieved. After the joint part B is elastically deformed, the gear side engaging part 38 and the shifter side engaging part 39 which are both rigid engaging parts A are So as to abut against the stomach, the elastic engagement unit B is disposed.
With this structure, the gear-side engagement group of the engagement clutch 31 has a predetermined number of gear-side engagement portions 38 composed of two types of engagement portions, an elastic engagement portion B and a rigid engagement portion A. At the time of shifting, the gear-side engagement group prior to the connection completion state of the engagement clutch 31 in which the gear-side engagement group and the rigid engagement portion A of the shifter-side engagement group come into contact with each other and the transmission gear 11b and the shifter 21 rotate integrally. The elastic engagement portion B is elastically deformed by contact with the rigid engagement portion A of the shifter side engagement group, so that an impact generated when the gear side engagement portion 38 and the shifter side engagement portion 39 are in contact with each other is generated. Alleviated to reduce the impact and impact sound.
In the buffer structure that reduces the impact and the impact sound, it is the elastic engagement portion B that is the engagement portion itself that is elastically deformed. For example, when a ring-shaped buffer member surrounding the counter shaft 4 is provided Compared to, the structure is simplified and the cost can be reduced. In addition, since the transmission gear 11b or the shifter 21 can be reduced in weight or prevented from increasing in weight due to the provision of the buffer structure, the inertial mass of the transmission gear 11b or the shifter 21 due to the buffer structure can be prevented from decreasing or increasing. It becomes possible to improve the impact and impact noise reduction effect of the buffer structure. Furthermore, the effect of reducing impact and impact sound can be adjusted by changing the number of elastic engagement portions B in the gear side engagement group.

弾性係合部Bの周方向形成範囲W5は、剛性係合部Aの周方向形成範囲W3よりも大きく、歯車側係合群において周方向で1対の剛性係合部Aの間に1つの弾性係合部Bが配置されることにより、周方向で1対の剛性係合部Aの間に1つの弾性係合部Bが配置されることから、周方向で弾性係合部Bに隣接する係合部は、弾性係合部Bの周方向形成範囲W5に比べて小さい周方向形成範囲W3を有する剛性係合部Aであるので、周方向で隣接する係合部A,B間の間隔は、弾性係合部Bが周方向で隣接している場合に比べて大きくなる。この結果、係合クラッチ31の歯車側係合群およびシフタ側係合群において、弾性係合部Bを有する一方の係合群である歯車側係合群の周方向で隣接する係合部である歯車側係合部38の間に、他方の係合群であるシフタ側係合群の係合部であるシフタ側係合部39が入り易くなるので、変速に要する時間が短くなって、変速が迅速化される。   The circumferential direction formation range W5 of the elastic engagement portion B is larger than the circumferential direction formation range W3 of the rigid engagement portion A, and one elasticity is provided between the pair of rigid engagement portions A in the circumferential direction in the gear side engagement group. By disposing the engagement portion B, one elastic engagement portion B is disposed between the pair of rigid engagement portions A in the circumferential direction, so that it is adjacent to the elastic engagement portion B in the circumferential direction. Since the engagement portion is a rigid engagement portion A having a circumferential direction formation range W3 that is smaller than the circumferential direction formation range W5 of the elastic engagement portion B, the spacing between the adjacent engagement portions A and B in the circumferential direction Is larger than the case where the elastic engagement portions B are adjacent in the circumferential direction. As a result, in the gear side engagement group and the shifter side engagement group of the engagement clutch 31, the gear side engagement that is an engagement portion adjacent in the circumferential direction of the gear side engagement group that is one engagement group having the elastic engagement portion B. Since the shifter-side engagement portion 39, which is the engagement portion of the shifter-side engagement group that is the other engagement group, easily enters between the joint portions 38, the time required for the shift is shortened, and the shift is speeded up. .

弾性係合部Bは、変速歯車11bに一体に設けられて径方向に延びているコア部70と、弾性材料から形成されると共にコア部70に固着された弾性部80とを有し、弾性部80は、周方向でのコア部70の両側の両側に配置され、弾性部80は、シフタ側係合部39が周方向で当接すると共に係合クラッチ31の接続完了状態でコア部70との間において周方向に圧縮されて弾性変形する緩衝部81を有し、弾性変形前の緩衝部81の径方向での延長上には、緩衝部81がシフタ側係合部39または歯車側係合部38により圧縮されたときに弾性部80が弾性変形して膨出することを許容する空間91が形成されることにより、弾性係合部Bにおいて、弾性材料から形成された弾性部80の緩衝部81は、シフタ側係合部39との当接により、周方向でコア部70との間で周方向に圧縮されるので、弾性部80とコア部70とが剥離し難くなって弾性係合部Bの耐久性が向上し、ひいては変速機Mの耐久性が向上する。
また、緩衝部81が圧縮されて弾性部80が弾性変形したとき、弾性部80の一部が空間91に膨出することから、弾性部80の弾性変形が容易になって、弾性部80に過大な応力の発生が抑制されるので、この点でも弾性係合部Bの耐久性が向上する。
The elastic engagement portion B includes a core portion 70 that is provided integrally with the transmission gear 11b and extends in the radial direction, and an elastic portion 80 that is formed of an elastic material and is fixed to the core portion 70. The portions 80 are arranged on both sides of the core portion 70 in the circumferential direction, and the elastic portion 80 is in contact with the core portion 70 in a state where the shifter side engagement portion 39 abuts in the circumferential direction and the engagement clutch 31 is connected. The shock absorber 81 is elastically deformed by being compressed in the circumferential direction between the shock absorber 81 and the shock absorber 81 is connected to the shifter side engaging portion 39 or the gear side engagement on the radial extension of the shock absorber 81 before elastic deformation. By forming a space 91 that allows the elastic portion 80 to elastically deform and bulge when compressed by the joint portion 38, the elastic engagement portion B has an elastic portion 80 made of an elastic material. The buffer portion 81 is compressed in the circumferential direction between the buffer portion 81 and the core portion 70 in the circumferential direction by the contact with the shifter side engaging portion 39. Improved durability of the elastic engaging portion B and part 80 and the core portion 70 becomes hard to peel, the durability of the transmission M is increased thus.
Further, when the buffer part 81 is compressed and the elastic part 80 is elastically deformed, a part of the elastic part 80 swells into the space 91, so that the elastic part 80 can be easily elastically deformed. Since generation | occurrence | production of an excessive stress is suppressed, durability of the elastic engagement part B improves also in this point.

コア部70は、変速歯車11bに設けられた外周壁42から径方向に延びており、弾性部80は、緩衝部81に連なると共に径方向で外周壁42との間に配置されると共に緩衝部81に対して周方向で括れた括れ部82を有し、空間91は括れ部82により形成され、括れ部82はコア部70に固着され、コア部70に固着された括れ部82の周方向形成範囲W6,W6aは、径方向で外周壁42に近づくにつれて大きくなることにより、括れ部82の周方向形成範囲W6,W6aがコア部70が突出する外周壁42に近づくほど大きくなることにより、弾性部80の弾性変形を容易にする空間91を形成する括れ部82を利用して、弾性部80とコア部70との固着面F1を大きくできる。この結果、コア部70と弾性部80との固着力が大きくなって、コア部70と弾性部80とが剥離し難くなるので、弾性係合部Bの耐久性が向上する。   The core portion 70 extends in the radial direction from the outer peripheral wall 42 provided in the transmission gear 11b, and the elastic portion 80 is connected to the buffer portion 81 and disposed between the outer peripheral wall 42 in the radial direction and the buffer portion. 81 has a constricted portion 82 that is constricted in the circumferential direction, the space 91 is formed by the constricted portion 82, the constricted portion 82 is fixed to the core portion 70, and the circumferential direction of the constricted portion 82 fixed to the core portion 70 The formation ranges W6 and W6a become larger as the outer peripheral wall 42 is approached in the radial direction, so that the circumferential formation ranges W6 and W6a of the constricted portion 82 become larger as the outer peripheral wall 42 from which the core portion 70 protrudes becomes closer. By using the constricted portion 82 that forms the space 91 that facilitates elastic deformation of the elastic portion 80, the fixing surface F1 between the elastic portion 80 and the core portion 70 can be increased. As a result, the fixing force between the core portion 70 and the elastic portion 80 is increased, and the core portion 70 and the elastic portion 80 are difficult to peel off, so that the durability of the elastic engagement portion B is improved.

弾性部80は、周方向でのコア部70の両側に設けられ、コア部70は、弾性部80が固着される固着面F1となる周方向でのコア側面71を有し、コア側面71は、直交平面とのコア交線L3が円弧状となるコア湾曲面71aを有し、周方向での括れ部82の両括れ側面52aのそれぞれは、括れ側面52aと直交平面との括れ交線L4が円弧状となる括れ湾曲面82eを有し、コア交線L3の曲率は、括れ交線L4の曲率よりも小さく、コア部70の周方向形成範囲W4,W4aは外周壁42に近づくにつれて大きくなることにより、外周壁42から径方向内方に延びているコア部70において、そのコア側面71の形状を規定するコア交線L3の曲率は、括れ部82の括れ側面82aを規定する括れ交線L4の曲率よりも小さく、しかもコア部70の周方向形成範囲W4,W4aは径方向で外周壁42に近づくほど大きくなるので、コア部70の剛性が高められて、弾性係合部Bの耐久性が向上する。
また、弾性部80の固着面F1となるコア部70のコア側面71が、径方向で外周壁42に近づくにつれて周方向に大きくなるので、コア部70と弾性部80との固着力が大きくなり、コア部70と弾性部80とが剥離し難くなって、弾性係合部Bの耐久性が向上する。
The elastic portion 80 is provided on both sides of the core portion 70 in the circumferential direction. The core portion 70 has a core side surface 71 in the circumferential direction that becomes the fixing surface F1 to which the elastic portion 80 is fixed. Each of the constricted side faces 52a of the constricted portion 82 in the circumferential direction has a constricted intersection line L4 between the constricted side face 52a and the orthogonal plane. Has a constricted curved surface 82e having an arcuate shape, the curvature of the core intersection line L3 is smaller than the curvature of the constriction intersection line L4, and the circumferential formation range W4, W4a of the core portion 70 increases as it approaches the outer peripheral wall 42. Thus, in the core portion 70 extending radially inward from the outer peripheral wall 42, the curvature of the core intersection line L3 that defines the shape of the core side surface 71 is constricted to define the constricted side surface 82a of the constricted portion 82. It is smaller than the curvature of the line L4, and the circumferential formation range W4, W4a of the core portion 70 is the outer peripheral wall 4 in the radial direction. Since it becomes so large that it approaches 2, the rigidity of the core part 70 is improved and durability of the elastic engagement part B improves.
Further, since the core side surface 71 of the core portion 70 which becomes the fixing surface F1 of the elastic portion 80 becomes larger in the circumferential direction as it approaches the outer peripheral wall 42 in the radial direction, the fixing force between the core portion 70 and the elastic portion 80 increases. The core part 70 and the elastic part 80 are difficult to peel off, and the durability of the elastic engagement part B is improved.

コア交線L3の一部は、径方向で緩衝部81と重なる位置にあることにより、コア部70は、径方向で緩衝部81と重なる部分から周方向形成範囲W4,W4aが次第に大きくなるので、緩衝部81に当接するシフタ側係合部39が加える周方向での力が緩衝部81を介して作用するコア部70の剛性が高められて、弾性係合部Bの耐久性が向上する。   Since a part of the core intersection line L3 is located at a position overlapping the buffer portion 81 in the radial direction, the circumferential formation range W4, W4a of the core portion 70 gradually increases from the portion overlapping the buffer portion 81 in the radial direction. Further, the rigidity of the core portion 70 on which the force in the circumferential direction applied by the shifter side engaging portion 39 contacting the buffer portion 81 acts via the buffer portion 81 is enhanced, and the durability of the elastic engagement portion B is improved. .

以下、前述した実施形態の一部の構成を変更した実施形態について、変更した構成に関して説明する。
図6,図7に示されるように、空間に加えて、軸方向での各緩衝部81の延長上に周方向で括れた軸方向括れ部86が形成されて、周方向での凹状の側面86aを有する括れ部86により軸方向空間92が径方向に延びて形成されてもよい。この空間92により、緩衝部81が押し込められたときの弾性部80の弾性変形が一層容易になって、弾性係合部Bの耐久性の向上に寄与する。
Hereinafter, an embodiment in which a part of the configuration of the above-described embodiment is changed will be described with respect to the changed configuration.
As shown in FIGS. 6 and 7, in addition to the space, an axial constriction portion 86 constricted in the circumferential direction is formed on the extension of each buffer portion 81 in the axial direction, and a concave side surface in the circumferential direction is formed. The axial space 92 may be formed to extend in the radial direction by the constricted portion 86 having 86a. This space 92 facilitates elastic deformation of the elastic portion 80 when the buffer portion 81 is pushed in, and contributes to improvement in durability of the elastic engagement portion B.

空間91が、括れ部82により形成されることなく、または弾性部80が括れ部82を有することなく、径方向で緩衝部81と外周壁42との間に形成されていてもよい。
緩衝部81および括れ部82は、周方向で、コア部70の一方側または基準面P1の一方側のみに設けられてもよい。この場合、係合クラッチの歯車側係合群またはシフタ側係合群において、複数、例えば2つの弾性係合部Bが設けられる場合、1つの弾性係合部Bには、周方向での一方側に緩衝部81および括れ部82が設けられ、別の弾性係合部Bには、周方向での他方側に緩衝部81および括れ部82が設けられる。
緩衝部81の当接面81a,81bは、弾性材料以外の材料、例えば金属や合成樹脂で形成された表面層(例えば、板状の表面層)により形成されてもよい。
括れ部82は、緩衝部81に対して径方向内方に配置されてもよい。
歯車側係合群の前記所定数の歯車側係合部が、全て剛性係合部Aで構成され、かつシフタ側係合群の前記所定数のシフタ側係合部39が、弾性係合部Bおよび剛性係合部Aから構成されてもよい。
また、歯車側係合群の前記所定数の歯車側係合部38が、弾性係合部Bおよび剛性係合部Aから構成され、かつシフタ側係合群の前記所定数のシフタ側係合部39が、弾性係合部Bおよび剛性係合部Aから構成されてもよい。この場合、少なくとも1つの剛性係合対ができるように、弾性係合部Bの配置および数が設定される。
複数の弾性係合部Bが、周方向で隣接して配置されてもよい。
歯車変速機が備える前記設定数の係合クラッチのうちで、1以上の一部の係合クラッチまたは全ての係合クラッチが、前記緩衝構造を有していてもよく、したがって、前記設定数の係合クラッチの任意の係合クラッチが、弾性係合部Bを有する歯車側係合群または弾性係合部Bを有するシフタ側係合群を有していてもよい。
前記実施形態では、弾性部80の径方向での内側端面87(図3,図6参照)は、コア部70よりも径方向内方に位置するが、コア部70の内側端面72と同じ位置または該内側端面72よりも径方向外方に位置してもよい。
歯車変速機は、車両以外の機械に備えられてもよい。
The space 91 may be formed between the buffer portion 81 and the outer peripheral wall 42 in the radial direction without being formed by the constricted portion 82 or without the elastic portion 80 having the constricted portion 82.
The buffer part 81 and the constricted part 82 may be provided only on one side of the core part 70 or one side of the reference plane P1 in the circumferential direction. In this case, when a plurality of, for example, two elastic engagement portions B are provided in the gear side engagement group or the shifter side engagement group of the engagement clutch, one elastic engagement portion B is provided on one side in the circumferential direction. A buffer part 81 and a constricted part 82 are provided, and another elastic engaging part B is provided with a buffer part 81 and a constricted part 82 on the other side in the circumferential direction.
The contact surfaces 81a and 81b of the buffer portion 81 may be formed of a surface layer (for example, a plate-shaped surface layer) formed of a material other than an elastic material, for example, a metal or a synthetic resin.
The constricted portion 82 may be disposed radially inward with respect to the buffer portion 81.
The predetermined number of gear side engaging portions of the gear side engaging group are all configured by the rigid engaging portion A, and the predetermined number of shifter side engaging portions 39 of the shifter side engaging group are elastic engaging portions B and You may comprise from the rigid engaging part A. FIG.
Further, the predetermined number of gear side engaging portions 38 of the gear side engaging group is constituted by an elastic engaging portion B and a rigid engaging portion A, and the predetermined number of shifter side engaging portions 39 of the shifter side engaging group. However, it may be composed of an elastic engagement portion B and a rigid engagement portion A. In this case, the arrangement and number of the elastic engagement portions B are set so that at least one rigid engagement pair can be formed.
A plurality of elastic engagement portions B may be arranged adjacent to each other in the circumferential direction.
Among the set number of engagement clutches included in the gear transmission, one or more of the engagement clutches or all of the engagement clutches may have the buffer structure, and thus the set number of engagement clutches. Any engagement clutch of the engagement clutch may have a gear side engagement group having the elastic engagement portion B or a shifter side engagement group having the elastic engagement portion B.
In the embodiment, the inner end face 87 (see FIGS. 3 and 6) in the radial direction of the elastic part 80 is located radially inward from the core part 70, but the same position as the inner end face 72 of the core part 70. Alternatively, it may be located radially outward from the inner end face 72.
The gear transmission may be provided in a machine other than the vehicle.

3…メイン軸、4…カウンタ軸、11a〜16a,11b〜16b…変速歯車、21〜24…シフタ、31〜36…係合クラッチ、38…歯車側係合部、39…シフタ側係合部、40…凹部、42…外周壁、70…コア部、80…弾性部、81…緩衝部、82,86…括れ部、91,92…空間、
M…歯車変速機、E…内燃機関、A…剛性係合部、B…弾性係合部。
DESCRIPTION OF SYMBOLS 3 ... Main shaft, 4 ... Counter shaft, 11a-16a, 11b-16b ... Transmission gear, 21-24 ... Shifter, 31-36 ... Engagement clutch, 38 ... Gear side engaging part, 39 ... Shifter side engaging part , 40 ... concave portion, 42 ... outer peripheral wall, 70 ... core portion, 80 ... elastic portion, 81 ... buffer portion, 82, 86 ... constricted portion, 91, 92 ... space,
M ... gear transmission, E ... internal combustion engine, A ... rigid engagement part, B ... elastic engagement part.

Claims (6)

回転軸に設けられた変速歯車と、前記回転軸に軸方向に移動可能に設けられると共に変速操作装置により操作されるシフタと、前記変速歯車に設けられた複数である所定数の歯車側係合部からなる歯車側係合群と前記シフタに設けられた前記所定数のシフタ側係合部からなるシフタ側係合群とを有する係合クラッチとを備え、
前記係合クラッチが、前記所定数の前記歯車側係合部と前記所定数の前記シフタ側係合部とがそれぞれ互いに周方向で当接している接続完了状態にあるとき、前記変速歯車および前記シフタが一体に回転することにより前記変速歯車で規定される変速比が確立される歯車変速機において、
前記歯車側係合群または前記シフタ側係合群は、弾性材料から形成された1以上の弾性係合部と、前記弾性係合部よりも剛性が大きい1以上の剛性係合部とから構成され、
前記変速操作装置により操作された前記シフタが軸方向に移動して前記係合クラッチが前記接続完了状態になるまでの間に、少なくとも一方が前記弾性係合部である前記歯車側係合部および前記シフタ側係合部が互いに当接することにより前記弾性係合部が弾性変形した後に、いずれも前記剛性係合部である前記歯車側係合部および前記シフタ側係合部が互いに当接するように、前記弾性係合部が配置されることを特徴とする歯車変速機。
A transmission gear provided on the rotation shaft, a shifter provided on the rotation shaft so as to be movable in the axial direction and operated by a transmission operation device, and a predetermined number of gear side engagements provided on the transmission gear. An engagement clutch having a gear side engagement group composed of a portion and a shifter side engagement group composed of the predetermined number of shifter side engagement portions provided on the shifter,
When the engagement clutch is in a connection completed state in which the predetermined number of the gear-side engagement portions and the predetermined number of the shifter-side engagement portions are in contact with each other in the circumferential direction, the transmission gear and the In the gear transmission in which the gear ratio defined by the transmission gear is established by rotating the shifter integrally,
The gear-side engagement group or the shifter-side engagement group is composed of one or more elastic engagement portions formed of an elastic material, and one or more rigid engagement portions having higher rigidity than the elastic engagement portion,
The gear-side engagement portion, at least one of which is the elastic engagement portion, between the shifter operated by the shift operation device moving in the axial direction and the engagement clutch being in the connection completion state, and After the elastic engagement portion is elastically deformed by the abutment of the shifter side engagement portion, the gear side engagement portion and the shifter side engagement portion, both of which are the rigid engagement portions, come into contact with each other. Further, the gear transmission is characterized in that the elastic engagement portion is disposed.
請求項1記載の歯車変速機において、
前記弾性係合部の周方向形成範囲は、前記剛性係合部の周方向形成範囲よりも大きく、
周方向で1対の前記剛性係合部の間に1つの前記弾性係合部が配置されることを特徴とする歯車変速機。
The gear transmission according to claim 1, wherein
The circumferential formation range of the elastic engagement portion is larger than the circumferential formation range of the rigid engagement portion,
A gear transmission characterized in that one elastic engagement portion is disposed between the pair of rigid engagement portions in the circumferential direction.
請求項1または2記載の歯車変速機において、
前記弾性係合部は、前記変速歯車または前記シフタに一体に設けられて径方向に延びているコア部と、前記弾性材料から形成されると共に前記コア部に固着された弾性部とを有し、
前記弾性部は、周方向での前記コア部の両側の少なくとも一方の側に配置され、
前記弾性部は、前記シフタ側係合部または前記歯車側係合部が周方向で当接すると共に前記接続完了状態で前記コア部との間において周方向に圧縮されて弾性変形する緩衝部を有し、
前記弾性変形前の前記緩衝部の径方向での延長上には、前記緩衝部が前記シフタ側係合部または前記歯車側係合部により圧縮されたときに前記弾性部が弾性変形して膨出することを許容する空間が形成されることを特徴とする歯車変速機。
The gear transmission according to claim 1 or 2,
The elastic engagement portion includes a core portion that is provided integrally with the transmission gear or the shifter and extends in the radial direction, and an elastic portion that is formed from the elastic material and is fixed to the core portion. ,
The elastic portion is disposed on at least one side of both sides of the core portion in the circumferential direction,
The elastic part has a buffer part that is elastically deformed by being compressed in the circumferential direction between the core part and the shifter side engaging part or the gear side engaging part in contact with the core part in the connected state. And
On the extension in the radial direction of the buffer portion before the elastic deformation, when the buffer portion is compressed by the shifter side engaging portion or the gear side engaging portion, the elastic portion is elastically deformed to expand. A gear transmission characterized in that a space for allowing it to exit is formed.
請求項3記載の歯車変速機において、
前記コア部は、前記変速歯車または前記シフタに設けられた周壁から径方向に延びており、
前記弾性部は、前記緩衝部に連なると共に径方向で前記周壁との間に配置されて前記緩衝部に対して周方向で括れた括れ部を有し、
前記空間は、前記括れ部により形成され、
前記コア部に固着された前記括れ部の周方向形成範囲は、径方向で前記周壁に近づくにつれて大きくなることを特徴とする歯車変速機。
The gear transmission according to claim 3, wherein
The core portion extends in a radial direction from a peripheral wall provided in the transmission gear or the shifter,
The elastic portion includes a constricted portion that is continuous with the buffer portion and is disposed between the peripheral wall in the radial direction and is narrowed in the circumferential direction with respect to the buffer portion.
The space is formed by the constricted portion,
The gear transmission according to claim 1, wherein a circumferential direction forming range of the constricted portion fixed to the core portion increases in a radial direction toward the peripheral wall.
請求項4記載の歯車変速機において、
前記コア部は、前記弾性部が固着される固着面となる周方向でのコア側面を有し、
前記コア側面は、前記コア側面と軸方向に直交する平面とのコア交線が円弧状となるコア湾曲面を有し、
周方向での前記括れ部の括れ側面は、前記括れ側面と前記直交平面との括れ交線が円弧状となる括れ湾曲面を有し、
前記コア交線の曲率は、前記括れ交線の曲率よりも小さく、
前記コア部の周方向形成範囲は、径方向で前記周壁に近づくにつれて大きくなることを特徴とする歯車変速機。
The gear transmission according to claim 4, wherein
The core portion has a core side surface in a circumferential direction which is a fixing surface to which the elastic portion is fixed,
The core side surface has a core curved surface in which a core intersection line between the core side surface and a plane orthogonal to the axial direction is an arc shape,
The constricted side surface of the constricted portion in the circumferential direction has a constricted curved surface in which a constricted intersection line between the constricted side surface and the orthogonal plane has an arc shape,
The curvature of the core intersection line is smaller than the curvature of the constriction intersection line,
The gear transmission according to claim 1, wherein a circumferential direction formation range of the core portion increases in a radial direction toward the peripheral wall.
請求項5記載の歯車変速機において、
前記コア交線の一部は、径方向で前記緩衝部と重なる位置にあることを特徴とする歯車変速機。
The gear transmission according to claim 5,
A part of the core crossing line is in a position overlapping with the buffer portion in the radial direction.
JP2009031817A 2009-02-13 2009-02-13 Gear transmission Expired - Fee Related JP5222176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009031817A JP5222176B2 (en) 2009-02-13 2009-02-13 Gear transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009031817A JP5222176B2 (en) 2009-02-13 2009-02-13 Gear transmission

Publications (2)

Publication Number Publication Date
JP2010185560A true JP2010185560A (en) 2010-08-26
JP5222176B2 JP5222176B2 (en) 2013-06-26

Family

ID=42766336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009031817A Expired - Fee Related JP5222176B2 (en) 2009-02-13 2009-02-13 Gear transmission

Country Status (1)

Country Link
JP (1) JP5222176B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416590A2 (en) 2010-08-03 2012-02-08 Kakumoto, Jun-ichi Speaker system and sound reproduction apparatus
KR102123669B1 (en) * 2019-03-22 2020-06-17 엘지전자 주식회사 Driving apparatus for vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027250U (en) * 1973-07-09 1975-03-28
JPS5221363U (en) * 1975-08-01 1977-02-15
JP2000035129A (en) * 1998-07-22 2000-02-02 Yamaha Motor Co Ltd Transmission
JP2002098164A (en) * 2000-09-20 2002-04-05 Yamaha Motor Co Ltd Speed change gear for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027250U (en) * 1973-07-09 1975-03-28
JPS5221363U (en) * 1975-08-01 1977-02-15
JP2000035129A (en) * 1998-07-22 2000-02-02 Yamaha Motor Co Ltd Transmission
JP2002098164A (en) * 2000-09-20 2002-04-05 Yamaha Motor Co Ltd Speed change gear for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416590A2 (en) 2010-08-03 2012-02-08 Kakumoto, Jun-ichi Speaker system and sound reproduction apparatus
KR102123669B1 (en) * 2019-03-22 2020-06-17 엘지전자 주식회사 Driving apparatus for vehicle

Also Published As

Publication number Publication date
JP5222176B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
US9797495B2 (en) Clutch and differential device with same
WO2017026536A1 (en) Transmission and vehicle
EP2042784B1 (en) Twin clutch type speed-change apparatus
JP6605882B2 (en) transmission
EP2042783A1 (en) Twin clutch type speed-change apparatus
JP5956805B2 (en) transmission
JP5996701B1 (en) Transmission with synchro mechanism
JP2015081634A (en) Drum type transmission
JP2009103248A (en) Transmission
JP5222176B2 (en) Gear transmission
JP6293616B2 (en) VEHICLE GEAR TRANSMISSION DEVICE AND MOTORCYCLE REDUCTION GEAR
JP5070410B2 (en) Clutch device
JP4474359B2 (en) Twin clutch device
JPH07190093A (en) Claw device for mechanical reduction gear
EP3730817B1 (en) Transmission
JP2009216223A (en) Power transmission mechanism
JP2017206083A (en) Power transmission device
JP2009156338A (en) Scissors gear
JP5461334B2 (en) Dog clutch
JP2004340226A (en) Rotation number detecting structure of automatic transmission
JP2008248914A (en) Dog clutch construction of constant mesh gear transmission
JP7317321B2 (en) transmission
JP5336223B2 (en) Gear transmission
JP7191465B2 (en) Seamless shift mechanism and transmission
JP2018071611A (en) Torque intermittence mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5222176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees