JP2010155764A - Unfired brick refractory - Google Patents

Unfired brick refractory Download PDF

Info

Publication number
JP2010155764A
JP2010155764A JP2009000362A JP2009000362A JP2010155764A JP 2010155764 A JP2010155764 A JP 2010155764A JP 2009000362 A JP2009000362 A JP 2009000362A JP 2009000362 A JP2009000362 A JP 2009000362A JP 2010155764 A JP2010155764 A JP 2010155764A
Authority
JP
Japan
Prior art keywords
brick
mass
refractory
raw material
unfired brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009000362A
Other languages
Japanese (ja)
Other versions
JP5366560B2 (en
Inventor
Makio Ishihara
満喜雄 石原
Katsutoshi Sakakidani
勝利 榊谷
Takahiro Hori
貴宏 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Showa Kde Co Ltd
Original Assignee
Showa Kde Co Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Kde Co Ltd, Nisshin Steel Co Ltd filed Critical Showa Kde Co Ltd
Priority to JP2009000362A priority Critical patent/JP5366560B2/en
Publication of JP2010155764A publication Critical patent/JP2010155764A/en
Application granted granted Critical
Publication of JP5366560B2 publication Critical patent/JP5366560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an unfired brick refractory of which the linear percentage change when heated at 1,400°C for 3 hours is at least 3.5% and which requires the prevention of insertion of a bare metal from a joint between bricks lined in a container for treating a fused metal during the use of the unfired brick refractory which includes the main component comprising pyrophyllite and silicon carbide, both compounded with an ARSC scrap (a used carbonaceous refractory). <P>SOLUTION: The ARSC scrap is crushed to a grain size of 3 mm or smaller and then compounded with an amount of 10-60 mass%, preferably 10-40 mass%, into a virgin raw material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶融金属処理用の容器に内張りされていた、アルミナ・ろう石・炭化珪素(以下、炭珪という)・カーボン質使用済み耐火物を原料の一部として用いた不焼成れんが耐火物に関する。   The present invention relates to non-fired brick refractories using alumina, wax stone, silicon carbide (hereinafter referred to as carbonaceous silica), and carbonaceous used refractory as a part of raw material, lined in a container for molten metal treatment. About.

溶融金属処理用の容器に内張りされる耐火物には、アルミナ系、マグネシア系、アルミナ・シリカ系、ジルコン系、マグネシア・カーボン系、アルミナ・炭珪・カーボン系など種々の材質のものがあるが、いずれも使用による損耗が避けられず、規定回数使用されると、張り替えのため解体されている。   Refractories lined in molten metal processing containers include various types of materials such as alumina, magnesia, alumina / silica, zircon, magnesia / carbon, alumina / charcoal / carbon. In both cases, wear due to use is inevitable, and after being used a specified number of times, it has been dismantled for replacement.

解体された耐火物は廃棄処分されるが、近年ではこれを破砕して、そのまま或いは表面改質を行ってから耐火物の原料の一部としてリサイクルする試みが種々なされている。下記特許文献1に示されるものが、その一つの例で、この文献には、アルミナ・カーボン質の使用済み耐火物を3mm以下の粒度に粉砕したのち、これをそのまま40〜80質量%配合した不焼成れんが耐火物が開示されている。   Although the dismantled refractory is discarded, in recent years, various attempts have been made to crush it and recycle it as it is or as part of the refractory raw material after surface modification. The following Patent Document 1 is one example. In this document, after the used alumina / carbonaceous refractory is pulverized to a particle size of 3 mm or less, 40-80% by mass of this is blended as it is. Non-fired brick refractories are disclosed.

特開2005−281039号公報JP 2005-281039 A

従来のリサイクルは、高価な材料に対して考慮され、ろう石のような安価なものをリサイクルの対象とすることは考えられていなかった。   Conventional recycling has been considered for expensive materials, and it has not been considered to target inexpensive materials such as wax stones.

本発明者らは、廃棄物を減少させ、資源を有効活用するという観点からろう石を主体とする使用済み耐火物を不焼成れんが耐火物の原料として再使用することを意図とし、その配合量について種々検討を重ねた。本発明は、この検討結果に基づいてなされたものである。   The present inventors intend to reuse used refractories mainly composed of wax stone as raw materials for non-fired brick refractories from the viewpoint of reducing waste and effectively utilizing resources. Various investigations were repeated. The present invention has been made based on the results of this study.

請求項1に係わる発明は、ろう石や炭珪を成分の主体とする不焼成れんが耐火物において、アルミナ・ろう石・炭珪・カーボン質使用済み耐火物(以下、ARSC屑という)を3mm下の粒度に粉砕した粉砕物をそのまま原料の一部として10〜60質量%配合したことを特徴とする。   The invention according to claim 1 is a non-fired brick refractory mainly composed of wax stone or charcoal, and is 3 mm below alumina, wax stone, charcoal silica, and carbonaceous used refractory (hereinafter referred to as ARSC waste). The pulverized product pulverized to a particle size of 10 to 60% by mass is blended as part of the raw material.

本発明者らは、かねてより、溶融金属処理用の容器に内張りされたれんが間の目地より使用中に地金が差込むのを防止するには、れんがを1400℃で3時間加熱したときの線変化率が3.5%以上必要であることを経験則上知得していたが、ARSC屑を10〜60質量%配合したものは、れんが間の目地より地金が差込むのを防止するための上記条件を満たすことを見出し、本発明を完成するに至ったものである。   In order to prevent the ingot from being inserted during use from the joints between the bricks lined in the molten metal processing container, the present inventors have long used bricks when heated at 1400 ° C. for 3 hours. We knew from experience that the rate of line change is 3.5% or more, but those containing ARSC scraps of 10 to 60% by mass prevent the ingots from being inserted from the joints between the bricks. The present inventors have found that the above conditions for satisfying the above conditions are satisfied, and have completed the present invention.

請求項2に係わる発明は、請求項1に係わる発明のARSC屑の配合量を10〜40質量%としたことを特徴とする。   The invention according to claim 2 is characterized in that the blending amount of the ARSC waste of the invention according to claim 1 is 10 to 40% by mass.

本発明によると、バージン原料のみを使用した耐火物と同等以上の耐スポーリング性を有する耐火物を、ARSC屑を使用し得ることができた。   According to the present invention, ARSC waste can be used as a refractory having a spalling resistance equal to or higher than that of a refractory using only a virgin raw material.

実施例及び比較例のれんがの線変化率を示す図。The figure which shows the linear change rate of the brick of an Example and a comparative example. 実施例及び比較例のれんがの耐スポーリング性(崩壊回数)を示すグラフ。The graph which shows the spalling resistance (number of collapses) of the brick of an Example and a comparative example.

溶融金属処理用の容器に内張りされた使用済みれんがを張り替えのため解体したときに発生したアルミナ・ろう石・炭珪・カーボン質耐火物を破砕し、下記表1の粒度のリサイクル材を得た。このリサイクル材の成分は表2に示す通りである。このリサイクル材10質量%をろう石70質量%を主成分とするバージン原料に配合し、不焼成れんがを作成した。このれんがの成分はSiO263%、Al2O316%、SiC14%であり、見掛気孔率11.0%、かさ比重2.45、圧縮強さ33MPaでJIS R2554に準拠して求めた、1400℃で3時間加熱したときの線変化率は4.82%、1300℃で30分間加熱したのち、30分間の水冷を繰返し、れんがが崩壊するまでの回数(耐スポーリング性)を求めたところ、16回となった。   Crushing the alumina, wax stone, charcoal silica, and carbonaceous refractories generated when dismantling used bricks lined in a container for molten metal treatment to obtain a recycle material with the particle sizes shown in Table 1 below. . The components of this recycled material are as shown in Table 2. 10% by mass of this recycled material was blended with a virgin raw material containing 70% by mass of a wax stone as a main component to produce an unfired brick. The components of this brick are SiO 263%, Al 2 O 316%, SiC 14%, the apparent porosity is 11.0%, the bulk specific gravity is 2.45, and the compression strength is 33 MPa, which is determined in accordance with JIS R2554 for 3 hours. The linear change rate when heated was 4.82%, after heating at 1300 ° C. for 30 minutes, repeated water cooling for 30 minutes, and the number of times until the brick collapsed (spalling resistance) was determined to be 16 times. became.

実施例1のリサイクル材20質量%を、ろう石60質量%を主成分とするバージン原料に配合し、不焼成れんがを作成した。このれんがの成分はSiO259%、Al2O320%、SiC14%であり、見掛気孔率11.1%、かさ比重2.45、圧縮強さ32MPaで、実施例1を同様にして求めた線変化率は4.58%、耐スポーリング性を示すれんがの崩壊回数は18回であった。   20% by mass of the recycled material of Example 1 was blended with a virgin raw material mainly composed of 60% by mass of a wax stone to produce an unfired brick. The components of this brick are SiO 259%, Al 2 O 320%, SiC 14%, apparent porosity 11.1%, bulk specific gravity 2.45, compression strength 32 MPa, and the linear change rate obtained in the same manner as in Example 1 is The number of times of collapse of the brick showing 4.58% and spalling resistance was 18 times.

実施例1のリサイクル材30質量%を、ろう石50質量%を主成分とするバージン原料に配合し、不焼成れんがを作成した。このれんがの成分はSiO255%、Al2O324%、SiC14%であり、見掛気孔率12.4%、かさ比重2.44、圧縮強さ28MPaで、実施例1と同様にして求めた線変化率は4.43%、れんがの崩壊回数は14回であった。   30% by mass of the recycled material of Example 1 was blended with a virgin raw material mainly composed of 50% by mass of a wax, and an unfired brick was created. The components of this brick are SiO 255%, Al 2 O 324%, SiC 14%, apparent porosity 12.4%, bulk specific gravity 2.44, compressive strength 28 MPa, and the linear change rate obtained in the same manner as in Example 1 is The number of brick collapses was 4.43% and 14 times.

実施例1のリサイクル材40質量%を、ろう石40質量%を主成分とするバージン原料に配合し、不焼成れんがを作成した。このれんがの成分はSiO249%、Al2O328%、SiC15%であり、見掛気孔率12.8%、かさ比重2.43、圧縮強さ26MPaで、実施例1と同様にして求めた線変化率は4.27%、れんがの崩壊回数は14回であった。   40% by mass of the recycled material of Example 1 was blended with a virgin raw material mainly composed of 40% by mass of a wax stone to produce an unfired brick. The components of this brick are SiO249%, Al2O328%, SiC15%, apparent porosity 12.8%, bulk specific gravity 2.43, and compression strength 26 MPa. The linear change rate obtained in the same manner as in Example 1 is The number of brick collapses was 4.27% and 14 times.

実施例1のリサイクル材50質量%を、ろう石30質量%を主成分とするバージン原料に配合し、不焼成れんがを作成した。このれんがの成分はSiO243%、Al2O333%、SiC15%であり、見掛気孔率13.3%、かさ比重2.42、圧縮強さ22MPaで、実施例1と同様にして求めた線変化率は4.27%、れんがの崩壊回数は11回であった。   50% by mass of the recycled material of Example 1 was blended with a virgin raw material whose main component is 30% by mass of a wax stone to produce an unfired brick. The components of this brick were SiO 243%, Al 2 O 33%, SiC 15%, apparent porosity 13.3%, bulk specific gravity 2.42, compressive strength 22 MPa, and the linear change rate obtained in the same manner as in Example 1 was The number of brick collapses was 4.27% and 11 times.

実施例1のリサイクル材60質量%を、ろう石20質量%を主成分とするバージン原料に配合し、不焼成れんがを作成した。このれんがの成分はSiO238%、Al2O337%、SiC16%であり、見掛気孔率13.7%、かさ比重2.42、圧縮強さ20MPaで、実施例1と同様にして求めた線変化率は4.04%、れんがの崩壊回数は9回であった。   60% by mass of the recycled material of Example 1 was blended with a virgin raw material whose main component was 20% by mass of a wax stone to produce an unfired brick. The components of this brick are SiO 238%, Al 2 O 337%, SiC 16%, apparent porosity 13.7%, bulk specific gravity 2.42, compressive strength 20 MPa, and the linear change rate obtained in the same manner as in Example 1 is The number of brick collapses was 4.04% and 9 times.

比較例1
実施例1のリサイクル材70質量%を、ろう石10質量%を主成分とするバージン原料に配合し、不焼成れんがを作成した。このれんがの成分はSiO33%、AlO41%、SiC16%であり、見掛気孔率14.2%、かさ比重2.41、圧縮強さ19MPaで、実施例1と同様にして求めた線変化率は3.26%、れんがの崩壊回数は9回であった。
Comparative Example 1
70% by mass of the recycled material of Example 1 was blended with a virgin raw material whose main component was 10% by mass of a wax, to produce an unfired brick. The components of this brick SiO 2 33%, Al 2 O 3 41%, is SiC16% apparent porosity 14.2%, bulk density 2.41, with compressive strength 19 MPa, in the same manner as in Example 1 The calculated linear change rate was 3.26%, and the number of brick collapses was 9.

比較例2
実施例1のリサイクル材80質量%をろう石を含まないバージン原料に配合し、不焼成れんがを作成した。このれんがの成分はSiO27%、AlO46%、SiC17%であり、見掛気孔率14.6%、かさ比重2.42、圧縮強さ18MPaで、実施例1と同様にして求めた線変化率は2.96%、れんがの崩壊回は8回であった。
Comparative Example 2
80% by mass of the recycled material of Example 1 was blended with a virgin raw material that does not contain a wax, to produce an unfired brick. The components of this brick are SiO 2 27%, Al 2 O 3 46%, SiC 17%, apparent porosity 14.6%, bulk specific gravity 2.42 and compressive strength 18 MPa. The calculated linear change rate was 2.96%, and the number of brick collapses was 8.

比較例3(従来例)
ろう石80質量%を主成分とするバージン原料にて不焼成れんがを作成した。このれんがの成分はSiO68%、AlO11%、SiC17%であり、見掛気孔率12.0%、かさ比重2.42、圧縮強さ34MPaで、実施例1と同様にして求めた線変化率は4.82%、れんがの崩壊回数は14回であった。
以上の結果を表3に示す。図1は線変化率、図2は耐スポーリング性(崩壊回数)を示す図である。
Comparative example 3 (conventional example)
Unfired brick was made of a virgin raw material mainly composed of 80% by weight of a wax. The components of this brick are 68% SiO 2 , 11% Al 2 O 3 and 17% SiC, with an apparent porosity of 12.0%, bulk specific gravity of 2.42 and compressive strength of 34 MPa, as in Example 1. The obtained linear change rate was 4.82%, and the number of brick collapses was 14.
The results are shown in Table 3. FIG. 1 is a graph showing the linear change rate, and FIG. 2 is a diagram showing the spalling resistance (the number of collapses).

前述したように、溶融金属処理用の容器に内張りされたれんが間の目地より使用中に地金が差込むのを防止するためには、れんがの線変化率は3.5%以上必要であるが、図1に示すように実施例1〜6のれんがはいずれもこの条件を満たした。また実施例1〜4のれんがは崩壊回数が比較例3のバージン原料のみで作成したれんがと同等以上であり、とくに実施例1及び2のれんがは、比較例3のれんがよりも崩壊に至るまでの回数が増加し、耐スポーリング性が向上した。   As described above, the linear change rate of brick is required to be 3.5% or more in order to prevent the ingot from being inserted during use from the joint between the bricks lined in the container for treating the molten metal. However, as shown in FIG. 1, the bricks of Examples 1 to 6 all satisfied this condition. In addition, the bricks of Examples 1 to 4 have the number of collapses equal to or greater than that of the bricks made only from the virgin raw material of Comparative Example 3, and in particular, the bricks of Examples 1 and 2 until the brick of Comparative Example 3 collapses more. The number of times increased and spalling resistance improved.

Claims (2)

ろう石や炭化珪素を成分の主体とする不焼成れんが耐火物において、アルミナ・ろう石・炭化珪素・カーボン質使用済み耐火物を3mm以下の粒度に粉砕した粉砕物をそのまま原料の一部として10〜60質量%配合したことを特徴とする不焼成れんが耐火物。   A non-fired brick refractory mainly composed of wax or silicon carbide, and a pulverized product obtained by pulverizing alumina, wax, silicon carbide, or carbonaceous used refractory to a particle size of 3 mm or less is used as part of the raw material. Unfired brick refractory characterized by blending ~ 60 mass%. 前記アルミナ・ろう石・炭化珪素・カーボン質使用済み耐火物の配合量を10〜40質量%としたことを特徴とする請求項1記載の不焼成れんが耐火物。   The unfired brick refractory according to claim 1, wherein a blending amount of the alumina, wax, silicon carbide, and carbonaceous used refractory is 10 to 40% by mass.
JP2009000362A 2009-01-05 2009-01-05 Non-fired brick refractory Active JP5366560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000362A JP5366560B2 (en) 2009-01-05 2009-01-05 Non-fired brick refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009000362A JP5366560B2 (en) 2009-01-05 2009-01-05 Non-fired brick refractory

Publications (2)

Publication Number Publication Date
JP2010155764A true JP2010155764A (en) 2010-07-15
JP5366560B2 JP5366560B2 (en) 2013-12-11

Family

ID=42573973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000362A Active JP5366560B2 (en) 2009-01-05 2009-01-05 Non-fired brick refractory

Country Status (1)

Country Link
JP (1) JP5366560B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907312B2 (en) * 2014-01-23 2016-04-26 Jfeスチール株式会社 Method for manufacturing lining structure of molten metal container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743209B2 (en) * 1990-04-11 1998-04-22 ハリマセラミック株式会社 Carbon containing refractories
JP2004307287A (en) * 2003-04-08 2004-11-04 Shinagawa Refract Co Ltd Regenerated carbon-containing brick, and method of manufacturing the same
JP2005281039A (en) * 2004-03-29 2005-10-13 Nisshin Steel Co Ltd Unfired brick mainly containing alumina component, and method of regenerating alumina-carbon spent refractory into unfired brick mainly containing alumina component
JP4077774B2 (en) * 2003-08-19 2008-04-23 新日本製鐵株式会社 Reusing used refractories

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743209B2 (en) * 1990-04-11 1998-04-22 ハリマセラミック株式会社 Carbon containing refractories
JP2004307287A (en) * 2003-04-08 2004-11-04 Shinagawa Refract Co Ltd Regenerated carbon-containing brick, and method of manufacturing the same
JP4077774B2 (en) * 2003-08-19 2008-04-23 新日本製鐵株式会社 Reusing used refractories
JP2005281039A (en) * 2004-03-29 2005-10-13 Nisshin Steel Co Ltd Unfired brick mainly containing alumina component, and method of regenerating alumina-carbon spent refractory into unfired brick mainly containing alumina component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907312B2 (en) * 2014-01-23 2016-04-26 Jfeスチール株式会社 Method for manufacturing lining structure of molten metal container
JPWO2015111394A1 (en) * 2014-01-23 2017-03-23 Jfeスチール株式会社 Method for manufacturing lining structure of molten metal container

Also Published As

Publication number Publication date
JP5366560B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5842592B2 (en) Reusing used magnesia carbon bricks
JP2018184315A (en) Carbon-containing castable refractory and method for producing carbon-containing castable refractory
CN109627026A (en) A kind of regeneration silicon carbide Al2O3- SiC-C iron runner castable and preparation method thereof
JP5633505B2 (en) Reuse of spent carbon-containing refractories
JP4572521B2 (en) Castable refractories, manufacturing method thereof and lance pipe
JP6380145B2 (en) Slag product material and manufacturing method thereof
JP6621784B2 (en) Refractory brick and method for producing refractory brick
KR101191743B1 (en) Method for Leaching Magnesium from Ferronickel Slag
JP5366560B2 (en) Non-fired brick refractory
JP5980762B2 (en) Amorphous refractories using used MgO-C brick waste and used alumina magnesia amorphous refractory waste
JP5338096B2 (en) Slag removing material and slag removing method
Silva et al. Castable systems designed with powders reclaimed from dismantled steel induction furnace refractory linings
JP2006016212A (en) Concrete composition
JP5663121B2 (en) Reusing used carbon-containing unfired brick
EP0703198B1 (en) Carbon refractory for blast furnace and method for manufacturing such carbon refractory
JP2013147414A (en) Method for recycling carbon-containing neutral/acid refractory and method of manufacturing
JP4475635B2 (en) Recycling method to recycle unfired bricks mainly composed of alumina components and refractories after use of alumina / carbonaceous materials to unfired bricks mainly composed of alumina components
JP5760266B2 (en) Mud material for molten metal
JP2006188429A (en) Zirconia-based refractory
CN101723696A (en) Method for manufacturing fused cast zirconia-alumina ramming mass from casting waste materials
CN105272285A (en) Al2O3-CaO-C brick for ladle bottom and preparation method thereof
JP2004307287A (en) Regenerated carbon-containing brick, and method of manufacturing the same
JP2006182578A (en) Admixture for concrete containing nonferrous refining slag aggregate and concrete composition using the same
JP2018168014A (en) Unfired brick refractory and method for producing unfired brick refractory
JPH09328354A (en) Recycling for raw material from used refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Ref document number: 5366560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250