JP2010155761A - Method of producing micro silicon carbide, micro silicon nitride, metal silicon and silicon chloride - Google Patents

Method of producing micro silicon carbide, micro silicon nitride, metal silicon and silicon chloride Download PDF

Info

Publication number
JP2010155761A
JP2010155761A JP2008335811A JP2008335811A JP2010155761A JP 2010155761 A JP2010155761 A JP 2010155761A JP 2008335811 A JP2008335811 A JP 2008335811A JP 2008335811 A JP2008335811 A JP 2008335811A JP 2010155761 A JP2010155761 A JP 2010155761A
Authority
JP
Japan
Prior art keywords
carbon
silicon
diatomaceous earth
chloride
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008335811A
Other languages
Japanese (ja)
Inventor
Hideki Murakami
英樹 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUO SILIKA CO Ltd
Akita University NUC
Original Assignee
CHUO SILIKA CO Ltd
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUO SILIKA CO Ltd, Akita University NUC filed Critical CHUO SILIKA CO Ltd
Priority to JP2008335811A priority Critical patent/JP2010155761A/en
Publication of JP2010155761A publication Critical patent/JP2010155761A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing micro silicon carbide, micro silicon nitride, metal silicon and silicon chloride which become substances of a high functional material using micro form and porous structure of a diatom earth particle. <P>SOLUTION: The micro silicon carbide, micro silicon nitride, metal silicon, silicon chloride or the like to be substances of a high functional material is produced using the micro form and porous structure of the diatom earth. For example, the micro silicon carbide is synthesized by impregnating the inside of diatom earth raw soil or fired diatom earth with a colloidal solution of powdery carbon of activated carbon or graphite or carbonaceous substance such as fullerene or carbon nanotube and after drying, heating to 1,500°C under an inert gas atmosphere to cause the reaction of the resultant carbon source with silicon dioxide in the grain-boundary or fine pore of the diatom earth particles which are present countlessly in the diatom earth while keeping the form of the carbon source. A uniform micro silicon carbide particle is also produced by making the particle size of the carbon source uniform using the property of keeping the shape of the carbon source. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、珪藻土の粒子の微小形態と多孔構造を利用した、微細炭化珪素、微細窒化珪素、金属シリコン、塩化珪素の製造方法に関する。   The present invention relates to a method for producing fine silicon carbide, fine silicon nitride, metal silicon, and silicon chloride, utilizing the fine morphology and porous structure of diatomaceous earth particles.

現在の炭化珪素や金属シリコンの原料とされている珪石や珪砂は、共有結合が主体の二酸化珪素で構成されており、1,713℃と融点が高く、還元するのに多くの電力を必要とする。
又、図2に示す様に、反応を効率的にするために、珪石を適当な大きさに粉砕するのにもエネルギーを消費し、還元剤であるコークスも添加する必要がある。
それに対して珪藻土は、大きさ数10μmの珪藻化石の集合体であるため、比表面積が大きく、成分も主に非晶質二酸化珪素やメタ珪酸なので、100℃ほど融点が珪石や珪砂よりも低いという利点がある。更に、製品化の過程で粉末或いは粒状に加工されているため、改めて粉砕しなくて済む(図1)。
Silica stone and silica sand, which are currently used as raw materials for silicon carbide and metal silicon, are composed of silicon dioxide mainly composed of covalent bonds, have a high melting point of 1,713 ° C., and require a lot of electric power for reduction. To do.
In addition, as shown in FIG. 2, in order to make the reaction efficient, it is necessary to add energy to pulverize the silica stone to an appropriate size and to add coke as a reducing agent.
On the other hand, diatomaceous earth is an aggregate of diatom fossils with a size of several tens of μm, and therefore has a large specific surface area and mainly contains amorphous silicon dioxide and metasilicic acid. There is an advantage. Furthermore, since it is processed into a powder or a granule in the process of commercialization, it does not need to be crushed again (FIG. 1).

従来、醸造工場の濾過工程から排出される濾過廃材を必要に応じ造粒、炭化等の処理後、賦活処理し、活性炭の吸着能と珪藻土の調湿能とを有した濾材とすることが知られている(特許文献1を参照)。
この公知技術では、ビール工場の濾過工程の濾過廃材を電気炉に入れ、窒素ガス雰囲気中にて、700℃で2時間加熱して有機物を炭化させ、この炭化物100重量部に対して、バインダーとしてデンプン10重量部、水15重量部を加えて混練した後、造粒機に供給し、平均粒径2mmに造粒し、この造粒物を、水蒸気を35%含む窒素ガス雰囲気で、900℃にて2時間賦活処理して、濾材を製造するものである。
又、秋田県産珪藻土とカーボンブラックとを混合し、アルゴンガス雰囲気中1,450℃で1時間加熱して炭化珪素を合成し、大気中において700℃で加熱して残留炭素を除去し、更に炭化珪素粉末を1,500-1,800℃、50MPaで15-18分間放電プラズマ焼結することも提案されている(非特許文献1を参照)。
この方法では、単純に混合された炭素源であるカーボンブラックとSiOガスが反応して炭化珪素となるため、炭化珪素の粒径は混合された炭素源の粒径と同じになり、更なる微細化と均一性が求められていた。
Conventionally, it is known that filtration waste material discharged from the brewery's filtration process is subjected to activation treatment after granulation, carbonization, etc., if necessary, to obtain a filter medium having activated carbon adsorption capacity and diatomite humidity conditioning capacity. (See Patent Document 1).
In this known technique, filtered waste material from the filtration process of a beer factory is put into an electric furnace, and heated in a nitrogen gas atmosphere at 700 ° C. for 2 hours to carbonize organic matter. As a binder, 100 parts by weight of the carbide is used as a binder. After adding 10 parts by weight of starch and 15 parts by weight of water and kneading, the mixture is supplied to a granulator and granulated to an average particle size of 2 mm. The granulated product is 900 ° C. in a nitrogen gas atmosphere containing 35% of water vapor. The filter medium is produced by activating treatment for 2 hours.
In addition, diatomaceous earth from Akita Prefecture and carbon black are mixed, heated in an argon gas atmosphere at 1,450 ° C. for 1 hour to synthesize silicon carbide, heated in the atmosphere at 700 ° C. to remove residual carbon, It has also been proposed to perform discharge plasma sintering of silicon carbide powder at 1,500-1,800 ° C. and 50 MPa for 15-18 minutes (see Non-Patent Document 1).
In this method, carbon black, which is a simply mixed carbon source, reacts with SiO gas to form silicon carbide. Therefore, the particle size of silicon carbide becomes the same as the particle size of the mixed carbon source, and further finer And uniformity were demanded.

前者は、珪藻土を用いるものの、濾過廃材を最終的に濾材として再生し、更に吸着能を付加させるために、加熱し炭化させるものであって、炭化珪素、窒化珪素、金属シリコン、塩化珪素を製造するものではなかった。
後者の秋田県産珪藻土とカーボンブラックとを混合する方法では、単純に混合された炭素と珪藻土から発生するSiOガスが反応して炭化珪素となるため、炭化珪素の粒径は混合された炭素源の粒径と同じになるのが限界であり、更なる微細化と均一性が求められていた。

特開2003−251177号公報 International Conference on Processing Materials for Properties (2nd) San Francisco Calif. Page.1081-1082(2000)
The former uses diatomaceous earth, but finally recycles the waste filter material as a filter material and heats and carbonizes it to add adsorption capacity, and produces silicon carbide, silicon nitride, metal silicon, and silicon chloride. It wasn't something to do.
In the latter method of mixing Akita Prefecture diatomaceous earth and carbon black, the mixed carbon and SiO gas generated from diatomaceous earth react to form silicon carbide, so the silicon carbide particle size is the mixed carbon source. It was the limit to be the same as the particle size of the material, and further refinement and uniformity were required.

JP 2003-251177 A International Conference on Processing Materials for Properties (2nd) San Francisco Calif. Page.1081-1082 (2000)

本発明は、珪藻土粒子の微小形態と多孔構造を利用し、高機能材料の物質となる、微細炭化珪素、微細窒化珪素、金属シリコン、塩化珪素を作製する製造方法を提供することを目的とする。   An object of the present invention is to provide a production method for producing fine silicon carbide, fine silicon nitride, metal silicon, and silicon chloride, which is a substance of a high-functional material, utilizing the fine form and porous structure of diatomaceous earth particles. .

本発明の微細炭化珪素の製造方法は、珪藻土の粒子の微小形態と多孔構造を利用し、混合又は吸収させた炭素源との接触面積を大きくして、不活性ガス雰囲気下で作製したものである。
本発明において、不活性ガスは、アルゴンガスが一般的であり、炭素が空気中の酸素と反応して目的以外に消費されるのを防ぐ。
本発明の等粒微細窒化珪素の製造方法は、珪藻土の粒子の微小形態と多孔構造を利用し、混合又は吸収させた炭素源との接触面積を大きくして、窒素ガス又は空気雰囲気下で作製したものである。
本発明の金属シリコンの製造方法は、珪藻土の粒子の微小形態と多孔構造を利用し、混合又は吸収させた炭素源(難分解性有機塩素化合物を含む)又は有機物との接触面積を大きくして、不活性ガス、水素ガス、空気、又は真空雰囲気下で作製したものである。
本発明において、水素ガスは、難分解性有機塩素化合物の分解を促し、更に炭素が空気中の酸素と反応して目的以外に消費されるのを防ぐ。
本発明の塩化珪素の製造方法は、珪藻土の粒子の微小形態と多孔構造を利用し、混合又は吸収させた塩化物又は塩素源との接触面積を大きくして、無水蒸気雰囲気下で作製したものである。
本発明において、無水蒸気雰囲気は、生成した塩化珪素の分解を防ぐ。
The method for producing fine silicon carbide according to the present invention is produced under an inert gas atmosphere by utilizing the fine form and porous structure of diatomaceous earth particles, increasing the contact area with the mixed or absorbed carbon source. is there.
In the present invention, the inert gas is generally argon gas and prevents carbon from reacting with oxygen in the air and being consumed for purposes other than the intended purpose.
The method for producing equal grain fine silicon nitride of the present invention uses a micro form of diatomaceous earth particles and a porous structure, increases the contact area with a mixed or absorbed carbon source, and is produced in a nitrogen gas or air atmosphere. It is a thing.
The method for producing metal silicon according to the present invention uses the micromorphology and porous structure of diatomaceous earth particles to increase the contact area with mixed or absorbed carbon sources (including persistent organic chlorine compounds) or organic matter. , Manufactured under an inert gas, hydrogen gas, air, or a vacuum atmosphere.
In the present invention, the hydrogen gas promotes the decomposition of the hardly decomposable organic chlorine compound, and further prevents the carbon from reacting with oxygen in the air and being consumed for purposes other than the intended purpose.
The method for producing silicon chloride according to the present invention is produced in a water-free atmosphere by utilizing the fine form and porous structure of diatomaceous earth particles, increasing the contact area with the mixed or absorbed chloride or chlorine source. It is.
In the present invention, the steamless atmosphere prevents decomposition of the generated silicon chloride.

本発明の微細炭化珪素、微細窒化珪素、金属シリコン、塩化珪素を製造する方法は、珪藻土の粒子の微小形態と多孔構造を利用するもので、効率良く反応が進み、従来よりも少ない消費電力で作製することができる効果がある。
又、金属シリコンと塩化珪素の場合は、食品産業の使用済珪藻土濾過助剤を原料にすることもでき、埋立処分場への負荷を減らす効果がある。
The method for producing fine silicon carbide, fine silicon nitride, metal silicon, and silicon chloride of the present invention utilizes the fine form and porous structure of diatomaceous earth particles, and the reaction proceeds efficiently and consumes less power than before. There is an effect that can be produced.
In the case of metallic silicon and silicon chloride, used diatomaceous earth filter aid in the food industry can be used as a raw material, which has the effect of reducing the load on the landfill site.

本発明の微細炭化珪素、微細窒化珪素、金属シリコン、塩化珪素を作製する製造方法の一実施例に基づいて、以下に説明する。
本発明の微細炭化珪素、微細窒化珪素、金属シリコン、塩化珪素等の高機能材料の物質は、珪藻土粒子の微小形態と多孔構造を活かして作製する。
A description will be given below based on an embodiment of a manufacturing method for producing fine silicon carbide, fine silicon nitride, metal silicon, and silicon chloride of the present invention.
Substances of high-functional materials such as fine silicon carbide, fine silicon nitride, metal silicon, and silicon chloride of the present invention are produced by taking advantage of the fine form and porous structure of diatomaceous earth particles.

本発明における珪藻土は、珪藻由来の二酸化珪素を主成分とする堆積物であり、通常、珪藻土の原土を粉砕し乾燥したものを、水樋によって砂や微細な粘土分を除去し、必要に応じ、数時間加熱処理した後、水洗を繰り返し、脱水、乾燥して用いられる。
好ましくは800℃以上で数分間加熱して、不要有機物や揮発性成分を除去する、いわゆる焼成を行い、精製・均一化したものを用いることができる。
一度食品の濾過に使用された珪藻土で、その細孔内部まで良質な有機物で充填されているものは、金属シリコンを作製する場合、珪藻土の二酸化珪素と有機物を構成する炭素との接触面積が広いので、更に好ましい。
The diatomaceous earth in the present invention is a sediment mainly composed of diatom-derived silicon dioxide, and usually crushed and dried diatomaceous earth is removed from sand and fine clay with a water tank. Accordingly, after heat treatment for several hours, washing with water is repeated, followed by dehydration and drying.
Preferably, it is heated at 800 ° C. or higher for several minutes to remove unnecessary organic substances and volatile components, so-called calcination, purified and homogenized can be used.
Diatomaceous earth once used for food filtration, filled with high-quality organic matter to the inside of its pores, has a wide contact area between silicon dioxide of diatomaceous earth and carbon constituting organic matter when producing metallic silicon Therefore, it is more preferable.

本発明における炭素源は、微細炭化珪素と微細窒化珪素に対しては、活性炭や黒鉛の粉末炭素、フラーレンやカーボンナノチューブ等の炭素物質を用いることができ、これらを予め等粒に揃えておくことにより、等粒微細炭化珪素や等粒微細窒化珪素も作製できる。 又、金属シリコンと塩化珪素の作製に対しては、前記の炭素源に加え、珪藻土を、食品等を主体とする対象の濾過に使用した後に、その細孔内部に充填された有機物も利用することができる。
特に、一度食品の濾過に使用された珪藻土に更に炭素物質を併用すると、炭素源が、細孔内部に、均一に十分に充填される。この場合は、珪藻土外部からコロイド溶液化した炭素を吸収浸透させるだけで良い。
この様にして、炭素源が細孔内部に、均一に十分充填された後、105℃程度の加熱で余分な水分を除去すると、急激な加熱時における試料の飛散を防ぐことができる。
更に、無酸素雰囲気下において、500℃程度で、有機物の炭化処理を行うと反応がスムーズに進むので好ましい。
金属シリコン作製時に使用する炭素源の一つとして、PCBに代表される難分解性有機塩素化合物を使用しても良い。珪藻土は、吸油性も高く、これらを容易に内部に充填できる。
PCBの場合、それを構成する炭素と水素は還元剤として働き、塩素はシリコンの精製時に消費されるので問題にならない。又、PCBの分解は、水素雰囲気、850℃以上で速やかに進行するので、二酸化珪素の還元処理温度である1,750℃以上では、副生成物も含め完全に分解処理できる。
As the carbon source in the present invention, for fine silicon carbide and fine silicon nitride, carbon materials such as activated carbon and graphite powder carbon, fullerene and carbon nanotubes can be used, and these should be arranged in equal grains in advance. Accordingly, uniform grain fine silicon carbide and uniform grain fine silicon nitride can also be produced. For the production of metallic silicon and silicon chloride, in addition to the above carbon source, diatomaceous earth is used for filtration of objects mainly composed of food, etc., and then organic substances filled in the pores are also used. be able to.
In particular, when a carbon substance is further used in combination with diatomaceous earth once used for filtering food, the carbon source is uniformly and sufficiently filled inside the pores. In this case, it is only necessary to absorb and infiltrate carbon in colloidal solution from the outside of diatomaceous earth.
In this manner, after the carbon source is sufficiently sufficiently filled in the pores, the excess water is removed by heating at about 105 ° C., so that the sample can be prevented from scattering during the rapid heating.
Furthermore, it is preferable to perform carbonization treatment of the organic substance at about 500 ° C. in an oxygen-free atmosphere because the reaction proceeds smoothly.
As one of the carbon sources used for producing metal silicon, a hardly decomposable organochlorine compound represented by PCB may be used. Diatomaceous earth is also highly oil-absorbing and can easily be filled inside.
In the case of PCB, carbon and hydrogen constituting it act as a reducing agent, and chlorine is consumed during the purification of silicon, so that there is no problem. In addition, since PCB decomposition proceeds rapidly in a hydrogen atmosphere at 850 ° C. or higher, the decomposition treatment including by-products can be completely performed at a silicon dioxide reduction processing temperature of 1,750 ° C. or higher.

前記炭化珪素は、珪藻土原土又は焼成珪藻土内部に、コロイド溶液化した活性炭や黒鉛等の粉末炭素、フラーレンやカーボンナノチューブ等の炭素物質を含浸させ、乾燥後、不活性ガス雰囲気下、1,400〜1,600℃まで加熱して得られる。炭素源は珪藻土内に無数に存在する珪藻土粒子の粒界や細孔内で珪素と反応を起こし、炭素源の形状を維持したまま、極めて微細で均一な微細炭化珪素が合成される。
又、予め炭素源の粒度を等粒に揃えておくことにより、等粒微細炭化珪素も作製できる。
The silicon carbide is impregnated with colloidal solution powdered carbon such as activated carbon or graphite, or carbon material such as fullerene or carbon nanotubes in diatomaceous earth or calcined diatomaceous earth, and after drying, 1,400 in an inert gas atmosphere. Obtained by heating to ˜1,600 ° C. The carbon source reacts with silicon in the grain boundaries and pores of diatomaceous earth particles innumerable in diatomaceous earth, and extremely fine and uniform fine silicon carbide is synthesized while maintaining the shape of the carbon source.
Further, by aligning the carbon source with a uniform grain size, it is possible to produce a uniform silicon carbide fine grain.

前記窒化珪素は、反応時の雰囲気を窒素ガスや空気に変えることにより合成される。すなわち、珪藻土原土又は焼成珪藻土内部に、コロイド溶液化した活性炭や黒鉛等の粉末炭素、フラーレンやカーボンナノチューブ等の炭素物質を含浸させ、乾燥後、窒素ガス又は空気雰囲気下、1、400〜1,600℃まで加熱して得られる。
炭化珪素の場合と同様、予め炭素源の粒度を等粒に揃えておくことにより、等粒微細窒化珪素も作製できる。
The silicon nitride is synthesized by changing the atmosphere during the reaction to nitrogen gas or air. That is, impregnated diatomaceous earth or calcined diatomaceous earth is impregnated with powdered carbon such as activated carbon or graphite, carbon materials such as fullerene and carbon nanotubes in colloidal solution, and after drying, in a nitrogen gas or air atmosphere, 1, 400-1 , Heated to 600 ° C.
As in the case of silicon carbide, uniform grain fine silicon nitride can be produced by aligning the grain size of the carbon source to equal grains in advance.

前記金属シリコンは、無数の珪藻土粒子粒界や細孔内に、活性炭や黒鉛等の炭素源、PCBに代表される難分解性有機塩素化合物、又は有機物を充填することにより、これらに含まれる炭素と珪藻土の二酸化珪素の接触面積を増加させ、反応効率を上げることにより作製する。
加えて、珪藻土は、非晶質二酸化珪素やメタ珪酸で構成されるため、通常の金属シリコンの原料である珪石や珪砂よりも融点が低く、これらよりも少ないエネルギー消費量で金属シリコンに還元できる(図1)。
金属シリコン作製の場合、短時間で1,700〜1,900℃に昇温することにより、同時に生成される炭化珪素の量を抑えることができ、高収率で金属シリコンを得ることができる。
珪藻土細孔内に充填された有機物を炭素源とする場合、スムーズな反応を起こすため、無酸素雰囲気下において、500℃程度で炭化させておくのが好ましい。
難分解性有機塩素化合物を還元剤に使用した場合、安全のため、真空雰囲気下、又は加熱過程において、それらの珪藻土からの蒸発を防ぐ必要がある。これについては、珪藻土の吸油性と断熱性を利用して解決する。
珪藻土を容器状に成型し、それに対して、還元剤にもなるパラフィンを、電磁波(マイクロ波)を用いた加熱装置によって含浸させる。珪藻土は電磁波を通すので、これによる加熱を採用することにより、断熱性の高い珪藻土を均等に加熱でき、パラフィンを効率良く吸収させることができる。
難分解性有機塩素化合物を珪藻土に吸油させて、先の、成型してパラフィンを含浸させた珪藻土容器に入れる。最後に、パラフィンを含浸させた珪藻土製の蓋で容器を閉じ、溶融したパラフィンを蓋の隙間に充填して密封する。これにより、真空を引かれても、難分解性有機塩素化合物の蒸発は防げる。
更に、前記珪藻土容器の周囲に別の珪藻土を充填することにより、その断熱性で、850℃までの加熱過程においても、珪藻土容器内部はパラフィンの融点以上に昇温せず、密封が維持される。850℃以上では、難分解性有機塩素化合物が蒸発してきても、既にその分解温度を超えているので、問題にならない。
The metal silicon is filled with carbon sources such as activated carbon and graphite, persistent organic chlorine compounds typified by PCB, or organic substances in countless diatomaceous earth grain boundaries and pores. It is produced by increasing the contact area between silicon dioxide and diatomaceous earth and increasing the reaction efficiency.
In addition, diatomaceous earth is composed of amorphous silicon dioxide and metasilicic acid, so it has a lower melting point than silica or silica, which is the usual raw material for metallic silicon, and can be reduced to metallic silicon with less energy consumption. (FIG. 1).
In the case of metal silicon production, by raising the temperature to 1,700 to 1,900 ° C. in a short time, the amount of silicon carbide produced at the same time can be suppressed, and metal silicon can be obtained with high yield.
When the organic substance filled in the diatomaceous earth pores is used as a carbon source, it is preferably carbonized at about 500 ° C. in an oxygen-free atmosphere in order to cause a smooth reaction.
When a hardly decomposable organochlorine compound is used as the reducing agent, it is necessary to prevent evaporation from diatomaceous earth in a vacuum atmosphere or in the heating process for safety. This is solved by utilizing the oil absorption and heat insulation properties of diatomaceous earth.
Diatomaceous earth is molded into a container shape, and paraffin which is also a reducing agent is impregnated with a heating device using electromagnetic waves (microwaves). Since diatomaceous earth transmits electromagnetic waves, by adopting heating by this, diatomaceous earth with high heat insulation can be heated evenly and paraffin can be absorbed efficiently.
Refractory organochlorine compound is absorbed into diatomaceous earth and placed in a diatomaceous earth container that has been molded and impregnated with paraffin. Finally, the container is closed with a lid made of diatomaceous earth impregnated with paraffin, and melted paraffin is filled in the gap between the lids and sealed. Thereby, even if a vacuum is pulled, evaporation of a hardly decomposable organochlorine compound can be prevented.
Furthermore, by filling another diatomaceous earth around the diatomaceous earth container, the heat insulation property of the diatomaceous earth container does not raise the temperature above the melting point of paraffin even in the heating process up to 850 ° C., and the sealing is maintained. . Above 850 ° C., even if the hardly decomposable organochlorine compound evaporates, the decomposition temperature has already been exceeded, so there is no problem.

前記塩化珪素は、珪藻土粒子の粒界や細孔内に活性炭や黒鉛等の炭素源(二酸化珪素の還元剤)と塩化ナトリウムや塩化カリウム等の塩化物(珪素の塩化用の塩素源)を液化して吸収させ、これを900〜1,400℃の高温で、必要に応じて塩素ガスを添加し、無水蒸気雰囲気下で反応させることにより、従来の方法よりも、効率的に作製できる。
この時の液化の態様としては、炭素源の場合、活性炭や黒鉛等の微粉末のコロイド溶液で、一方、塩化物又は塩素源では水溶液やコロイド溶液である。
醤油濾過等に使用された高塩分含有廃棄珪藻土ならば、食品由来の有機物と塩化ナトリウムを既に含んでおり、そのまま塩化珪素の原料にできる。
又、雰囲気としては、生成した塩化珪素の分解を防ぐために、水蒸気を含まなければ、不活性ガス、水素ガス、塩素ガスの何れでも、或いはそれらのガスを混合した状態の雰囲気でも良い。
Silicon chloride liquefies carbon sources such as activated carbon and graphite (reducing agent for silicon dioxide) and chlorides such as sodium chloride and potassium chloride (chlorine source for chlorination of silicon) in the grain boundaries and pores of diatomaceous earth particles. Then, it can be produced more efficiently than the conventional method by adding chlorine gas as necessary at a high temperature of 900 to 1,400 ° C. and reacting it in a non-water vapor atmosphere.
The liquefaction mode at this time is a fine powder colloidal solution such as activated carbon or graphite in the case of a carbon source, and an aqueous solution or colloidal solution in the case of a chloride or chlorine source.
The high-salt-containing waste diatomaceous earth used for soy sauce filtration and the like already contains food-derived organic matter and sodium chloride, and can be used as it is as a raw material for silicon chloride.
The atmosphere may be any of inert gas, hydrogen gas, chlorine gas, or a mixture of these gases as long as it does not contain water vapor in order to prevent decomposition of the generated silicon chloride.

更に、有機物を主体とする食品等の濾過に使用したことで、その細孔内部が有機物で充填されている使用済珪藻土濾過助剤に、活性炭や黒鉛等の炭素源をコロイド溶液化したものを混合し、不活性ガス又は真空雰囲気下、500℃程度で炭化処理を行い、次いで、不活性ガス雰囲気下で、1,400〜1,500℃程度で加熱することにより、炭化珪素を製造することもできる。   Furthermore, by using it for the filtration of foods mainly composed of organic matter, a used diatomaceous earth filter aid whose pores are filled with organic matter, and a colloidal solution of carbon sources such as activated carbon and graphite. Mixing, carbonizing at about 500 ° C. in an inert gas or vacuum atmosphere, and then heating at about 1,400 to 1,500 ° C. in an inert gas atmosphere to produce silicon carbide You can also.

砂糖の精製過程で使用した使用済珪藻土濾過助剤を準備した。この使用済珪藻土濾過助剤は、その細孔内部まで良質な有機物でほぼ完全に充填されている。これに黒鉛を1:1から1:4の重量比で均一に混合し、105℃で乾燥させた。これらの混合物を、赤外線ゴールドイメージ炉(MR−39H/Dアルバック理工株式会社)を用いて、アルゴンガス雰囲気下、500℃で加熱し、炭化を行った。   A used diatomaceous earth filter aid used in the sugar refining process was prepared. The spent diatomaceous earth filter aid is almost completely filled with high-quality organic matter into the pores. The graphite was uniformly mixed at a weight ratio of 1: 1 to 1: 4 and dried at 105 ° C. These mixtures were carbonized by heating at 500 ° C. in an argon gas atmosphere using an infrared gold image furnace (MR-39H / D ULVAC-RIKO, Inc.).

前記炭化した使用済珪藻土濾過助剤を、更に1,500℃まで1時間に200℃ずつ昇温し、炭化珪素の作製を行った。生成物から余分な炭素を960℃で焼成することにより除去した後、粉末X線回析装置と走査型電子顕微鏡で同定した結果、全ての試料において、珪藻土内部に充填されていた食物繊維や添加した黒鉛粒子と同じ形をした、微細で均一な炭化珪素の合成に成功した。   The carbonized spent diatomaceous earth filter aid was further heated to 1,500 ° C. at 200 ° C. per hour to produce silicon carbide. After removing excess carbon from the product by firing at 960 ° C., as a result of identification with a powder X-ray diffraction apparatus and a scanning electron microscope, dietary fibers and additions filled in diatomaceous earth in all samples We succeeded in synthesizing fine and uniform silicon carbide with the same shape as the graphite particles.

前記炭化した使用済珪藻土濾過助剤を、赤外線ゴールドイメージ炉(MR−39H/Dアルバック理工株式会社)の最大出力で、できるだけ速く1,750℃まで昇温させて(同時に生成する炭化珪素の量を少なくするため)、金属シリコンの作製を行った。生成物について、粉末X線回析装置を用いて同定を行った結果、炭化珪素とガラスとの混合物であったものの、金属シリコンの作製に成功した。   The carbonized spent diatomaceous earth filter aid is heated up to 1,750 ° C. as quickly as possible at the maximum output of an infrared gold image furnace (MR-39H / D ULVAC-RIKO) (amount of silicon carbide produced simultaneously) Metal silicon was produced. The product was identified using a powder X-ray diffraction apparatus. As a result, although it was a mixture of silicon carbide and glass, metal silicon was successfully produced.

難分解性有機塩素化合物を還元剤として用いるための密封容器を試作した。珪藻土は、単純なプレスで自由に成型できるので、珪藻土容器作成後、それにパラフィンを含浸させた。通常、珪藻土は断熱性が高く、加熱するのが容易ではないが、市販の電子レンジ内で、珪藻土製容器とパラフィンを接触させて、電磁波を用いて加熱したところ、珪藻土細孔内部まで、均一にパラフィンが吸収された。珪藻土は電磁波(マイクロ波)を通し、内部から均一に加熱できるので、それにより、融けたパラフィンを隅々まで充填することができた。   A sealed container for using a hardly decomposable organochlorine compound as a reducing agent was made. Diatomaceous earth can be freely molded with a simple press, so after making the diatomaceous earth container, it was impregnated with paraffin. Usually, diatomaceous earth has high heat insulation and is not easy to heat, but when it is heated using electromagnetic waves in a commercially available microwave oven in contact with a diatomaceous earth container and paraffin, the inside of the diatomaceous earth pores is uniform. The paraffin was absorbed in Diatomaceous earth can be heated uniformly from the inside through electromagnetic waves (microwaves), so that melted paraffin can be filled to every corner.

炭化珪素については、一般的な研磨剤としての利用の他に、核酸やタンパク質の精製、核融合炉の構造材等に利用できる。
一方、金属シリコンは、石油資源の枯渇に備えた代替珪素系高分子材料の原料となる。 塩化珪素は、常温で液体であり、容易に精製でき、半導体や太陽電池に使用する、高純度金属シリコンの原料として使用できる。
Silicon carbide can be used not only as a general abrasive, but also for purification of nucleic acids and proteins, structural materials for fusion reactors, and the like.
On the other hand, metallic silicon is a raw material for alternative silicon-based polymer materials in preparation for the depletion of petroleum resources. Silicon chloride is liquid at room temperature, can be easily purified, and can be used as a raw material for high-purity metallic silicon used for semiconductors and solar cells.

本発明の金属シリコンの製造方法に用いられる製造装置の概略説明図である。It is a schematic explanatory drawing of the manufacturing apparatus used for the manufacturing method of the metal silicon of this invention. 従来の金属シリコンの製造方法に用いられる製造装置の概略説明図である。It is a schematic explanatory drawing of the manufacturing apparatus used for the manufacturing method of the conventional metal silicon.

Claims (9)

珪藻土の粒子の微小形態と多孔構造を利用し、混合又は吸収させた炭素源との接触面積を大きくして作製したことを特徴とする微細炭化珪素の製造方法。   A method for producing fine silicon carbide, characterized in that it is produced by making use of a fine form of diatomaceous earth particles and a porous structure and increasing a contact area with a mixed or absorbed carbon source. 前記炭素源をコロイド溶液化し、珪藻土に吸収させることを特徴とする請求項1記載の微細炭化珪素の製造方法。   2. The method for producing fine silicon carbide according to claim 1, wherein the carbon source is made into a colloidal solution and absorbed in diatomaceous earth. 前記炭素源として、活性炭や黒鉛等の粉末炭素、フラーレンやカーボンナノチューブ等の炭素物質を用いることを特徴とする請求項2記載の微細炭化珪素の製造方法。   3. The method for producing fine silicon carbide according to claim 2, wherein powdery carbon such as activated carbon or graphite, or carbon material such as fullerene or carbon nanotube is used as the carbon source. 珪藻土の粒子の微小形態と多孔構造を利用し、活性炭や黒鉛等の粉末炭素、フラーレンやカーボンナノチューブ等の炭素物質をコロイド溶液化し、珪藻土に吸収させ、活性炭や黒鉛等の粉末炭素、フラーレンやカーボンナノチューブ等の炭素物質との接触面積を大きくして窒素又は空気雰囲気下で作製したことを特徴とする微細窒化珪素の製造方法。   Utilizing the microscopic form and porous structure of diatomaceous earth particles, powdered carbon such as activated carbon and graphite, and carbon materials such as fullerene and carbon nanotubes are made into colloidal solutions and absorbed into diatomaceous earth, and powdered carbon, fullerene and carbon such as activated carbon and graphite are absorbed. A method for producing fine silicon nitride, which is produced in a nitrogen or air atmosphere with a large contact area with a carbon substance such as a nanotube. 珪藻土の粒子の微小形態と多孔構造を利用し、混合又は吸収させた、炭素物質、難分解性有機塩素化合物、又は有機物との接触面積を大きくして、不活性ガス、水素ガス、窒素ガス、空気、又は真空雰囲気下で作製したことを特徴とする金属シリコンの製造方法。   Utilizing the microscopic form and porous structure of diatomaceous earth particles, increasing the contact area with carbon material, persistent organic chlorine compound, or organic matter mixed or absorbed, inert gas, hydrogen gas, nitrogen gas, A method for producing metal silicon, which is produced in an air or vacuum atmosphere. 前記有機物として、使用済珪藻土濾過助剤に充填された有機物を用いることを特徴とする請求項5記載の金属シリコンの製造方法。   6. The method for producing metal silicon according to claim 5, wherein an organic substance filled in a used diatomaceous earth filter aid is used as the organic substance. 前記請求項5記載の難分解性有機塩素化合物の真空雰囲気下又は加熱時における蒸発を防ぐ、電磁波を用いた加熱装置によって、パラフィンを含浸させた、珪藻土成型容器の製造方法。   A method for producing a diatomaceous earth molded container impregnated with paraffin by a heating device using electromagnetic waves that prevents evaporation of the hardly decomposable organochlorine compound according to claim 5 in a vacuum atmosphere or during heating. 珪藻土の粒子の微小形態と多孔構造を利用し、混合又は吸収させた、活性炭、黒鉛、食品由来の有機物等の炭素源と、塩化ナトリウム、塩化カリウム等の塩化物又は塩素源と、珪藻土を構成する二酸化珪素との接触面積を大きくして、無水蒸気雰囲気下で作製したことを特徴とする塩化珪素の製造方法。   The diatomaceous earth is composed of carbon sources such as activated carbon, graphite, and organic substances derived from food, and chloride or chlorine sources such as sodium chloride and potassium chloride, which are mixed or absorbed using the micromorphology and porous structure of diatomaceous earth particles. A method for producing silicon chloride, characterized in that the contact area with silicon dioxide is increased in a non-water vapor atmosphere. 前記塩化物又は塩素源を水溶液、或いはコロイド溶液化して珪藻土に吸収させることを特徴とする請求項8記載の塩化珪素の製造方法。   9. The method for producing silicon chloride according to claim 8, wherein the chloride or chlorine source is made into an aqueous solution or a colloid solution and absorbed in diatomaceous earth.
JP2008335811A 2008-12-29 2008-12-29 Method of producing micro silicon carbide, micro silicon nitride, metal silicon and silicon chloride Pending JP2010155761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335811A JP2010155761A (en) 2008-12-29 2008-12-29 Method of producing micro silicon carbide, micro silicon nitride, metal silicon and silicon chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335811A JP2010155761A (en) 2008-12-29 2008-12-29 Method of producing micro silicon carbide, micro silicon nitride, metal silicon and silicon chloride

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012233293A Division JP5601597B2 (en) 2012-10-22 2012-10-22 Method for producing fine silicon carbide, fine silicon nitride, metal silicon, silicon chloride

Publications (1)

Publication Number Publication Date
JP2010155761A true JP2010155761A (en) 2010-07-15

Family

ID=42573971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335811A Pending JP2010155761A (en) 2008-12-29 2008-12-29 Method of producing micro silicon carbide, micro silicon nitride, metal silicon and silicon chloride

Country Status (1)

Country Link
JP (1) JP2010155761A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014015074A1 (en) * 2012-07-18 2014-01-23 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
US9083010B2 (en) 2012-07-18 2015-07-14 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
US9548511B2 (en) 2012-07-18 2017-01-17 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
US9786926B2 (en) 2013-07-17 2017-10-10 Printed Energy Pty Ltd Printed silver oxide batteries
US9917309B2 (en) 2012-10-10 2018-03-13 Printed Energy Pty Ltd Printed energy storage device
US10020516B2 (en) 2012-10-10 2018-07-10 Printed Energy Pty Ltd Printed energy storage device
US10396365B2 (en) 2012-07-18 2019-08-27 Printed Energy Pty Ltd Diatomaceous energy storage devices
CN115196642A (en) * 2022-07-04 2022-10-18 深圳市上欧新材料有限公司 Method for purifying silicon dioxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616117A (en) * 1984-06-20 1986-01-11 Kawasaki Steel Corp Molding of starting material for manufacturing sic or metallic si
JPS6126507A (en) * 1984-07-06 1986-02-05 ワツカー・ケミー・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of silicon tetrachloride
JPH01157413A (en) * 1987-09-23 1989-06-20 Mehmet Adnan Goksel Aggregated carbon-containing silicon material
WO2007129903A1 (en) * 2006-05-09 2007-11-15 Norsk Hydro Asa Method for the manufacture of silicon tetrachloride
JP2009006117A (en) * 2007-06-27 2009-01-15 Aga Medical Corp Branched stent with bifurcation/synthetic blood vessel and method of fabrication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616117A (en) * 1984-06-20 1986-01-11 Kawasaki Steel Corp Molding of starting material for manufacturing sic or metallic si
JPS6126507A (en) * 1984-07-06 1986-02-05 ワツカー・ケミー・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of silicon tetrachloride
JPH01157413A (en) * 1987-09-23 1989-06-20 Mehmet Adnan Goksel Aggregated carbon-containing silicon material
WO2007129903A1 (en) * 2006-05-09 2007-11-15 Norsk Hydro Asa Method for the manufacture of silicon tetrachloride
JP2009006117A (en) * 2007-06-27 2009-01-15 Aga Medical Corp Branched stent with bifurcation/synthetic blood vessel and method of fabrication

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10396365B2 (en) 2012-07-18 2019-08-27 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10221071B2 (en) 2012-07-18 2019-03-05 Printed Energy Pty Ltd Diatomaceous energy storage devices
WO2014015074A1 (en) * 2012-07-18 2014-01-23 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
US9136065B2 (en) 2012-07-18 2015-09-15 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
US11673811B2 (en) 2012-07-18 2023-06-13 Printed Energy Pty Ltd Diatomaceous energy storage devices
US11962017B2 (en) 2012-07-18 2024-04-16 Printed Energy Pty Ltd Diatomaceous energy storage devices
US9825305B2 (en) 2012-07-18 2017-11-21 Printed Energy Pty Ltd Diatomaceous energy storage devices
CN104584160A (en) * 2012-07-18 2015-04-29 无限科技全球公司 Diatomaceous energy storage devices
US11066306B2 (en) 2012-07-18 2021-07-20 Printed Energy Pty Ltd Diatomaceous energy storage devices
US11063265B2 (en) 2012-07-18 2021-07-13 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10109864B2 (en) 2012-07-18 2018-10-23 Printed Energy Pty Ltd Diatomaceous energy storage devices
US11637292B2 (en) 2012-07-18 2023-04-25 Printed Energy Pty Ltd Diatomaceous energy storage devices
US9083010B2 (en) 2012-07-18 2015-07-14 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
US9548511B2 (en) 2012-07-18 2017-01-17 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
US9834447B2 (en) 2012-07-18 2017-12-05 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10770733B2 (en) 2012-07-18 2020-09-08 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10686197B2 (en) 2012-10-10 2020-06-16 Printed Energy Pty Ltd Printed energy storage device
US10020516B2 (en) 2012-10-10 2018-07-10 Printed Energy Pty Ltd Printed energy storage device
US9917309B2 (en) 2012-10-10 2018-03-13 Printed Energy Pty Ltd Printed energy storage device
US10658679B2 (en) 2012-10-10 2020-05-19 Printed Energy Pty Ltd Printed energy storage device
US11502311B2 (en) 2012-10-10 2022-11-15 Printed Energy Pty Ltd Printed energy storage device
US10673077B2 (en) 2013-07-17 2020-06-02 Printed Energy Pty Ltd Printed silver oxide batteries
US9786926B2 (en) 2013-07-17 2017-10-10 Printed Energy Pty Ltd Printed silver oxide batteries
CN115196642A (en) * 2022-07-04 2022-10-18 深圳市上欧新材料有限公司 Method for purifying silicon dioxide
CN115196642B (en) * 2022-07-04 2023-09-26 柯瑞林 Purification method of silicon dioxide

Similar Documents

Publication Publication Date Title
JP2010155761A (en) Method of producing micro silicon carbide, micro silicon nitride, metal silicon and silicon chloride
Alves et al. Green synthesis and characterization of biosilica produced from sugarcane waste ash
Zou et al. Structure and adsorption properties of sewage sludge-derived carbon with removal of inorganic impurities and high porosity
Gu et al. A novel two-staged thermal synthesis method of generating nanosilica from rice husk via pre-pyrolysis combined with calcination
Katsuki et al. ZSM-5 zeolite/porous carbon composite: conventional-and microwave-hydrothermal synthesis from carbonized rice husk
CN108483444B (en) Preparation method of alpha-FeOOH nanorod-loaded porous biochar composite material
JP5400892B2 (en) Method for producing porous activated carbon
Matori et al. Producing amorphous white silica from rice husk
JP7312393B2 (en) Carbon material manufacturing method
JP4649586B2 (en) Production method of SiC nanoparticles by nitrogen plasma
JP2012504100A (en) Production of solar grade silicon from silicon dioxide
JP2012507470A5 (en)
JP2006347864A (en) Method for producing mesoporous carbon, and mesoporous carbon
KR101601401B1 (en) A method of producing graphite material
JP4548625B2 (en) Manufacturing method of high purity synthetic quartz glass powder
CN115734942A (en) Method for producing lithium sulfide
JP2001089125A (en) Porous silica granule, its production and production of synthetic quartz glass powder using the porous silica granule
Mojarad et al. Synthesis of nanostructured SiC by magnesiothermal reduction of silica from zeolite ZSM-5 and carbon: The effect of carbons from different sources
Alizadeh Arasi et al. Extraction of nano‐porous silica from hydrosodalite produced via modification of low‐grade kaolin for removal of methylene blue from wastewater
JP5605560B2 (en) Photocatalyst-supported porous clay material
Gao et al. Zeolite–carbon composites prepared from industrial wastes:(I) Effects of processing parameters
JP2010030888A (en) Silicon carbide-based ceramic porous material and its manufacturing method
JP5601597B2 (en) Method for producing fine silicon carbide, fine silicon nitride, metal silicon, silicon chloride
CN107311177A (en) A kind of carborundum graphite alkene composite granule and preparation method thereof
Tessema et al. Synthesis and characterization of biosilica gel produced from teff (Eragrostis tef) straw using the sol-gel technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121220