JP2010153188A - Membrane-catalyst layer assembly, membrane-electrode assembly, and their manufacturing methods - Google Patents

Membrane-catalyst layer assembly, membrane-electrode assembly, and their manufacturing methods Download PDF

Info

Publication number
JP2010153188A
JP2010153188A JP2008329675A JP2008329675A JP2010153188A JP 2010153188 A JP2010153188 A JP 2010153188A JP 2008329675 A JP2008329675 A JP 2008329675A JP 2008329675 A JP2008329675 A JP 2008329675A JP 2010153188 A JP2010153188 A JP 2010153188A
Authority
JP
Japan
Prior art keywords
catalyst layer
membrane
electrolyte membrane
polarizing plate
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008329675A
Other languages
Japanese (ja)
Other versions
JP5401976B2 (en
Inventor
Yasuki Yoshida
安希 吉田
Rei Hiromitsu
礼 弘光
Takanori Oboshi
隆則 大星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2008329675A priority Critical patent/JP5401976B2/en
Publication of JP2010153188A publication Critical patent/JP2010153188A/en
Application granted granted Critical
Publication of JP5401976B2 publication Critical patent/JP5401976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane-catalyst layer assembly which is a principal constituent of a solid polymer fuel cell having long durability, a membrane-electrode assembly, and their manufacturing methods. <P>SOLUTION: In the membrane-catalyst layer assembly 1 forming a catalyst layer 3 on a base material sheet 5 and manufactured by using a catalyst layer transcription sheet 4, the membrane-catalyst layer assembly 1 has an electrolyte membrane 2, and the catalyst layer 3 transcribed and formed at a size smaller than the electrolyte membrane 2 by heat-pressing the catalyst layer transcription sheet 4 on both surfaces of the electrolyte membrane 2. A first polarizing plate 7a is arranged at an upper surface side of the membrane-catalyst layer assembly 1 formed by the electrolyte membrane 2 and the catalyst layer 3, a second polarizing plate 7b is arranged at a lower surface side of the membrane-catalyst layer assembly 1 so as to make a polarizing axis be an angle of 60-120° to the polarizing axis of the first polarizing plate 7a, and a transmission rate of light transmitting the second polarizing plate 7b is 40% or below at the time of irradiating the light from the back of the first polarizing plate 7a in an inspection zone 9 within 0.2 mm from an outer peripheral edge of the catalyst layer 3 of the electrolyte membrane 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、膜触媒層接合体、膜電極接合体、及びこれらの製造方法に関するものである。   The present invention relates to a membrane catalyst layer assembly, a membrane electrode assembly, and a method for producing them.

燃料電池は、電解質の両面に電極が配置され、水素と酸素の電気化学反応により発電する電池であり、発電時に発生するのは水のみである。このように従来の内燃機関と異なり、二酸化炭素等の環境負荷ガスを発生しないために次世代のクリーンエネルギーシステムとして普及が見込まれている。その中でも特に固体高分子形燃料電池は、作動温度が低く、電解質の抵抗が少ないことに加え、活性の高い触媒を用いるので小型でも高出力を得ることができ、家庭用コージェネレーションシステム等として早期の実用化が見込まれている。   A fuel cell is a cell in which electrodes are arranged on both sides of an electrolyte and generates electricity by an electrochemical reaction between hydrogen and oxygen, and only water is generated during power generation. Thus, unlike the conventional internal combustion engine, it is expected to spread as a next-generation clean energy system because it does not generate environmental load gas such as carbon dioxide. In particular, the polymer electrolyte fuel cell has a low operating temperature and low electrolyte resistance. In addition, it uses a highly active catalyst, so it can obtain high output even in a small size. Is expected to be put to practical use.

この固体高分子形燃料電池は、プロトン伝導性を有する固体高分子電解質膜の両面に、電解質膜よりも一回り小さい触媒層及びガス拡散層を順に積層している。この電解質膜の両面に触媒層を形成したもの(すなわち、層構成が触媒層/電解質膜/触媒層のもの)は膜触媒層接合体(CCM)と称され、また、電解質膜の両面に触媒層及びガス拡散層からなる電極を形成したもの(すなわち、層構成がガス拡散層/触媒層/電解質膜/触媒層/ガス拡散層のもの)は膜電極接合体(MEA)と称されている。   In this polymer electrolyte fuel cell, a catalyst layer and a gas diffusion layer that are slightly smaller than the electrolyte membrane are sequentially laminated on both surfaces of a proton conductive solid polymer electrolyte membrane. A catalyst layer formed on both sides of the electrolyte membrane (that is, the layer structure is catalyst layer / electrolyte membrane / catalyst layer) is called a membrane-catalyst layer assembly (CCM), and the catalyst is formed on both sides of the electrolyte membrane. An electrode formed of a layer and a gas diffusion layer (that is, a layer structure of gas diffusion layer / catalyst layer / electrolyte membrane / catalyst layer / gas diffusion layer) is referred to as a membrane electrode assembly (MEA). .

上記膜触媒層接合体や膜電極接合体を製造する方法としては、電解質膜の両面に触媒層を形成するための触媒層ペーストを塗布及び乾燥させる、いわゆる塗布方式が一般的に採用されている。しかし、この方法によって電解質膜に触媒ペーストを塗布すると、触媒ペースト中に含まれる水やアルコールなどの溶剤によって電解質膜が膨潤変形してしまい、電解質膜表面に所望の触媒層を形成することが困難になるという問題がある。また、電解質膜に塗布した触媒ペーストを乾燥させる工程において、電解質膜が高温に曝されるために電解質膜が熱膨張などを起こし、変形する問題も生じている。   As a method of manufacturing the membrane catalyst layer assembly or the membrane electrode assembly, a so-called coating method is generally adopted in which a catalyst layer paste for forming a catalyst layer is applied and dried on both surfaces of an electrolyte membrane. . However, when the catalyst paste is applied to the electrolyte membrane by this method, the electrolyte membrane is swollen and deformed by a solvent such as water or alcohol contained in the catalyst paste, and it is difficult to form a desired catalyst layer on the electrolyte membrane surface. There is a problem of becoming. Further, in the step of drying the catalyst paste applied to the electrolyte membrane, the electrolyte membrane is exposed to a high temperature, so that the electrolyte membrane undergoes thermal expansion and the like, causing a problem of deformation.

上記塗布方式による問題を解決するために、触媒層が基材シート上に形成された触媒層転写シートを使用し、この触媒層転写シートと電解質膜を重ね合わせて熱プレスを施すことにより触媒層を電解質膜に転写形成する、いわゆる転写方式が提案されている(例えば、特許文献1)。この方法は、上記塗布方式の問題を解決し、簡便な方法であるために実用化に至っている。
特開平10−64574号公報
In order to solve the problem due to the coating method, a catalyst layer transfer sheet having a catalyst layer formed on a base sheet is used, and the catalyst layer transfer sheet and the electrolyte membrane are overlaid and subjected to hot pressing to thereby form a catalyst layer. A so-called transfer method has been proposed in which a film is transferred onto an electrolyte membrane (for example, Patent Document 1). This method solves the problem of the coating method and has been put to practical use because it is a simple method.
Japanese Patent Laid-Open No. 10-64574

しかしながら、上述したような転写方式によって固体高分子形燃料電池を製造すると、耐久時間が短い固体高分子形燃料電池が発生するという問題があった。   However, when a polymer electrolyte fuel cell is manufactured by the transfer method as described above, there is a problem that a polymer electrolyte fuel cell having a short durability time is generated.

そこで、本発明は、良好な耐久性を有する固体高分子形燃料電池の主な構成である膜触媒層接合体、膜電極接合体、及びこれを製造するための方法を提供することを課題とする。   SUMMARY OF THE INVENTION It is an object of the present invention to provide a membrane catalyst layer assembly, a membrane electrode assembly, and a method for producing the same, which are main components of a polymer electrolyte fuel cell having good durability. To do.

本件発明者らは、耐久時間が短い固体高分子形燃料電池がどのような原因で発生するのかを鋭意研究した結果、触媒層や電極を電解質膜に形成した際に発生する電解質膜の歪みが原因であることが判明した。   As a result of intensive research on the causes of the polymer electrolyte fuel cell having a short durability time, the present inventors have found that the distortion of the electrolyte membrane that occurs when the catalyst layer and the electrode are formed on the electrolyte membrane. It turned out to be the cause.

そこで、本発明に係る膜触媒層接合体は、基材シート上に触媒層が形成された触媒層転写シートを使用して製造された膜触媒層接合体であって、電解質膜と、前記電解質膜の両面に、触媒層転写シートを熱プレスすることによって前記電解質膜よりも一回り小さな大きさで転写形成された触媒層と、を備え、前記電解質膜及び触媒層によって構成された膜触媒層接合体の第1の面側に第1の偏光板を、第2の面側に第2の偏光板を偏光軸が第1の偏光板の偏光軸に対して60〜120度の角度をなすように設置し、前記電解質膜の前記触媒層の外周縁から0.2mm以内の検査領域において、前記第1の偏光板又は第2の偏光板のどちらか一方の偏光板の後方から光を照射した場合に他方の偏光板を透過する光の透過率が40%以下である。   Therefore, the membrane catalyst layer assembly according to the present invention is a membrane catalyst layer assembly manufactured using a catalyst layer transfer sheet in which a catalyst layer is formed on a base material sheet, the electrolyte membrane, and the electrolyte A catalyst layer formed by transferring the catalyst layer transfer sheet to a size slightly smaller than the electrolyte membrane by hot pressing a catalyst layer transfer sheet on both surfaces of the membrane, and comprising the electrolyte membrane and the catalyst layer. The first polarizing plate is disposed on the first surface side of the joined body, the second polarizing plate is disposed on the second surface side, and the polarization axis forms an angle of 60 to 120 degrees with respect to the polarization axis of the first polarizing plate. In the inspection region within 0.2 mm from the outer periphery of the catalyst layer of the electrolyte membrane, light is irradiated from the rear of either the first polarizing plate or the second polarizing plate. In this case, the transmittance of light transmitted through the other polarizing plate is 40% or less.

第1の偏光板と第2の偏光板とは偏光軸が約60〜120度異なっているため、また、電解質膜が歪んでいなければ電解質膜を透過する光はその振動方向をほぼ変えずに進行するため、一方の偏光板の後方から照射した光は、膜触媒層接合体の触媒層の外周縁から0.2mm以内の検査領域において電解質膜が歪んでいなければ他方の偏光板を透過しない。しかし、電解質膜が歪んでいると、電解質膜を透過した光は振動方向が変わって他方の偏光板を透過する。そして、本発明に係る膜触媒層接合体は、他方の透過板を透過する光の透過率が40%以下であるため、電解質膜の歪みが少なく、ひいてはこの膜触媒層接合体を使用した固体高分子形燃料電池の耐久性を向上させることができる。なお、更に耐久性を向上させるために透過率を約20%以下とすることもできる。   The first polarizing plate and the second polarizing plate are different in polarization axis by about 60 to 120 degrees, and if the electrolyte membrane is not distorted, the light transmitted through the electrolyte membrane does not substantially change its vibration direction. Therefore, the light irradiated from the rear side of one polarizing plate does not pass through the other polarizing plate unless the electrolyte membrane is distorted in the inspection area within 0.2 mm from the outer peripheral edge of the catalyst layer of the membrane-catalyst layer assembly. Not transparent. However, if the electrolyte membrane is distorted, the light transmitted through the electrolyte membrane changes its vibration direction and passes through the other polarizing plate. The membrane / catalyst layer assembly according to the present invention has a transmittance of 40% or less of the light transmitted through the other transmission plate, so that there is little distortion of the electrolyte membrane, and consequently a solid using this membrane / catalyst layer assembly. The durability of the polymer fuel cell can be improved. In order to further improve the durability, the transmittance can be about 20% or less.

上記膜触媒層接合体は種々の構成をとることができるが、例えば上記触媒層の縦横比は、1:1〜1:5であってもよい。   The membrane / catalyst layer assembly can have various configurations. For example, the aspect ratio of the catalyst layer may be 1: 1 to 1: 5.

本発明に係る第1の膜電極接合体は、基材シート上に触媒層が形成された触媒層転写フィルムを使用して製造された膜電極接合体であって、電解質膜と、前記電解質膜の両面に、触媒層転写シートを熱プレスすることによって前記電解質膜よりも一回り小さな大きさで転写形成された触媒層と、前記各触媒層上に圧着されたガス拡散層と、を備え、前記電解質膜、触媒層、及びガス拡散層から構成された膜電極接合体の第1の面側に第1の偏光板を、第2の面側に第2の偏光板を偏光軸が第1の偏光板の偏光軸に対して60〜120度の角度をなすように設置し、前記電解質膜の前記触媒層の外周縁から0.2mm以内の検査領域において、前記第1の偏光板又は第2の偏光板のどちらか一方の偏光板の後方から光を照射した場合に他方の偏光板を透過する光の透過率が40%以下である。   A first membrane / electrode assembly according to the present invention is a membrane / electrode assembly manufactured using a catalyst layer transfer film in which a catalyst layer is formed on a substrate sheet, the electrolyte membrane and the electrolyte membrane. A catalyst layer transferred and formed in a size slightly smaller than the electrolyte membrane by hot pressing a catalyst layer transfer sheet on both sides, and a gas diffusion layer pressed onto each catalyst layer, The membrane electrode assembly composed of the electrolyte membrane, the catalyst layer, and the gas diffusion layer has a first polarizing plate on the first surface side, a second polarizing plate on the second surface side, and a first polarization axis. In the inspection region within 0.2 mm from the outer peripheral edge of the catalyst layer of the electrolyte membrane, the first polarizing plate or the first polarizing plate is installed at an angle of 60 to 120 degrees with respect to the polarization axis of the polarizing plate. When light is irradiated from the back of one of the two polarizing plates, the other polarization Transmittance of transmitted light is not more than 40%.

本発明に係る第1の膜電極接合体によれば、他方の偏光板を透過する光の透過率が40%以下であるため、電解質膜の歪みが少なく、ひいてはこの膜電極接合体を使用した固体高分子形燃料電池の耐久性を向上させることができる。なお、更に耐久性を向上させるために透過率を約20%以下とすることもできる。   According to the first membrane / electrode assembly of the present invention, the transmittance of the light transmitted through the other polarizing plate is 40% or less, so that there is little distortion of the electrolyte membrane, and this membrane / electrode assembly was used. The durability of the polymer electrolyte fuel cell can be improved. In order to further improve the durability, the transmittance can be about 20% or less.

本発明に係る第2の膜電極接合体は、ガス拡散層上に触媒層が予め形成された電極を使用して製造された膜電極接合体であって、電解質膜と、前記電解質膜の両面に、触媒層が前記電解質膜側を向いた状態で熱プレスすることによって前記電解質膜よりも一回り小さな大きさで転写形成された電極と、を備え、前記電解質膜及び電極からなる膜電極接合体の第1の面側に第1の偏光板を、第2の面側に第2の偏光板を偏光軸が前記第1の偏光板の偏光軸に対して60〜120度の角度をなすように設置し、前記電解質膜の前記触媒層の外周縁から0.2mm以内の検査領域において、前記第1の偏光板又は第2の偏光板のどちらか一方の偏光板の後方から光を照射した場合に他方の偏光板を透過する光の透過率が40%以下である。   A second membrane / electrode assembly according to the present invention is a membrane / electrode assembly manufactured using an electrode in which a catalyst layer is previously formed on a gas diffusion layer, the electrolyte membrane and both surfaces of the electrolyte membrane. And an electrode that is transferred and formed in a size slightly smaller than the electrolyte membrane by hot pressing in a state in which the catalyst layer faces the electrolyte membrane side, and the membrane electrode joint comprising the electrolyte membrane and the electrode The first polarizing plate is on the first surface side of the body, the second polarizing plate is on the second surface side, and the polarization axis forms an angle of 60 to 120 degrees with respect to the polarization axis of the first polarizing plate. In the inspection region within 0.2 mm from the outer peripheral edge of the catalyst layer of the electrolyte membrane, light is irradiated from the rear of either the first polarizing plate or the second polarizing plate. In this case, the transmittance of light transmitted through the other polarizing plate is 40% or less.

本発明に係る第2の膜電極接合体によれば、他方の偏光板を透過する光の透過率が40%以下であるため、電解質膜の歪みが少なく、ひいてはこの膜電極接合体を使用した固体高分子形燃料電池の耐久性を向上させることができる。なお、更に耐久性を向上させるために透過率を約20%以下とすることもできる。   According to the second membrane / electrode assembly of the present invention, the transmittance of the light transmitted through the other polarizing plate is 40% or less, so that there is little distortion of the electrolyte membrane, and this membrane / electrode assembly was used. The durability of the polymer electrolyte fuel cell can be improved. In order to further improve the durability, the transmittance can be about 20% or less.

上記第1及び第2の膜電極接合体の電極は、縦横比を1:1〜1:5とすることができる。   The electrodes of the first and second membrane electrode assemblies can have an aspect ratio of 1: 1 to 1: 5.

また、本発明に係る固体高分子形燃料電池は、上記いずれかの膜電極接合体と、触媒層及びガス拡散層を囲むように設置されたガスケットと、膜電極接合体を挟むように設置されたセパレータとを備えている。   Further, a polymer electrolyte fuel cell according to the present invention is installed so as to sandwich any membrane electrode assembly, a gasket installed so as to surround the catalyst layer and the gas diffusion layer, and the membrane electrode assembly. And a separator.

本発明に係る第1の膜触媒層接合体の製造方法は、電解質膜を準備する工程と、基材シート上に触媒層が形成された、前記電解質膜よりも一回り小さい触媒層転写シートを準備する工程と、前記電解質膜の両面に、前記触媒層が前記電解質膜側を向くように前記触媒層転写シートをそれぞれ設置する工程と、前記触媒層転写シートよりも大きいゲル状部材を、前記各触媒層転写シートを覆うとともに外周縁部が前記電解質膜と接触するよう、前記触媒層転写シート上にそれぞれ配置する工程と、前記ゲル状部材を介して前記触媒層転写シートを熱プレスし、前記電解質膜に前記触媒層を転写形成する工程と、前記触媒層を転写形成した後に、基材シートを剥離する工程と、を備えている。   The first method for producing a membrane / catalyst layer assembly according to the present invention comprises a step of preparing an electrolyte membrane, and a catalyst layer transfer sheet having a catalyst layer formed on a base sheet and slightly smaller than the electrolyte membrane. A step of preparing, a step of installing the catalyst layer transfer sheet on each side of the electrolyte membrane such that the catalyst layer faces the electrolyte membrane, and a gel-like member larger than the catalyst layer transfer sheet, Covering each catalyst layer transfer sheet and placing each of the catalyst layer transfer sheet on the catalyst layer transfer sheet so that the outer peripheral edge is in contact with the electrolyte membrane, and hot pressing the catalyst layer transfer sheet via the gel-like member, A step of transferring and forming the catalyst layer on the electrolyte membrane; and a step of peeling the substrate sheet after the catalyst layer is transferred and formed.

この膜触媒層接合体の製造方法によれば、触媒層転写シートを覆うとともに外周縁部が電解質膜と接触しているゲル状部材を間に介して熱プレスを施している。このため、触媒層転写シートのみに圧力をかけるのではなく、電解質膜と触媒層転写シートとの両方にほぼ均等に圧力をかけることができ、ひいては電解質膜全体に作用する圧力を均等にすることができる。この結果、熱プレス時に電解質膜に生じる歪みを低減することができ、ひいてはこの膜触媒層接合体を使用した固体高分子形燃料電池の耐久性を向上させることができる。   According to this method for producing a membrane / catalyst layer assembly, hot pressing is performed through a gel-like member that covers the catalyst layer transfer sheet and whose outer peripheral edge is in contact with the electrolyte membrane. For this reason, rather than applying pressure only to the catalyst layer transfer sheet, it is possible to apply pressure almost evenly to both the electrolyte membrane and the catalyst layer transfer sheet, and thus equalize the pressure acting on the entire electrolyte membrane. Can do. As a result, distortion generated in the electrolyte membrane during hot pressing can be reduced, and as a result, the durability of the polymer electrolyte fuel cell using this membrane-catalyst layer assembly can be improved.

上記ゲル状部材は、ヤング率(圧縮弾性率)が30〜300kPaの弾性体であることが好ましい。このようにヤング率(圧縮弾性率)を30kPa以上とすることで熱プレスに耐えることができ、また、上限を300kPaとすることで触媒層と電解質膜の段差に十分追従させることができる。   The gel-like member is preferably an elastic body having a Young's modulus (compression elastic modulus) of 30 to 300 kPa. Thus, by setting the Young's modulus (compression elastic modulus) to 30 kPa or more, it can withstand hot pressing, and by setting the upper limit to 300 kPa, it is possible to sufficiently follow the step between the catalyst layer and the electrolyte membrane.

本発明に係る第1の膜電極接合体の製造方法は、上述した膜触媒層接合体の製造方法と、前記電解質膜の両面に触媒層が形成された膜触媒層接合体の各触媒層上に、ガス拡散層を圧着させる工程と、を備えている。この方法によれば、上述したように、熱プレス時に電解質膜に生じる歪みを低減することができ、ひいてはこの膜電極接合体を使用した固体高分子形燃料電池の耐久性を向上させることができる。   The first method for manufacturing a membrane electrode assembly according to the present invention includes a method for manufacturing the membrane catalyst layer assembly described above, and on each catalyst layer of the membrane catalyst layer assembly in which catalyst layers are formed on both surfaces of the electrolyte membrane. And a step of pressure-bonding the gas diffusion layer. According to this method, as described above, the distortion generated in the electrolyte membrane during hot pressing can be reduced, and as a result, the durability of the polymer electrolyte fuel cell using this membrane electrode assembly can be improved. .

本発明に係る第2の膜電極接合体の製造方法は、電解質膜を準備する工程と、ガス拡散層上に触媒層が形成された電極を電解質膜の両面に配置する工程と、前記電極よりも大きいゲル状部材を、前記電極を覆うとともに外周縁部が前記電解質膜と接触するよう、前記電極上にそれぞれ配置する工程と、前記ゲル状部材を介して前記電極を熱プレスし、前記電解質膜上に前記電極を形成する工程と、を備えている。   The second method for producing a membrane electrode assembly according to the present invention includes a step of preparing an electrolyte membrane, a step of arranging electrodes having a catalyst layer formed on a gas diffusion layer on both sides of the electrolyte membrane, A large gel-like member covering each of the electrodes and having an outer peripheral edge in contact with the electrolyte membrane, respectively, and hot pressing the electrode via the gel-like member, Forming the electrode on the film.

この膜電極接合体の製造方法によれば、電極を覆うとともに外周縁部が電解質膜と接触しているゲル状部材を間に介して熱プレスを施している。このため、電極のみに圧力をかけるのではなく、電解質膜と電極との両方にほぼ均等に圧力をかけることができ、ひいては電解質膜全体に作用する圧力を均等にすることができる。この結果、熱プレス時に電解質膜に生じる歪みを低減することができ、ひいてはこの膜電極接合体を使用した固体高分子形燃料電池の耐久性を向上させることができる。   According to this method of manufacturing a membrane / electrode assembly, hot pressing is performed through a gel-like member that covers the electrode and whose outer peripheral edge is in contact with the electrolyte membrane. For this reason, rather than applying pressure only to the electrodes, it is possible to apply pressure to both the electrolyte membrane and the electrode substantially evenly, and thus it is possible to equalize the pressure acting on the entire electrolyte membrane. As a result, distortion generated in the electrolyte membrane during hot pressing can be reduced, and as a result, the durability of the polymer electrolyte fuel cell using this membrane electrode assembly can be improved.

上記ゲル状部材は、ヤング率(圧縮弾性率)が30〜300kPaの弾性体であることが好ましい。   The gel-like member is preferably an elastic body having a Young's modulus (compression elastic modulus) of 30 to 300 kPa.

本発明に係る第2の膜触媒層接合体の製造方法は、電解質膜を準備する工程と、基材シート上に触媒層が形成された触媒層転写シートを、前記触媒層が前記電解質膜側を向くように前記電解質膜の両面に配置する工程と、前記触媒層転写シートを熱プレスして、前記電解質膜の両面に前記電解質膜よりも一回り小さい触媒層を転写形成する工程と、前記基材シートを剥離して、膜触媒層接合体を形成する工程と、前記膜触媒層接合体の第1の面側に第1の偏光板を設置し、第2の面側に第2の偏光板を偏光軸が前記第1の偏光板の偏光軸に対して60〜120度の角度をなすように設置する工程と、前記第1又は第2の偏光板のどちらか一方の偏光板の後方から光を照射する工程と、前記電解質膜の前記触媒層の外周縁から所定距離の範囲内の検査領域において、他方の偏光板を透過する光の透過率が所定値以下のものを良品と判断して後工程に流す工程と、を備えている。   The method for producing a second membrane / catalyst layer assembly according to the present invention comprises a step of preparing an electrolyte membrane, a catalyst layer transfer sheet having a catalyst layer formed on a substrate sheet, and the catalyst layer on the electrolyte membrane side. A step of disposing the catalyst layer on both sides of the electrolyte membrane so that the catalyst layer transfer sheet is hot pressed to transfer and form a catalyst layer that is slightly smaller than the electrolyte membrane on both sides of the electrolyte membrane; A step of peeling the substrate sheet to form a membrane catalyst layer assembly, a first polarizing plate is installed on the first surface side of the membrane catalyst layer assembly, and a second surface side is provided on the second surface side. A step of installing the polarizing plate so that the polarization axis forms an angle of 60 to 120 degrees with respect to the polarization axis of the first polarizing plate; and one of the first polarizing plate and the second polarizing plate Irradiating light from behind, and within a predetermined distance from the outer periphery of the catalyst layer of the electrolyte membrane. The inspection region includes a step of determining that the transmittance of the light transmitted through the other polarizing plate is equal to or less than a predetermined value as a non-defective product and flowing it to a subsequent step.

この膜触媒層接合体の製造方法によれば、2つの偏光板の間に膜触媒層接合体を配置し、一方の偏光板の後方から光を照射して他方の偏光板を透過した光の透過率を測定し、この光の透過率を元に膜触媒層接合体が良品か否かを判断して良品のみを取り出している。この光の透過率は上述したように電解質膜の歪みと密接に関係しているため、この膜触媒層接合体の製造方法を採用すれば、電解質膜の歪みが少ない膜触媒層接合体のみを使用して固体高分子形燃料電池を製造することができ、ひいては、固体高分子形燃料電池の耐久性を向上させることができる。   According to this method for producing a membrane / catalyst layer assembly, a membrane / catalyst layer assembly is disposed between two polarizing plates, and the transmittance of light transmitted through the other polarizing plate by irradiating light from behind one polarizing plate. And determining whether or not the membrane-catalyst layer assembly is a non-defective product based on the light transmittance. Since the light transmittance is closely related to the distortion of the electrolyte membrane as described above, only the membrane-catalyst layer assembly with less distortion of the electrolyte membrane can be obtained by adopting this method of manufacturing the membrane-catalyst layer assembly. It can be used to produce a polymer electrolyte fuel cell, and as a result, the durability of the polymer electrolyte fuel cell can be improved.

なお、上記膜触媒層接合体を良品か不良品か区別するための光の透過率は、検査領域によって変わってくるが、上記検査領域を電解質膜の触媒層の外周縁から0.2mmの範囲内とした場合は、光の透過率が40%以下のものを良品として後工程に流すことが好ましい。この条件に合う膜触媒層接合体を使用した固体高分子形燃料電池は良好な耐久性を示す。なお、更に耐久性を向上させるために透過率が約20%以下のものを良品としてもよい。   The light transmittance for discriminating whether the membrane-catalyst layer assembly is a non-defective product or a defective product varies depending on the inspection region, but the inspection region is within a range of 0.2 mm from the outer peripheral edge of the catalyst layer of the electrolyte membrane. In the case of the inside, it is preferable that a light transmittance of 40% or less is passed as a non-defective product in a subsequent process. A polymer electrolyte fuel cell using a membrane-catalyst layer assembly meeting these conditions exhibits good durability. In order to further improve the durability, a product having a transmittance of about 20% or less may be used.

本発明に係る第3の膜電極接合体の製造方法は、電解質膜を準備する工程と、基材シート上に触媒層が形成された触媒層転写シートを、前記触媒層が前記電解質膜側を向くように前記電解質膜の両面に配置する工程と、前記触媒層転写シートを熱プレスして、前記電解質膜の両面に前記電解質膜よりも一回り小さい触媒層を転写形成する工程と、前記基材シートを剥離する工程と、前記各触媒層上にガス拡散層を圧着して膜電極接合体を形成する工程と、前記膜電極接合体の第1の面側に第1の偏光板を設置し、第2の面側に第2の偏光板を偏光軸が前記第1の偏光板の偏光軸に対して60〜120度の角度をなすように設置する工程と、前記第1又は第2の偏光板のどちらか一方の偏光板の後方から光を照射する工程と、前記電解質膜の前記触媒層の外周縁から所定距離の範囲内の検査領域において、他方の偏光板を透過する光の透過率が所定値以下のものを良品と判断して後工程に流す工程と、を備えている。   The third method for producing a membrane electrode assembly according to the present invention comprises a step of preparing an electrolyte membrane, a catalyst layer transfer sheet in which a catalyst layer is formed on a substrate sheet, and the catalyst layer on the side of the electrolyte membrane. A step of arranging the catalyst layer on both sides of the electrolyte membrane so as to face, a step of heat-pressing the catalyst layer transfer sheet to transfer and form a catalyst layer slightly smaller than the electrolyte membrane on both sides of the electrolyte membrane, A step of peeling the material sheet, a step of pressure bonding a gas diffusion layer on each catalyst layer to form a membrane electrode assembly, and a first polarizing plate on the first surface side of the membrane electrode assembly The second polarizing plate is disposed on the second surface side so that the polarization axis forms an angle of 60 to 120 degrees with respect to the polarizing axis of the first polarizing plate, and the first or second A step of irradiating light from the back of one of the polarizing plates, and before the electrolyte membrane In the inspection region within a predetermined distance from the outer peripheral edge of the catalyst layer, the step of determining that the transmittance of the light transmitted through the other polarizing plate is a predetermined value or less and passing it to a subsequent process .

この膜電極接合体の製造方法によれば、膜電極接合体を2つの偏光板の間に配置し、一方の偏向板の後方から光を照射して他方の偏光板を透過した光の透過率を測定し、この光の透過率を元に膜電極接合体が良品か否かを判断している。この光の透過率は上述したように電解質膜の歪みと密接に関係しているため、この膜電極接合体の製造方法を採用すれば、電解質膜の歪みが少ない膜電極接合体のみを使用して固体高分子形燃料電池を製造することができ、ひいては固体高分子形燃料電池の耐久性を向上させることができる。   According to this method of manufacturing a membrane / electrode assembly, the membrane / electrode assembly is disposed between two polarizing plates, and the transmittance of light transmitted through the other polarizing plate is measured by irradiating light from the back of one deflecting plate. Whether or not the membrane electrode assembly is a non-defective product is determined based on the light transmittance. Since the light transmittance is closely related to the distortion of the electrolyte membrane as described above, if this method of manufacturing a membrane electrode assembly is adopted, only the membrane electrode assembly with less distortion of the electrolyte membrane is used. Thus, the polymer electrolyte fuel cell can be manufactured, and as a result, the durability of the polymer electrolyte fuel cell can be improved.

本発明に係る第4の膜電極接合体の製造方法は、電解質膜を準備する工程と、前記電解質膜よりも一回り小さいガス拡散層上に触媒層が形成された電極を、前記触媒層が前記電解質膜側を向くように前記電解質膜の両面に配置する工程と、前記電解質膜の両面に電極を熱プレスして膜電極接合体を形成する工程と、前記膜電極接合体の第1の面側に第1の偏光板を設置し、第2の面側に第2の偏光板を偏光軸が前記第1の偏光板の偏光軸に対して60〜120度の角度をなすように設置する工程と、前記第1又は第2の偏光板のどちらか一方の偏光板の後方から光を照射する工程と、前記電解質膜の前記触媒層の外周縁から所定距離の範囲内の検査領域において、他方の偏光板を透過する光の透過率が所定値以下のものを良品と判断して後工程に流す工程と、を備えている。   A fourth method for producing a membrane electrode assembly according to the present invention comprises a step of preparing an electrolyte membrane, and an electrode in which a catalyst layer is formed on a gas diffusion layer that is slightly smaller than the electrolyte membrane. A step of arranging on both sides of the electrolyte membrane so as to face the electrolyte membrane side, a step of hot pressing electrodes on both sides of the electrolyte membrane to form a membrane electrode assembly, and a first of the membrane electrode assembly The first polarizing plate is installed on the surface side, and the second polarizing plate is installed on the second surface side so that the polarization axis forms an angle of 60 to 120 degrees with respect to the polarization axis of the first polarizing plate. A step of irradiating light from the back of one of the first and second polarizing plates, and an inspection region within a predetermined distance from the outer periphery of the catalyst layer of the electrolyte membrane. After the work, the transmittance of the light transmitted through the other polarizing plate is determined to be a non-defective product with a predetermined value or less. It includes a step, the flow into.

この膜電極接合体の製造方法によれば、膜電極接合体を2つの偏光板の間に配置し、一方の偏向板の後方から光を照射して他方の偏光板を透過した光の透過率を測定し、この光の透過率を元に膜電極接合体が良品か否かを判断している。この光の透過率は上述したように電解質膜の歪みと密接に関係しているため、この膜電極接合体の製造方法を採用すれば、電解質膜の歪みが少ない膜電極接合体のみを使用して固体高分子形燃料電池を製造することができ、ひいては固体高分子形燃料電池の耐久性を向上させることができる。   According to this method of manufacturing a membrane / electrode assembly, the membrane / electrode assembly is disposed between two polarizing plates, and the transmittance of light transmitted through the other polarizing plate is measured by irradiating light from the back of one deflecting plate. Whether or not the membrane electrode assembly is a non-defective product is determined based on the light transmittance. Since the light transmittance is closely related to the distortion of the electrolyte membrane as described above, if this method of manufacturing a membrane electrode assembly is adopted, only the membrane electrode assembly with less distortion of the electrolyte membrane is used. Thus, the polymer electrolyte fuel cell can be manufactured, and as a result, the durability of the polymer electrolyte fuel cell can be improved.

なお、上記膜電極接合体を良品か不良品か区別するための光の透過率は、検査領域によって変わってくるが、上記検査領域を電解質膜の触媒層の外周縁から0.2mmの範囲内とした場合は、光の透過率が40%以下のものを良品として後工程に流すことが好ましい。この条件に合う膜電極接合体を使用した固体高分子形燃料電池は良好な耐久性を示す。なお、更に耐久性を向上させるために透過率が約20%以下のものを良品としてもよい。   The light transmittance for discriminating whether the membrane / electrode assembly is non-defective or defective varies depending on the inspection region, but the inspection region is within 0.2 mm from the outer peripheral edge of the catalyst layer of the electrolyte membrane. In this case, it is preferable to pass a light transmittance of 40% or less as a non-defective product to the subsequent process. A polymer electrolyte fuel cell using a membrane electrode assembly meeting these conditions exhibits good durability. In order to further improve the durability, a product having a transmittance of about 20% or less may be used.

本発明によれば、良好な耐久性を有する固体高分子形燃料電池の主な構成である膜触媒層接合体、膜電極接合体、及びこれを製造するための方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the membrane catalyst layer assembly and membrane electrode assembly which are the main structures of the polymer electrolyte fuel cell which has favorable durability, and the method for manufacturing this can be provided.

以下、本発明に係る膜触媒層接合体の実施形態について図面を参照しつつ説明する。   Hereinafter, an embodiment of a membrane catalyst layer assembly according to the present invention will be described with reference to the drawings.

膜触媒層接合体
図1に示すように、膜触媒層接合体1は、平面視矩形状の電解質膜2と、電解質膜2の両面に形成された平面視矩形状の触媒層3とを有している。
Membrane / catalyst layer assembly As shown in FIG. 1, the membrane / catalyst layer assembly 1 has an electrolyte membrane 2 having a rectangular shape in plan view and a catalyst layer 3 having a rectangular shape in plan view formed on both surfaces of the electrolyte membrane 2. is doing.

電解質膜2は、例えば、基材上に水素イオン伝導性高分子電解質を含有する溶液を塗工し、乾燥することにより形成される。水素イオン伝導性高分子電解質としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂、より具体的には、炭化水素系イオン交換膜のC−H結合をフッ素で置換したパーフルオロカーボンスルホン酸系ポリマー(PFS系ポリマー)等が挙げられる。電気陰性度の高いフッ素原子を導入することで、化学的に非常に安定し、スルホン酸基の解離度が高く、高いイオン伝導性が実現できる。このような水素イオン伝導性高分子電解質の具体例としては、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等が挙げられる。水素イオン伝導性高分子電解質含有溶液中に含まれる水素イオン伝導性高分子電解質の濃度は、通常5〜60重量%程度、好ましくは20〜40重量%程度である。なお、電解質膜2の膜厚は通常20〜250μm程度、好ましくは20〜80μm程度である。   The electrolyte membrane 2 is formed, for example, by applying a solution containing a hydrogen ion conductive polymer electrolyte on a substrate and drying it. Examples of the hydrogen ion conductive polymer electrolyte include a perfluorosulfonic acid-based fluorine ion exchange resin, more specifically, a perfluorocarbonsulfonic acid-based resin in which the C—H bond of a hydrocarbon ion-exchange membrane is substituted with fluorine. Examples include polymers (PFS polymers). By introducing a fluorine atom having high electronegativity, it is chemically very stable, the dissociation degree of the sulfonic acid group is high, and high ion conductivity can be realized. Specific examples of such a hydrogen ion conductive polymer electrolyte include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and “Aciplex” manufactured by Asahi Kasei Corporation. ”(Registered trademark),“ Gore Select ”(registered trademark) manufactured by Gore, and the like. The concentration of the hydrogen ion conductive polymer electrolyte contained in the hydrogen ion conductive polymer electrolyte-containing solution is usually about 5 to 60% by weight, preferably about 20 to 40% by weight. In addition, the film thickness of the electrolyte membrane 2 is about 20-250 micrometers normally, Preferably it is about 20-80 micrometers.

触媒層3は、公知の白金含有の触媒層(カソード触媒及びアノード触媒)である。詳しくは、触媒層3は、触媒粒子を担持させた炭素粒子及び水素イオン伝導性高分子電解質を含有する。触媒粒子としては、例えば、白金や白金化合物等が挙げられる。白金化合物としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群から選ばれる少なくとも1種の金属と、白金との合金等が挙げられる。なお、通常は、カソード触媒層に含まれる触媒粒子は白金であり、アノード触媒層に含まれる触媒粒子は上記金属と白金との合金である。また、水素イオン伝導性高分子電解質としては、上述した電解質膜2に使用されるものと同じ材料を使用することができる。   The catalyst layer 3 is a known platinum-containing catalyst layer (cathode catalyst and anode catalyst). Specifically, the catalyst layer 3 contains carbon particles supporting catalyst particles and a hydrogen ion conductive polymer electrolyte. Examples of the catalyst particles include platinum and platinum compounds. Examples of the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like. In general, the catalyst particles contained in the cathode catalyst layer are platinum, and the catalyst particles contained in the anode catalyst layer are an alloy of the above metal and platinum. Moreover, as a hydrogen ion conductive polymer electrolyte, the same material as what is used for the electrolyte membrane 2 mentioned above can be used.

膜触媒層接合体の製造方法
以上のように構成された膜触媒層接合体1の製造方法について説明すると、まず、図2に示すように、上述した材料からなる電解質膜2を準備し、この電解質膜2の上面及び下面に触媒層転写シート4を重ねて配置する(図2(a))。
Method for Producing Membrane Catalyst Layer Assembly A method for producing the membrane catalyst layer assembly 1 configured as described above will be described. First, as shown in FIG. 2, an electrolyte membrane 2 made of the above-described material is prepared. The catalyst layer transfer sheet 4 is disposed so as to overlap the upper and lower surfaces of the electrolyte membrane 2 (FIG. 2A).

触媒層転写シート4とは、転写される触媒層3が基材シート5上に形成されたものである。この触媒層転写シート4の製造方法について説明すると、まず、上述した触媒粒子を担持させた炭素粒子及び水素イオン伝導性高分子電解質を適当な溶剤に混合、分散して触媒ペーストを作製する。そして、形成される触媒層3が所望の膜厚になるように触媒ペーストを公知の方法に従い、必要に応じて離型層を介して基材シート5上に塗工する。触媒ペーストの塗工方法としては、スクリーン印刷や、スプレーコーティング、ダイコーティング、ナイフコーティングなどの公知の塗工方法を挙げることができる。また、上記の溶剤としては、各種アルコール類、各種エーテル類、各種ジアルキルスルホキシド類、水またはこれらの混合物等が挙げられ、これらの中でもアルコール類が好ましい。アルコール類としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール、等の炭素数1〜4の一価アルコール、各種の多価アルコール等が挙げられる。基材シート5としては、例えば、ポリイミド、ポリエチレンテレフタレート、パラバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート等の高分子シートを挙げることができる。また、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の耐熱性フッ素樹脂を用いることもできる。さらに基材シート5は、高分子シート以外にアート紙、コート紙、軽量コート紙等の塗工紙、ノート用紙、コピー用紙などの非塗工紙であっても良い。基材シート5の厚さは、取り扱い性及び経済性の観点から通常6〜100μm程度、好ましくは10〜30μm程度程度とするのがよい。従って、基材シート5としては、安価で入手が容易な高分子シートが好ましく、ポリエチレンテレフタレート等がより好ましい。   The catalyst layer transfer sheet 4 is one in which the catalyst layer 3 to be transferred is formed on the base sheet 5. The manufacturing method of the catalyst layer transfer sheet 4 will be described. First, the above-described carbon particles supporting the catalyst particles and the hydrogen ion conductive polymer electrolyte are mixed and dispersed in an appropriate solvent to prepare a catalyst paste. And according to a well-known method, a catalyst paste is apply | coated on the base material sheet 5 through a mold release layer as needed so that the catalyst layer 3 formed may become a desired film thickness. Examples of the method for applying the catalyst paste include known coating methods such as screen printing, spray coating, die coating, and knife coating. Examples of the solvent include various alcohols, various ethers, various dialkyl sulfoxides, water, or a mixture thereof. Of these, alcohols are preferable. Examples of alcohols include monohydric alcohols having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, and tert-butanol, and various polyhydric alcohols. Examples of the base sheet 5 include polyimide, polyethylene terephthalate, aramid paravanate, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene naphthalate, and the like. The polymer sheet can be mentioned. Further, heat resistance of ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), etc. Fluorine resin can also be used. Further, the base sheet 5 may be coated paper such as art paper, coated paper, and lightweight coated paper, non-coated paper such as notebook paper and copy paper, in addition to the polymer sheet. The thickness of the base sheet 5 is usually about 6 to 100 μm, preferably about 10 to 30 μm, from the viewpoints of handleability and economy. Accordingly, the base sheet 5 is preferably a polymer sheet that is inexpensive and easily available, and more preferably polyethylene terephthalate.

そして、触媒ペーストを塗工した後、所定の温度及び時間で乾燥することにより基材シート5上に触媒層3が形成される。乾燥温度は、通常40〜100℃程度、好ましくは60〜80℃程度である。乾燥時間は、乾燥温度にもよるが、通常5分〜2時間程度、好ましくは10分〜1時間程度である。   And after applying a catalyst paste, the catalyst layer 3 is formed on the base material sheet 5 by drying at predetermined temperature and time. A drying temperature is about 40-100 degreeC normally, Preferably it is about 60-80 degreeC. Although depending on the drying temperature, the drying time is usually about 5 minutes to 2 hours, preferably about 10 minutes to 1 hour.

図2に戻って、膜触媒層接合体1の製造方法について説明を続ける。触媒層3が電解質膜2を向くようにして上述した触媒層転写シート4を電解質膜2の上面及び下面に重ねて配置する(図2(a))。そして、この各触媒層転写シート4上に、ゲル状部材6を配置する。ゲル状部材6は、図2(b)に示すように、触媒層転写シート4よりも一回り大きく形成されており、触媒層転写シート4を覆うとともに、外周縁部が電解質膜2上に接触している。このゲル状部材6は、電解質膜2上に触媒転写シート4を重ねて配置したものの輪郭に沿うような形状に変形するものであって、熱プレスの熱や圧力を伝えるとともにこれらに耐えうるものであれば特に限定されるものではないが、好ましくは、材質にシリコンを使用したゲルシートなどを使用することができる。また、ゲル状部材6は、ヤング率(圧縮弾性率)が30〜300kPaで、厚みが0.5〜3mmであることが好ましい。   Returning to FIG. 2, the description of the manufacturing method of the membrane catalyst layer assembly 1 will be continued. The above-described catalyst layer transfer sheet 4 is placed on the upper and lower surfaces of the electrolyte membrane 2 so that the catalyst layer 3 faces the electrolyte membrane 2 (FIG. 2A). Then, the gel-like member 6 is disposed on each catalyst layer transfer sheet 4. As shown in FIG. 2B, the gel-like member 6 is formed to be slightly larger than the catalyst layer transfer sheet 4, covers the catalyst layer transfer sheet 4, and the outer peripheral edge contacts the electrolyte membrane 2. is doing. This gel-like member 6 is deformed into a shape that conforms to the outline of the catalyst transfer sheet 4 placed on the electrolyte membrane 2 and can withstand the heat and pressure of the hot press. If it is, it will not specifically limit, However, Preferably the gel sheet etc. which used the silicon | silicone as a material can be used. The gel-like member 6 preferably has a Young's modulus (compression modulus) of 30 to 300 kPa and a thickness of 0.5 to 3 mm.

そして、このようなゲル状部材6を介して、各触媒層転写シート4の背面側から熱プレスを施して触媒層転写シート4の触媒層3を電解質膜2上に転写させる(図2(c))。熱プレスの加圧レベルは、転写不良を避けるために、通常0.5〜20MPa程度、好ましくは1〜10MPa程度がよい。また、この加圧操作の際に、転写不良を避けるために加圧面を加熱するのが好ましい。加熱温度は、電解質膜2の破損、変形等を避けるために、通常200℃以下、好ましくは150℃以下がよい。作業性を考慮すると、触媒層3を電解質膜2の両面に同時に積層することが好ましいが片面ずつ触媒層3を形成することもできる。   Then, through such a gel-like member 6, the catalyst layer 3 of the catalyst layer transfer sheet 4 is transferred onto the electrolyte membrane 2 by applying heat press from the back side of each catalyst layer transfer sheet 4 (FIG. 2 (c). )). The pressure level of the hot press is usually about 0.5 to 20 MPa, preferably about 1 to 10 MPa in order to avoid transfer failure. Further, it is preferable to heat the pressing surface during this pressing operation in order to avoid transfer failure. The heating temperature is usually 200 ° C. or lower, preferably 150 ° C. or lower, in order to avoid damage or deformation of the electrolyte membrane 2. In consideration of workability, it is preferable to simultaneously laminate the catalyst layer 3 on both surfaces of the electrolyte membrane 2, but the catalyst layer 3 can also be formed on each side.

その後、各ゲル状部材6を取り除いて、基材シート5を剥離する。このように電解質膜2の両面に触媒層3を形成することで膜触媒層接合体1が形成される(図2(d))。   Then, each gel-like member 6 is removed and the base material sheet 5 is peeled. Thus, the membrane catalyst layer assembly 1 is formed by forming the catalyst layers 3 on both surfaces of the electrolyte membrane 2 (FIG. 2D).

次に、上述したように製造した膜触媒層接合体1の電解質膜2の歪みが基準内であるか検査する。この検査方法は、図3に示すように、まず、膜触媒層接合体1の上面(第1の面)側に第1の偏光板7aを配置するとともに、膜触媒層接合体1の下面(第2の面)側に第2の偏光板7bを配置する。偏光板7としては、例えば、ヨウ素系偏光板、染料系偏光板を用いることができる。光学的歪みを、その周囲とのコントラストが良好な状態で見やすくするために、第1の偏光板7aの偏光軸と第2の偏光板7bの偏光軸とが互いに交差する角度を約60〜120°になるように設置することが好ましく、約90度にすることがさらに好ましい。   Next, it is inspected whether the distortion of the electrolyte membrane 2 of the membrane catalyst layer assembly 1 manufactured as described above is within the standard. In this inspection method, as shown in FIG. 3, first, the first polarizing plate 7a is disposed on the upper surface (first surface) side of the membrane catalyst layer assembly 1, and the lower surface ( The second polarizing plate 7b is arranged on the (second surface) side. As the polarizing plate 7, for example, an iodine polarizing plate or a dye polarizing plate can be used. In order to make it easy to see the optical distortion with a good contrast with the surroundings, the angle at which the polarization axis of the first polarizing plate 7a and the polarization axis of the second polarizing plate 7b intersect each other is about 60 to 120. It is preferable to set the angle so that the angle is about 90 °, and more preferably about 90 degrees.

このように各偏光板7a、7bを配置した後、第1の偏光板7aの上方(後方)に光源8を設置して光を照射する。そして、図3及び図4に示すように、電解質膜2の触媒層3の外周縁から所定距離範囲内を検査領域9とし、この検査領域9にて第2の偏光板7bを透過する光の透過率を調べる。好ましくは、触媒層3の外周縁から約0.2mmの範囲内を検査領域9とし、この検査領域9において第2の偏光板7bを透過する光の透過率が約40%以下であれば、電解質膜2の歪みが少なく基準内(良品)であると判断する。なお、光源によって照射される光は公知の光でよく、例えば自然光、ハロゲン光、蛍光灯などを照射することができる。また、このときの光の透過率を測定する方法は、種々の方法が考えられるが、例えば、撮影手段によって第2の偏光板7bを透過した光を撮影し、この撮影画像を画像解析ソフトなどの解析手段によって透過部分と非透過部分とに二値化して透過率を測定することができる。   After disposing the polarizing plates 7a and 7b in this way, the light source 8 is placed above (backward) the first polarizing plate 7a and irradiated with light. Then, as shown in FIGS. 3 and 4, the inspection area 9 is within a predetermined distance from the outer peripheral edge of the catalyst layer 3 of the electrolyte membrane 2, and the light transmitted through the second polarizing plate 7 b in this inspection area 9. Examine the transmittance. Preferably, if the inspection region 9 is within a range of about 0.2 mm from the outer periphery of the catalyst layer 3, and the transmittance of light transmitted through the second polarizing plate 7b in the inspection region 9 is about 40% or less, It is determined that the electrolyte membrane 2 is less distorted and is within the standard (non-defective product). The light emitted from the light source may be a known light, and for example, natural light, halogen light, fluorescent lamp, etc. can be applied. Various methods can be considered for measuring the light transmittance at this time. For example, the light transmitted through the second polarizing plate 7b is photographed by photographing means, and the photographed image is image analysis software or the like. The transmittance can be measured by binarizing the transmission part and the non-transmission part by the analyzing means.

以上、本実施形態によれば、熱プレスする際にゲル状部材6を介しているため、電解質膜2に作用する圧力をほぼ均等にすることができ、この結果、検査領域9において第2の偏光板7bを透過する光の透過率が40%以下の膜触媒層接合体1を得ることができる。この光の透過率は電解質膜の歪みに密接に関係しており、電解質膜2が歪んでいなければ、光源8から照射された光は、電解質膜2を透過しても第1の偏光板7aによって偏光されたままの振動方向で第2の偏光板7bまで進行するため、偏光軸が第1の偏光板の偏光軸と約60〜120度の角度をなす第2の偏光板7bを透過しない。また、電解質膜2が歪んでいれば、光源8から照射された光は、電解質膜2を透過すると、第1の偏光板7aによって偏光されたままの振動方向ではなく、種々の振動方向を有する光となるため、第2の偏光板7bを透過する。このように、電解質膜2が歪んでいないほど、検査領域9において第2の偏光板7bを透過する光の透過率が低くなるため、透過率が40%以下の膜触媒層接合体1は、電解質膜2の歪みが少ない。また、このように電解質膜2の歪みが少ない膜触媒層接合体1を使用して製造された固体高分子形燃料電池は、良好な耐久性を有している。   As described above, according to the present embodiment, since the gel-like member 6 is interposed during the hot pressing, the pressure acting on the electrolyte membrane 2 can be substantially equalized. The membrane-catalyst layer assembly 1 having a transmittance of 40% or less of light transmitted through the polarizing plate 7b can be obtained. This light transmittance is closely related to the distortion of the electrolyte membrane. If the electrolyte membrane 2 is not distorted, the light applied from the light source 8 will pass through the electrolyte membrane 2 even if the first polarizing plate. Since it travels to the second polarizing plate 7b in the vibration direction while being polarized by the light 7a, it passes through the second polarizing plate 7b whose polarizing axis forms an angle of about 60 to 120 degrees with the polarizing axis of the first polarizing plate. do not do. Further, if the electrolyte membrane 2 is distorted, the light emitted from the light source 8 has various vibration directions when transmitted through the electrolyte membrane 2 instead of the vibration directions that are polarized by the first polarizing plate 7a. Since it becomes light, it passes through the second polarizing plate 7b. Thus, since the transmittance | permeability of the light which permeate | transmits the 2nd polarizing plate 7b in the test | inspection area | region 9 becomes so low that the electrolyte membrane 2 is not distorted, the membrane catalyst layer assembly 1 whose transmittance | permeability is 40% or less, The distortion of the electrolyte membrane 2 is small. Further, the polymer electrolyte fuel cell manufactured using the membrane catalyst layer assembly 1 having a small distortion of the electrolyte membrane 2 as described above has good durability.

膜電極接合体
次に、膜電極接合体10について説明する。図5に示すように、膜電極接合体10は、上述した膜触媒層接合体1の各触媒層3上にガス拡散層11が形成されている。
Membrane / Electrode Assembly Next, the membrane / electrode assembly 10 will be described. As shown in FIG. 5, in the membrane electrode assembly 10, the gas diffusion layer 11 is formed on each catalyst layer 3 of the membrane catalyst layer assembly 1 described above.

ガス拡散層11は、公知であり、燃料極、空気極を構成する各種のガス拡散層を使用でき、燃料である燃料ガス及び酸化剤ガスを効率よく触媒層3に供給するため、多孔質の導電性基材からなっている。多孔質の導電性基材としては、例えば、カーボンペーパーやカーボンクロス等が挙げられる。   The gas diffusion layer 11 is well-known, and various gas diffusion layers constituting a fuel electrode and an air electrode can be used. In order to efficiently supply fuel gas and oxidant gas as fuel to the catalyst layer 3, It consists of a conductive substrate. Examples of the porous conductive substrate include carbon paper and carbon cloth.

この膜電極接合体10は、以下のように製造することができる。すなわち、上述したような手順で膜触媒層接合体1を製造する。そして、各触媒層3上に上述したガス拡散層11を圧着により積層形成して膜電極接合体10が完成する。また、膜電極接合体10はこれ以外の方法によっても製造することができる。まず、図6に示すように、上述した材料からなるガス拡散層11を準備する。そして、このガス拡散層11上に所望の膜厚になるように触媒ペーストを、公知の方法に従い塗工することにより触媒層3を形成する。触媒ペーストの塗工方法としては、上記と同様、スクリーン印刷や、スプレーコーティング、ダイコーティング、ナイフコーティングなどの公知の塗工方法を挙げることができる。このようにガス拡散層11上に触媒層3が形成された電極12を、触媒層3が電解質膜2側を向くように電解質膜2の上面及び下面に重ねて配置する(図6(a))。   This membrane electrode assembly 10 can be manufactured as follows. That is, the membrane / catalyst layer assembly 1 is manufactured by the procedure as described above. And the gas diffusion layer 11 mentioned above is laminated | stacked on each catalyst layer 3 by pressure bonding, and the membrane electrode assembly 10 is completed. Moreover, the membrane electrode assembly 10 can be manufactured by other methods. First, as shown in FIG. 6, a gas diffusion layer 11 made of the above-described material is prepared. Then, the catalyst layer 3 is formed by applying a catalyst paste on the gas diffusion layer 11 so as to have a desired film thickness according to a known method. As a coating method of the catalyst paste, known coating methods such as screen printing, spray coating, die coating, knife coating and the like can be exemplified as described above. The electrode 12 having the catalyst layer 3 formed on the gas diffusion layer 11 as described above is disposed so as to overlap the upper and lower surfaces of the electrolyte membrane 2 so that the catalyst layer 3 faces the electrolyte membrane 2 side (FIG. 6A). ).

そして、この各電極12上に、上述したのと同様のゲル状部材6を配置する。ゲル状部材6は、図6(b)に示すように、電極12よりも一回り大きく形成されており、電極12を覆うとともに、外周縁部が電解質膜2上に接触している。   Then, the same gel-like member 6 as described above is disposed on each electrode 12. As shown in FIG. 6B, the gel-like member 6 is formed slightly larger than the electrode 12, covers the electrode 12, and the outer peripheral edge is in contact with the electrolyte membrane 2.

そして、図6(c)に示すように、ゲル状部材6を介して各電極12の背面側から熱プレスを施して各電極12を電解質膜2の上面及び下面に接合させる。このときの熱プレスの加圧レベルは、接合不良を避けるために、通常0.5〜20MPa程度、好ましくは1〜10MPa程度がよい。また、この加圧操作の際に、接合不良を避けるために加圧面を加熱するのが好ましい。加熱温度は、電解質膜2の破損、変形等を避けるために、通常200℃以下、好ましくは150℃以下がよい。このように電解質膜2の両面に電極12を形成することで膜電極接合体10が形成される(図6(d))。   Then, as shown in FIG. 6C, heat pressing is performed from the back side of each electrode 12 through the gel-like member 6 to join each electrode 12 to the upper surface and the lower surface of the electrolyte membrane 2. The pressure level of the hot press at this time is usually about 0.5 to 20 MPa, preferably about 1 to 10 MPa in order to avoid poor bonding. Further, it is preferable to heat the pressing surface during this pressing operation in order to avoid poor bonding. The heating temperature is usually 200 ° C. or lower, preferably 150 ° C. or lower, in order to avoid damage or deformation of the electrolyte membrane 2. Thus, the membrane electrode assembly 10 is formed by forming the electrodes 12 on both surfaces of the electrolyte membrane 2 (FIG. 6D).

このように形成した膜電極接合体10は、上述した膜触媒層接合体1のときと同様の方法で光の透過率が測定され、光の透過率が40%以下であれば膜電極接合体10の電解質膜2の歪みは問題無いとして後工程へと送られる。   The membrane electrode assembly 10 thus formed has a light transmittance measured by the same method as that of the membrane catalyst layer assembly 1 described above. If the light transmittance is 40% or less, the membrane electrode assembly The distortion of the electrolyte membrane 2 is sent to the subsequent process on the assumption that there is no problem.

本実施形態によれば、熱プレスする際にゲル状部材6を使用しているため、電解質膜2に作用する圧力をほぼ均等にすることができ、この結果、検査領域9において第2の偏光板7bを透過する光の透過率が40%以下の膜電極接合体10を得ることができる、すなわち、電解質膜2の歪みが少ない膜電極接合体10を得ることができる。なお、上述したように、光の透過率は電解質膜2の歪みに密接に関係しており、電解質膜2が歪んでいないほど、検査領域9において第2の偏光板7bを透過する光の透過率が低くなるため、透過率が40%以下の膜電極接合体10は電解質膜2の歪みが少ないということが言える。また、このように電解質膜2の歪みが少ない膜電極接合体10を使用して製造された固体高分子形燃料電池は、良好な耐久性を有している。   According to the present embodiment, since the gel-like member 6 is used at the time of hot pressing, the pressure acting on the electrolyte membrane 2 can be made almost uniform, and as a result, the second polarized light in the inspection region 9 A membrane / electrode assembly 10 having a transmittance of 40% or less of light transmitted through the plate 7b can be obtained, that is, a membrane / electrode assembly 10 with less distortion of the electrolyte membrane 2 can be obtained. Note that, as described above, the light transmittance is closely related to the distortion of the electrolyte membrane 2, and the transmission of the light transmitted through the second polarizing plate 7 b in the inspection region 9 is such that the electrolyte membrane 2 is not distorted. Since the rate is low, it can be said that the membrane electrode assembly 10 having a transmittance of 40% or less has less distortion of the electrolyte membrane 2. In addition, the polymer electrolyte fuel cell manufactured by using the membrane electrode assembly 10 in which the distortion of the electrolyte membrane 2 is small as described above has good durability.

以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。例えば、上記実施形態では、熱プレスする際にゲル状部材6を使用することによって、電解質膜2に生じる歪みを低減させているが、例えば熱プレス条件を調整することによっても電解質膜2に歪みが生じることを防止することができる。例えば、熱プレスの条件を100〜125℃、1〜3MPa、60〜120秒とすることが、電解質膜2の歪みを低減させるのに好ましい。   As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention. For example, in the above-described embodiment, the distortion generated in the electrolyte membrane 2 is reduced by using the gel-like member 6 during hot pressing, but the distortion is also caused in the electrolyte membrane 2 by adjusting the hot pressing conditions, for example. Can be prevented. For example, it is preferable that the conditions of the hot press are 100 to 125 ° C., 1 to 3 MPa, and 60 to 120 seconds to reduce distortion of the electrolyte membrane 2.

また、上記実施形態では、検査領域9を電解質膜2における触媒層3の外周縁から約0.2mmの範囲内としているが、特にこれに限定されるものではなく、例えば検査領域を0.2mmの範囲よりも大きくしたり、小さくすることができる。またさらには、上記実施形態では、透過率が約40%以下の膜電解質接合体や膜電極接合体を歪みが少ない良品として判断しているが、より耐久性を向上させるために良品と判断する際の透過率を約20%以下とすることもできる。   Moreover, in the said embodiment, although the test | inspection area | region 9 is made into the range of about 0.2 mm from the outer periphery of the catalyst layer 3 in the electrolyte membrane 2, it is not limited to this in particular, For example, a test | inspection area | region is 0.2 mm. It can be made larger or smaller than the range. Furthermore, in the above embodiment, the membrane electrolyte assembly or membrane electrode assembly having a transmittance of about 40% or less is determined as a non-defective product with less distortion, but is determined to be a non-defective product in order to improve durability. The transmittance at the time can be about 20% or less.

また、上記実施形態では、触媒層3の形状は、特に限定していないが、略円形(円形、楕円形、卵形など種々の円形を含む)であってもよいし、矩形状であっても良い。矩形状の場合は、正方形であってもよいし、長方形であってもよい。触媒層3が長方形の場合、通常、触媒層転写シート4で転写形成すると電解質膜2に歪みが生じやすいが、上述したようなゲル状部材6を使用すれば、透過率40%以下にて膜触媒層接合体1や膜電極接合体10を製造することができ、電解質膜2の歪みを抑えることができる。   In the above embodiment, the shape of the catalyst layer 3 is not particularly limited, but may be substantially circular (including various circular shapes such as a circle, an ellipse, and an egg), or a rectangle. Also good. In the case of a rectangular shape, it may be a square or a rectangle. When the catalyst layer 3 is rectangular, the electrolyte membrane 2 is likely to be distorted when it is transferred and formed with the catalyst layer transfer sheet 4. However, when the gel-like member 6 as described above is used, the membrane has a transmittance of 40% or less. The catalyst layer assembly 1 and the membrane electrode assembly 10 can be manufactured, and the distortion of the electrolyte membrane 2 can be suppressed.

また、上記実施形態の膜電極接合体10の触媒層3及びガス拡散層11の周囲を囲むように電解質膜2上にガスケットを配置するとともに、膜電極接合体10を上面及び下面から挟むようにセパレータを設置して、固体高分子形燃料電池を製造することもできる。   In addition, a gasket is disposed on the electrolyte membrane 2 so as to surround the catalyst layer 3 and the gas diffusion layer 11 of the membrane electrode assembly 10 of the above embodiment, and the membrane electrode assembly 10 is sandwiched from the upper surface and the lower surface. A polymer electrolyte fuel cell can also be manufactured by installing a separator.

以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。なお、本発明は、下記実施例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples and comparative examples. In addition, this invention is not limited to the following Example.

(実施例1)
まず、触媒層転写シート4を以下の要領で作製した。白金触媒担持カーボン(白金担持量:45.7wt%、田中貴金属社製、TEC10E50E)2gに、イソプロピルアルコール20g、フッ素樹脂(5wt%ナフィオンバインダー、デュポン社製)20g、及び水6gを加えた。そして、これらを分散機によって攪拌混合して触媒層ペーストを調製した。次に、触媒層3が乾燥した後の白金重量が0.4mg/cmとなるように、基材シート5(東洋紡績社製、E5100、厚さ12μm)に塗工して、触媒層転写シート4を作製し、これを60×60mmの大きさに2枚切断した。この触媒層転写シート4を電解質膜2(63×63mm、厚さ53μm、NRE212CS(Dupont社製))の両面に重ねて配置した。そして、この電解質膜2と触媒層転写シート4とを挟むようにゲル状部材6((λGEL COH−6000LVC(GELTEC社製)厚さ3mm))をさらに重ねて配置し、このゲル状部材6を介して、触媒層転写シート4を130℃、5.0MPa、120秒のプレス条件で熱プレスすることで、触媒層3を電解質膜2に転写した。最後に、基材シート5を剥離し、膜触媒層接合体1を作製した。
Example 1
First, the catalyst layer transfer sheet 4 was produced as follows. To 2 g of platinum catalyst-supported carbon (platinum supported amount: 45.7 wt%, manufactured by Tanaka Kikinzoku Co., Ltd., TEC10E50E) was added 20 g of isopropyl alcohol, 20 g of a fluororesin (5 wt% Nafion binder, manufactured by DuPont), and 6 g of water. These were stirred and mixed by a disperser to prepare a catalyst layer paste. Next, the catalyst layer 3 was coated on the base sheet 5 (Toyobo Co., Ltd., E5100, thickness 12 μm) so that the platinum weight after the catalyst layer 3 was dried was 0.4 mg / cm 2, and the catalyst layer transfer was performed. A sheet 4 was prepared, and two sheets were cut into a size of 60 × 60 mm. This catalyst layer transfer sheet 4 was placed on both surfaces of the electrolyte membrane 2 (63 × 63 mm, thickness 53 μm, NRE212CS (manufactured by Dupont)). Then, a gel-like member 6 ((λGEL COH-6000LVC (manufactured by GELTEC) thickness 3 mm)) is further arranged so as to sandwich the electrolyte membrane 2 and the catalyst layer transfer sheet 4. Then, the catalyst layer 3 was transferred to the electrolyte membrane 2 by hot pressing the catalyst layer transfer sheet 4 under the press conditions of 130 ° C., 5.0 MPa, 120 seconds. Finally, the base material sheet 5 was peeled off to produce a membrane catalyst layer assembly 1.

(実施例2)
触媒層転写シート4の大きさが30×150mm(縦横比1:5)、電解質膜2の大きさが70×200mm、熱プレス条件が130℃、5.0MPa、120秒である点以外、実施例1と同材料、同条件で膜触媒層接合体1を作製した。
(Example 2)
Except that the size of the catalyst layer transfer sheet 4 is 30 × 150 mm (aspect ratio 1: 5), the size of the electrolyte membrane 2 is 70 × 200 mm, and the hot press conditions are 130 ° C., 5.0 MPa, 120 seconds. A membrane / catalyst layer assembly 1 was produced under the same materials and conditions as in Example 1.

(実施例3)
ゲル状部材6に((αGEL θ−7(GELTEC社製)厚さ3mm))を使用した点以外、実施例1と同材料、同条件で膜触媒層接合体1を作製した。
(Example 3)
Membrane / catalyst layer assembly 1 was produced under the same material and under the same conditions as in Example 1 except that ((αGEL θ-7 (manufactured by GELTEC) thickness 3 mm)) was used for the gel-like member 6.

(実施例4)
ゲル状部材6に((人肌のゲル 硬度5(エクシールコーポレーション社製)厚さ2mm))を使用した点以外、実施例1と同材料、同条件で膜触媒層接合体1を作製した。
Example 4
Membrane / catalyst layer assembly 1 was produced under the same materials and under the same conditions as in Example 1, except that ((gel skin hardness 5 (manufactured by EXCIAL CORPORATION), thickness 2 mm)) was used for gel-like member 6.

(実施例5)
実施例1と同一の触媒層ペーストを、触媒層3が乾燥した後の白金重量が0.4mg/cmとなるように、ガス拡散層11(カーボンペーパー:(東レ社製、TGP−H090、厚さ280μm))に塗工して、電極12を作製し、これを50×50mmの大きさに2枚切断した。この電極12を電解質膜2(63×63mm、厚さ53μm、NRE212CS(Dupont社製))の両面に重ねて配置した。そして、この電解質膜2と電極12とを挟むようにゲル状部材6((λGEL COH−6000LVC(GELTEC社製)厚さ3mm))をさらに重ねて配置し、このゲル状部材6を介して、電極12を130℃、3.0MPa、120秒のプレス条件で熱プレスすることで、触媒層3を電解質膜2に接合し、膜電極接合体10を作製した。
(Example 5)
The gas diffusion layer 11 (carbon paper: (manufactured by Toray Industries, Inc., TGP-H090, so that the platinum weight after the catalyst layer 3 is dried) is 0.4 mg / cm 2 , using the same catalyst layer paste as in Example 1. The electrode 12 was prepared by coating to a thickness of 280 μm)), and two pieces were cut into a size of 50 × 50 mm. The electrode 12 was placed on both surfaces of the electrolyte membrane 2 (63 × 63 mm, thickness 53 μm, NRE212CS (manufactured by Dupont)). Then, a gel-like member 6 ((λGEL COH-6000LVC (manufactured by GELTEC) thickness 3 mm)) is further arranged so as to sandwich the electrolyte membrane 2 and the electrode 12, and the gel-like member 6 is interposed therebetween. The electrode 12 was hot-pressed under the press conditions of 130 ° C., 3.0 MPa, and 120 seconds to join the catalyst layer 3 to the electrolyte membrane 2, thereby producing a membrane electrode assembly 10.

(比較例1)
ゲル状部材6を使用しない点、及びプレス条件が異なる点以外は、上記実施例1と同様に膜触媒層接合体を作製した。なお、プレス条件は、130℃、30MPa、150秒とした。
(Comparative Example 1)
A membrane / catalyst layer assembly was prepared in the same manner as in Example 1 except that the gel-like member 6 was not used and the press conditions were different. The press conditions were 130 ° C., 30 MPa, and 150 seconds.

(比較例2)
ゲル状部材6を使用しない点、及びプレス条件が異なる点以外は、上記実施例2と同様に膜触媒層接合体を作製した。なお、プレス条件は、130℃、30MPa、150秒とした。
(Comparative Example 2)
A membrane / catalyst layer assembly was produced in the same manner as in Example 2 except that the gel-like member 6 was not used and the press conditions were different. The press conditions were 130 ° C., 30 MPa, and 150 seconds.

(比較例3)
ゲル状部材6を使用しない点、及びプレス条件が異なる点以外は、上記実施例5と同様に膜電極接合体を作製した。なお、プレス条件は、130℃、30MPa、150秒とした。
(Comparative Example 3)
A membrane / electrode assembly was produced in the same manner as in Example 5 except that the gel-like member 6 was not used and the press conditions were different. The press conditions were 130 ° C., 30 MPa, and 150 seconds.

(評価方法1)
上記実施例1〜5、及び比較例1〜3の膜触媒層接合体又は膜電極接合体を、2枚の偏光板(PLフィルター 厚さ0.7mm、ケンコー株式会社製)の間に配置し、一方の偏光板の後方から光を照射し、他方の偏光板の後方から倍率50倍で写真撮影をした。これによって得られた撮影画像を上記観測より得られた撮影画像を、画像解析ソフトImage−ProPLUS(Media Cybernetics社製)を用いて二値化し、検査領域(触媒層の外周縁から0.2mmの範囲内)における透過率を測定した。その結果を表1に示す。また、図7〜図14に、各実施例及び比較例の撮影画像(a)及び二値化画像(b)を示す。図7〜図14において、下半分が触媒層又は電極となっており、上半分が電解質膜となっている。また、二値化画像における白色の部分(カラー画像においては黄色の部分)は光が透過した部分である。
(Evaluation method 1)
The membrane catalyst layer assemblies or membrane electrode assemblies of Examples 1 to 5 and Comparative Examples 1 to 3 were placed between two polarizing plates (PL filter thickness 0.7 mm, manufactured by Kenko Corporation). Then, light was irradiated from the back of one polarizing plate, and a photograph was taken at a magnification of 50 from the back of the other polarizing plate. The captured image obtained by the above observation is binarized using the image analysis software Image-ProPLUS (manufactured by Media Cybernetics), and an inspection region (0.2 mm from the outer periphery of the catalyst layer) is obtained. The transmittance in the range) was measured. The results are shown in Table 1. 7 to 14 show photographed images (a) and binarized images (b) of the examples and comparative examples. 7 to 14, the lower half is a catalyst layer or an electrode, and the upper half is an electrolyte membrane. Further, the white portion in the binarized image (the yellow portion in the color image) is a portion through which light has passed.

(評価方法2)
上記実施例1〜4及び比較例1,2の膜触媒層接合体の各触媒層3上に触媒層3と同サイズのガス拡散層11(東レ社製 TGP−H090 厚さ 280μm)を配置し、膜電極接合体10とする。そして、実施例1〜5及び比較例1〜3の膜電極接合体10に、各電極12を囲むようにガスケットを設置する。これを両面から挟むようにセパレータを設置し、さらに集電板も設置して単セルを形成する。このように実施例1〜5及び比較例1〜3の膜触媒層接合体又は膜電極接合体から形成された各単セルに対して、負荷変動サイクル試験を実施した。このときの測定条件は、セル温度80℃、燃料利用率70%、酸化剤利用率40%、加湿温度50℃とした。また、負荷変動サイクル試験として、電流密度0.3A/cm2にて1分間発電した後、電流密度0.01A/cm2にて1分間発電するサイクルを繰り返した。この試験結果として、電圧が低下するまでの時間を耐久性時間とし、また、この負荷変動サイクル試験後の電解質膜の破れの有無を表1に記載した。
(Evaluation method 2)
On each catalyst layer 3 of the membrane catalyst layer assembly of Examples 1 to 4 and Comparative Examples 1 and 2, a gas diffusion layer 11 (TGP-H090 thickness 280 μm manufactured by Toray Industries, Inc.) having the same size as the catalyst layer 3 is disposed. The membrane electrode assembly 10 is assumed. And a gasket is installed so that each electrode 12 may be enclosed in the membrane electrode assembly 10 of Examples 1-5 and Comparative Examples 1-3. A separator is installed so as to sandwich this from both sides, and a current collector plate is also installed to form a single cell. Thus, the load fluctuation cycle test was implemented with respect to each single cell formed from the membrane catalyst layer assembly or membrane electrode assembly of Examples 1-5 and Comparative Examples 1-3. The measurement conditions at this time were a cell temperature of 80 ° C., a fuel utilization rate of 70%, an oxidant utilization rate of 40%, and a humidification temperature of 50 ° C. Further, as a load variation cycle test, a cycle in which power was generated at a current density of 0.3 A / cm 2 for 1 minute and then power was generated at a current density of 0.01 A / cm 2 for 1 minute was repeated. As a result of this test, the time until the voltage drops was regarded as the durability time, and the presence or absence of breakage of the electrolyte membrane after this load fluctuation cycle test is shown in Table 1.

Figure 2010153188
Figure 2010153188

本発明に係る膜触媒層接合体の実施形態を示す正面図である。It is a front view showing an embodiment of a membrane catalyst layer assembly concerning the present invention. 本実施形態に係る膜触媒層接合体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the membrane catalyst layer assembly which concerns on this embodiment. 本実施形態に係る膜触媒層接合体の電解質膜の歪みを検査する方法を示す説明図である。It is explanatory drawing which shows the method to test | inspect the distortion of the electrolyte membrane of the membrane catalyst layer assembly which concerns on this embodiment. 図3をA方向から見た底面図である。It is the bottom view which looked at FIG. 3 from the A direction. 本発明に係る膜電極接合体の実施形態を示す正面図である。It is a front view which shows embodiment of the membrane electrode assembly which concerns on this invention. 本実施形態に係る膜電極接合体の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the membrane electrode assembly which concerns on this embodiment. 実施例1に係る膜触媒層接合体の撮影画像(a)及び二値化画像(b)である。It is the picked-up image (a) and binarized image (b) of the membrane catalyst layer assembly which concerns on Example 1. FIG. 実施例2に係る膜触媒層接合体の撮影画像(a)及び二値化画像(b)である。It is the picked-up image (a) and binarized image (b) of the membrane catalyst layer assembly concerning Example 2. 実施例3に係る膜触媒層接合体の撮影画像(a)及び二値化画像(b)である。It is the picked-up image (a) and binarized image (b) of the membrane catalyst layer assembly concerning Example 3. 実施例4に係る膜触媒層接合体の撮影画像(a)及び二値化画像(b)である。It is the picked-up image (a) and binarized image (b) of the membrane catalyst layer assembly concerning Example 4. 実施例5に係る膜触媒層接合体の撮影画像(a)及び二値化画像(b)である。It is the picked-up image (a) and binarized image (b) of the membrane catalyst layer assembly concerning Example 5. 比較例1に係る膜触媒層接合体の撮影画像(a)及び二値化画像(b)である。It is the picked-up image (a) and the binarized image (b) of the membrane catalyst layer assembly according to Comparative Example 1. 比較例2に係る膜触媒層接合体の撮影画像(a)及び二値化画像(b)である。It is the picked-up image (a) and binarized image (b) of the membrane catalyst layer assembly according to Comparative Example 2. 比較例3に係る膜触媒層接合体の撮影画像(a)及び二値化画像(b)である。It is the picked-up image (a) and binarized image (b) of the membrane catalyst layer assembly according to Comparative Example 3.

符号の説明Explanation of symbols

1 膜触媒層接合体
2 電解質膜
3 触媒層
4 触媒層転写シート
5 基材シート
6 ゲル状部材
7a 第1の偏光板
7b 第2の偏光板
8 光源
9 検査領域
10 膜電極接合体
11 ガス拡散層
DESCRIPTION OF SYMBOLS 1 Membrane catalyst layer assembly 2 Electrolyte membrane 3 Catalyst layer 4 Catalyst layer transfer sheet 5 Base material sheet 6 Gel-like member 7a First polarizing plate 7b Second polarizing plate 8 Light source 9 Inspection region 10 Membrane electrode assembly 11 Gas diffusion layer

Claims (14)

基材シート上に触媒層が形成された触媒層転写シートを使用して製造された膜触媒層接合体であって、
電解質膜と、
前記電解質膜の両面に、触媒層転写シートを熱プレスすることによって前記電解質膜よりも一回り小さな大きさで転写形成された触媒層と、を備え、
前記電解質膜及び触媒層によって構成された膜触媒層接合体の第1の面側に第1の偏光板を、第2の面側に第2の偏光板を偏光軸が前記第1の偏光板の偏光軸に対して60〜120度の角度をなすように設置し、
前記電解質膜の前記触媒層の外周縁から0.2mm以内の検査領域において、前記第1の偏光板又は第2の偏光板のどちらか一方の偏光板の後方から光を照射した場合に他方の偏光板を透過する光の透過率が40%以下である、膜触媒層接合体。
A membrane / catalyst layer assembly produced using a catalyst layer transfer sheet having a catalyst layer formed on a base material sheet,
An electrolyte membrane;
A catalyst layer transferred and formed in a size slightly smaller than the electrolyte membrane by hot pressing a catalyst layer transfer sheet on both surfaces of the electrolyte membrane;
The first polarizing plate on the first surface side of the membrane / catalyst layer assembly constituted by the electrolyte membrane and the catalyst layer, the second polarizing plate on the second surface side, and the polarization axis of the first polarizing plate Installed at an angle of 60 to 120 degrees with respect to the polarization axis of
In the inspection region within 0.2 mm from the outer peripheral edge of the catalyst layer of the electrolyte membrane, when light is irradiated from the rear of one of the first polarizing plate and the second polarizing plate, the other A membrane-catalyst layer assembly, wherein the transmittance of light transmitted through the polarizing plate is 40% or less.
基材シート上に触媒層が形成された触媒層転写フィルを使用して製造された膜電極接合体であって、
電解質膜と、
前記電解質膜の両面に、触媒層転写シートを熱プレスすることによって前記電解質膜よりも一回り小さな大きさで転写形成された触媒層と、
前記各触媒層上に圧着されたガス拡散層と、を備え、
前記電解質膜、触媒層、及びガス拡散層から構成された膜電極接合体の第1の面側に第1の偏光板を、第2の面側に第2の偏光板を偏光軸が前記第1の偏光板の偏光軸に対して60〜120度の角度をなすように設置し、
前記電解質膜の前記触媒層の外周縁から0.2mm以内の検査領域において、前記第1の偏光板又は第2の偏光板のどちらか一方の偏光板の後方から光を照射した場合に他方の偏光板を透過する光の透過率が40%以下である、膜電極接合体。
A membrane electrode assembly manufactured using a catalyst layer transfer film in which a catalyst layer is formed on a substrate sheet,
An electrolyte membrane;
A catalyst layer transferred and formed in a size slightly smaller than the electrolyte membrane by hot pressing a catalyst layer transfer sheet on both surfaces of the electrolyte membrane;
A gas diffusion layer crimped onto each catalyst layer, and
The membrane electrode assembly composed of the electrolyte membrane, the catalyst layer, and the gas diffusion layer has a first polarizing plate on the first surface side and a second polarizing plate on the second surface side with the polarization axis as the first axis. Installed so as to form an angle of 60 to 120 degrees with respect to the polarization axis of one polarizing plate,
In the inspection region within 0.2 mm from the outer peripheral edge of the catalyst layer of the electrolyte membrane, when light is irradiated from the rear of either the first polarizing plate or the second polarizing plate, the other A membrane electrode assembly, wherein the transmittance of light transmitted through the polarizing plate is 40% or less.
ガス拡散層上に触媒層が予め形成された電極を使用して製造された膜電極接合体であって、
電解質膜と、
前記電解質膜の両面に、触媒層が前記電解質膜側を向いた状態で熱プレスすることによって前記電解質膜よりも一回り小さな大きさで転写形成された電極と、を備え、
前記電解質膜及び電極からなる膜電極接合体の第1の面側に第1の偏光板を、第2の面側に第2の偏光板を偏光軸が前記第1の偏光板の偏光軸に対して60〜120度の角度をなすように設置し、
前記電解質膜の前記触媒層の外周縁から0.2mm以内の検査領域において、前記第1の偏光板又は第2の偏光板のどちらか一方の偏光板の後方から光を照射した場合に他方の偏光板を透過する光の透過率が40%以下である、膜電極接合体。
A membrane electrode assembly manufactured using an electrode in which a catalyst layer is formed in advance on a gas diffusion layer,
An electrolyte membrane;
An electrode formed on both surfaces of the electrolyte membrane by being heat-pressed in a state where the catalyst layer faces the electrolyte membrane side and having a size slightly smaller than the electrolyte membrane;
The first polarizing plate is on the first surface side of the membrane electrode assembly comprising the electrolyte membrane and the electrode, the second polarizing plate is on the second surface side, and the polarization axis is the polarization axis of the first polarizing plate. Installed at an angle of 60-120 degrees
In the inspection region within 0.2 mm from the outer peripheral edge of the catalyst layer of the electrolyte membrane, when light is irradiated from the rear of either the first polarizing plate or the second polarizing plate, the other A membrane electrode assembly, wherein the transmittance of light transmitted through the polarizing plate is 40% or less.
請求項2又は3に記載の膜電極接合体を用いて製造される固体高分子形燃料電池   A polymer electrolyte fuel cell produced using the membrane electrode assembly according to claim 2 or 3. 電解質膜を準備する工程と、
基材シート上に触媒層が形成された、前記電解質膜よりも一回り小さい触媒層転写シートを準備する工程と、
前記電解質膜の両面に、前記触媒層が前記電解質膜側を向くように前記触媒層転写シートをそれぞれ設置する工程と、
前記触媒層転写シートよりも大きいゲル状部材を、前記各触媒層転写シートを覆うとともに外周縁部が前記電解質膜と接触するよう、前記触媒層転写シート上にそれぞれ配置する工程と、
前記ゲル状部材を介して前記触媒層転写シートを熱プレスし、前記電解質膜に前記触媒層を転写形成する工程と、
前記触媒層を転写形成した後に、基材シートを剥離する工程と、
を備えた、膜触媒層接合体の製造方法。
A step of preparing an electrolyte membrane;
A step of preparing a catalyst layer transfer sheet having a catalyst layer formed on a base sheet, which is slightly smaller than the electrolyte membrane;
Installing the catalyst layer transfer sheet on both surfaces of the electrolyte membrane such that the catalyst layer faces the electrolyte membrane;
Disposing a gel-like member larger than the catalyst layer transfer sheet on the catalyst layer transfer sheet so as to cover each catalyst layer transfer sheet and an outer peripheral edge is in contact with the electrolyte membrane;
Heat-pressing the catalyst layer transfer sheet via the gel-like member, and transferring and forming the catalyst layer on the electrolyte membrane;
After transferring and forming the catalyst layer, peeling the substrate sheet;
A method for producing a membrane / catalyst layer assembly comprising:
前記ゲル状部材は、ヤング率(圧縮弾性率)が30〜300kPaの弾性体である、請求項5に記載の膜触媒層接合体の製造方法。   The method for producing a membrane / catalyst layer assembly according to claim 5, wherein the gel-like member is an elastic body having a Young's modulus (compression elastic modulus) of 30 to 300 kPa. 請求項5に記載の膜触媒層接合体の製造方法と、
前記電解質膜の両面に触媒層が形成された膜触媒層接合体の各触媒層上に、ガス拡散層を圧着させる工程と、
を備えた、膜電極接合体の製造方法。
A method for producing a membrane-catalyst layer assembly according to claim 5,
A step of pressure bonding a gas diffusion layer on each catalyst layer of the membrane-catalyst layer assembly in which a catalyst layer is formed on both surfaces of the electrolyte membrane;
A method for producing a membrane electrode assembly, comprising:
電解質膜を準備する工程と、
ガス拡散層上に触媒層が形成された電極を電解質膜の両面に配置する工程と、
前記電極よりも大きいゲル状部材を、前記電極を覆うとともに外周縁部が前記電解質膜と接触するよう、前記電極上にそれぞれ配置する工程と、
前記ゲル状部材を介して前記電極を熱プレスし、前記電解質膜上に前記電極を形成する工程と、
を備えた、膜電極接合体の製造方法。
A step of preparing an electrolyte membrane;
Disposing electrodes having a catalyst layer formed on the gas diffusion layer on both sides of the electrolyte membrane;
Disposing a gel-like member larger than the electrode on the electrode so as to cover the electrode and an outer peripheral edge thereof is in contact with the electrolyte membrane;
Hot pressing the electrode through the gel-like member to form the electrode on the electrolyte membrane;
A method for producing a membrane electrode assembly, comprising:
前記ゲル状部材は、ヤング率(圧縮弾性率)が30〜300kPaの弾性体である、請求項7又は8に記載の膜電極接合体の製造方法。   The method for producing a membrane electrode assembly according to claim 7 or 8, wherein the gel-like member is an elastic body having a Young's modulus (compression elastic modulus) of 30 to 300 kPa. 電解質膜を準備する工程と、
基材シート上に触媒層が形成された触媒層転写シートを、前記触媒層が前記電解質膜側を向くように前記電解質膜の両面に配置する工程と、
前記触媒層転写シートを熱プレスして、前記電解質膜の両面に前記電解質膜よりも一回り小さい触媒層を転写形成する工程と、
前記基材シートを剥離して、膜触媒層接合体を形成する工程と、
前記膜触媒層接合体の第1の面側に第1の偏光板を設置し、第2の面側に第2の偏光板を偏光軸が前記第1の偏光板の偏光軸に対して60〜120度の角度をなすように設置する工程と、
前記第1又は第2の偏光板のどちらか一方の偏光板の後方から光を照射する工程と、
前記電解質膜の前記触媒層の外周縁から所定距離の範囲内の検査領域において、他方の偏光板を透過する光の透過率が所定値以下のものを良品と判断して後工程に流す工程と、
を備えた、膜触媒層接合体の製造方法。
A step of preparing an electrolyte membrane;
Arranging a catalyst layer transfer sheet having a catalyst layer formed on a base material sheet on both surfaces of the electrolyte membrane so that the catalyst layer faces the electrolyte membrane;
Heat-pressing the catalyst layer transfer sheet to transfer and form a catalyst layer that is slightly smaller than the electrolyte membrane on both surfaces of the electrolyte membrane;
Peeling the base sheet to form a membrane catalyst layer assembly,
A first polarizing plate is provided on the first surface side of the membrane-catalyst layer assembly, a second polarizing plate is provided on the second surface side, and a polarization axis is 60 with respect to the polarization axis of the first polarizing plate. A step of installing to form an angle of ~ 120 degrees;
Irradiating light from behind one of the first and second polarizing plates; and
In the inspection region within a predetermined distance from the outer peripheral edge of the catalyst layer of the electrolyte membrane, a step in which the transmittance of light transmitted through the other polarizing plate is determined to be a non-defective product and passed to a subsequent process ,
A method for producing a membrane / catalyst layer assembly comprising:
前記検査領域は、前記電解質膜の前記触媒層の外周縁から0.2mmの範囲内であり、
光の透過率が40%以下のものを良品として後工程に流す、請求項10に記載の膜触媒層接合体の製造方法。
The inspection region is within a range of 0.2 mm from the outer periphery of the catalyst layer of the electrolyte membrane,
The method for producing a membrane / catalyst layer assembly according to claim 10, wherein a product having a light transmittance of 40% or less is passed as a non-defective product in a subsequent process.
電解質膜を準備する工程と、
基材シート上に触媒層が形成された触媒層転写シートを、前記触媒層が前記電解質膜側を向くように前記電解質膜の両面に配置する工程と、
前記触媒層転写シートを熱プレスして、前記電解質膜の両面に前記電解質膜よりも一回り小さい触媒層を転写形成する工程と、
前記基材シートを剥離する工程と、
前記各触媒層上にガス拡散層を圧着して膜電極接合体を形成する工程と、
前記膜電極接合体の第1の面側に第1の偏光板を設置し、第2の面側に第2の偏光板を偏光軸が前記第1の偏光板の偏光軸に対して60〜120度の角度をなすように設置する工程と、
前記第1又は第2の偏光板のどちらか一方の偏光板の後方から光を照射する工程と、
前記電解質膜の前記触媒層の外周縁から所定距離の範囲内の検査領域において、他方の偏光板を透過する光の透過率が所定値以下のものを良品と判断して後工程に流す工程と、
を備えた、膜電極接合体の製造方法。
A step of preparing an electrolyte membrane;
Arranging a catalyst layer transfer sheet having a catalyst layer formed on a base material sheet on both surfaces of the electrolyte membrane so that the catalyst layer faces the electrolyte membrane;
Heat-pressing the catalyst layer transfer sheet to transfer and form a catalyst layer that is slightly smaller than the electrolyte membrane on both surfaces of the electrolyte membrane;
Peeling the substrate sheet,
A step of pressure-bonding a gas diffusion layer on each catalyst layer to form a membrane electrode assembly;
The first polarizing plate is installed on the first surface side of the membrane electrode assembly, the second polarizing plate is disposed on the second surface side, and the polarization axis is 60 to about the polarizing axis of the first polarizing plate. A step of installing to form an angle of 120 degrees;
Irradiating light from behind one of the first and second polarizing plates; and
In the inspection region within a predetermined distance from the outer peripheral edge of the catalyst layer of the electrolyte membrane, a step of determining that the transmittance of light transmitted through the other polarizing plate is a predetermined value or less and passing it to a subsequent step ,
A method for producing a membrane electrode assembly, comprising:
電解質膜を準備する工程と、
前記電解質膜よりも一回り小さいガス拡散層上に触媒層が形成された電極を、前記触媒層が前記電解質膜側を向くように前記電解質膜の両面に配置する工程と、
前記電解質膜の両面に電極を熱プレスして膜電極接合体を形成する工程と、
前記膜電極接合体の第1の面側に第1の偏光板を設置し、第2の面側に第2の偏光板を偏光軸が前記第1の偏光板の偏光軸に対して60〜120度の角度をなすように設置する工程と、
前記第1又は第2の偏光板のどちらか一方の偏光板の後方から光を照射する工程と、
前記電解質膜の前記触媒層の外周縁から所定距離の範囲内の検査領域において、他方の偏光板を透過する光の透過率が所定値以下のものを良品と判断して後工程に流す工程と、
を備えた、膜電極接合体の製造方法。
A step of preparing an electrolyte membrane;
Disposing electrodes having a catalyst layer formed on a gas diffusion layer slightly smaller than the electrolyte membrane on both surfaces of the electrolyte membrane so that the catalyst layer faces the electrolyte membrane side;
Forming a membrane electrode assembly by hot pressing electrodes on both surfaces of the electrolyte membrane;
The first polarizing plate is installed on the first surface side of the membrane electrode assembly, the second polarizing plate is disposed on the second surface side, and the polarization axis is 60 to about the polarizing axis of the first polarizing plate. A step of installing to form an angle of 120 degrees;
Irradiating light from behind one of the first and second polarizing plates; and
In the inspection region within a predetermined distance from the outer peripheral edge of the catalyst layer of the electrolyte membrane, a step of determining that the transmittance of light transmitted through the other polarizing plate is a predetermined value or less and passing it to a subsequent step ,
A method for producing a membrane electrode assembly, comprising:
前記検査領域は、前記電解質膜の前記触媒層の外周縁から0.2mmの範囲内であり、
光の透過率が40%以下のものを良品として後工程に流す、請求項12又は13に記載の膜電極接合体の製造方法。
The inspection region is within a range of 0.2 mm from the outer periphery of the catalyst layer of the electrolyte membrane,
The manufacturing method of the membrane electrode assembly according to claim 12 or 13, wherein a light transmittance of 40% or less is passed as a non-defective product to a subsequent process.
JP2008329675A 2008-12-25 2008-12-25 Membrane catalyst layer assembly and method for producing membrane electrode assembly Expired - Fee Related JP5401976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008329675A JP5401976B2 (en) 2008-12-25 2008-12-25 Membrane catalyst layer assembly and method for producing membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008329675A JP5401976B2 (en) 2008-12-25 2008-12-25 Membrane catalyst layer assembly and method for producing membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2010153188A true JP2010153188A (en) 2010-07-08
JP5401976B2 JP5401976B2 (en) 2014-01-29

Family

ID=42572063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008329675A Expired - Fee Related JP5401976B2 (en) 2008-12-25 2008-12-25 Membrane catalyst layer assembly and method for producing membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP5401976B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055555A (en) * 2013-09-12 2015-03-23 トヨタ自動車株式会社 Method of inspecting fuel cell catalyst coated membrane
JP2016167381A (en) * 2015-03-09 2016-09-15 パナソニックIpマネジメント株式会社 Catalyst layer formation inspecting device and inspection method for the same
WO2018062972A1 (en) * 2016-09-30 2018-04-05 코오롱인더스트리 주식회사 Method for manufacturing membrane electrode assembly for fuel cell
KR20180036625A (en) * 2016-09-30 2018-04-09 코오롱인더스트리 주식회사 Method for manufacturing membrane electrode assembly for fuel cell
JP2018073709A (en) * 2016-11-01 2018-05-10 凸版印刷株式会社 Electrode catalyst layer, membrane-electrode assembly, and solid polymer fuel cell
CN110265671A (en) * 2019-07-08 2019-09-20 南京大学昆山创新研究院 A kind of preparation method and device of fuel cell membrane electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287131A (en) * 1986-06-05 1987-12-14 Toyobo Co Ltd Large-area optical strain inspection instrument
JP2002289207A (en) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd Manufacturing method for hydrogen ion conductive polymer membrane with catalyst layer for fuel cell
JP2007141674A (en) * 2005-11-18 2007-06-07 Nissan Motor Co Ltd Manufacturing method of membrane-electrode assembly and method of assembling fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287131A (en) * 1986-06-05 1987-12-14 Toyobo Co Ltd Large-area optical strain inspection instrument
JP2002289207A (en) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd Manufacturing method for hydrogen ion conductive polymer membrane with catalyst layer for fuel cell
JP2007141674A (en) * 2005-11-18 2007-06-07 Nissan Motor Co Ltd Manufacturing method of membrane-electrode assembly and method of assembling fuel cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055555A (en) * 2013-09-12 2015-03-23 トヨタ自動車株式会社 Method of inspecting fuel cell catalyst coated membrane
JP2016167381A (en) * 2015-03-09 2016-09-15 パナソニックIpマネジメント株式会社 Catalyst layer formation inspecting device and inspection method for the same
WO2018062972A1 (en) * 2016-09-30 2018-04-05 코오롱인더스트리 주식회사 Method for manufacturing membrane electrode assembly for fuel cell
KR20180036625A (en) * 2016-09-30 2018-04-09 코오롱인더스트리 주식회사 Method for manufacturing membrane electrode assembly for fuel cell
CN109792067A (en) * 2016-09-30 2019-05-21 可隆工业株式会社 The preparation method of membrane-membrane electrode for fuel cell component
JP2019530169A (en) * 2016-09-30 2019-10-17 コーロン インダストリーズ インク Manufacturing method of membrane electrode assembly for fuel cell
KR102160536B1 (en) * 2016-09-30 2020-09-28 코오롱인더스트리 주식회사 Method for manufacturing membrane electrode assembly for fuel cell
US11108069B2 (en) 2016-09-30 2021-08-31 Kolon Industries, Inc. Method for manufacturing membrane electrode assembly including transferring electrode layer to electrolyte membrane by gas pressure
CN109792067B (en) * 2016-09-30 2022-03-08 可隆工业株式会社 Method for preparing membrane electrode assembly for fuel cell
JP2018073709A (en) * 2016-11-01 2018-05-10 凸版印刷株式会社 Electrode catalyst layer, membrane-electrode assembly, and solid polymer fuel cell
JP7090374B2 (en) 2016-11-01 2022-06-24 凸版印刷株式会社 Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell
CN110265671A (en) * 2019-07-08 2019-09-20 南京大学昆山创新研究院 A kind of preparation method and device of fuel cell membrane electrode

Also Published As

Publication number Publication date
JP5401976B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
US8512907B2 (en) Membrane catalyst layer assembly with reinforcing films, membrane electrode assembly with reinforcing films, and polymer electrolyte fuel cells
JP5309518B2 (en) Electrolyte membrane reinforcing sandwich, method for producing electrolyte membrane-catalyst layer assembly with electrolyte membrane reinforcing sandwich, and method for producing solid polymer fuel cell
JP5401976B2 (en) Membrane catalyst layer assembly and method for producing membrane electrode assembly
JP2011028852A (en) Catalytic layer-electrolyte membrane laminate with edge seal, electrode-electrolyte membrane assembly and solid polymer fuel cell and method for manufacturing these
JP5338998B2 (en) Electrolyte membrane-electrode assembly and solid polymer fuel cell using the same
JP5332212B2 (en) Electrolyte membrane-catalyst layer assembly with gasket, electrolyte membrane-electrode assembly with gasket and solid polymer fuel cell using the same
JP5326250B2 (en) Polymer electrolyte fuel cell structure and polymer electrolyte fuel cell using the same
JP2010080437A (en) Electrolyte membrane-catalyst layer laminate with reinforcing sheet and polymer electrolyte fuel cell equipped with the same
JP5230064B2 (en) Electrode catalyst layer, catalyst layer-electrolyte membrane laminate production transfer sheet and catalyst layer-electrolyte membrane laminate
JP5277792B2 (en) Electrolyte membrane-electrode assembly with auxiliary membrane, and polymer electrolyte fuel cell using the same
JP5286887B2 (en) Membrane / electrode assembly with reinforcing sheet for polymer electrolyte fuel cell and method for producing the same
JP6120674B2 (en) Solid polymer fuel cell and manufacturing method thereof
JP2010182563A (en) Device and method for manufacturing membrane catalyst layer assembly, as well as device and method for manufacturing membrane electrode assembly
JP5239434B2 (en) Catalyst layer transfer sheet, method for producing electrolyte membrane-catalyst layer assembly using the same, method for producing electrolyte membrane-electrode assembly, method for producing electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell Manufacturing method
JP5887692B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof
JP5533131B2 (en) Edge-sealed catalyst layer-electrolyte membrane laminate, edge-sealed membrane-electrode assembly, and polymer electrolyte fuel cell
JP2009230964A (en) Catalyst layer transcription sheet, manufacturing method of electrolyte membrane-catalyst layer assembly using the same, manufacturing method of electrolyte membrane-electrode assembly, and manufacturing method of solid polymer fuel cell
JP5699348B2 (en) Manufacturing apparatus and manufacturing method for membrane catalyst layer assembly, and manufacturing apparatus and manufacturing method for membrane electrode assembly
JP2010021023A (en) Catalyst layer transfer sheet, method of manufacturing catalyst layer-electrolyte film laminate using same, method of manufacturing electrode-electrolyte film laminate, and method of manufacturing solid polymer fuel cell
JP2011159458A (en) Catalyst layer-electrolyte film laminate, membrane-electrode assembly, polymer electrolyte fuel cell, and method of manufacturing catalyst layer-electrolyte film laminate
JP2008077986A (en) Transfer method of catalyst layer for solid polymer fuel cell and electrolyte membrane-catalyst layer assembly
CA2893553A1 (en) Method for producing fuel cell electrode sheet
JP5828613B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, electrode with reinforcing membrane-electrolyte membrane laminate, and polymer electrolyte fuel cell
JP5266734B2 (en) Electrolyte membrane-catalyst layer assembly with reinforcing sheet, electrolyte membrane-electrode assembly with reinforcing sheet, solid polymer fuel cell, and method for producing electrolyte membrane-catalyst layer assembly with reinforcing sheet
JP5338097B2 (en) Electrolyte membrane-catalyst layer assembly, electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using the same, catalyst layer transfer film, and method for producing electrolyte membrane-catalyst layer assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

LAPS Cancellation because of no payment of annual fees