JP2010150629A - Gold fine particle modified with metal complex - Google Patents

Gold fine particle modified with metal complex Download PDF

Info

Publication number
JP2010150629A
JP2010150629A JP2008332092A JP2008332092A JP2010150629A JP 2010150629 A JP2010150629 A JP 2010150629A JP 2008332092 A JP2008332092 A JP 2008332092A JP 2008332092 A JP2008332092 A JP 2008332092A JP 2010150629 A JP2010150629 A JP 2010150629A
Authority
JP
Japan
Prior art keywords
porphyrin
metal complex
fine particles
gold fine
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008332092A
Other languages
Japanese (ja)
Other versions
JP5129110B2 (en
Inventor
Hiroshi Kitagawa
宏 北川
Katsuhiko Kanaizuka
勝彦 金井塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2008332092A priority Critical patent/JP5129110B2/en
Publication of JP2010150629A publication Critical patent/JP2010150629A/en
Application granted granted Critical
Publication of JP5129110B2 publication Critical patent/JP5129110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide new gold fine particles modified with a metal complex. <P>SOLUTION: The fine particles (gold fine particles modified with a metal complex) includes: a plurality of imidasol-4-dithiocarboxylic acids 12 disposed on gold fine particles and the surface 11 of gold fine particles; and a plurality of porphyrin metal complexes 13 coordinately bonded to the plurality of imidazole-4-dithiocarboxylic acids 12. The porphyrin metal complex 13 is at least one kind selected from a porphyrin cobalt(II) complex and a porphyrin zinc (II) complex. A metal complex 20 having a three-dimensional structure may be formed on the porphyrin metal complex 13. The metal complex 20 is composed of: metal ions 15; and an organic compound 14 having a plurality of parts coordinately bonded to the metal ions 15. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属錯体で修飾された金微粒子に関する。   The present invention relates to gold fine particles modified with a metal complex.

金属微粒子は、触媒や微小電極としての利用価値が高いため、従来から様々な研究が進められてきた(たとえば特許文献1)。たとえば、金微粒子の製造方法が提案されている(特許文献2)。   Since metal fine particles have a high utility value as a catalyst or a microelectrode, various researches have been promoted (for example, Patent Document 1). For example, a method for producing gold fine particles has been proposed (Patent Document 2).

一方、配位高分子や金属錯体は、光学的、磁気的、電気化学的に興味深い特性を示すため、従来から研究されている。たとえば、金属錯体や配位高分子からなる構造体が提案されている(特許文献3および4)。   On the other hand, coordination polymers and metal complexes have been studied in the past because they exhibit interesting optical, magnetic, and electrochemical properties. For example, structures composed of metal complexes and coordination polymers have been proposed (Patent Documents 3 and 4).

特開2006−183092号公報JP 2006-183092 A 特開2003−342622号公報JP 2003-342622 A 特開2005−255651号公報JP-A-2005-255651 特開2007−63448号公報JP 2007-63448 A

金属錯体と金属微粒子とを組み合わせることによって、様々な機能を発現させることが可能となることが期待される。特に、3次元構造を有する金属錯体と金属微粒子とを組み合わせることによって、高い機能を付与できる可能性がある。   It is expected that various functions can be expressed by combining the metal complex and the metal fine particles. In particular, there is a possibility that a high function can be imparted by combining a metal complex having a three-dimensional structure and metal fine particles.

このような状況において、本発明は、金属錯体で修飾された新規な金微粒子を提供することを目的の1つとする。   Under such circumstances, an object of the present invention is to provide novel gold fine particles modified with a metal complex.

上記目的を達成するために検討した結果、本願発明者らは、特定の方法によって、金属錯体で修飾された新規な金微粒子を製造できることを見出した。本発明は、この新たな知見に基づくものである。   As a result of studies to achieve the above object, the present inventors have found that novel gold fine particles modified with a metal complex can be produced by a specific method. The present invention is based on this new knowledge.

すなわち、本発明の微粒子(金属錯体で修飾された金微粒子)は、金微粒子と、前記金微粒子の表面に配置された複数のイミダゾール−4−ジチオカルボン酸と、前記複数のイミダゾール−4−ジチオカルボン酸に配位結合している複数のポルフィリン金属錯体と備え、前記ポルフィリン金属錯体は、ポルフィリンコバルト(II)錯体およびポルフィリン亜鉛(II)錯体から選ばれる少なくとも1種である。   That is, the fine particles of the present invention (gold fine particles modified with a metal complex) include gold fine particles, a plurality of imidazole-4-dithiocarboxylic acids arranged on the surface of the gold fine particles, and the plurality of imidazole-4-di The porphyrin metal complex is provided with a plurality of porphyrin metal complexes coordinated to thiocarboxylic acid, and the porphyrin metal complex is at least one selected from a porphyrin cobalt (II) complex and a porphyrin zinc (II) complex.

本発明によれば、金属錯体で修飾された新規な金微粒子が得られる。   According to the present invention, novel gold fine particles modified with a metal complex can be obtained.

以下、本発明の実施形態について例を挙げて説明する。なお、本発明は、以下の実施形態および実施例に限定されない。以下の説明では、特定の数値や特定の材料を例示する場合があるが、本発明の効果が得られる限り、他の数値や他の材料を適用してもよい。   Hereinafter, embodiments of the present invention will be described with examples. Note that the present invention is not limited to the following embodiments and examples. In the following description, specific numerical values and specific materials may be exemplified, but other numerical values and other materials may be applied as long as the effect of the present invention is obtained.

[金属錯体で修飾された金微粒子]
本発明の微粒子(以下、「微粒子(F)」という場合がある)は、金微粒子と、金微粒子の表面に配置された複数のイミダゾール−4−ジチオカルボン酸と、複数のイミダゾール−4−ジチオカルボン酸に配位結合している複数のポルフィリン金属錯体とを備える。
[Gold fine particles modified with metal complexes]
The fine particles of the present invention (hereinafter sometimes referred to as “fine particles (F)”) include gold fine particles, a plurality of imidazole-4-dithiocarboxylic acids arranged on the surface of the gold fine particles, and a plurality of imidazole-4-di A plurality of porphyrin metal complexes coordinated to thiocarboxylic acid.

金微粒子の粒径に特に限定はなく、たとえば2nm〜500nmの範囲にあってもよい。金微粒子の表面には、イミダゾール−4−ジチオカルボン酸が配置されている。イミダゾール−4−ジチオカルボン酸は、以下の式で表される化合物である。   The particle size of the gold fine particles is not particularly limited, and may be in the range of 2 nm to 500 nm, for example. Imidazole-4-dithiocarboxylic acid is disposed on the surface of the gold fine particles. Imidazole-4-dithiocarboxylic acid is a compound represented by the following formula.

Figure 2010150629
Figure 2010150629

イミダゾール−4−ジチオカルボン酸は、C(=S)SHの硫黄部分によって金微粒子の表面に吸着する。   Imidazole-4-dithiocarboxylic acid is adsorbed on the surface of the gold fine particles by the sulfur portion of C (= S) SH.

イミダゾール−4−ジチオカルボン酸には、ポルフィリン金属錯体が配位結合している。ポルフィリン金属錯体は、ポルフィリンコバルト(II)錯体およびポルフィリン亜鉛(II)錯体から選ばれる少なくとも1種である。なお、ポルフィリン金属錯体のポルフィリン環には、置換基が結合していてもよい。たとえば、ポルフィリン金属錯体は、テトラフェニルポルフィリンの金属錯体や、テトラピリジルポルフィリンの金属錯体であってもよい。   A porphyrin metal complex is coordinated to imidazole-4-dithiocarboxylic acid. The porphyrin metal complex is at least one selected from a porphyrin cobalt (II) complex and a porphyrin zinc (II) complex. In addition, the substituent may couple | bond with the porphyrin ring of a porphyrin metal complex. For example, the porphyrin metal complex may be a tetraphenyl porphyrin metal complex or a tetrapyridyl porphyrin metal complex.

微粒子(F)は、ポルフィリン金属錯体上に構築された、3次元構造を有する金属錯体をさらに備えてもよい。以下、ポルフィリン金属錯体上に構築された3次元構造を有する金属錯体を、金属錯体(B)という場合がある。その金属錯体(B)は、金属イオン(以下、金属イオン(M)という場合がある)と、金属イオン(M)に配位結合する複数の部位を備える有機化合物(以下、「有機化合物(A)」という場合がある)とによって構成されている。金属錯体(B)を構成する金属イオン(M)には、たとえば、コバルト、亜鉛、鉄、クロム、マンガン、ルテニウム、イリジウム、レニウム、オスミウムのイオンを用いることができる。   The fine particles (F) may further include a metal complex having a three-dimensional structure constructed on the porphyrin metal complex. Hereinafter, a metal complex having a three-dimensional structure constructed on a porphyrin metal complex may be referred to as a metal complex (B). The metal complex (B) is composed of a metal ion (hereinafter sometimes referred to as a metal ion (M)) and an organic compound (hereinafter referred to as “organic compound (A) having a plurality of sites coordinated to the metal ion (M)”. ) ”In some cases). As the metal ion (M) constituting the metal complex (B), for example, ions of cobalt, zinc, iron, chromium, manganese, ruthenium, iridium, rhenium, and osmium can be used.

有機化合物(A)の一例は、金属イオン(M)に配位結合する部位を2つ含む。その部位は、含窒素芳香環中の窒素原子であってもよい。典型的な有機化合物(A)は、両端に上記部位が配置されている有機化合物である。有機化合物(A)の例には、4,4’−アゾピリジン、4,4’−ビピリジン、1,4−ビス(4’−ピリジルエチニル)ベンゼンが含まれる。   An example of the organic compound (A) includes two sites that coordinate to the metal ion (M). The site may be a nitrogen atom in the nitrogen-containing aromatic ring. A typical organic compound (A) is an organic compound in which the above sites are arranged at both ends. Examples of the organic compound (A) include 4,4′-azopyridine, 4,4′-bipyridine, and 1,4-bis (4′-pyridylethynyl) benzene.

4,4’−アゾピリジンは、公知の方法で合成できる。たとえば、以下の反応によって合成することが可能である。   4,4'-Azopyridine can be synthesized by a known method. For example, it can be synthesized by the following reaction.

Figure 2010150629
Figure 2010150629

[微粒子(F)の製造方法]
以下、微粒子(F)の製造方法について説明する。この製造方法は、以下の工程(i)および(ii)を含む。また、金属錯体(B)を含む微粒子(F)を製造する場合、この製造方法は、工程(iii)をさらに含む。工程(i)〜(iii)を、図1(a)〜(d)に模式的に示す。なお、図1(a)〜(d)では、金微粒子の表面の一部を平面として表している。
[Production Method of Fine Particles (F)]
Hereinafter, the manufacturing method of microparticles | fine-particles (F) is demonstrated. This manufacturing method includes the following steps (i) and (ii). Moreover, when manufacturing microparticles | fine-particles (F) containing a metal complex (B), this manufacturing method further includes process (iii). Steps (i) to (iii) are schematically shown in FIGS. 1A to 1D, a part of the surface of the gold fine particle is shown as a plane.

まず、工程(i)では、金微粒子の表面11に、イミダゾール−4−ジチオカルボン酸12を吸着させる(図1(b))。工程(i)は、たとえば、イミダゾール−4−ジチオカルボン酸が溶解されている溶液と、金微粒子が分散されている液体とを混合することによって行うことができる。金微粒子は、公知の方法で作製でき、たとえば、金イオンを溶液中で還元する方法によって作製できる。   First, in step (i), imidazole-4-dithiocarboxylic acid 12 is adsorbed on the surface 11 of the gold fine particles (FIG. 1 (b)). Step (i) can be performed, for example, by mixing a solution in which imidazole-4-dithiocarboxylic acid is dissolved and a liquid in which gold fine particles are dispersed. Gold fine particles can be produced by a known method, for example, by a method of reducing gold ions in a solution.

次に、工程(ii)では、イミダゾール−4−ジチオカルボン酸12に、ポルフィリン金属錯体13を配位結合させる(図1(c))。工程(ii)は、たとえば、イミダゾール−4−ジチオカルボン酸12が吸着している金微粒子を含む液体に、ポルフィリン金属錯体を添加することによって行うことができる。   Next, in the step (ii), the porphyrin metal complex 13 is coordinated to the imidazole-4-dithiocarboxylic acid 12 (FIG. 1 (c)). Step (ii) can be performed, for example, by adding a porphyrin metal complex to a liquid containing gold fine particles to which imidazole-4-dithiocarboxylic acid 12 is adsorbed.

次に、工程(iii)では、ポルフィリン金属錯体13上に、3次元構造を有する金属錯体20を構築する(図1(d))。金属錯体20(金属錯体(B))は、有機化合物14(有機化合物(A))および金属イオン15(金属イオン(M))によって構成されている。   Next, in step (iii), a metal complex 20 having a three-dimensional structure is constructed on the porphyrin metal complex 13 (FIG. 1 (d)). The metal complex 20 (metal complex (B)) is composed of an organic compound 14 (organic compound (A)) and a metal ion 15 (metal ion (M)).

金属錯体20は、たとえば以下の方法で構築できる。まず、有機化合物14の溶液に、ポルフィリン金属錯体13を有する金微粒子を投入し、一定時間(たとえば1分から1週間程度の範囲)放置した後、未反応の有機化合物14と金微粒子とを遠心分離によって分離する。次に、有機化合物14が配位した金微粒子を金属イオン15の溶液に浸し、一定時間(たとえば1分から1週間程度の範囲)放置した後、未反応の金属イオン15と金微粒子とを遠心分離によって分離する。有機化合物14の溶液へ浸漬する操作と金属イオン15の溶液へ浸漬する操作とを1セットとしてそれを1セット以上行うことによって、錯体フレームワークを金微粒子上に構築できる。上記セットを行う回数は1セットでもよいし、2セット以上を繰り返してもよい。たとえば、上記セットは、2セットでもよいし、30セットでもよい(最大で100セット程度まで可能である)。有機化合物14は、ポルフィリン金属錯体13の中心金属イオンに配位結合する。ポルフィリン金属錯体13に配位結合した有機化合物14が、3次元構造の土台となる。有機化合物14と金属イオン15とは格子状の3次元構造体を構成し、金属イオン15は格子点の位置に配置される。このようにして、本発明の微粒子(F)が得られる。   The metal complex 20 can be constructed, for example, by the following method. First, gold fine particles having a porphyrin metal complex 13 are put into a solution of the organic compound 14 and allowed to stand for a certain time (for example, in the range of about 1 minute to 1 week), and then the unreacted organic compound 14 and the gold fine particles are centrifuged. Separate by. Next, the gold fine particles coordinated with the organic compound 14 are immersed in a solution of the metal ions 15 and allowed to stand for a certain time (for example, in the range of about 1 minute to 1 week), and then the unreacted metal ions 15 and the gold fine particles are centrifuged. Separate by. A complex framework can be constructed on the gold fine particles by performing one or more sets of the operation of immersing in the solution of the organic compound 14 and the operation of immersing in the solution of the metal ions 15 as one set. The number of times the above set is performed may be one set, or two or more sets may be repeated. For example, the set may be 2 sets or 30 sets (up to about 100 sets are possible). The organic compound 14 is coordinated to the central metal ion of the porphyrin metal complex 13. The organic compound 14 coordinated to the porphyrin metal complex 13 becomes the basis of a three-dimensional structure. The organic compound 14 and the metal ions 15 constitute a lattice-like three-dimensional structure, and the metal ions 15 are arranged at the positions of the lattice points. In this way, the fine particles (F) of the present invention are obtained.

以下、本発明について、実施例によって詳細に説明する。以下の例では、金微粒子の代わりに金の薄膜を用いて、金の表面に構造体を構築できることを実証した。   Hereinafter, the present invention will be described in detail by way of examples. In the following example, it was demonstrated that a structure can be constructed on the surface of gold by using a gold thin film instead of gold fine particles.

まず、ガラス上に、厚さ300nmのITO層(酸化インジウムスズ層)、厚さ5nm〜10nmのクロム層、および厚さ10nmの金層を順に形成した。このようにして、ガラス/ITO/Cr/Auという積層構造を有する基板を得た。   First, an ITO layer (indium tin oxide layer) having a thickness of 300 nm, a chromium layer having a thickness of 5 nm to 10 nm, and a gold layer having a thickness of 10 nm were sequentially formed on the glass. In this way, a substrate having a laminated structure of glass / ITO / Cr / Au was obtained.

次に、基板を、クロロホルムとエタノールの混合溶媒(混合体積比は1:1)に2時間浸漬した。浸漬後、基板を混合溶媒から取り出して新たな上記混合溶媒で洗浄し、アルゴンガスを吹き付けて基板を乾燥させた。その後、基板の吸収スペクトル(以下、「吸収スペクトル(1)」という場合がある)を測定した。   Next, the substrate was immersed in a mixed solvent of chloroform and ethanol (mixing volume ratio is 1: 1) for 2 hours. After immersion, the substrate was taken out of the mixed solvent, washed with the new mixed solvent, and dried with argon gas. Thereafter, the absorption spectrum of the substrate (hereinafter sometimes referred to as “absorption spectrum (1)”) was measured.

次に、基板を、イミダゾール−4−ジチオカルボン酸の溶液に1時間浸漬した。イミダゾール−4−ジチオカルボン酸の溶液の溶媒は上記混合溶媒とし、濃度は0.1mmol/lとした。浸漬後、基板を取り出して上記混合溶媒で洗浄したのち、アルゴンガスを吹き付けて基板を乾燥させた。このようにして、イミダゾール−4−ジチオカルボン酸が吸着している基板(以下、「基材」という場合がある)を得た。その後、基材の吸収スペクトル(以下、「吸収スペクトル(2)」という場合がある)を測定した。   Next, the substrate was immersed in a solution of imidazole-4-dithiocarboxylic acid for 1 hour. The solvent of the imidazole-4-dithiocarboxylic acid solution was the above mixed solvent, and the concentration was 0.1 mmol / l. After immersion, the substrate was taken out and washed with the mixed solvent, and then the substrate was dried by blowing argon gas. In this way, a substrate on which imidazole-4-dithiocarboxylic acid was adsorbed (hereinafter sometimes referred to as “base material”) was obtained. Thereafter, the absorption spectrum of the substrate (hereinafter sometimes referred to as “absorption spectrum (2)”) was measured.

次に、基材を、ポルフィリン溶液に浸漬した。浸漬後、基材をポルフィリン溶液から取り出して上記混合溶媒で洗浄したのち、アルゴンガスを吹き付けて基材を乾燥させた。ポルフィリン溶液に浸漬後の所定の段階において、基材の吸収スペクトル(以下、「吸収スペクトル(3)」という場合がある)を測定した。以下の実施例等に示すように、ポルフィリンの種類および浸漬時間を変化させて実験を行った。   Next, the base material was immersed in the porphyrin solution. After immersion, the substrate was taken out from the porphyrin solution and washed with the above mixed solvent, and then the substrate was dried by blowing argon gas. In a predetermined stage after immersion in the porphyrin solution, the absorption spectrum of the substrate (hereinafter sometimes referred to as “absorption spectrum (3)”) was measured. As shown in the following examples and the like, experiments were conducted by changing the type of porphyrin and the immersion time.

ポルフィリン溶液の溶媒には上記混合溶媒を用いた。ポルフィリンの濃度は、0.1mmol/lとした。用いたポルフィリンを図2(a)〜(d)に示す。図2(a)は、テトラフェニルポルフィリン(以下、「TPP」と記載する場合がある)を示す。図2(b)は、テトラ(4−ピリジル)ポルフィリン亜鉛(II)錯体(以下、「Zn2+−TPyP」と記載する場合がある)を示す。図2(c)は、テトラフェニルポルフィリンコバルト(II)錯体(以下、「Co2+−TPP」と記載する場合がある)を示す。図2(d)は、テトラフェニルポルフィリン鉄(III)錯体(以下、「Fe3+−TPP」と記載する場合がある)を示す。 The above mixed solvent was used as the solvent for the porphyrin solution. The concentration of porphyrin was 0.1 mmol / l. The porphyrin used is shown in FIGS. FIG. 2A shows tetraphenylporphyrin (hereinafter sometimes referred to as “TPP”). FIG. 2B shows a tetra (4-pyridyl) porphyrin zinc (II) complex (hereinafter sometimes referred to as “Zn 2+ -TPyP”). FIG. 2 (c) shows a tetraphenylporphyrin cobalt (II) complex (hereinafter sometimes referred to as “Co 2+ -TPP”). FIG. 2D shows a tetraphenylporphyrin iron (III) complex (hereinafter sometimes referred to as “Fe 3+ -TPP”).

なお、以下で図示する吸収スペクトルは、基板の吸収による吸収スペクトル(1)を引いたあとの吸収スペクトルである。具体的には、ポルフィリン溶液に浸漬する前の吸収スペクトルは、吸収スペクトル(2)から吸収スペクトル(1)を引いたスペクトルである。また、ポルフィリン溶液浸漬後の吸収スペクトルは、吸収スペクトル(3)から吸収スペクトル(1)を引いたスペクトルである。   In addition, the absorption spectrum illustrated below is an absorption spectrum after subtracting the absorption spectrum (1) due to the absorption of the substrate. Specifically, the absorption spectrum before being immersed in the porphyrin solution is a spectrum obtained by subtracting the absorption spectrum (1) from the absorption spectrum (2). The absorption spectrum after immersion in the porphyrin solution is a spectrum obtained by subtracting the absorption spectrum (1) from the absorption spectrum (3).

[比較例1]
比較例1では、ポルフィリンとしてTPPを用いた。比較例1では、基材をTPP溶液に1、2または4時間浸漬した。TPP溶液に浸漬する前の基材の吸収スペクトルと、TPP溶液に4時間浸漬したあとの基材を吸収スペクトルとを、図3に示す。基材をTPP溶液に4時間浸漬しても、吸収スペクトルに実質的な変化は見られなかった。基材をTPP溶液に1時間または2時間浸漬したときも、同様に吸収スペクトルに実質的な変化は見られなかった。これらのことから、TPPは基材に吸着されないことが示唆された。
[Comparative Example 1]
In Comparative Example 1, TPP was used as the porphyrin. In Comparative Example 1, the substrate was immersed in the TPP solution for 1, 2 or 4 hours. FIG. 3 shows the absorption spectrum of the base material before being immersed in the TPP solution and the absorption spectrum of the base material after being immersed in the TPP solution for 4 hours. Even when the substrate was immersed in the TPP solution for 4 hours, no substantial change was observed in the absorption spectrum. Similarly, when the substrate was immersed in the TPP solution for 1 hour or 2 hours, no substantial change was observed in the absorption spectrum. From these, it was suggested that TPP is not adsorbed on the substrate.

[実施例1]
実施例1では、ポルフィリンとして、Zn2+−TPyPを用いた。実施例1では、基材をZn2+−TPyP溶液に1、48または96時間浸漬した。その後、基材を上記混合溶媒中で超音波洗浄した。その後、アルゴンガスで基材を乾燥させたのち、吸収スペクトルを測定した。それぞれの段階における吸収スペクトルを、図4に示す。図4に示すように、浸漬時間が長くなるにつれて、基材に吸着しているZn2+−TPyPが多くなった。また、超音波洗浄によって、Zn2+−TPyPの吸収ピークが大きく低下した。
[Example 1]
In Example 1, Zn 2+ -TPyP was used as the porphyrin. In Example 1, the substrate was immersed in a Zn 2+ -TPyP solution for 1, 48 or 96 hours. Thereafter, the substrate was ultrasonically cleaned in the mixed solvent. Thereafter, the substrate was dried with argon gas, and then the absorption spectrum was measured. The absorption spectrum at each stage is shown in FIG. As shown in FIG. 4, as the immersion time increased, the amount of Zn 2+ -TPyP adsorbed on the substrate increased. In addition, the absorption peak of Zn 2+ -TPyP was greatly reduced by ultrasonic cleaning.

基材をZn2+−TPyP溶液に所定の時間(1時間、2時間、12時間、24時間または48時間)浸漬したのち混合溶媒中で超音波洗浄した。その後、アルゴンガスで基材を乾燥させたのち、吸収スペクトルを測定した。浸漬時間を変えても、超音波洗浄後のスペクトルはほとんど変わらず、図4の超音波洗浄後のスペクトルとほぼ同じであった。超音波洗浄を行った場合と行わなかった場合について、Zn2+−TPyP溶液への浸漬時間と最大吸光度との関係を図5に示す。図5には、Zn2+−TPyPが1層のみ形成されたと仮定した場合の吸光度の計算値(図5の「理想的1層」)も示す。図5に示すように、物理吸着によって基材に吸着している過剰なZn2+−TPyPが、超音波洗浄によって除去され、基材に吸着されているほぼ1層のみが残留することが分かった。 The substrate was immersed in a Zn 2+ -TPyP solution for a predetermined time (1 hour, 2 hours, 12 hours, 24 hours or 48 hours) and then ultrasonically cleaned in a mixed solvent. Thereafter, the substrate was dried with argon gas, and then the absorption spectrum was measured. Even if the immersion time was changed, the spectrum after ultrasonic cleaning was hardly changed, and was almost the same as the spectrum after ultrasonic cleaning in FIG. FIG. 5 shows the relationship between the immersion time in the Zn 2+ -TPyP solution and the maximum absorbance when the ultrasonic cleaning is performed and when the ultrasonic cleaning is not performed. FIG. 5 also shows the calculated absorbance value (“ideal single layer” in FIG. 5) when it is assumed that only one layer of Zn 2+ -TPyP is formed. As shown in FIG. 5, it is found that excess Zn 2+ -TPyP adsorbed on the substrate by physical adsorption is removed by ultrasonic cleaning, and only approximately one layer adsorbed on the substrate remains. It was.

[実施例2]
実施例2では、ポルフィリンとして、Co2+−TPPを用いた。実施例2では、基材をCo2+−TPP溶液に1〜48時間浸漬した。その後、基材を上記混合溶媒中で超音波洗浄した。その後、アルゴンガスで基材を乾燥させたのち、吸収スペクトル(3)を測定した。得られた吸収スペクトルを、図6に示す。図6に示すように、Co2+−TPPが基材に吸着することが分かった。浸漬時間が、2時間、12時間または24時間の場合も、浸漬時間が1時間または48時間と同様の吸収スペクトルが得られた。
[Example 2]
In Example 2, Co 2+ -TPP was used as the porphyrin. In Example 2, the substrate was immersed in a Co 2+ -TPP solution for 1 to 48 hours. Thereafter, the substrate was ultrasonically cleaned in the mixed solvent. Thereafter, the substrate was dried with argon gas, and then the absorption spectrum (3) was measured. The obtained absorption spectrum is shown in FIG. As shown in FIG. 6, it was found that Co 2+ -TPP was adsorbed on the substrate. When the immersion time was 2 hours, 12 hours, or 24 hours, an absorption spectrum similar to that when the immersion time was 1 hour or 48 hours was obtained.

[比較例2]
比較例2では、ポルフィリンとして、Fe3+−TPPを用いた。比較例2では、Fe3+−TPP溶液に、基材を1〜48時間浸漬したのち、混合溶媒中で超音波洗浄した。その後、アルゴンガスで基材を乾燥させたのち、吸収スペクトル(3)を測定した。浸漬時間に拘わらず、ポルフィリンの吸収は見られなかった。このことから、Fe3+−TPPは、基材に吸着しないことが分かった。
[Comparative Example 2]
In Comparative Example 2, Fe 3+ -TPP was used as the porphyrin. In Comparative Example 2, the substrate was immersed in an Fe 3+ -TPP solution for 1 to 48 hours, and then ultrasonically cleaned in a mixed solvent. Thereafter, the substrate was dried with argon gas, and then the absorption spectrum (3) was measured. Despite the soaking time, no porphyrin absorption was observed. From this, it was found that Fe 3+ -TPP does not adsorb to the substrate.

以上のように、イミダゾール−4−ジチオカルボン酸および所定のポルフィリン金属錯体による構造体を、金層の上に形成できることが分かった。この方法を用いることによって、金微粒子上に、イミダゾール−4−ジチオカルボン酸および所定のポルフィリン金属錯体による構造体を形成できる。また、さらにその構造体上に、3次元構造を有する金属錯体(B)を形成することが可能である。   As mentioned above, it turned out that the structure by an imidazole-4-dithiocarboxylic acid and a predetermined porphyrin metal complex can be formed on a gold layer. By using this method, a structure of imidazole-4-dithiocarboxylic acid and a predetermined porphyrin metal complex can be formed on the gold fine particles. Furthermore, it is possible to form a metal complex (B) having a three-dimensional structure on the structure.

なお、適切な化合物を選択することによって、イミダゾール−4−ジチオカルボン酸および所定のポルフィリン金属錯体による構造体(およびその上に形成された金属錯体(B))を、金微粒子以外の金属微粒子(たとえば白金微粒子)上に構築することも可能である。そのような粒子は、たとえば燃料電池の電極として有用である。   In addition, by selecting an appropriate compound, a structure (and a metal complex (B) formed thereon) of imidazole-4-dithiocarboxylic acid and a predetermined porphyrin metal complex is converted into metal fine particles other than gold fine particles ( For example, it can be constructed on platinum fine particles. Such particles are useful, for example, as fuel cell electrodes.

本発明によれば、金属錯体で修飾された金微粒子が得られる。金属錯体を構成する有機化合物および金属イオンの種類を変えることによって、骨格および空間の精密な設計を行うことができ、反応に対して最適な構造(フレームワーク)を構築することができる。その結果、様々な機能(たとえば触媒機能)を有する微粒子を得ることが可能になる。   According to the present invention, gold fine particles modified with a metal complex can be obtained. By changing the types of organic compounds and metal ions constituting the metal complex, the skeleton and space can be precisely designed, and an optimal structure (framework) for the reaction can be constructed. As a result, it is possible to obtain fine particles having various functions (for example, catalytic function).

本発明の微粒子を製造するための方法を模式的に示す図である。It is a figure which shows typically the method for manufacturing the microparticles | fine-particles of this invention. 実施例で用いたポルフィリンの構造を示す図である。It is a figure which shows the structure of the porphyrin used in the Example. ポルフィリンとしてTPPを用いた場合の、基材の吸光度の変化を示すグラフである。It is a graph which shows the change of the light absorbency of a base material at the time of using TPP as a porphyrin. ポルフィリンとしてZn2+−TPyPを用いた場合の、基材の吸光度の変化を示すグラフである。It is a graph which shows the change of the light absorbency of a base material at the time of using Zn2 + -TPyP as a porphyrin. ポルフィリンとしてZn2+−TPyPを用いた場合について、超音波洗浄および浸漬時間が最大吸光度に与える影響を示すグラフである。It is a graph which shows the influence which the ultrasonic cleaning and the immersion time have on the maximum absorbance when Zn 2+ -TPyP is used as the porphyrin. ポルフィリンとしてCo2+−TPPを用いた場合の、基材の吸光度の変化を示すグラフである。It is a graph which shows the change of the light absorbency of a base material at the time of using Co2 + -TPP as porphyrin.

符号の説明Explanation of symbols

11 金微粒子の表面
12 イミダゾール−4−ジチオカルボン酸
13 ポルフィリン金属錯体
14 有機化合物
15 金属イオン
20 金属錯体
11 Surface of Gold Fine Particle 12 Imidazole-4-dithiocarboxylic acid 13 Porphyrin Metal Complex 14 Organic Compound 15 Metal Ion 20 Metal Complex

Claims (3)

金微粒子と、
前記金微粒子の表面に配置された複数のイミダゾール−4−ジチオカルボン酸と、
前記複数のイミダゾール−4−ジチオカルボン酸に配位結合している複数のポルフィリン金属錯体と備え、
前記ポルフィリン金属錯体は、ポルフィリンコバルト(II)錯体およびポルフィリン亜鉛(II)錯体から選ばれる少なくとも1種である、金属錯体で修飾された金微粒子。
Fine gold particles,
A plurality of imidazole-4-dithiocarboxylic acids disposed on the surface of the gold fine particles;
A plurality of porphyrin metal complexes coordinated to the plurality of imidazole-4-dithiocarboxylic acids,
The porphyrin metal complex is a gold fine particle modified with a metal complex which is at least one selected from a porphyrin cobalt (II) complex and a porphyrin zinc (II) complex.
前記複数のポルフィリン金属錯体上に構築された、3次元構造を有する金属錯体をさらに備え、
前記金属錯体は、金属イオンと、前記金属イオンに配位結合する複数の部位を備える有機化合物とによって構成されている、請求項1に記載の、金属錯体で修飾された金微粒子。
Further comprising a metal complex having a three-dimensional structure constructed on the plurality of porphyrin metal complexes,
The gold fine particle modified with a metal complex according to claim 1, wherein the metal complex is composed of a metal ion and an organic compound having a plurality of sites coordinated to the metal ion.
前記有機化合物が4,4’−アゾピリジンである、請求項2に記載の、金属錯体で修飾された金微粒子。   Gold fine particles modified with a metal complex according to claim 2, wherein the organic compound is 4,4'-azopyridine.
JP2008332092A 2008-12-26 2008-12-26 Gold fine particles modified with metal complexes Active JP5129110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332092A JP5129110B2 (en) 2008-12-26 2008-12-26 Gold fine particles modified with metal complexes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332092A JP5129110B2 (en) 2008-12-26 2008-12-26 Gold fine particles modified with metal complexes

Publications (2)

Publication Number Publication Date
JP2010150629A true JP2010150629A (en) 2010-07-08
JP5129110B2 JP5129110B2 (en) 2013-01-23

Family

ID=42570022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332092A Active JP5129110B2 (en) 2008-12-26 2008-12-26 Gold fine particles modified with metal complexes

Country Status (1)

Country Link
JP (1) JP5129110B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059111A (en) * 2008-09-04 2010-03-18 Kyushu Univ Organometallic complex, three-dimensional structure and production method of these
CN110890269A (en) * 2018-09-11 2020-03-17 东莞新科技术研究开发有限公司 Cleaning method of integrated circuit board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059664A1 (en) * 2004-12-03 2006-06-08 Japan Science And Technology Agency Stabilized inorganic nanoparticle, stabilized inorganic nanoparticles, process for producing stabilized inorganic nanoparticle, and method of utilizing stabilized inorganic nanoparticle
JP2008161754A (en) * 2006-12-27 2008-07-17 Osaka Univ Catalyst containing macrocyclic cobalt complex, its manufacturing method and its use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059664A1 (en) * 2004-12-03 2006-06-08 Japan Science And Technology Agency Stabilized inorganic nanoparticle, stabilized inorganic nanoparticles, process for producing stabilized inorganic nanoparticle, and method of utilizing stabilized inorganic nanoparticle
JP2008161754A (en) * 2006-12-27 2008-07-17 Osaka Univ Catalyst containing macrocyclic cobalt complex, its manufacturing method and its use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059111A (en) * 2008-09-04 2010-03-18 Kyushu Univ Organometallic complex, three-dimensional structure and production method of these
CN110890269A (en) * 2018-09-11 2020-03-17 东莞新科技术研究开发有限公司 Cleaning method of integrated circuit board

Also Published As

Publication number Publication date
JP5129110B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
Zhao et al. Speciation of Cu surfaces during the electrochemical CO reduction reaction
Cui et al. Covalent organic framework nanosheet-based ultrasensitive and selective colorimetric sensor for trace Hg2+ detection
Wang et al. Nanocarbon-based catalytic ozonation for aqueous oxidation: engineering defects for active sites and tunable reaction pathways
Yang et al. High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets
Lei et al. Noncovalent immobilization of a pyrene-modified cobalt corrole on carbon supports for enhanced electrocatalytic oxygen reduction and oxygen evolution in aqueous solutions
Qin et al. Homoleptic Alkynyl‐Protected Ag15 Nanocluster with Atomic Precision: Structural Analysis and Electrocatalytic Performance toward CO2 Reduction
Schmidbaur et al. Understanding gold chemistry through relativity
Borfecchia et al. Insights into adsorption of NH3 on HKUST-1 metal–organic framework: a multitechnique approach
Yuan et al. Identification of the active species in bimetallic cluster catalyzed hydrogenation
Kauffman et al. Selective electrocatalytic reduction of CO2 into CO at small, thiol-capped Au/Cu nanoparticles
Ozturk et al. Thermal decomposition of generation-4 polyamidoamine dendrimer films: decomposition catalyzed by dendrimer-encapsulated Pt particles
Wang et al. A series of cobalt-based coordination polymer crystalline materials as highly sensitive electrochemical sensors for detecting trace Cr (VI), Fe (III) ions, and ascorbic acid
WO2016158806A1 (en) Novel composite of iron compound and graphene oxide
Matsumoto et al. Synthesis and photoluminescent properties of titanate layered oxides intercalated with lanthanide cations by electrostatic self-assembly methods
Wang et al. Electrocatalytic reduction of carbon dioxide to high-value multicarbon products with metal–organic frameworks and their derived materials
Kim et al. Direct Z-Scheme tannin–TiO2 heterostructure for photocatalytic gold ion recovery from electronic waste
Zhu et al. MOF-on-MOF membrane with cascading functionality for capturing dichromate ions and p-arsanilic acid turn-on sensing
Zhang et al. Twin-brush ZnO mesocrystal for the piezo-activation of peroxymonosulfate to remove ibuprofen in water: performance and mechanism
Schneider et al. Porphyrin metalation at the MgO nanocube/toluene interface
Fenoy et al. Powering up the oxygen reduction reaction through the integration of O2-adsorbing metal–organic frameworks on nanocomposite electrodes
Ahmed et al. Photocatalytic synthesis of silver dendrites using electrostatic hybrid films of porphyrin–polyoxometalate
Singh et al. Oxidase-like Nanozyme Activity of Manganese Metal–Organic Framework Nanosheets for Colorimetric and Fluorescence Sensing of l-Cysteine
Srinivas et al. Importance of clean surfaces on the catalyst: SnS2 nanorings for environmental remediation
Lin et al. Effective recovery of Pt (IV) from acidic solution by a defective metal–organic frameworks using central composite design for synthesis
Horikoshi et al. Synthesis, redox behavior and electrodeposition of biferrocene-modified gold clusters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5129110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250