JP2010150342A - Resin composition for sealing optical semiconductor - Google Patents

Resin composition for sealing optical semiconductor Download PDF

Info

Publication number
JP2010150342A
JP2010150342A JP2008328413A JP2008328413A JP2010150342A JP 2010150342 A JP2010150342 A JP 2010150342A JP 2008328413 A JP2008328413 A JP 2008328413A JP 2008328413 A JP2008328413 A JP 2008328413A JP 2010150342 A JP2010150342 A JP 2010150342A
Authority
JP
Japan
Prior art keywords
optical semiconductor
resin composition
fine particles
metal oxide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008328413A
Other languages
Japanese (ja)
Other versions
JP5424381B2 (en
Inventor
Keisuke Hirano
敬祐 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2008328413A priority Critical patent/JP5424381B2/en
Publication of JP2010150342A publication Critical patent/JP2010150342A/en
Application granted granted Critical
Publication of JP5424381B2 publication Critical patent/JP5424381B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition for sealing an optical semiconductor having a small linear expansion coefficient and excellent mechanical strengths and being excellent in light-taking out efficiency after sealing an optical semiconductor element, a manufacturing method for the composition, and a resin for sealing an optical semiconductor, i.e., a molded article of the composition. <P>SOLUTION: The resin composition for sealing the optical semiconductor in which metal oxide fine particles are uniformly dispersed is obtained by polymerizing a polysiloxane derivative having an alkoxysilyl group at a terminal end of the molecule and a molecular weight of 100-3,000 with the metal oxide fine particle having a reactive functional group on a surface of the fine particle. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光半導体封止用樹脂組成物に関する。さらに詳しくは、光半導体素子封止後の光取り出し効率に優れる光半導体封止用樹脂組成物、該組成物の製造方法、及び、該組成物の成型体である光半導体封止用樹脂に関する。   The present invention relates to an optical semiconductor sealing resin composition. More specifically, the present invention relates to a resin composition for optical semiconductor encapsulation excellent in light extraction efficiency after optical semiconductor element encapsulation, a method for producing the composition, and a resin for optical semiconductor encapsulation that is a molded body of the composition.

固体のエポキシ樹脂は、加熱溶融後、金型内で高圧で成型するというトランスファー成型法に適応できるので、成型後の樹脂を用いて、簡便にしかも、短時間で多くのLEDを封止することが可能であり、製造コストの面からも優れた樹脂である。また、硬化後のエポキシ樹脂は堅く、機械的強度に優れていることから、保護層を要しない。   Solid epoxy resin can be applied to a transfer molding method in which it is molded at high pressure in a mold after being heated and melted, so that many LEDs can be sealed easily and in a short time using the molded resin. It is a resin excellent in terms of manufacturing cost. Moreover, since the epoxy resin after hardening is hard and excellent in mechanical strength, a protective layer is not required.

しかし、エポキシ樹脂は耐久性に劣るため、強い光を発し、また発熱量も多い高輝度の光半導体(以降、LEDと記載する)の封止には使用できず、比較的弱いローパワーのLEDの封止に用いられている。   However, since epoxy resin is inferior in durability, it cannot be used for sealing a high-brightness optical semiconductor (hereinafter referred to as LED) that emits strong light and generates a large amount of heat. It is used for sealing.

一方、高輝度LEDの封止には、透明性に優れ、かつ、耐久性を有するシリコーン系の材料が現在、汎用されている。   On the other hand, silicone-based materials having excellent transparency and durability are currently widely used for sealing high-brightness LEDs.

高輝度LED封止用シリコーン樹脂としては、液状のシリコーンエラストマーが挙げられる。シリコーンエラストマーは、A液、B液等の2種類の液を混合して調製する場合、混合により化学反応が生じて粘度が上昇したシリコーン樹脂溶液が得られる。得られた樹脂溶液はポッティング等の方法にて塗布された後、150〜200℃で1〜2時間程度加熱することにより硬化して、LEDを封止する(特許文献1、2参照)。
特開2001−123045号公報 特開2008−150437号公報
Examples of the high-intensity LED sealing silicone resin include a liquid silicone elastomer. When the silicone elastomer is prepared by mixing two liquids such as liquid A and liquid B, a silicone resin solution having a viscosity increased by a chemical reaction caused by mixing is obtained. The obtained resin solution is applied by a method such as potting and then cured by heating at 150 to 200 ° C. for about 1 to 2 hours to seal the LED (see Patent Documents 1 and 2).
JP 2001-123045 A JP 2008-150437 A

シリコーン樹脂溶液は、粘度が高くなり過ぎると溶液中に存在する空気が抜けにくくなり、ボイド発生の原因になるため、通常、封止工程は減圧下で行われる。しかし、工程が煩雑になり、また、装置が複雑化する等の課題がある。   If the viscosity of the silicone resin solution becomes too high, air present in the solution is difficult to escape and causes voids. Therefore, the sealing step is usually performed under reduced pressure. However, there are problems such as complicated processes and complicated apparatus.

また、2種類の液状成分は混合によって徐々に粘度が上昇していくために、塗布までの時間が短くハンドリングに注意を要したり、成型中にも粘度が変化したりするために、所望の封止樹脂を得ることは困難である。   In addition, since the two liquid components gradually increase in viscosity due to mixing, the time until application is short and care is required for handling, and the viscosity changes during molding. It is difficult to obtain a sealing resin.

またさらに、シリコーンエラストマーは、硬化後も柔らかいため、封止後のLEDチップ上に何らかの刺激がかかるとチップが断線し、LEDが光らなくなるなどの問題が生じやすく、保護層としてさらにもう一層設ける等の工程が必要となる場合が多い。   Furthermore, since the silicone elastomer is soft even after curing, problems such as the chip being disconnected and the LED not shining easily occur if any stimulus is applied to the sealed LED chip, and a further protective layer is provided. This process is often required.

一方、シリコーンエラストマーは線膨張係数が大きいため、パワーの大きい光半導体の封止材としての使用には制限があり、さらなる良好な特性を有する封止樹脂が求められる。   On the other hand, since the silicone elastomer has a large linear expansion coefficient, its use as a sealing material for optical semiconductors with high power is limited, and a sealing resin having even better characteristics is required.

本発明の課題は、線膨張係数が小さく、機械的強度に優れ、かつ、光半導体素子封止後の光取り出し効率に優れる光半導体封止用樹脂組成物、該組成物の製造方法、及び、該組成物の成型体である光半導体封止用樹脂を提供することにある。   An object of the present invention is to provide an optical semiconductor sealing resin composition having a small linear expansion coefficient, excellent mechanical strength, and excellent light extraction efficiency after optical semiconductor element sealing, a method for producing the composition, and An object of the present invention is to provide a resin for sealing an optical semiconductor, which is a molded product of the composition.

本発明者らは、上記課題を解決する為に検討を重ねた結果、微粒子表面に反応性官能基を有する金属酸化物微粒子と、分子末端にアルコキシシリル基を有し、かつ特定の分子量を有するポリシロキサン誘導体とを反応させることにより、該金属酸化物微粒子が均一に分散して、光半導体素子封止後の光取り出し効率に優れ、かつ、線膨張係数が小さく、硬化成型後の機械的強度にも優れる光半導体封止用樹脂組成物が得られることを見出し、本発明を完成するに至った。   As a result of repeated studies to solve the above-mentioned problems, the inventors of the present invention have a metal oxide fine particle having a reactive functional group on the surface of the fine particle, an alkoxysilyl group at the molecular end, and a specific molecular weight. By reacting with a polysiloxane derivative, the metal oxide fine particles are uniformly dispersed, have excellent light extraction efficiency after sealing an optical semiconductor element, have a small linear expansion coefficient, and have a mechanical strength after curing molding. In addition, the present inventors have found that a resin composition for sealing an optical semiconductor that is excellent can be obtained, and have completed the present invention.

即ち、本発明は、
〔1〕 分子末端にアルコキシシリル基を有する分子量100〜3000のポリシロキサン誘導体と、微粒子表面に反応性官能基を有する金属酸化物微粒子とを重合反応させて得られる光半導体封止用樹脂組成物、
〔2〕 分子末端にアルコキシシリル基を有する分子量100〜3000のポリシロキサン誘導体と、微粒子表面に反応性官能基を有する金属酸化物微粒子とを重合反応させる工程を含む、前記〔1〕記載の光半導体封止用樹脂組成物の製造方法、ならびに
〔3〕 前記〔1〕記載の光半導体封止用樹脂組成物を加熱して硬化させてなる、光半導体封止用樹脂
に関する。
That is, the present invention
[1] A resin composition for encapsulating an optical semiconductor obtained by polymerizing a polysiloxane derivative having an alkoxysilyl group at a molecular end and having a molecular weight of 100 to 3000 and metal oxide fine particles having reactive functional groups on the surface of the fine particles. ,
[2] The light according to the above [1], comprising a step of polymerizing a polysiloxane derivative having an alkoxysilyl group at a molecular terminal and having a molecular weight of 100 to 3000 and metal oxide fine particles having reactive functional groups on the surface of the fine particles. The manufacturing method of the resin composition for semiconductor sealing, and [3] It is related with the resin for optical semiconductor sealing formed by heating and hardening the resin composition for optical semiconductor sealing of said [1] description.

本発明の光半導体封止用樹脂組成物は、線膨張係数が小さく、機械的強度に優れ、かつ、光半導体素子封止後の光取り出し効率に優れるという優れた効果を奏する。   The resin composition for encapsulating an optical semiconductor of the present invention has an excellent effect that the linear expansion coefficient is small, the mechanical strength is excellent, and the light extraction efficiency after encapsulating the optical semiconductor element is excellent.

本発明の光半導体封止用樹脂組成物は、ポリシロキサン誘導体、及び金属酸化物微粒子を含有するものであって、前記ポリシロキサン誘導体が分子末端にアルコキシシリル基を有し、前記金属酸化物微粒子が微粒子表面に反応性官能基を有するものであることに1つの特徴を有する。   The resin composition for encapsulating an optical semiconductor of the present invention contains a polysiloxane derivative and metal oxide fine particles, and the polysiloxane derivative has an alkoxysilyl group at a molecular end, and the metal oxide fine particles Has a feature that it has a reactive functional group on the surface of the fine particles.

ポリシロキサン誘導体は、その架橋数により、固形状、半固形状、高粘性液状等の各種状態の樹脂組成物を形成でき、また、加熱することにより硬化するため、各種成型法に適用可能な樹脂である。しかし、硬化後の樹脂は機械的強度に劣るので、本発明では、分子末端に反応性のアルコキシシリル基を有するポリシロキサン誘導体に、微粒子表面に反応性官能基を有する金属酸化物微粒子を重合反応させて、該誘導体のアルコキシシリル基の一部と金属酸化物微粒子の表面官能基の一部とが共有結合、あるいは水素結合等の相互作用により架橋することにより、得られる樹脂組成物において金属酸化物微粒子を均一に分散させることが可能となり、機械的強度を向上することが可能になる。また、金属酸化物微粒子は屈折率が高いことから、該微粒子が良分散することにより、光半導体(以下、LEDと記載する)素子封止後の光取出し効率も向上する。またさらに、特定の分子量のポリシロキサン誘導体を用いることにより、微粒子表面との相互作用が高まることから、線膨張係数の小さい樹脂組成物が得られると推察される。   Polysiloxane derivatives can form resin compositions in various states such as solid, semi-solid, and highly viscous liquids depending on the number of crosslinks, and are cured by heating, so that they can be applied to various molding methods. It is. However, since the cured resin is inferior in mechanical strength, in the present invention, a polysiloxane derivative having a reactive alkoxysilyl group at the molecular end is polymerized with a metal oxide fine particle having a reactive functional group on the surface of the fine particle. Then, a part of the alkoxysilyl group of the derivative and a part of the surface functional group of the metal oxide fine particle are crosslinked by an interaction such as a covalent bond or a hydrogen bond. It becomes possible to uniformly disperse the fine particles, and to improve the mechanical strength. In addition, since the metal oxide fine particles have a high refractive index, the light extraction efficiency after sealing an optical semiconductor (hereinafter referred to as LED) element is improved when the fine particles are well dispersed. Furthermore, by using a polysiloxane derivative having a specific molecular weight, it is surmised that a resin composition having a small linear expansion coefficient can be obtained because the interaction with the surface of the fine particles is enhanced.

本発明におけるポリシロキサン誘導体は、分子末端にアルコキシシリル基を有し、分子量が100〜3000の化合物であるが、硬化収縮量の低減の観点から、分子量は好ましくは400〜3000、より好ましくは600〜3000であることが望ましい。なお、本明細書において、ポリシロキサン誘導体の分子量は、ゲルろ過クロマトグラフィー(GPC)により測定される。   The polysiloxane derivative in the present invention is a compound having an alkoxysilyl group at the molecular terminal and a molecular weight of 100 to 3000, but from the viewpoint of reducing the curing shrinkage, the molecular weight is preferably 400 to 3000, more preferably 600. It is desirable to be ~ 3000. In the present specification, the molecular weight of the polysiloxane derivative is measured by gel filtration chromatography (GPC).

上記分子量を有するポリシロキサン誘導体としては、例えば、下記式(I):   Examples of the polysiloxane derivative having the above molecular weight include the following formula (I):

Figure 2010150342
Figure 2010150342

(式中、R1 、R2 、R3 及びR4 は、それぞれ独立して、水素原子、アルキル基又は芳香族基であり、nは正の整数を示し、但し、R1 、R2 及びR4 は、共に水素原子ではなく、共に芳香族基ではなく、n個のR3 は同一でも異なっていてもよい)
で表される化合物、式(II):
(In the formula, R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, an alkyl group or an aromatic group, and n represents a positive integer, provided that R 1 , R 2 and R 4 is not a hydrogen atom, and is not an aromatic group, and n R 3 s may be the same or different.
A compound represented by formula (II):

Figure 2010150342
Figure 2010150342

(式中、R5 、R6、R7 及びRは、それぞれ独立して、水素原子、アルキル基又は芳香族基であり、但し、R6 及びRは、共に水素原子ではなく、共に芳香族基ではない)
で表される化合物、及びこれらの部分加水分解縮合物からなる群より選ばれる原料化合物を少なくとも1つ含有することが好ましく、ポリシロキサン誘導体はこれらの原料化合物を公知の方法に従って縮合させて得られ、該原料化合物は縮重合することにより、Si−O−Si骨格のランダム構造、ラダー構造、カゴ構造等を有する化合物となる。なお、本明細書において、部分加水分解縮合物とは、式(I)で表わされる化合物のみ、式(II)で表わされる化合物のみ、あるいは式(I)で表される化合物と式(II)で表わされる化合物の混合物、を加水分解して縮重合させたものであり、組成は特に限定されない。
(Wherein R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group or an aromatic group, provided that R 6 and R 8 are not both hydrogen atoms, (Not an aromatic group)
And at least one raw material compound selected from the group consisting of these partially hydrolyzed condensates, and a polysiloxane derivative is obtained by condensing these raw material compounds according to a known method. The raw material compound undergoes polycondensation to become a compound having a random structure of a Si—O—Si skeleton, a ladder structure, a cage structure, and the like. In the present specification, the partially hydrolyzed condensate means only the compound represented by the formula (I), only the compound represented by the formula (II), or the compound represented by the formula (I) and the formula (II). The mixture of the compounds represented by the formula is hydrolyzed and polycondensed, and the composition is not particularly limited.

式(I)中のR1 、R2 、R3 及びR4 は、それぞれ独立して、水素原子、アルキル基又は芳香族基を示し、但し、R1 、R2 及びR4 は、共に水素原子ではなく、共に芳香族基ではなく、n個のR3 は同一でも異なっていてもよい。即ち、R1 、R2 及びR4 の少なくとも1つはアルキル基である。 R 1 , R 2 , R 3 and R 4 in formula (I) each independently represent a hydrogen atom, an alkyl group or an aromatic group, provided that R 1 , R 2 and R 4 are both hydrogen. It is not an atom and both are not aromatic groups, and n R 3 s may be the same or different. That is, at least one of R 1 , R 2 and R 4 is an alkyl group.

式(I)中のR1 、R2 、R3 及びR4 のアルキル基の炭素数は、微粒子表面での反応性、加水分解速度の観点から、1〜4が好ましく、1〜2がより好ましい。具体的には、メチル基、エチル基等が例示される。なかでも、メチル基が好ましく、OR1 、OR2 、OR3 及びOR4 はいずれもメトキシ基であることが好ましい。なお、n個のOR3 も全てメトキシ基であることが好ましい。 The carbon number of the alkyl group of R 1 , R 2 , R 3 and R 4 in the formula (I) is preferably 1 to 4 and more preferably 1 to 2 from the viewpoint of the reactivity on the fine particle surface and the hydrolysis rate. preferable. Specific examples include a methyl group and an ethyl group. Of these, a methyl group is preferable, and all of OR 1 , OR 2 , OR 3, and OR 4 are preferably methoxy groups. It is preferable also all the n OR 3 are methoxy group.

式(I)中のnは、正の整数を示すが、溶媒への溶解性の観点から、好ましくは1〜3の整数である。   N in the formula (I) represents a positive integer, and is preferably an integer of 1 to 3 from the viewpoint of solubility in a solvent.

式(II)中のR5 、R6、R7 及びRは、それぞれ独立して、水素原子、アルキル基又は芳香族基を示し、但し、R6 及びRは、共に水素原子ではなく、共に芳香族基ではない。即ち、R6 及びRの少なくとも1つはアルキル基である。 R 5 , R 6 , R 7 and R 8 in formula (II) each independently represent a hydrogen atom, an alkyl group or an aromatic group, provided that R 6 and R 8 are not hydrogen atoms. Both are not aromatic groups. That is, at least one of R 6 and R 8 is an alkyl group.

式(II)中のR5 、R6、R7 及びRのアルキル基の炭素数は、微粒子表面での反応性、加水分解速度の観点から、微粒子表面の親水性/疎水性制御、アルコキシシランの重合反応の効率などの観点から、1〜18が好ましく、1〜12がより好ましく、1〜6がさらに好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基等が例示される。なかでも、R5 、R6、R7 及びRは、それぞれ独立してメチル基もしくは芳香族基であることが好ましく、いずれもメチル基であることがより好ましい。 The carbon number of the alkyl group of R 5 , R 6 , R 7 and R 8 in the formula (II) is determined from the viewpoint of reactivity on the surface of the fine particle and hydrolysis rate, and control of hydrophilicity / hydrophobicity of the fine particle surface, From the viewpoint of the efficiency of the silane polymerization reaction, 1 to 18 is preferable, 1 to 12 is more preferable, and 1 to 6 is more preferable. Specific examples include a methyl group, an ethyl group, a propyl group, and an isopropyl group. Among them, R 5, R 6, R 7 and R 8 is preferably a methyl group or an aromatic group independently, and more preferably both a methyl group.

上記原料化合物を含有するポリメチルシルセスキオキサン誘導体としては、Si−O−Si骨格のランダム構造を有する化合物(ランダム型)、ラダー構造を有する化合物(ラダー型)、カゴ構造を有する化合物(カゴ型)、該カゴ型が部分的に開裂した化合物(部分開裂カゴ型)等が挙げられ、これらは単独で又は2種以上を組み合わせて用いることができる。これらのなかでも、式(I)におけるR1 、R2 、R3 (n個のR3 全て)及びR4 がいずれもメチル基である化合物と式(II)におけるR5 、R6、R7 及びRがいずれもメチル基である化合物の部分加水分解縮合物が好ましい。なお、本明細書において、部分加水分解縮合物とは、各種構造を有するポリメチルシルセスキオキサン誘導体の混合物を加水分解して縮重合させたものであり、組成は特に限定されない。 Examples of the polymethylsilsesquioxane derivative containing the raw material compound include a compound having a random structure of Si—O—Si skeleton (random type), a compound having a ladder structure (ladder type), and a compound having a cage structure (cage Type), compounds in which the cage type is partially cleaved (partially cleaved cage type), and the like. These can be used alone or in combination of two or more. Among these, the compounds in which R 1 , R 2 , R 3 (all n R 3 s ) and R 4 in the formula (I) are all methyl groups and R 5 , R 6 , R in the formula (II) are included. A partial hydrolysis-condensation product of a compound in which both 7 and R 8 are methyl groups is preferred. In the present specification, the partially hydrolyzed condensate is a product obtained by hydrolyzing and polycondensing a mixture of polymethylsilsesquioxane derivatives having various structures, and the composition is not particularly limited.

ポリシロキサン誘導体における、式(I)で表される化合物の含有量は、高屈折率の達成、微粒子表面での反応効率、シラン同士の重縮合反応の効率、クラック抑制の観点から、好ましくは0〜95重量%、より好ましくは10〜90重量%、さらに好ましくは20〜80重量%である。なお、ここでいう含有量とは、部分加水分解縮合物を構成する式(I)で表される化合物の含有量も含む。   The content of the compound represented by the formula (I) in the polysiloxane derivative is preferably 0 from the viewpoint of achieving a high refractive index, reaction efficiency on the surface of fine particles, efficiency of polycondensation reaction between silanes, and crack suppression. It is -95 weight%, More preferably, it is 10-90 weight%, More preferably, it is 20-80 weight%. Here, the content includes the content of the compound represented by the formula (I) constituting the partially hydrolyzed condensate.

ポリシロキサン誘導体における、式(II)で表される化合物の含有量は、金属酸化物微粒子を分散したシリコーン樹脂組成物の物性制御の観点から、好ましくは5〜100重量%、より好ましくは10〜90重量%、さらに好ましくは20〜80重量%である。なお、ここでいう含有量とは、部分加水分解縮合物を構成する式(II)で表される化合物の含有量も含む。   The content of the compound represented by the formula (II) in the polysiloxane derivative is preferably 5 to 100% by weight, more preferably 10 to 10% from the viewpoint of controlling the physical properties of the silicone resin composition in which the metal oxide fine particles are dispersed. 90% by weight, more preferably 20 to 80% by weight. In addition, content here includes content of the compound represented by Formula (II) which comprises a partial hydrolysis-condensation product.

アルコキシ基の含有量は、溶解性や反応性の観点から、ポリシロキサン誘導体1分子中、好ましくは10〜55重量%、より好ましくは10〜47重量%、さらに好ましくは10〜30重量%である。なお、2種以上のポリシロキサン誘導体を用いる場合には、各誘導体のアルコキシ基の含有量が前記範囲内であることが望ましいが、前記範囲外のものが一部含まれていてもよく、ポリシロキサン誘導体全体のアルコキシ基含有量として、加重平均アルコキシ基含有量が前記範囲内に含まれていればよい。本明細書において、アルコキシ基含有量は、1H−NMRによる定量及び加熱による重量減少から求めることができる。 The content of the alkoxy group is preferably 10 to 55% by weight, more preferably 10 to 47% by weight, and further preferably 10 to 30% by weight in one molecule of the polysiloxane derivative from the viewpoint of solubility and reactivity. . When two or more polysiloxane derivatives are used, the alkoxy group content of each derivative is preferably within the above range, but some of the derivatives outside the above range may be included. The weighted average alkoxy group content should just be contained in the said range as alkoxy group content of the whole siloxane derivative. In the present specification, the alkoxy group content can be determined from quantitative determination by 1 H-NMR and weight loss by heating.

本発明においては、本発明の効果を損なわない範囲で、前記式(I)で表される化合物及び式(II)で表される化合物から得られるポリシロキサン誘導体以外の他のシリコーン誘導体を含有していてもよい。他のシリコーン誘導体としては、公知のシリコーン誘導体が挙げられるが、誘導体中のポリシロキサン誘導体の含有量は、80重量%以上が好ましく、90重量%がより好ましく、実質的に100重量%であることがさらに好ましい。   In the present invention, it contains a silicone derivative other than the compound represented by the formula (I) and the polysiloxane derivative obtained from the compound represented by the formula (II) as long as the effects of the present invention are not impaired. It may be. Examples of other silicone derivatives include known silicone derivatives. The content of the polysiloxane derivative in the derivative is preferably 80% by weight or more, more preferably 90% by weight, and substantially 100% by weight. Is more preferable.

微粒子表面に反応性官能基を有する金属酸化物微粒子としては、酸化チタン、酸化ジルコニウム、チタン酸バリウム、酸化亜鉛、チタン酸鉛、二酸化ケイ素等が挙げられ、これらは、単独で又は2種以上を組み合わせて用いることができる。なかでも、高屈折率の観点から、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、及び二酸化ケイ素からなる群より選ばれる少なくとも1種であることが望ましい。なお、酸化チタンとしては、ルチル型酸化チタン、アナターゼ型酸化チタンのいずれを用いてもよい。   Examples of the metal oxide fine particles having reactive functional groups on the surface of the fine particles include titanium oxide, zirconium oxide, barium titanate, zinc oxide, lead titanate, silicon dioxide and the like. These may be used alone or in combination of two or more. They can be used in combination. Among these, from the viewpoint of high refractive index, at least one selected from the group consisting of titanium oxide, zinc oxide, zirconium oxide, barium titanate, and silicon dioxide is desirable. In addition, as a titanium oxide, you may use any of a rutile type titanium oxide and an anatase type titanium oxide.

金属酸化物微粒子における反応性官能基としては、ヒドロキシル基、イソシアネート基、アミノ基、メルカプト基、カルボキシ基、エポキシ基、ビニル型不飽和基、ハロゲン基、イソシアヌレート基などが例示される。   Examples of the reactive functional group in the metal oxide fine particle include a hydroxyl group, an isocyanate group, an amino group, a mercapto group, a carboxy group, an epoxy group, a vinyl type unsaturated group, a halogen group, and an isocyanurate group.

金属酸化物微粒子の微粒子表面における反応性官能基の含有量は、微粒子量、微粒子の表面積、反応した表面処理剤量などから求めることができるが、本発明では、表面処理剤との反応量が微粒子重量の0.1重量%以上となる微粒子を「微粒子表面に反応性官能基を有する金属酸化物微粒子」という。ここで、該反応量を反応性官能基の含有量とし、金属酸化物微粒子における含有量は0.1重量%以上であれば、特に限定されない。なお、本明細書において、金属酸化物微粒子表面における反応性官能基の含有量は、後述の実施例の方法により測定することができ、「反応性官能基の含有量」とは、反応性官能基の「含有量」及び/又は「存在量」のことを意味する。   The content of the reactive functional group on the fine particle surface of the metal oxide fine particle can be obtained from the fine particle amount, the surface area of the fine particle, the amount of the surface treatment agent reacted, etc. In the present invention, the reaction amount with the surface treatment agent is The fine particles that are 0.1% by weight or more of the fine particle weight are referred to as “metal oxide fine particles having a reactive functional group on the fine particle surface”. Here, the reaction amount is the content of the reactive functional group, and the content in the metal oxide fine particles is not particularly limited as long as it is 0.1% by weight or more. In the present specification, the content of the reactive functional group on the surface of the metal oxide fine particles can be measured by the method of Examples described later, and the “content of the reactive functional group” means the reactive functional group. It means the “content” and / or “abundance” of the group.

また、金属酸化物微粒子の微粒子表面における反応性官能基の含有量は、例えば、メチルトリメトキシシランを有機溶媒に溶解した溶液と微粒子を反応させることにより低減することができる。また、微粒子を高温で焼成することにより、微粒子表面の反応性官能基量を低減させることができる。   In addition, the content of the reactive functional group on the surface of the metal oxide fine particles can be reduced, for example, by reacting the fine particles with a solution obtained by dissolving methyltrimethoxysilane in an organic solvent. Moreover, the amount of reactive functional groups on the surface of the fine particles can be reduced by firing the fine particles at a high temperature.

金属酸化物微粒子は、公知の方法で製造されたものを用いることできるが、なかでも、粒子の大きさの均一性や微粒子化の観点から、水熱合成法、ゾル−ゲル法、超臨界水熱合成法、共沈法、及び均一沈殿法からなる群より選ばれる少なくとも1つの製造方法により得られたものが好ましい。   As the metal oxide fine particles, those produced by a known method can be used, and among them, hydrothermal synthesis method, sol-gel method, supercritical water from the viewpoint of uniformity of particle size and fine particle formation. Those obtained by at least one production method selected from the group consisting of a thermal synthesis method, a coprecipitation method, and a uniform precipitation method are preferred.

金属酸化物微粒子の平均粒子径は、組成物を成形体としたときの透明性の観点から、好ましくは1〜100nm、より好ましくは1〜70nm、さらに好ましくは1〜20nmである。本明細書において、金属酸化物微粒子の平均粒子径は、動的光散乱法での粒子分散液の粒子径測定あるいは透過型電子顕微鏡による直接観察により測定することができる。   The average particle diameter of the metal oxide fine particles is preferably 1 to 100 nm, more preferably 1 to 70 nm, and still more preferably 1 to 20 nm, from the viewpoint of transparency when the composition is a molded body. In the present specification, the average particle size of the metal oxide fine particles can be measured by measuring the particle size of the particle dispersion by a dynamic light scattering method or directly observing with a transmission electron microscope.

なお、金属酸化物微粒子は、分散安定性の観点から、分散液中に調製されたものを用いてもよい(「金属酸化物微粒子分散液」ともいう)。分散媒としては水、アルコール、ケトン系溶媒、アセトアミド系溶媒などが挙げられ、水、メタノール、メチルブチルケトン、ジメチルアセトアミドを用いることが好ましい。分散液中の金属酸化物微粒子の量(固形分濃度)は、効率的に微粒子表面で反応を行う観点から、好ましくは10〜40重量%、より好ましくは20〜40重量%である。このような金属酸化物微粒子分散液は、酸化チタンとして触媒化成社のNEOSUNVEILあるいはQUEEN TITANICシリーズ、多木化学社のタイノック、酸化ジルコニウムとして第一希元素化学工業社のZSLシリーズ、住友大阪セメント社のNZDシリーズ、日産化学社のナノユースシリーズなどの市販のものを用いることができる。   The metal oxide fine particles may be prepared in a dispersion from the viewpoint of dispersion stability (also referred to as “metal oxide fine particle dispersion”). Examples of the dispersion medium include water, alcohol, ketone solvents, and acetamide solvents, and it is preferable to use water, methanol, methyl butyl ketone, and dimethylacetamide. The amount (solid content concentration) of the metal oxide fine particles in the dispersion is preferably 10 to 40% by weight, more preferably 20 to 40% by weight from the viewpoint of efficiently performing the reaction on the surface of the fine particles. Such metal oxide fine particle dispersions include titanium oxide, NEOSUNVEIL or QUEEN TITANIC series from Catalytic Chemicals, Tynoch from Taki Chemical Co., Ltd., ZSL series from Daiichi Rare Chemicals Co., Ltd. Commercially available products such as the series and the nano-use series of Nissan Chemical Co., Ltd. can be used.

金属酸化物微粒子の含有量は、ポリシロキサン誘導体100重量部に対して、好ましくは10〜200重量部、より好ましくは30〜150重量部、さらに好ましくは50〜140重量部である。   The content of the metal oxide fine particles is preferably 10 to 200 parts by weight, more preferably 30 to 150 parts by weight, and still more preferably 50 to 140 parts by weight with respect to 100 parts by weight of the polysiloxane derivative.

本発明の光半導体封止用樹脂組成物は、前記ポリシロキサン誘導体、及び、金属酸化物微粒子に加えて、本発明の効果を損なわない範囲で、老化防止剤、変性剤、界面活性剤、染料、顔料、変色防止剤、紫外線吸収剤等の添加剤を含有してもよい。   In addition to the polysiloxane derivative and the metal oxide fine particles, the resin composition for encapsulating a photosemiconductor of the present invention includes an antioxidant, a modifier, a surfactant, and a dye as long as the effects of the present invention are not impaired. In addition, additives such as pigments, anti-discoloring agents and ultraviolet absorbers may be contained.

本発明の光半導体封止用樹脂組成物は、例えば、前記金属酸化物微粒子分散液に、ポリシロキサン誘導体を含有する樹脂溶液を40〜70℃で重合反応させて、該重合反応の反応率が好ましくは30〜70%、より好ましくは40〜70%となるまで重合反応させた後、溶媒を除去して重合反応を終了させることにより調製することができる。なお、本明細書において反応率(%)とは、ポリシロキサン誘導体と金属酸化物微粒子との重合反応終了時点の反応率のことをいい、具体的には、例えば、150℃の乾燥機に3時間放置する前後の重量変化を測定し、生成反応水量(mol)/理論生成水量(mol)×100の式より算出することができる。また、反応率は反応時間や反応温度を制御することにより調整することができる。   The resin composition for encapsulating an optical semiconductor of the present invention is obtained, for example, by polymerizing a resin solution containing a polysiloxane derivative to the metal oxide fine particle dispersion at 40 to 70 ° C., and the reaction rate of the polymerization reaction is The polymerization reaction is preferably carried out until it becomes 30 to 70%, more preferably 40 to 70%, and then the solvent is removed to complete the polymerization reaction. In the present specification, the reaction rate (%) refers to the reaction rate at the end of the polymerization reaction between the polysiloxane derivative and the metal oxide fine particles. Specifically, for example, 3% in a dryer at 150 ° C. The change in weight before and after being allowed to stand for a period of time can be measured and calculated by the formula: amount of reaction water produced (mol) / theoretical water production amount (mol) × 100. The reaction rate can be adjusted by controlling the reaction time and reaction temperature.

かくして得られる本発明の光半導体封止用樹脂組成物は、ポリシロキサン誘導体と金属酸化物微粒子とを反応率が上記範囲内となるように重合反応を行うため、ポリシロキサン誘導体同士の架橋反応も制限される。従って、本発明の光半導体封止用樹脂組成物の25℃における粘度は、好ましくは0.01〜30Pa・s、より好ましくは0.10〜30Pa・s、さらに好ましくは1〜30Pa・sである。本明細書において、粘度は、B形粘度計を用いて測定することができる。   The resin composition for encapsulating an optical semiconductor of the present invention thus obtained undergoes a polymerization reaction between the polysiloxane derivative and the metal oxide fine particles so that the reaction rate is within the above range. Limited. Therefore, the viscosity at 25 ° C. of the resin composition for encapsulating an optical semiconductor of the present invention is preferably 0.01 to 30 Pa · s, more preferably 0.10 to 30 Pa · s, and further preferably 1 to 30 Pa · s. In the present specification, the viscosity can be measured using a B-type viscometer.

なお、上記粘度を有する本発明の組成物の性状は、半固形状、又は液状を示す。本明細書において、半固形状とは60℃以上に加熱した際に粘度低下して流動性を呈するような状態のことを意味する。   In addition, the property of the composition of this invention which has the said viscosity shows a semi-solid form or a liquid state. In the present specification, the semi-solid state means a state where the viscosity is lowered and fluidity is exhibited when heated to 60 ° C. or higher.

本発明の光半導体封止用樹脂組成物の好ましい製造方法は、微粒子表面に反応性官能基を有する金属酸化物微粒子と、分子末端にアルコキシシリル基を有するポリシロキサン誘導体とを重合反応させる工程〔工程(1)〕を含む方法である。   A preferred method for producing the resin composition for sealing an optical semiconductor of the present invention is a step of polymerizing a metal oxide fine particle having a reactive functional group on the surface of the fine particle and a polysiloxane derivative having an alkoxysilyl group at the molecular end [ Step (1)].

工程(1)の具体例としては、例えば、金属酸化物微粒子分散液に、メタノール、エタノール、2-メトキシエタノール、2-プロパノール、テトラヒドロフラン等の有機溶剤を添加して攪拌した液に、ポリシロキサン誘導体をメタノール、エタノール、2-プロパノール、テトラヒドロフラン等の有機溶剤に好ましくは20〜50重量%になるように溶解して調製した樹脂溶液を40〜70℃で滴下混合して重合反応させる工程等が挙げられる。なお、得られた反応液は、減圧下にて溶媒を留去して濃縮させる工程等に供することができる。   As a specific example of the step (1), for example, a polysiloxane derivative is added to a liquid obtained by adding an organic solvent such as methanol, ethanol, 2-methoxyethanol, 2-propanol, and tetrahydrofuran to a metal oxide fine particle dispersion and stirring. A step of performing a polymerization reaction by dripping and mixing a resin solution prepared by dissolving in an organic solvent such as methanol, ethanol, 2-propanol, tetrahydrofuran, etc., preferably at 20 to 50% by weight, at 40 to 70 ° C. It is done. In addition, the obtained reaction liquid can be used for the process etc. which distill off a solvent under reduced pressure and to concentrate.

かくして得られた光半導体封止用樹脂組成物は、加工成型性に優れるため、例えば、トランスファー成型機に充填して適当な温度に保持後、加熱、加圧工程を経て成型することができる。また、表面を剥離処理した物体(例えば、LED素子)の上にキャスティング、スピンコーティング、ロールコーティングなどの方法により、適当な厚さに塗工して、真空プレス装置等を用いて、溶媒の除去が可能な程度の温度で乾燥して加圧することにより成型することができる。なお、樹脂溶液を乾燥させる温度は、樹脂や溶媒の種類によって異なるため一概には決定できないが、80〜150℃が好ましい。また、乾燥は2段階に分けて行ってもよく、その場合、1段階目の温度は90〜120℃、2段階目の温度は130〜150℃が好ましい。   Since the resin composition for encapsulating an optical semiconductor thus obtained is excellent in work moldability, for example, it can be molded through a heating and pressurizing step after being filled in a transfer molding machine and kept at an appropriate temperature. In addition, it is applied to an appropriate thickness by casting, spin coating, roll coating, etc. on an object (for example, LED element) whose surface has been subjected to a peeling treatment, and the solvent is removed using a vacuum press device or the like. However, it can be molded by drying and pressing at a temperature that is possible. In addition, although the temperature which dries a resin solution changes with kinds of resin and a solvent and cannot be determined unconditionally, 80-150 degreeC is preferable. In addition, drying may be performed in two stages. In that case, the temperature in the first stage is preferably 90 to 120 ° C., and the temperature in the second stage is preferably 130 to 150 ° C.

本発明の光半導体封止用樹脂組成物は、光透過性が高く、また、加工成型性に優れるため、例えば、青色又は白色LED素子を搭載した光半導体装置(液晶画面のバックライト、信号機、屋外の大型ディスプレイ、広告看板等)に用いられる光半導体素子封止材として好適に使用し得るものである。従って、本発明はまた、前記光半導体封止用樹脂組成物を加熱硬化させて成型した光半導体封止用樹脂を提供する。   The resin composition for encapsulating an optical semiconductor of the present invention has high light transmittance and excellent processability, so that, for example, an optical semiconductor device equipped with a blue or white LED element (a backlight of a liquid crystal screen, a traffic light, It can be suitably used as an optical semiconductor element sealing material used for large outdoor displays, advertising billboards, and the like. Accordingly, the present invention also provides an optical semiconductor encapsulating resin obtained by heating and curing the optical semiconductor encapsulating resin composition.

本発明の光半導体封止用樹脂は、本発明の光半導体封止用樹脂組成物を、例えば、好ましくは80〜150℃、より好ましくは100〜150℃で加熱することにより成型される。   The resin for optical semiconductor encapsulation of the present invention is molded by heating the resin composition for optical semiconductor encapsulation of the present invention, for example, preferably at 80 to 150 ° C, more preferably at 100 to 150 ° C.

本発明の光半導体封止用樹脂は、封止前のLED素子の輝度を100%とした場合、光取り出し効率が、好ましくは120%以上、より好ましくは120〜180%である。なお、本明細書において、光取り出し効率は、後述の実施例に記載の方法により測定される。   The resin for optical semiconductor encapsulation of the present invention has a light extraction efficiency of preferably 120% or more, more preferably 120 to 180%, assuming that the luminance of the LED element before encapsulation is 100%. In addition, in this specification, light extraction efficiency is measured by the method as described in the below-mentioned Example.

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例等によりなんら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited at all by these Examples.

〔シリコーン誘導体の分子量〕
ゲルろ過クロマトグラフィー(GPC)によるポリスチレン換算にて求める。
[Molecular weight of silicone derivatives]
Obtained in terms of polystyrene by gel filtration chromatography (GPC).

〔シリコーン誘導体のアルコキシ基含有量〕
内部標準物質を用いた1H−NMRによる定量及び示差熱熱重量分析による重量減少の値から算出する。
[Alkoxy group content of silicone derivative]
It is calculated from the quantitative value by 1 H-NMR using an internal standard substance and the weight loss value by differential thermogravimetric analysis.

〔金属酸化物微粒子の平均粒子径〕
本明細書において、金属酸化物微粒子の平均粒子径とは一次粒子の平均粒子径を意味し、金属酸化物微粒子の粒子分散液について動的光散乱法で測定して算出される体積中位粒径(D50)のことである。
[Average particle diameter of metal oxide fine particles]
In this specification, the average particle diameter of the metal oxide fine particles means the average particle diameter of the primary particles, and is a volume-median particle calculated by measuring the particle dispersion of the metal oxide fine particles by a dynamic light scattering method. It is the diameter (D 50 ).

〔金属酸化物微粒子表面における反応性官能基の含有量〕
微粒子分散液に表面処理剤としてエチルトリメトキシシランを加えて反応させ、遠心分離もしくはpH変動によって微粒子を凝集沈降させて、濾別回収、洗浄、乾燥し、示差熱熱重量分析によって重量減量を求めて含有量を算出する。
[Reactive functional group content on metal oxide fine particle surface]
Add ethyltrimethoxysilane as a surface treating agent to the fine particle dispersion and react, and then coagulate and settle the fine particles by centrifugation or pH fluctuations, collect by filtration, wash and dry, and determine the weight loss by differential thermogravimetric analysis. To calculate the content.

実施例1
攪拌機、還流冷却機、及び窒素導入管を備えた容器に、微粒子表面に反応性官能基を有する金属酸化物微粒子として、平均粒子径10〜30nmのコロイダルシリカゾル(商品名「スノーテックスOS」、日産化学社製、固形分濃度20重量%、反応性官能基として水酸基を含有、反応性官能基含有量0.1重量%以上)34g(ポリシロキサン誘導体100重量部に対して19重量部)を入れ、さらにメタノール34g、2-メトキシエタノール20gを添加後、そこに、分子末端にアルコキシシリル基を有するポリシロキサン誘導体〔商品名「KR500」、信越化学社製、式(I)のR、R、R及びRはメチル基、分子量1000〜2000、メトキシ含有量28重量%〕35gを2-プロパノール10gに溶解した液を、滴下ロートを用いて30分かけて滴下して、70℃で1時間反応させた。その後、室温(25℃)まで冷却して、減圧下、溶媒を留去して濃縮することにより、実施例1の液状の透明樹脂組成物を得た。得られた組成物の25℃における粘度は15Pa・sであった。また、得られた組成物は、一部を採取して150℃の乾燥機に3時間放置した際の重量変化から反応率を求めたところ、反応率は54%であった。
Example 1
In a vessel equipped with a stirrer, reflux condenser, and nitrogen introduction tube, colloidal silica sol with an average particle size of 10-30 nm (trade name `` Snowtex OS '', Nissan 34g (19 parts by weight with respect to 100 parts by weight of the polysiloxane derivative) is added, made by Kagakusha, solid content concentration 20% by weight, hydroxyl group as reactive functional group, reactive functional group content 0.1% by weight or more) After adding 34 g of methanol and 20 g of 2-methoxyethanol, a polysiloxane derivative having an alkoxysilyl group at the molecular end [trade name “KR500”, manufactured by Shin-Etsu Chemical Co., Ltd., R 1 , R 2 , R of formula (I) 3 and R 4 are methyl groups, molecular weight 1000-2000, methoxy content 28% by weight] A solution of 35 g in 2-propanol 10 g was added dropwise over 30 minutes using a dropping funnel at 70 ° C. for 1 hour. Reacted. Then, it cooled to room temperature (25 degreeC), the liquid transparent resin composition of Example 1 was obtained by distilling a solvent off under reduced pressure and concentrating. The viscosity at 25 ° C. of the obtained composition was 15 Pa · s. Moreover, when the reaction rate was calculated | required from the weight change when extract | collecting a part of obtained composition and leaving it to stand at 150 degreeC dryer for 3 hours, the reaction rate was 54%.

実施例2
実施例1と同様の装置に、微粒子表面に反応性官能基を有する金属酸化物微粒子として、平均粒子径7nmの酸化ジルコニア水分散液(商品名「NZD-3007」、住友大阪セメント社製、固形分濃度40重量%、反応性官能基として水酸基を含有、反応性官能基含有量1.0重量%以上)25g(ポリシロキサン誘導体100重量部に対して56重量部)を入れ、さらにメタノール20g、2-メトキシエタノール20gを添加後、濃塩酸を用いて液のpHを2.5に調整した。そこに、分子末端にアルコキシシリル基を有するポリシロキサン誘導体〔商品名「X-40-9225」、信越化学社製、式(I)のR、R、R及びRはメチル基、分子量2000〜3000、メトキシ含有量24重量%〕18gを2-プロパノール20gに溶解した液を、滴下ロートを用いて30分かけて滴下して、60℃で1時間反応させた。その後、室温(25℃)まで冷却して、減圧下、溶媒を留去して濃縮することにより、実施例2の半固形状の透明樹脂組成物を得た。得られた組成物の25℃における粘度は25Pa・s、反応率は62%であった。
Example 2
In the same apparatus as in Example 1, as metal oxide fine particles having reactive functional groups on the fine particle surfaces, an aqueous dispersion of zirconia oxide having an average particle diameter of 7 nm (trade name “NZD-3007”, manufactured by Sumitomo Osaka Cement Co., Ltd., solid 40% by weight concentration, containing hydroxyl groups as reactive functional groups, 1.0% by weight or more of reactive functional group content) 25 g (56 parts by weight with respect to 100 parts by weight of polysiloxane derivative), 20 g of methanol, 2- After adding 20 g of methoxyethanol, the pH of the solution was adjusted to 2.5 using concentrated hydrochloric acid. There, a polysiloxane derivative having an alkoxysilyl group at the molecular end [trade name “X-40-9225”, manufactured by Shin-Etsu Chemical Co., Ltd., R 1 , R 2 , R 3 and R 4 in formula (I) are methyl groups, (Molecular weight: 2000 to 3000, methoxy content: 24% by weight) A solution of 18 g in 2-propanol 20 g was added dropwise using a dropping funnel over 30 minutes and reacted at 60 ° C. for 1 hour. Then, it cooled to room temperature (25 degreeC), the solvent was distilled off and concentrated under pressure reduction, and the semisolid transparent resin composition of Example 2 was obtained. The resulting composition had a viscosity at 25 ° C. of 25 Pa · s and a reaction rate of 62%.

実施例3
実施例1と同様の装置に、微粒子表面に反応性官能基を有する金属酸化物微粒子として、平均粒子径50nmのアルミナゾル(商品名「アルミナゾル520」、日産化学社製、固形分濃度30重量%、反応性官能基として水酸基を含有、反応性官能基含有量1.0重量%以上)25g(ポリシロキサン誘導体100重量部に対して50重量部)を入れ、さらにテトラヒドロフラン20g、2-メトキシエタノール20gを添加後、そこに、分子末端にアルコキシシリル基を有するポリシロキサン誘導体(X-40-9225)15gを2-プロパノール15gに溶解した液を、滴下ロートを用いて30分かけて滴下して、60℃で1時間反応させた。その後、室温(25℃)まで冷却して、減圧下、溶媒を留去して濃縮することにより、実施例3の半固形状の透明樹脂組成物を得た。得られた組成物の25℃における粘度は30Pa・s、反応率は69%であった。
Example 3
In the same apparatus as in Example 1, as the metal oxide fine particles having reactive functional groups on the fine particle surfaces, an alumina sol having an average particle diameter of 50 nm (trade name “Alumina Sol 520”, manufactured by Nissan Chemical Industries, Ltd., solid content concentration of 30% by weight, After adding 25 g (50 parts by weight with respect to 100 parts by weight of the polysiloxane derivative), adding 20 g of tetrahydrofuran and 20 g of 2-methoxyethanol. Then, a solution obtained by dissolving 15 g of a polysiloxane derivative having an alkoxysilyl group at the molecular terminal (X-40-9225) in 15 g of 2-propanol was dropped over 30 minutes using a dropping funnel at 60 ° C. The reaction was carried out for 1 hour. Then, it cooled to room temperature (25 degreeC), the semi-solid transparent resin composition of Example 3 was obtained by distilling and concentrating a solvent under pressure reduction. The resulting composition had a viscosity at 25 ° C. of 30 Pa · s and a reaction rate of 69%.

実施例4
実施例1と同様の装置に、微粒子表面に反応性官能基を有する金属酸化物微粒子として、平均粒子径15nmの酸化チタン分散液(商品名「ELCOM NT-1089TTV」、触媒化成社製、メタノール分散液、固形分濃度30重量%、反応性官能基として水酸基を含有、反応性官能基含有量1.0重量%以上)35g(ポリシロキサン誘導体100重量部に対して50重量部)に、ポリシロキサン誘導体(X-40-9225)20gを2-プロパノール20gに溶解した液を、滴下ロートを用いて30分かけて滴下して、70℃で1時間反応させた。その後、室温(25℃)まで冷却して、減圧下、溶媒を留去して濃縮することにより、実施例4の液状の透明樹脂組成物を得た。得られた組成物の25℃における粘度は15Pa・s、反応率は48%であった。
Example 4
In the same apparatus as in Example 1, as a metal oxide fine particle having a reactive functional group on the fine particle surface, a titanium oxide dispersion liquid having an average particle diameter of 15 nm (trade name “ELCOM NT-1089TTV”, manufactured by Catalyst Kasei Co., Ltd., methanol dispersion) Liquid, solid content concentration 30% by weight, hydroxyl group as reactive functional group, reactive functional group content 1.0% by weight or more) 35g (50 parts by weight with respect to 100 parts by weight of polysiloxane derivative) X-40-9225) A solution obtained by dissolving 20 g in 2-propanol 20 g was added dropwise over 30 minutes using a dropping funnel and reacted at 70 ° C. for 1 hour. Then, it cooled to room temperature (25 degreeC), the liquid transparent resin composition of Example 4 was obtained by distilling and concentrating a solvent under pressure reduction. The resulting composition had a viscosity at 25 ° C. of 15 Pa · s and a reaction rate of 48%.

比較例1
市販のシリコーンエラストマー(商品名「SCR1011」、信越化学社製)30gに、平均粒子径300nmのシリカ粉末(商品名「クォートロン SP-03F」、扶桑化学社製)5g(シリコーン誘導体100重量部に対して17重量部)を混合して、比較例1の樹脂組成物を得た。
Comparative Example 1
30 g of commercially available silicone elastomer (trade name `` SCR1011 '', manufactured by Shin-Etsu Chemical Co., Ltd.) 17 parts by weight) was mixed to obtain a resin composition of Comparative Example 1.

比較例2
シリコーンエラストマー(SCR1011)30gに、平均粒子径20nmの酸化チタン粉末(商品名「TT-51A」、石原産業社製)5g(シリコーン誘導体100重量部に対して17重量部)を混合して、比較例2の樹脂組成物を得た。
Comparative Example 2
Mix and compare 30 g of silicone elastomer (SCR1011) with 5 g of titanium oxide powder (trade name “TT-51A”, manufactured by Ishihara Sangyo Co., Ltd.) with an average particle size of 20 nm (17 parts by weight with respect to 100 parts by weight of silicone derivative). The resin composition of Example 2 was obtained.

比較例3
実施例1において、コロイダルシリカゾル34.0gを用いる代わりに、微粒子表面の反応性官能基がシランカップリング剤で保護された、平均粒子径10〜20nmのオルガノシリカゾル(商品名「ST-IPA」、日産化学社製、2-プロパノール分散液、固形分濃度20重量%、反応性官能基として水酸基を含有、反応性官能基含有量0.1重量%未満)51.0g(ポリシロキサン誘導体100重量部に対して29重量部)を用いる以外は、実施例1と同様にして、比較例3のシリコーン樹脂組成物を得た。
Comparative Example 3
In Example 1, instead of using 34.0 g of colloidal silica sol, an organosilica sol having an average particle size of 10 to 20 nm (trade name “ST-IPA”, Nissan, whose reactive functional groups on the surface of the fine particles were protected with a silane coupling agent. Made by Chemical Co., Ltd. 2-propanol dispersion, solid content concentration 20% by weight, containing hydroxyl group as reactive functional group, reactive functional group content less than 0.1% by weight) 51.0 g (29 parts per 100 parts by weight of polysiloxane derivative) A silicone resin composition of Comparative Example 3 was obtained in the same manner as in Example 1 except that (part by weight) was used.

実施例5〜9及び比較例4〜6
次に、得られた組成物の特性を、以下の試験例1〜3の方法に従って評価した。結果を表1に示す。
Examples 5-9 and Comparative Examples 4-6
Next, the characteristics of the obtained composition were evaluated according to the methods of Test Examples 1 to 3 below. The results are shown in Table 1.

試験例1(光取り出し効率)
得られた組成物を用いて、青色LED(商品名「C460MB290」、クリー社製)に表1に示す成型機により定法に従って封止を行った。具体的には、トランスファー成型加工機(型式:TDF-37、東邦インターナショナル社製)を用いて成型する場合には、組成物を成型機内で150℃で4分間処理後に封止を行い、120℃で1時間、さらに150℃で1時間加熱を行った。真空プレス装置(ニチゴーモートン社製)を用いて成型する場合には、組成物を装置内で150℃で3分間処理後に封止を行い、その後100℃で1時間、150℃で1時間乾燥機内に保存して反応を完結させた。封止前後の青色LEDの明るさを瞬間マルチ測光システム(MCPD-3000、大塚電子社製)により測定し、下記の式に従って光取り出し効率を求めた。
光取り出し効率(%)=(封止後の輝度/封止前の輝度)×100
Test example 1 (light extraction efficiency)
Using the obtained composition, sealing was performed on a blue LED (trade name “C460MB290”, manufactured by Cree) using a molding machine shown in Table 1 according to a conventional method. Specifically, when molding using a transfer molding machine (model: TDF-37, manufactured by Toho International Co., Ltd.), the composition is sealed in a molding machine at 150 ° C. for 4 minutes, and then sealed. For 1 hour, and further at 150 ° C. for 1 hour. When molding using a vacuum press device (Nichigo Morton), the composition is sealed in the device at 150 ° C for 3 minutes, then sealed, then 100 ° C for 1 hour, 150 ° C for 1 hour in the dryer. To complete the reaction. The brightness of the blue LED before and after sealing was measured with an instantaneous multi-photometry system (MCPD-3000, manufactured by Otsuka Electronics Co., Ltd.), and the light extraction efficiency was determined according to the following formula.
Light extraction efficiency (%) = (Luminance after sealing / Luminance before sealing) x 100

試験例2(線膨張係数)
得られた組成物を-150℃から25℃まで10℃/分にて昇温した際の線膨張係数を、熱機械分析装置(TMA、セイコーインスツルメント社製)により測定した。
Test example 2 (linear expansion coefficient)
The linear expansion coefficient when the obtained composition was heated from −150 ° C. to 25 ° C. at 10 ° C./min was measured with a thermomechanical analyzer (TMA, manufactured by Seiko Instruments Inc.).

試験例3(硬度)
得られた組成物について、ショアD硬度計にてショアD硬度を測定した。
Test Example 3 (Hardness)
About the obtained composition, Shore D hardness was measured with the Shore D hardness meter.

Figure 2010150342
Figure 2010150342

結果、実施例の組成物は、線膨張係数が小さく、硬度も高く、また光半導体素子封止後の光取り出し効率が高いことから、高輝度LEDに対しても優れた封止材であることが示唆される。   As a result, the compositions of the examples have a small linear expansion coefficient, a high hardness, and a high light extraction efficiency after sealing the optical semiconductor element, so that they are excellent sealing materials for high-brightness LEDs. Is suggested.

本発明の光半導体封止用樹脂組成物は、例えば、液晶画面のバックライト、信号機、屋外の大型ディスプレイや広告看板等の半導体素子を封止するものとして好適に用いられる。   The resin composition for sealing an optical semiconductor of the present invention is suitably used for sealing a semiconductor element such as a backlight of a liquid crystal screen, a traffic light, a large outdoor display, an advertisement signboard, and the like.

Claims (9)

分子末端にアルコキシシリル基を有する分子量100〜3000のポリシロキサン誘導体と、微粒子表面に反応性官能基を有する金属酸化物微粒子とを重合反応させて得られる光半導体封止用樹脂組成物。   A resin composition for encapsulating an optical semiconductor obtained by polymerizing a polysiloxane derivative having an alkoxysilyl group at a molecular terminal and having a molecular weight of 100 to 3000 and metal oxide fine particles having reactive functional groups on the surface of fine particles. 金属酸化物微粒子の含有量が、ポリシロキサン誘導体100重量部に対して、10〜200重量部である、請求項1記載の光半導体封止用樹脂組成物。   The resin composition for optical semiconductor encapsulation according to claim 1, wherein the content of the metal oxide fine particles is 10 to 200 parts by weight with respect to 100 parts by weight of the polysiloxane derivative. 金属酸化物微粒子の平均粒子径が1〜100nmである、請求項1又は2記載の光半導体封止用樹脂組成物。   The resin composition for sealing an optical semiconductor according to claim 1 or 2, wherein the metal oxide fine particles have an average particle diameter of 1 to 100 nm. 金属酸化物微粒子が、水、アルコール、又はそれらの混合物中に分散されてなる、請求項1〜3いずれか記載の光半導体封止用樹脂組成物。   The resin composition for optical semiconductor encapsulation according to any one of claims 1 to 3, wherein the metal oxide fine particles are dispersed in water, alcohol, or a mixture thereof. アルコキシ基の含有量が、ポリシロキサン誘導体1分子中、18〜55重量%である、請求項1〜4いずれか記載の光半導体封止用樹脂組成物。   The resin composition for optical semiconductor sealing in any one of Claims 1-4 whose content of an alkoxy group is 18 to 55 weight% in 1 molecule of polysiloxane derivatives. 重合反応終了時の反応率が30〜70%である、請求項1〜5いずれか記載の光半導体封止用樹脂組成物。   The resin composition for optical semiconductor encapsulation according to any one of claims 1 to 5, wherein a reaction rate at the end of the polymerization reaction is 30 to 70%. 25℃における粘度が0.01〜30Pa・sである、請求項1〜6いずれか記載の光半導体封止用樹脂組成物。   The resin composition for optical semiconductor sealing in any one of Claims 1-6 whose viscosity in 25 degreeC is 0.01-30 Pa.s. 分子末端にアルコキシシリル基を有する分子量100〜3000のポリシロキサン誘導体と、微粒子表面に反応性官能基を有する金属酸化物微粒子とを重合反応させる工程を含む、請求項1〜7いずれか記載の光半導体封止用樹脂組成物の製造方法。   The light according to any one of claims 1 to 7, comprising a step of polymerizing a polysiloxane derivative having an alkoxysilyl group at a molecular end and having a molecular weight of 100 to 3000 and metal oxide fine particles having reactive functional groups on the surface of the fine particles. The manufacturing method of the resin composition for semiconductor sealing. 請求項1〜7いずれか記載の光半導体封止用樹脂組成物を加熱して硬化させてなる、光半導体封止用樹脂。   The resin for optical semiconductor sealing formed by heating and hardening the resin composition for optical semiconductor sealing in any one of Claims 1-7.
JP2008328413A 2008-12-24 2008-12-24 Resin composition for optical semiconductor encapsulation Expired - Fee Related JP5424381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328413A JP5424381B2 (en) 2008-12-24 2008-12-24 Resin composition for optical semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328413A JP5424381B2 (en) 2008-12-24 2008-12-24 Resin composition for optical semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JP2010150342A true JP2010150342A (en) 2010-07-08
JP5424381B2 JP5424381B2 (en) 2014-02-26

Family

ID=42569782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328413A Expired - Fee Related JP5424381B2 (en) 2008-12-24 2008-12-24 Resin composition for optical semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP5424381B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241935A (en) * 2009-04-03 2010-10-28 Nitto Denko Corp Metal oxide microparticle-containing silicone resin composition
WO2010150861A1 (en) * 2009-06-24 2010-12-29 旭化成イーマテリアルズ株式会社 Product of polysiloxane condensation
JP2011026570A (en) * 2009-06-24 2011-02-10 Asahi Kasei E-Materials Corp Polysiloxane condensation reaction product
JP2011100858A (en) * 2009-11-06 2011-05-19 Asahi Kasei E-Materials Corp Method for forming insulating film
EP2535955A2 (en) 2011-06-14 2012-12-19 Nitto Denko Corporation Encapsulating sheet and optical semiconductor element device
JP2013254822A (en) * 2012-06-06 2013-12-19 Hitachi Chemical Co Ltd Method of manufacturing optical semiconductor device
WO2016024604A1 (en) * 2014-08-14 2016-02-18 コニカミノルタ株式会社 Inorganic-microparticle-containing polysilsesquioxane composition, method for producing same, light-emitting device, and method for producing same
JP2017112128A (en) * 2015-12-14 2017-06-22 豊田合成株式会社 Method of manufacturing semiconductor light-emitting device and method of manufacturing phosphor sheet
WO2020111181A1 (en) * 2018-11-30 2020-06-04 デンカ株式会社 Layered body

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170668A (en) * 1987-12-25 1989-07-05 Daihachi Kagaku Kogyosho:Kk Production of coating composition for covering
JPH07173331A (en) * 1993-12-17 1995-07-11 Showa Denko Kk Thermoplastic resin composition and its production
JP2002273233A (en) * 2000-12-04 2002-09-24 Asahi Kasei Corp Modified photocatalyst and photocatalytic composition using the same
JP2003275597A (en) * 2002-01-18 2003-09-30 Asahi Kasei Corp Modified photocatalyst and photocatalyst composition using the same
JP2004528402A (en) * 2001-01-23 2004-09-16 バイエル アクチェンゲゼルシャフト Process for the preparation of sol-gel condensates based on polyfunctional organosilanes and their use
JP2006328315A (en) * 2005-05-30 2006-12-07 Shin Etsu Chem Co Ltd Resin composition for sealing optics-related device and its hardened product
JP2007116139A (en) * 2005-09-22 2007-05-10 Mitsubishi Chemicals Corp Member for semiconductor light-emitting device, method of manufacturing the same, and semiconductor light-emitting device using the same
JP2007112975A (en) * 2005-02-23 2007-05-10 Mitsubishi Chemicals Corp Member for semiconductor light-emitting device, method for producing the same, and semiconductor light-emitting device using the same
JP2007277505A (en) * 2006-03-16 2007-10-25 Jsr Corp Oxide particulate dispersion and manufacturing method thereof
JP2007277073A (en) * 2006-03-16 2007-10-25 Jsr Corp Oxide microparticle dispersion and method for producing the same
JP2008072110A (en) * 2005-02-23 2008-03-27 Mitsubishi Chemicals Corp Semiconductor light emitting device member, method for manufacturing such semiconductor light emitting device member and semiconductor light emitting device using such semiconductor light emitting device member
JP2008120848A (en) * 2006-11-08 2008-05-29 Sumitomo Osaka Cement Co Ltd Transparent inorganic oxide dispersion, transparent composite, method for producing the same, composition for sealing light-emitting element and light-emitting element
JP2008137848A (en) * 2006-12-01 2008-06-19 Sumitomo Osaka Cement Co Ltd Transparent fluid dispersion of inorganic oxide and transparent composite, composition for sealing light-emitting element and light-emitting element, and method for producing the transparent composite
JP2009120437A (en) * 2007-11-14 2009-06-04 Niigata Univ Siloxane-grafted silica, highly transparent silicone composition, and light-emitting semiconductor device sealed with the composition
JP2010037457A (en) * 2008-08-06 2010-02-18 Nitto Denko Corp Silicone resin composition containing fine inorganic particle
JP2010144135A (en) * 2008-12-22 2010-07-01 Nitto Denko Corp Silicone resin composition
JP2010144137A (en) * 2008-12-22 2010-07-01 Nitto Denko Corp Silicone resin composition
JP2010150340A (en) * 2008-12-24 2010-07-08 Nitto Denko Corp Composition for silicone resin
JP2010150341A (en) * 2008-12-24 2010-07-08 Nitto Denko Corp Silicone resin composition

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170668A (en) * 1987-12-25 1989-07-05 Daihachi Kagaku Kogyosho:Kk Production of coating composition for covering
JPH07173331A (en) * 1993-12-17 1995-07-11 Showa Denko Kk Thermoplastic resin composition and its production
JP2002273233A (en) * 2000-12-04 2002-09-24 Asahi Kasei Corp Modified photocatalyst and photocatalytic composition using the same
JP2004528402A (en) * 2001-01-23 2004-09-16 バイエル アクチェンゲゼルシャフト Process for the preparation of sol-gel condensates based on polyfunctional organosilanes and their use
JP2003275597A (en) * 2002-01-18 2003-09-30 Asahi Kasei Corp Modified photocatalyst and photocatalyst composition using the same
JP2008072110A (en) * 2005-02-23 2008-03-27 Mitsubishi Chemicals Corp Semiconductor light emitting device member, method for manufacturing such semiconductor light emitting device member and semiconductor light emitting device using such semiconductor light emitting device member
JP2007112975A (en) * 2005-02-23 2007-05-10 Mitsubishi Chemicals Corp Member for semiconductor light-emitting device, method for producing the same, and semiconductor light-emitting device using the same
JP2006328315A (en) * 2005-05-30 2006-12-07 Shin Etsu Chem Co Ltd Resin composition for sealing optics-related device and its hardened product
JP2007116139A (en) * 2005-09-22 2007-05-10 Mitsubishi Chemicals Corp Member for semiconductor light-emitting device, method of manufacturing the same, and semiconductor light-emitting device using the same
JP2007277505A (en) * 2006-03-16 2007-10-25 Jsr Corp Oxide particulate dispersion and manufacturing method thereof
JP2007277073A (en) * 2006-03-16 2007-10-25 Jsr Corp Oxide microparticle dispersion and method for producing the same
JP2008120848A (en) * 2006-11-08 2008-05-29 Sumitomo Osaka Cement Co Ltd Transparent inorganic oxide dispersion, transparent composite, method for producing the same, composition for sealing light-emitting element and light-emitting element
JP2008137848A (en) * 2006-12-01 2008-06-19 Sumitomo Osaka Cement Co Ltd Transparent fluid dispersion of inorganic oxide and transparent composite, composition for sealing light-emitting element and light-emitting element, and method for producing the transparent composite
JP2009120437A (en) * 2007-11-14 2009-06-04 Niigata Univ Siloxane-grafted silica, highly transparent silicone composition, and light-emitting semiconductor device sealed with the composition
JP2010037457A (en) * 2008-08-06 2010-02-18 Nitto Denko Corp Silicone resin composition containing fine inorganic particle
JP2010144135A (en) * 2008-12-22 2010-07-01 Nitto Denko Corp Silicone resin composition
JP2010144137A (en) * 2008-12-22 2010-07-01 Nitto Denko Corp Silicone resin composition
JP2010150340A (en) * 2008-12-24 2010-07-08 Nitto Denko Corp Composition for silicone resin
JP2010150341A (en) * 2008-12-24 2010-07-08 Nitto Denko Corp Silicone resin composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241935A (en) * 2009-04-03 2010-10-28 Nitto Denko Corp Metal oxide microparticle-containing silicone resin composition
WO2010150861A1 (en) * 2009-06-24 2010-12-29 旭化成イーマテリアルズ株式会社 Product of polysiloxane condensation
JP2011026570A (en) * 2009-06-24 2011-02-10 Asahi Kasei E-Materials Corp Polysiloxane condensation reaction product
JP4746704B2 (en) * 2009-06-24 2011-08-10 旭化成イーマテリアルズ株式会社 Polysiloxane condensation reaction product
US8906153B2 (en) 2009-06-24 2014-12-09 Asahi Kasei E-Materials Corporation Product of polysiloxane condensation
JP2011100858A (en) * 2009-11-06 2011-05-19 Asahi Kasei E-Materials Corp Method for forming insulating film
EP2535955A2 (en) 2011-06-14 2012-12-19 Nitto Denko Corporation Encapsulating sheet and optical semiconductor element device
JP2013254822A (en) * 2012-06-06 2013-12-19 Hitachi Chemical Co Ltd Method of manufacturing optical semiconductor device
WO2016024604A1 (en) * 2014-08-14 2016-02-18 コニカミノルタ株式会社 Inorganic-microparticle-containing polysilsesquioxane composition, method for producing same, light-emitting device, and method for producing same
JP2017112128A (en) * 2015-12-14 2017-06-22 豊田合成株式会社 Method of manufacturing semiconductor light-emitting device and method of manufacturing phosphor sheet
WO2020111181A1 (en) * 2018-11-30 2020-06-04 デンカ株式会社 Layered body

Also Published As

Publication number Publication date
JP5424381B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5424381B2 (en) Resin composition for optical semiconductor encapsulation
KR101569533B1 (en) Composition for silicone resin
JP5072820B2 (en) Silicone resin composition
JP5393107B2 (en) Silicone resin composition
US8173743B2 (en) Silicone resin composition
TWI680152B (en) Surface modified metal oxide particle dispersion and manufacturing method thereof, surface modified metal oxide particle-silicone resin composite composition, surface modified metal oxide particle-silicone resin composite, optical member, and light emitting device
CN101003686B (en) Curable silicone rubber composition and cured product thereof
JP5602379B2 (en) Silicone resin composition containing metal oxide fine particles
JP4785912B2 (en) Silicone resin composition
JP5170765B2 (en) Thermosetting composition and optical semiconductor device
EP3101062B1 (en) Nanoparticle, method for producing nanoparticle, addition curing silicone resin composition, and semiconductor apparatus
KR20110004373A (en) Curable organopolysiloxane composition and cured product thereof
CN105315675A (en) Ultraviolet light-curing composition
JP2010037457A (en) Silicone resin composition containing fine inorganic particle
KR20160127041A (en) Hybrid material for optoelectronic applications
JP5106307B2 (en) Resin composition containing metal oxide fine particles
JP4772858B2 (en) Silicone resin composition
CN107873033A (en) High RI siloxanyl monomers, its polymerization and application
JP4785085B2 (en) Thermosetting silicone resin composition
JP4850893B2 (en) Composition for silicone resin
JP5137775B2 (en) Composition for silicone resin
JP5811036B2 (en) Condensation curable polysiloxane composition
JP6514148B2 (en) Condensation-curable silicone resin composition and semiconductor device
KR20120079966A (en) Silicon resin composition for sealing optical devices
JP2018009099A (en) Curable silicone resin composition and method for preparing curable silicone resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees