JP2010146794A - Manufacturing method of membrane-electrode assembly for fuel cell - Google Patents

Manufacturing method of membrane-electrode assembly for fuel cell Download PDF

Info

Publication number
JP2010146794A
JP2010146794A JP2008320923A JP2008320923A JP2010146794A JP 2010146794 A JP2010146794 A JP 2010146794A JP 2008320923 A JP2008320923 A JP 2008320923A JP 2008320923 A JP2008320923 A JP 2008320923A JP 2010146794 A JP2010146794 A JP 2010146794A
Authority
JP
Japan
Prior art keywords
catalyst
electrolyte membrane
membrane
layer
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008320923A
Other languages
Japanese (ja)
Other versions
JP5201349B2 (en
Inventor
Takuo Yanagi
拓男 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008320923A priority Critical patent/JP5201349B2/en
Publication of JP2010146794A publication Critical patent/JP2010146794A/en
Application granted granted Critical
Publication of JP5201349B2 publication Critical patent/JP5201349B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an MEA manufacturing method without unevenness in dimension and shape of catalyst layers, capable of doing away with problems on performance and mounting due to generation unevenness, and yet of high productivity. <P>SOLUTION: The method includes a first process I of continuously coating catalyst 12 on a strip electrolyte film 11 conveyed in one direction, a second process II of jointing gas diffusion layers 15 with intervals on a catalyst layer 14 coated with the catalyst 12, a third process III of cutting the electrolyte film 11 already coated with the catalyst 12 at a fixed position between adjacent gas diffusion layers 15, and a fourth process IV of immersing an end part each with the catalyst layer 14 exposed of the cut and separated electrolyte film 11 having the gas diffusion layer 15 already coated with the catalyst jointed on the catalyst layer 14 in catalyst removal liquid 16 capable of removing the catalyst layer 14 from the electrolyte film 11. After the catalyst 12 is continuously coating the catalyst 12 on the strip electrolyte film 11, the catalyst layer 14 at the end part of an MEA element body 19 is removed so as to make the dimension and shape of the catalyst layers 14 uniform. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体高分子形の燃料電池に用いられる膜−電極接合体(MEA:Membrane Electrode Assembly)の製造方法に関するものである。   The present invention relates to a method for producing a membrane-electrode assembly (MEA) used in a polymer electrolyte fuel cell.

従来、この種の技術としては特許文献1に記載のものがあった。
これは、電解質膜の両面に、所望の開口部が形成されたマスクフィルムを配置し、それらの外側に触媒層形成用フィルムを配置するように、電解質膜、マスクフィルム及び触媒層形成用フィルムを連続的に供給し、熱プレス転写を連続的に施し、連続的に供給されている電解質膜上に間欠的に触媒層を形成した後、切り出す(裁断する)ことにより、MEAを連続的に製造するというものである。
Conventionally, this type of technology has been described in Patent Document 1.
This is because the electrolyte film, the mask film, and the catalyst layer forming film are arranged so that the mask film in which a desired opening is formed is arranged on both surfaces of the electrolyte membrane, and the catalyst layer forming film is arranged outside of the mask film. Continuously supply, heat press transfer continuously, intermittently form catalyst layer on continuously supplied electrolyte membrane, then cut out (cut), continuously manufacture MEA It is to do.

特開2006−244930号JP 2006-244930 A

しかしながら上記従来技術では、次のような課題があった。
すなわち、上記従来技術のように電解質膜上に間欠的に触媒層を形成する理由の一つは、個々のMEAに裁断した後において、触媒層が電解質膜の端部まで達しないようにすることにある。触媒層が電解質膜の端部まで達すると、同端部において触媒が電解質膜表裏面に回り込み、燃料極と空気極を電子的に短絡させてしまう虞があることによる。
However, the above prior art has the following problems.
That is, one of the reasons why the catalyst layer is intermittently formed on the electrolyte membrane as in the prior art is that the catalyst layer does not reach the end of the electrolyte membrane after being cut into individual MEAs. It is in. This is because when the catalyst layer reaches the end of the electrolyte membrane, the catalyst may enter the front and back surfaces of the electrolyte membrane at the same end and electronically short-circuit the fuel electrode and the air electrode.

しかし、上記従来技術のような電解質膜上に間欠的に触媒層を形成するという間欠塗工法においては、塗工以降の工程において膜が膨潤・収縮するために、膜及び触媒層の寸法・形状にバラツキが生じやすく、MEAの性能や組付け上の問題が発生しやすかった。
例えば、MEAの性能上の問題としては、触媒層面積が小さすぎる場合には発電面積が小さくなるのでセル出カが低くなることが挙げられる。
MEAの組付け上の問題としては、MEA裁断後に収縮した場合にはMEA端部とセルの端部シール部間に隙間が生じて内部リ−クを生じさせることが挙げられる。また、触媒層面積が大きすぎる場合には、触媒層がガス拡散層からはみ出したり、MEAの端部シール(シールのための接着やガスケット組付け等)の際に気密不良を起こして外部リ−クを生じさせることが挙げられる。
However, in the intermittent coating method in which the catalyst layer is intermittently formed on the electrolyte membrane as in the above prior art, since the membrane swells and contracts in the steps after coating, the dimensions and shape of the membrane and the catalyst layer As a result, MEA performance and assembly problems were likely to occur.
For example, as a performance problem of MEA, when the catalyst layer area is too small, the power generation area becomes small, so that the cell output becomes low.
As a problem in assembling the MEA, when contracted after the MEA cutting, there is a gap between the MEA end portion and the cell end seal portion to cause an internal leak. If the catalyst layer area is too large, the catalyst layer may protrude from the gas diffusion layer or cause an airtight defect when sealing the end of the MEA (adhesion for sealing, gasket assembly, etc.). This may be caused.

本発明は、触媒層の寸法・形状にバラツキが発生せず、したがってバラツキ発生に起因する膜−電極接合体(MEA)の性能上や組付け上の問題を解消でき、しかも生産性の高い燃料電池用膜−電極接合体製造方法を提供することを課題とする。   The present invention does not generate variations in the size and shape of the catalyst layer, and therefore can solve the problems in the performance and assembly of the membrane-electrode assembly (MEA) due to the occurrence of variations, and has high productivity. It is an object to provide a method for producing a membrane-electrode assembly for a battery.

上記課題は、燃料電池用膜−電極接合体製造方法を下記各態様の構成とすることによって解決される。
各態様は、請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも本発明の理解を容易にするためであり、本明細書に記載の技術的特徴及びそれらの組合わせが以下の各項に記載のものに限定されると解釈されるべきではない。また、1つの項に複数の事項が記載されている場合、それら複数の事項を常に一緒に採用しなければならないわけではなく、一部の事項のみを取り出して採用することも可能である。
The said subject is solved by making the membrane-electrode assembly manufacturing method for fuel cells into the structure of each following aspect.
As with the claims, each aspect is divided into sections, each section is numbered, and is described in a form that cites the numbers of other sections as necessary. This is merely for the purpose of facilitating the understanding of the present invention, and the technical features described in this specification and combinations thereof should not be construed as being limited to those described in the following sections. . In addition, when a plurality of items are described in one section, it is not always necessary to employ the plurality of items together, and it is also possible to take out only a part of the items and employ them.

以下の各項のうち、(1)項が請求項1に、(2)項が請求項2に、(3)項が請求項3に、各々対応する。(4)項及び(5)項は請求項に係る発明ではない。   Of the following items, (1) corresponds to claim 1, (2) corresponds to claim 2, and (3) corresponds to claim 3. Claims (4) and (5) are not claimed inventions.

(1) 一方向に搬送される帯状の電解質膜に触媒を連続塗工する第1工程と、前記触媒が塗工されてなる触媒層上に間隔をおいてガス拡散層を接合する第2工程と、隣接する前記ガス拡散層相互間の定位置で前記触媒が塗工済みの電解質膜を切断する第3工程と、前記切断により分離された、前記触媒が塗工済みでその触媒層上にガス拡散層が接合された電解質膜の少なくとも前記触媒層が露出する端部分を、その触媒層を電解質膜から除去可能な触媒除去液中に浸漬する第4工程とを、備えることを特徴とする燃料電池用膜−電極接合体製造方法。
拡散層としては、電極の形状を安定化させる役割を持たせるため、剛性の高い基材を持つものが好適である。
触媒層上へのガス拡散層の接合には圧着接合ないし熱圧接合が好適である。
触媒除去液としては、電解質膜に塗工された触媒を溶解等により除去可能な液体であればそのいずれでもよい。白金を含む触媒が用いられた場合における王水がその典型例である。また、一種類の触媒除去液で除去が困難である場合には、複数種類の触媒除去液を順に用いてもよい。
ガス拡散層は一般に撥水性を有するので、触媒層が露出する電解質膜端部分からガス拡散層に亘って触媒除去液中に浸漬されても、触媒除去液はガス拡散層中に浸透し難く、また触媒層除去後に触媒除去液中から引き上げれば、触媒除去液はガス拡散層から容易に滴下排出される。
(2) 前記第4工程における触媒除去液中への前記電解質膜の浸漬は、複数の前記電解質膜について一括して行うことを特徴とする(1)項に記載の燃料電池用膜−電極接合体製造方法。
(3) 前記第4工程における触媒除去液中への前記電解質膜の浸漬は、複数の前記電解質膜について一括して、かつその全体に対して行うことを特徴とする(1)項に記載の燃料電池用膜−電極接合体製造方法。
本項に記載の発明では、触媒が塗工済みでその触媒層上にガス拡散層が接合された電解質膜を複数一括して、かつその全体を触媒除去液中へ浸漬するので、ガス拡散層の撥水性を高くし、また浸漬時間を短時間にすることが望ましい。
(4) 前記触媒は白金を含む触媒であり、前記触媒除去液は王水であることを特徴とする(1)項、(2)項又は(3)項に記載の燃料電池用膜−電極接合体製造方法。
本項に記載の発明によれば、燃料電池用膜−電極接合体における触媒として一般的な白金を含む触媒について、その除去を可能とする。
(5) 前記電解質膜はフッ素系電解質膜であり、前記ガス拡散層はフッ素系樹脂による撥水性を有するガス拡散層であることを特徴とする(4)項に記載の燃料電池用膜−電極接合体製造方法。
フッ素系電解質膜は、炭化水素系電解質膜より耐王水性の観点から望ましい。また、ガス拡散層は一般に撥水性を有するが、フッ素系樹脂による撥水性は撥水効果が大きく、したがって、王水中への触媒塗工済み電解質膜の浸漬時において、ガス拡散層で覆われた触媒層への王水の影響を最小限にとどめることができる。すなわち、電解質膜及びガス拡散層で覆われた触媒層への王水の影響を最小限にとどめながら、(4)項に記載の燃料電池用膜−電極接合体製造方法を実施できる。
(1) A first step in which a catalyst is continuously applied to a strip-shaped electrolyte membrane conveyed in one direction, and a second step in which a gas diffusion layer is joined at an interval on the catalyst layer on which the catalyst is applied. And a third step of cutting the electrolyte membrane coated with the catalyst at a fixed position between the adjacent gas diffusion layers, and the catalyst separated by the cutting and coated on the catalyst layer. And a fourth step of immersing at least an end portion of the electrolyte membrane to which the gas diffusion layer is bonded, in which the catalyst layer is exposed in a catalyst removing solution capable of removing the catalyst layer from the electrolyte membrane. A method for producing a membrane-electrode assembly for a fuel cell.
As the diffusion layer, a layer having a highly rigid base material is preferable in order to have a role of stabilizing the shape of the electrode.
For bonding of the gas diffusion layer on the catalyst layer, pressure bonding or hot pressure bonding is suitable.
The catalyst removing liquid may be any liquid that can remove the catalyst applied to the electrolyte membrane by dissolution or the like. A typical example is aqua regia when a platinum-containing catalyst is used. Further, when it is difficult to remove with one type of catalyst removal solution, a plurality of types of catalyst removal solutions may be used in order.
Since the gas diffusion layer generally has water repellency, even if the catalyst removal solution is immersed in the catalyst removal solution over the gas diffusion layer from the end portion of the electrolyte membrane where the catalyst layer is exposed, the catalyst removal solution is difficult to penetrate into the gas diffusion layer. Further, if the catalyst is removed from the catalyst removal solution after removal of the catalyst layer, the catalyst removal solution is easily dropped and discharged from the gas diffusion layer.
(2) The membrane-electrode bonding for a fuel cell according to (1), wherein the immersion of the electrolyte membrane in the catalyst removal solution in the fourth step is performed collectively for the plurality of electrolyte membranes. Body manufacturing method.
(3) The immersion of the electrolyte membrane in the catalyst removal solution in the fourth step is performed on the whole of the plurality of electrolyte membranes and the entirety thereof, as described in (1) A method for producing a membrane-electrode assembly for a fuel cell.
In the invention described in this section, a plurality of electrolyte membranes in which the catalyst has been applied and the gas diffusion layer is bonded onto the catalyst layer are collectively and immersed in the catalyst removal solution. It is desirable to increase the water repellency and to shorten the dipping time.
(4) The membrane-electrode for a fuel cell according to (1), (2) or (3), wherein the catalyst is a catalyst containing platinum and the catalyst removal solution is aqua regia. Bonded body manufacturing method.
According to the invention described in this section, it is possible to remove a catalyst containing general platinum as a catalyst in a membrane-electrode assembly for a fuel cell.
(5) The membrane-electrode for a fuel cell according to (4), wherein the electrolyte membrane is a fluorine-based electrolyte membrane, and the gas diffusion layer is a gas diffusion layer having water repellency by a fluorine-based resin. Bonded body manufacturing method.
The fluorine-based electrolyte membrane is more desirable than the hydrocarbon-based electrolyte membrane from the viewpoint of water resistance. In addition, the gas diffusion layer generally has water repellency, but the water repellency due to the fluorine-based resin has a large water repellency effect, and therefore, the catalyst-coated electrolyte membrane was covered with the gas diffusion layer when immersed in aqua regia. The influence of aqua regia on the catalyst layer can be minimized. That is, the method for producing a membrane-electrode assembly for a fuel cell according to the item (4) can be carried out while minimizing the influence of aqua regia on the catalyst layer covered with the electrolyte membrane and the gas diffusion layer.

(1)項に記載の発明によれば、触媒層の寸法・形状は拡散層の形状により規定されるため、にバラツキが発生せず、したがってバラツキ発生に起因する膜−電極接合体の性能上や組付け上の問題を解消でき、しかも生産性の高い燃料電池用膜−電極接合体製造方法を提供できる。
(2)項に記載の発明によれば、(1)項に記載の発明よりも生産性の高い膜−電極接合体製造方法を提供できる。
(3)項に記載の発明によれば、更に生産性の高い膜−電極接合体製造方法を提供できる。
なお、(4)項及び(5)項に記載の発明は、本発明(特許請求の範囲に記載した発明)ではないので、上記課題を解決するための手段の欄に、その効果を述べた。
According to the invention described in item (1), since the size and shape of the catalyst layer are defined by the shape of the diffusion layer, there is no variation. Therefore, in terms of performance of the membrane-electrode assembly due to the occurrence of variation. In addition, it is possible to provide a method for producing a fuel cell membrane-electrode assembly, which can solve the problems in assembly and high productivity.
According to the invention described in the item (2), a method for producing a membrane-electrode assembly having higher productivity than the invention described in the item (1) can be provided.
According to the invention described in item (3), it is possible to provide a membrane-electrode assembly manufacturing method with higher productivity.
Since the inventions described in the items (4) and (5) are not the present invention (the invention described in the claims), the effect is described in the column of means for solving the above problems. .

以下、本発明の実施の形態を図面に基づき説明する。なお、各図間において、同一符号は同一又は相当部分を示す。
図1は、本発明による燃料電池用膜−電極接合体製造方法の一実施形態の説明図で、同膜−電極接合体を連続的に製造する工程の一例を側方から示している。図2は、図1中の一点鎖線で囲んだ部分アの拡大図である。
図1に示すように、本実施形態に係る燃料電池用膜−電極接合体製造方法は、第1工程I〜第4工程IVを備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol shows the same or an equivalent part between each figure.
FIG. 1 is an explanatory view of an embodiment of a method for producing a membrane-electrode assembly for a fuel cell according to the present invention, and shows an example of a process for continuously producing the membrane-electrode assembly from the side. FIG. 2 is an enlarged view of a portion a surrounded by a one-dot chain line in FIG.
As shown in FIG. 1, the fuel cell membrane-electrode assembly manufacturing method according to the present embodiment includes a first step I to a fourth step IV.

第1工程Iは、例えばロール状に巻いた状態から繰り出され、一方向イ、図示例では右方向に搬送される帯状の電解質膜11に触媒12を連続塗工(べた塗り)する工程である。
ここでは、電解質膜11としてフッ素系電解質膜が、触媒12として白金を含む触媒、具体的にはカーボン粒子に白金を担持させてなる触媒が、各々用いられている。電解質膜11、触媒12の材質はこれらのみに限定されない。
触媒12の塗工は、帯状の電解質膜11の表裏各面の全領域(全面)に対して連続して行う。この際、塗工厚が一様にされることは勿論である。このような塗工が可能ならばどのような塗工手段でもよいが、ここではダイコータ13が好例として用いられている。ダイコータ13は帯状の電解質膜11の表裏各面側に各々配置されるが、図示例では帯状の電解質膜11の搬送方向に適宜間隔置いて配置されている。
The first step I is a step in which the catalyst 12 is continuously applied (solid coating) to the strip-shaped electrolyte membrane 11 which is fed out from a state wound, for example, in a roll shape and conveyed in one direction i, in the illustrated example, in the right direction. .
Here, a fluorine-based electrolyte membrane is used as the electrolyte membrane 11, and a catalyst containing platinum as the catalyst 12, specifically, a catalyst in which platinum is supported on carbon particles, is used. The materials of the electrolyte membrane 11 and the catalyst 12 are not limited to these.
The application of the catalyst 12 is continuously performed on the entire area (entire surface) of each surface of the belt-shaped electrolyte membrane 11. In this case, it is a matter of course that the coating thickness is made uniform. Any coating means may be used as long as such coating is possible, but here the die coater 13 is used as a good example. The die coater 13 is disposed on each side of the front and back surfaces of the strip-shaped electrolyte membrane 11. In the illustrated example, the die coater 13 is disposed at an appropriate interval in the transport direction of the strip-shaped electrolyte membrane 11.

第2工程IIは、第1工程Iによって帯状の電解質膜11の表裏両面に触媒12が塗工されてなる触媒層14上に間隔をおいてガス拡散層15を接合、ここでは熱圧接合する工程である。
上記ガス拡散層15は、カーボン材からなり撥水性を有するが、ここではフッ素系樹脂、例えばポリテトラフルオロエチレン(PTFE)等によって更なる撥水性と耐王水性が付与されている。
In the second step II, the gas diffusion layer 15 is joined with a gap on the catalyst layer 14 formed by coating the catalyst 12 on both the front and back surfaces of the strip-shaped electrolyte membrane 11 in the first step I. It is a process.
The gas diffusion layer 15 is made of a carbon material and has water repellency. Here, further water repellency and water resistance are imparted by a fluorine-based resin such as polytetrafluoroethylene (PTFE).

第3工程IIIは、第2工程IIによって触媒層14上にガス拡散層15が接合された、触媒12(触媒層14)塗工済みの帯状の電解質膜11を切断、詳しくは隣接するガス拡散層15,15相互間の中央位置で裁断する工程である。図1中の16は、この際用いられる裁断刃を示し、一点鎖線矢印ハは次工程(第4工程IV)への繋がりを示す。   In the third step III, the strip-shaped electrolyte membrane 11 coated with the catalyst 12 (catalyst layer 14), in which the gas diffusion layer 15 is joined on the catalyst layer 14 in the second step II, is cut. This is a step of cutting at the center position between the layers 15 and 15. 1 in FIG. 1 indicates a cutting blade used at this time, and a one-dot chain line arrow C indicates a connection to the next process (fourth process IV).

第4工程IVは、第3工程IIIにおける裁断によって分離された、触媒塗工済みでその触媒層14上にガス拡散層15が接合された電解質膜11の少なくとも触媒層14が露出する端部分を、その触媒層14を電解質膜11から除去可能な触媒除去液16中に浸漬する工程である。
触媒除去液16は、電解質膜11に塗工された触媒12(触媒層14)を溶解等により除去可能な液体であればそのいずれでもよい。本実施形態では、触媒12として白金を含む触媒が用いられているので、触媒除去液16には王水、つまり濃塩酸と濃硝酸とを3:1の体積比で混合した液体が用いられている。図中17は、触媒除去液16を収容した槽(触媒除去液槽)である。
なお、上記裁断によって分離された、触媒塗工済みでその触媒層14上にガス拡散層15が接合された電解質膜11は、概ね膜−電極−ガス拡散層接合体(MEGA:Membrane Electrode Gas diffusion layer Assembly)を構成する接合体であり、以下、これをMEGA素体18と記す。このMEGA素体18からガス拡散層15を除いた構成部分が概ね膜−電極接合体(MEA)を構成する接合体であり、以下、これをMEA素体19と記す。
In the fourth step IV, an end portion of the electrolyte membrane 11 separated by cutting in the third step III and coated with the catalyst and having the gas diffusion layer 15 bonded on the catalyst layer 14 is exposed. In this step, the catalyst layer 14 is immersed in a catalyst removal solution 16 that can be removed from the electrolyte membrane 11.
The catalyst removal liquid 16 may be any liquid as long as it can remove the catalyst 12 (catalyst layer 14) applied to the electrolyte membrane 11 by dissolution or the like. In this embodiment, since a catalyst containing platinum is used as the catalyst 12, the catalyst removal liquid 16 is aqua regia, that is, a liquid in which concentrated hydrochloric acid and concentrated nitric acid are mixed at a volume ratio of 3: 1. Yes. In the figure, reference numeral 17 denotes a tank (catalyst removal liquid tank) containing the catalyst removal liquid 16.
The electrolyte membrane 11 separated by the above-described cutting and coated with the catalyst and having the gas diffusion layer 15 bonded onto the catalyst layer 14 is generally a membrane-electrode-gas diffusion layer assembly (MEGA). layer assembly), which is hereinafter referred to as MEGA element body 18. A component obtained by removing the gas diffusion layer 15 from the MEGA body 18 is a joined body that generally constitutes a membrane-electrode assembly (MEA), which is hereinafter referred to as a MEA body 19.

この第4工程IVでは、図2に拡大して示すように、上記MEA素体19(全体としてはMEGA素体18)の触媒層14が露出する部分を含む端部分を触媒除去液16中に浸漬して同MEA素体19端部分に露出する触媒層14部分を溶解し、電解質膜11から除去するもので、これによりMEA20が製造(全体としてはMEGA21が製造)される。   In the fourth step IV, as shown in an enlarged view in FIG. 2, the end portion including the portion where the catalyst layer 14 of the MEA element body 19 (the MEGA element body 18 as a whole) is exposed is placed in the catalyst removal liquid 16. The portion of the catalyst layer 14 that is immersed and exposed at the end portion of the MEA element body 19 is dissolved and removed from the electrolyte membrane 11, whereby the MEA 20 is manufactured (the MEGA 21 is manufactured as a whole).

この第4工程IVを加えた理由を以下に述べる。
第3工程III、すなわちMEA素体19(MEGA素体18)の裁断工程を経ただけでは、図3に示すようにMEA素体19の端部分には触媒層14が露出している。この触媒層14は、厚さt1=数μm〜数十μm程度という極薄い電解質膜11の両面に接合形成されている。このため、MEA素体19の端部分に触媒層14が露出していると、両触媒層14,14間、換言すれば燃料極と空気極間が至近距離L1で近接することになり、触媒12の回り込みによって両極間に短絡を生じさせる虞がある。
第4工程IVにより、MEA素体19の端部分に露出する触媒層14を除去すれば、図4に示すように両触媒層14,14(燃料極及び空気極)間の距離は上記L1より長いL2(L2>L1)となって、上記触媒12の回り込みによる両極間の短絡を防止できる。
The reason why the fourth step IV is added will be described below.
As shown in FIG. 3, the catalyst layer 14 is exposed at the end portion of the MEA element body 19 only after the third process III, that is, the cutting process of the MEA element body 19 (MEGA element body 18). The catalyst layer 14 is formed on both surfaces of an extremely thin electrolyte membrane 11 having a thickness t1 of about several μm to several tens of μm. For this reason, when the catalyst layer 14 is exposed at the end portion of the MEA element body 19, the catalyst layers 14 and 14, in other words, the fuel electrode and the air electrode are close to each other at a close distance L1, and the catalyst There is a risk that a short circuit will occur between the two poles due to the wrap around 12.
If the catalyst layer 14 exposed at the end portion of the MEA element body 19 is removed by the fourth step IV, the distance between the catalyst layers 14 and 14 (the fuel electrode and the air electrode) as shown in FIG. It becomes long L2 (L2> L1), and the short circuit between both electrodes by the wraparound of the catalyst 12 can be prevented.

MEA20(MEGA21)は、通常、触媒層14とガス拡散層15は同寸法・形状、同位置に設定されるので、図5に例示するように四角形のMEA素体19(MEGA素体18)の4辺51〜54の全てについて第4工程が実施される。
したがって、第3工程で裁断された後の触媒層塗工済みの電解質膜11(MEA素体19)の、第4工程における触媒除去液16中への浸漬を、触媒層14が露出する端部分のみならず、図6に示すようにMEA素体19の全体に対して行ってもよく、これによれば生産性を高めることができる。なお図6では、複数のMEA素体19について一括して触媒除去液槽17内の触媒除去液16中へ浸漬する例を示しており、更に生産性を高めることができる。
裁断された後の触媒層塗工済みの電解質膜11(MEA素体19)の全体ではなく、各辺別の触媒除去液16中への浸漬ではあるが、複数のMEA素体19を一括して触媒除去液16中に浸漬するようにしてもよい。
触媒除去液16中への浸漬時に、ガス拡散層15が触媒層14から剥がれないように支持するようにしてもよい。
In the MEA 20 (MEGA 21), the catalyst layer 14 and the gas diffusion layer 15 are usually set to the same size, shape, and position, so that the rectangular MEA element 19 (MEGA element 18) is formed as illustrated in FIG. A 4th process is implemented about all the 4 sides 51-54.
Therefore, the end portion where the catalyst layer 14 is exposed is the immersion of the electrolyte membrane 11 (MEA element body 19) coated with the catalyst layer after being cut in the third step into the catalyst removal liquid 16 in the fourth step. In addition, as shown in FIG. 6, the entire MEA element 19 may be performed, and according to this, productivity can be improved. FIG. 6 shows an example in which a plurality of MEA bodies 19 are immersed in the catalyst removal liquid 16 in the catalyst removal liquid tank 17 at a time, and productivity can be further increased.
It is not the entire electrolyte membrane 11 (MEA element body 19) that has been coated with the catalyst layer after being cut, but is immersed in the catalyst removal liquid 16 for each side, but a plurality of MEA element bodies 19 are collected together. Then, it may be immersed in the catalyst removal liquid 16.
You may make it support so that the gas diffusion layer 15 may not peel from the catalyst layer 14 at the time of immersion in the catalyst removal liquid 16. FIG.

本実施形態によれば、図3及び図4を参照して述べたように、MEA素体19の端部分において触媒12の回り込みによる両触媒層14,14(燃料極と空気極)間の短絡を、電解質膜上に間欠的に触媒層を形成するという従来の間欠塗工法におけると同様に防止できる。
その一方で、従来の間欠塗工法における、触媒層の寸法・形状のバラツキは生じない。本実施形態では、MEA20は、帯状の電解質膜11に触媒12を連続塗工(べた塗り)した後に、無用部分であるMEA素体19の端部分の触媒層14を除去して、触媒層14の寸法・形状を揃えるようにしたからである。
したがって本実施形態によれば、触媒層14の寸法・形状のバラツキ発生に起因するMEA20の性能上や組付け上の問題を解消できる。すなわち、MEA20の性能上の問題としては、触媒層14面積が小さすぎる場合の発電面積の縮小によるセル出カの低下を防止できる。また、MEA20の組付け上の問題としては、前述したような、触媒層14の面積が小さすぎる場合の内部リ−クや大きすぎる場合の外部リ−クの発生を防止できる。 しかも、このような効果を有するMEA20を、第1工程I〜第4工程IVと連続する工程により連続して製造できるので、生産性を高めることができる。
According to the present embodiment, as described with reference to FIGS. 3 and 4, the short circuit between the catalyst layers 14 and 14 (the fuel electrode and the air electrode) due to the wraparound of the catalyst 12 at the end portion of the MEA element body 19. Can be prevented as in the conventional intermittent coating method in which the catalyst layer is intermittently formed on the electrolyte membrane.
On the other hand, there is no variation in the size and shape of the catalyst layer in the conventional intermittent coating method. In this embodiment, the MEA 20 removes the catalyst layer 14 at the end portion of the MEA element body 19 which is a useless portion after continuously applying (solid coating) the catalyst 12 to the belt-shaped electrolyte membrane 11, thereby removing the catalyst layer 14. This is because the size and shape of the are made uniform.
Therefore, according to the present embodiment, problems in performance and assembly of the MEA 20 due to occurrence of variations in the size and shape of the catalyst layer 14 can be solved. That is, as a performance problem of the MEA 20, it is possible to prevent a decrease in cell output due to a reduction in the power generation area when the area of the catalyst layer 14 is too small. Further, as a problem in assembling the MEA 20, it is possible to prevent the occurrence of an internal leak when the area of the catalyst layer 14 is too small or an external leak when it is too large as described above. And since MEA20 which has such an effect can be continuously manufactured by the process which is continuous with the 1st process I-the 4th process IV, productivity can be raised.

本実施形態においては、ガス拡散層15の撥水性が高められているので、上記のように触媒層14が露出する電解質膜11の端部分を触媒除去液16中に浸漬しても、触媒除去液16はガス拡散層15中に浸透し難く、また触媒層14除去後に触媒除去液16中から引き上げれば触媒除去液16はガス拡散層15から容易に滴下排出される。
したがって、触媒除去液16中への触媒塗工済み電解質膜11の浸漬時において、ガス拡散層15で覆われた触媒層14への触媒除去液16の影響を最小限にとどめることができる。つまり、電解質膜11及びガス拡散層15で覆われた触媒層14への触媒除去液16、本実施形態では王水の影響を最小限にとどめながらMEA素体19(全体としてはMEGA素体18)を製造できる。
In the present embodiment, since the water repellency of the gas diffusion layer 15 is enhanced, even if the end portion of the electrolyte membrane 11 where the catalyst layer 14 is exposed is immersed in the catalyst removal liquid 16 as described above, the catalyst removal is performed. The liquid 16 hardly penetrates into the gas diffusion layer 15, and if the catalyst removal liquid 16 is pulled up from the catalyst removal liquid 16 after the catalyst layer 14 is removed, the catalyst removal liquid 16 is easily dropped from the gas diffusion layer 15.
Therefore, the influence of the catalyst removing liquid 16 on the catalyst layer 14 covered with the gas diffusion layer 15 can be minimized when the catalyst-coated electrolyte membrane 11 is immersed in the catalyst removing liquid 16. That is, the catalyst removal liquid 16 to the catalyst layer 14 covered with the electrolyte membrane 11 and the gas diffusion layer 15, in this embodiment, the MEA element body 19 (the MEGA element body 18 as a whole while minimizing the influence of aqua regia). ) Can be manufactured.

なお上述実施形態において、電解質膜は剛性が低いので、図7に示すように、帯状の電解質膜11を挟んでダイコータ13と対向する位置に支持ローラ71を各々配置すれば、電解質膜11を支えながら触媒12を塗工できる。
この場合、搬送方向イの下流側(図中、右側)に位置するダイコータ13に対応する支持ローラ71は上流側(図中、左側)に位置するダイコータ13によって塗工された触媒12を介して電解質膜11を支えることになる。したがって、上流側に位置するダイコータ13によって触媒12が塗工された電解質膜11部分が、下流側に位置するダイコータ13(支持ローラ71)に達するまでに、上流側に位置するダイコータ13によって塗工された触媒12が乾くようになされる。例えば、上下流側のダイコータ13,13相互間の距離を離したり、上下流側のダイコータ13,13相互間に上流側に位置するダイコータ13によって塗工された触媒12の乾燥を促進させる手段を配置する。
塗工された触媒12が乾ききると、第2工程II(図1参照)における触媒層14へのガス拡散層15の接合がされにくくなるので、この場合は、触媒層14又はガス拡散層15の、ガス拡散層15又は触媒層14との接合面に接着剤を塗布する等、両層14,15の接合を容易にする処理が施される。
In the above-described embodiment, since the electrolyte membrane has low rigidity, as shown in FIG. 7, if the support rollers 71 are respectively disposed at positions facing the die coater 13 with the strip-shaped electrolyte membrane 11 interposed therebetween, the electrolyte membrane 11 is supported. However, the catalyst 12 can be applied.
In this case, the support roller 71 corresponding to the die coater 13 located on the downstream side (right side in the drawing) of the conveying direction (b) passes through the catalyst 12 coated by the die coater 13 located on the upstream side (left side in the drawing). The electrolyte membrane 11 is supported. Therefore, the portion of the electrolyte membrane 11 coated with the catalyst 12 by the die coater 13 located on the upstream side is coated by the die coater 13 located on the upstream side until reaching the die coater 13 (support roller 71) located on the downstream side. The prepared catalyst 12 is dried. For example, means for increasing the distance between the upstream and downstream die coaters 13 and 13 and promoting the drying of the catalyst 12 coated by the upstream die coater 13 between the upstream and downstream die coaters 13 and 13 is provided. Deploy.
When the coated catalyst 12 is dried, it becomes difficult to join the gas diffusion layer 15 to the catalyst layer 14 in the second step II (see FIG. 1). In this case, the catalyst layer 14 or the gas diffusion layer 15 Then, a treatment for facilitating the joining of the two layers 14 and 15 is performed, such as applying an adhesive to the joining surface with the gas diffusion layer 15 or the catalyst layer 14.

本発明による燃料電池用膜−電極接合体製造方法の一実施形態の説明図である。It is explanatory drawing of one Embodiment of the membrane-electrode assembly manufacturing method for fuel cells by this invention. 図1中の一点鎖線で囲んだ部分アの拡大図である。FIG. 2 is an enlarged view of a portion a surrounded by a one-dot chain line in FIG. 1. 本実施形態における第3工程を経た後のMEA素体(MEGA素体)の端部分を示す側面図である。It is a side view which shows the edge part of the MEA element | base_body (MEGA element | base_body) after passing through the 3rd process in this embodiment. 同じく第4工程を経た後のMEA端部分(MEGA端部分)を示す側面図である。It is a side view which similarly shows the MEA edge part (MEGA edge part) after passing through a 4th process. 同じく第3工程を経た後のMEA素体(MEGA素体)の平面図である。It is a top view of the MEA element body (MEGA element body) after having similarly passed through the third step. 他の実施形態の説明図である。It is explanatory drawing of other embodiment. 図6とは異なる他の実施形態の説明図である。It is explanatory drawing of other embodiment different from FIG.

符号の説明Explanation of symbols

I:第1工程、II:第2工程、III:第3工程、IV:第4工程、11:帯状の電解質膜、12:触媒、13:ダイコータ、14:触媒層、15:ガス拡散層、16:触媒除去液(王水)、18:MEGA素体、19:MEA素体、20:MEA、21:MEGA。   I: 1st process, II: 2nd process, III: 3rd process, IV: 4th process, 11: Strip-shaped electrolyte membrane, 12: Catalyst, 13: Die coater, 14: Catalyst layer, 15: Gas diffusion layer, 16: Catalyst removal solution (Aqua regia), 18: MEGA element, 19: MEA element, 20: MEA, 21: MEGA.

Claims (3)

一方向に搬送される帯状の電解質膜に触媒を連続塗工する第1工程と、
前記触媒が塗工されてなる触媒層上に間隔をおいてガス拡散層を接合する第2工程と、
隣接する前記ガス拡散層相互間の定位置で前記触媒が塗工済みの電解質膜を切断する第3工程と、
前記切断により分離された、前記触媒が塗工済みでその触媒層上にガス拡散層が接合された電解質膜の少なくとも前記触媒層が露出する端部分を、その触媒層を電解質膜から除去可能な触媒除去液中に浸漬する第4工程とを、
備えることを特徴とする燃料電池用膜−電極接合体製造方法。
A first step of continuously applying a catalyst to a strip-shaped electrolyte membrane conveyed in one direction;
A second step of joining the gas diffusion layer at an interval on the catalyst layer coated with the catalyst;
A third step of cutting the electrolyte membrane coated with the catalyst at a fixed position between the adjacent gas diffusion layers;
The catalyst layer can be removed from the electrolyte membrane at least an end portion of the electrolyte membrane separated by the cutting and coated with the catalyst and having a gas diffusion layer bonded onto the catalyst layer. A fourth step of immersing in the catalyst removal solution,
A method for producing a membrane-electrode assembly for a fuel cell, comprising:
前記第4工程における触媒除去液中への前記電解質膜の浸漬は、複数の前記電解質膜について一括して行うことを特徴とする請求項1に記載の燃料電池用膜−電極接合体製造方法。   The method for producing a membrane-electrode assembly for a fuel cell according to claim 1, wherein the immersion of the electrolyte membrane in the catalyst removal solution in the fourth step is performed collectively for the plurality of electrolyte membranes. 前記第4工程における触媒除去液中への前記電解質膜の浸漬は、複数の前記電解質膜について一括して、かつその全体に対して行うことを特徴とする請求項1に記載の燃料電池用膜−電極接合体製造方法。   2. The fuel cell membrane according to claim 1, wherein the immersion of the electrolyte membrane in the catalyst removal solution in the fourth step is performed on the whole of the plurality of electrolyte membranes and the entirety thereof. -Electrode assembly manufacturing method.
JP2008320923A 2008-12-17 2008-12-17 Membrane-electrode assembly manufacturing method for fuel cell Expired - Fee Related JP5201349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008320923A JP5201349B2 (en) 2008-12-17 2008-12-17 Membrane-electrode assembly manufacturing method for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008320923A JP5201349B2 (en) 2008-12-17 2008-12-17 Membrane-electrode assembly manufacturing method for fuel cell

Publications (2)

Publication Number Publication Date
JP2010146794A true JP2010146794A (en) 2010-07-01
JP5201349B2 JP5201349B2 (en) 2013-06-05

Family

ID=42566996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008320923A Expired - Fee Related JP5201349B2 (en) 2008-12-17 2008-12-17 Membrane-electrode assembly manufacturing method for fuel cell

Country Status (1)

Country Link
JP (1) JP5201349B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216379A (en) * 2011-03-31 2012-11-08 Eneos Celltech Co Ltd Manufacturing method of membrane electrode assembly, and manufacturing apparatus of membrane electrode assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503158A (en) * 1995-12-22 2000-03-14 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Continuous production method of membrane electrode assembly (MEA)
JP2006244930A (en) * 2005-03-04 2006-09-14 Dainippon Printing Co Ltd Manufacturing method and manufacturing device of electrolyte membrane -catalyst layer junction for solid polymer fuel cell
JP2008027700A (en) * 2006-07-20 2008-02-07 Toyota Motor Corp Catalyst recovery method from fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503158A (en) * 1995-12-22 2000-03-14 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Continuous production method of membrane electrode assembly (MEA)
JP2006244930A (en) * 2005-03-04 2006-09-14 Dainippon Printing Co Ltd Manufacturing method and manufacturing device of electrolyte membrane -catalyst layer junction for solid polymer fuel cell
JP2008027700A (en) * 2006-07-20 2008-02-07 Toyota Motor Corp Catalyst recovery method from fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216379A (en) * 2011-03-31 2012-11-08 Eneos Celltech Co Ltd Manufacturing method of membrane electrode assembly, and manufacturing apparatus of membrane electrode assembly

Also Published As

Publication number Publication date
JP5201349B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5692284B2 (en) Manufacturing method and apparatus for manufacturing reinforced electrolyte membrane
JP5321181B2 (en) Method for producing assembly of catalyst layer and electrolyte membrane of fuel cell member
JP5343529B2 (en) Method for producing fuel cell electrode laminate
JP5695086B2 (en) 5-layer membrane electrode assembly having peripheral portions bonded thereto and manufacturing method thereof
JP2019003821A (en) Fuel cell and manufacturing method therefor
KR102325722B1 (en) Coating apparatus and coating method
JP2016039102A (en) Device for manufacturing membrane-catalyst layer assembly and manufacturing method thereof
JP2011165460A (en) Method of manufacturing membrane-catalyst layer assembly
JP5044062B2 (en) Method for producing membrane-catalyst layer assembly
JP2009134953A (en) Membrane electrode assembly with frame, and method of continuously manufacturing fuel battery cell
WO2022120557A1 (en) Method for manufacturing membrane electrode
JP5201349B2 (en) Membrane-electrode assembly manufacturing method for fuel cell
JP2010225304A (en) Method of manufacturing diffusion layer for fuel cell
JP2010123509A (en) Method of manufacturing membrane-electrode-gas diffusion layer assembly used in fuel cell
JP2010146796A (en) Manufacturing method and manufacturing device of membrane-electrode assembly for fuel cell
JP5853194B2 (en) Membrane-catalyst layer assembly manufacturing method and manufacturing apparatus thereof
JP6848830B2 (en) Fuel cell manufacturing method
JP2006012525A (en) Method and apparatus for manufacturing membrane/electrode assembly
JP2012234713A (en) Method for joining electrolyte membrane and film, and method for manufacturing fuel cell
JP7290681B2 (en) Membrane electrode assembly and method for manufacturing membrane electrode assembly
US20170170493A1 (en) Method and apparatus for manufacturing resin-framed membrane electrode assembly
JP2014082049A (en) Manufacturing method and manufacturing apparatus of membrane electrode assembly for fuel cell
JP7131524B2 (en) Manufacturing method of membrane electrode gas diffusion layer assembly
JP6126049B2 (en) Manufacturing method of fuel cell
JP2003068320A (en) Manufacturing method of film electrode jointed body for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130129

R151 Written notification of patent or utility model registration

Ref document number: 5201349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees