JP2010133339A - Operating method of gas turbine and gas turbine combustor - Google Patents

Operating method of gas turbine and gas turbine combustor Download PDF

Info

Publication number
JP2010133339A
JP2010133339A JP2008310376A JP2008310376A JP2010133339A JP 2010133339 A JP2010133339 A JP 2010133339A JP 2008310376 A JP2008310376 A JP 2008310376A JP 2008310376 A JP2008310376 A JP 2008310376A JP 2010133339 A JP2010133339 A JP 2010133339A
Authority
JP
Japan
Prior art keywords
fuel
gas turbine
hydrogen
burner
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008310376A
Other languages
Japanese (ja)
Other versions
JP4997217B2 (en
Inventor
Tomohiro Asai
智広 浅井
Shohei Yoshida
正平 吉田
Hiromi Koizumi
浩美 小泉
Tomoki Koganezawa
知己 小金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008310376A priority Critical patent/JP4997217B2/en
Publication of JP2010133339A publication Critical patent/JP2010133339A/en
Application granted granted Critical
Publication of JP4997217B2 publication Critical patent/JP4997217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To cut down fuel cost by reducing the use amount of starting fuel. <P>SOLUTION: In an operating method of a gas turbine, a burner including a fuel nozzle for injecting fuel into a combustion chamber and an air nozzle for supplying combustion air to the combustion chamber is provided with a starting fuel supply system which supplies starting fuel employed for ignition and start-up of the gas turbine. When igniting the gas turbine, the starting fuel and fuel through the fuel nozzle are supplied to the combustion chamber. The supply of the starting fuel is stopped before the gas turbine reaches the no-load rotation speed. Therefore, the use amount of starting fuel is reduced to cut down the fuel cost. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガスタービンの運転方法及びガスタービン燃焼器に関する。   The present invention relates to a gas turbine operating method and a gas turbine combustor.

近年、資源有効利用や発電コスト低減の観点から、製油所で発生するオフガスや製鉄所で発生するコークス炉ガスなどの副生燃料をガスタービンに利用することが検討されている。これらは安価な燃料であり、高効率なガスタービンで利用できれば燃料費を大幅に削減できる。   In recent years, from the viewpoint of effective use of resources and reduction of power generation costs, use of by-product fuel such as off-gas generated at refineries and coke oven gas generated at ironworks for gas turbines has been studied. These are inexpensive fuels, and if they can be used in highly efficient gas turbines, the fuel costs can be greatly reduced.

これらの副生燃料は、一般に水素を多く含むため、ガスタービン燃料として扱うには注意が必要である。ガスタービンの主要燃料として使用されている液化天然ガス(LNG)などに比べ、水素は燃焼速度が速く、可燃範囲が広いうえに、火炎温度が高いという特徴をもつ。特に、燃焼速度が速いことから、予混合燃焼では逆火ポテンシャルが高くなる。そのため、特許文献1に示されているような拡散燃焼方式を採用するのが一般的である。しかし、拡散燃焼では局所的に火炎温度が高くなる領域が存在し、NOx濃度が高くなるため、蒸気や窒素を噴射してNOx低減を図っている。   Since these by-product fuels generally contain a large amount of hydrogen, they must be handled with care as gas turbine fuels. Compared to liquefied natural gas (LNG), which is used as a main fuel for gas turbines, hydrogen has a high combustion speed, a wide flammable range, and a high flame temperature. In particular, since the combustion speed is high, the flashback potential is high in the premixed combustion. For this reason, it is common to employ a diffusion combustion system as disclosed in Patent Document 1. However, in diffusion combustion, there is a region where the flame temperature locally increases, and the NOx concentration becomes high. Therefore, steam and nitrogen are injected to reduce NOx.

これに対して、特許文献2では蒸気や窒素を使用しない低NOx燃焼器の構造が開示されている。この燃焼器は、バーナ出口に多数設けられた空気ノズル、及びこの空気ノズルの上流側に設けられた燃料ノズルが配置されている。そして、空気ノズル内部では、燃料流の外周側に環状の空気流が形成される。空気ノズルから噴出した燃料流と空気流は、燃焼室で急速に混合することで、NOx低減を図っている。このバーナは燃料と空気の予混合距離が短いために逆火ポテンシャルが低く、高カロリー燃料から燃焼速度の速い水素含有ガス燃料まで幅広い燃料の低NOx燃焼に有効である。   On the other hand, Patent Document 2 discloses a structure of a low NOx combustor that does not use steam or nitrogen. In this combustor, a number of air nozzles provided at the burner outlet and a fuel nozzle provided upstream of the air nozzle are arranged. In the air nozzle, an annular air flow is formed on the outer peripheral side of the fuel flow. The fuel flow and air flow ejected from the air nozzle are rapidly mixed in the combustion chamber to reduce NOx. This burner has a low flashback potential due to the short premixing distance between fuel and air, and is effective for low-NOx combustion of a wide range of fuels, from high-calorie fuels to hydrogen-containing gas fuels with high combustion rates.

特開2007−33022号公報JP 2007-33022 A 特開2003−148734号公報JP 2003-148734 A

上述のように水素含有ガス燃料は可燃範囲が広いため、特にガスタービン着火・起動時には安全面で注意を要する。燃焼器において、着火失敗や着火遅れ(着火に要する時間が長くなる)が発生すると、ガスタービン下流の排気ダクト内で空気と燃料の混合気が可燃範囲に達する可能性がある。そこで、このような課題を回避するため、起動用燃料として液体燃料や液化天然ガス(LNG)などの他種燃料によりガスタービンを起動し、低負荷条件で水素含有ガス燃料に切り替える方法を採用している。   As described above, since hydrogen-containing gas fuel has a wide flammable range, care must be taken in terms of safety, particularly during gas turbine ignition and startup. In the combustor, when ignition failure or ignition delay (the time required for ignition becomes long) occurs, the air-fuel mixture may reach the combustible range in the exhaust duct downstream of the gas turbine. Therefore, in order to avoid such problems, a method is adopted in which the gas turbine is started with other types of fuel such as liquid fuel or liquefied natural gas (LNG) as the starting fuel and switched to hydrogen-containing gas fuel under low load conditions. ing.

しかし、この方法では水素含有ガス燃料に切り替える負荷条件まで起動用燃料を供給する必要があり、起動用燃料の費用がかかるという課題が残る。   However, in this method, it is necessary to supply the starting fuel up to the load condition for switching to the hydrogen-containing gas fuel, and there remains a problem that the cost of the starting fuel is high.

そこで、本発明は起動用燃料の使用量を減らし、燃料費を低減することを目的としている。   Therefore, the present invention has an object of reducing the fuel consumption by reducing the amount of start-up fuel used.

本発明は、ガスタービン着火の際に、起動用燃料と燃料ノズルからの燃料を燃焼室に供給し、ガスタービンの無負荷回転数に達する前に、起動用燃料の供給を停止することを特徴とする。   The present invention is characterized in that, when the gas turbine is ignited, the starting fuel and the fuel from the fuel nozzle are supplied to the combustion chamber, and the supply of the starting fuel is stopped before reaching the no-load rotational speed of the gas turbine. And

本発明によれば、起動用燃料の使用量を減らし、燃料費を低減することが可能である。   According to the present invention, it is possible to reduce the usage amount of the starting fuel and reduce the fuel cost.

ガスタービンの燃料供給システムおよび着火・運転方法について、図面で説明する。   A gas turbine fuel supply system and ignition / operation method will be described with reference to the drawings.

図2は拡散燃焼方式を採用したガスタービン燃焼器を含むガスタービンプラントの概略構成図である。まず、ガスタービンプラントの概要を説明する。ガスタービンプラント1は、大気より吸入空気101を吸入して圧縮する空気圧縮機2、空気圧縮機2により圧縮された燃焼用空気102と水素含有ガス燃料201を燃焼させ、燃焼ガス110を生成する燃焼器3、発生した燃焼ガス110を導いて駆動するタービン4、タービン4により回転し発電する発電機6、およびガスタービン起動時に空気圧縮機2を起動するガスタービン起動用モータ8を備える。タービン4を駆動した後の燃焼ガス110は、排気ガス111となってタービン4から排出される。   FIG. 2 is a schematic configuration diagram of a gas turbine plant including a gas turbine combustor employing a diffusion combustion system. First, the outline of the gas turbine plant will be described. The gas turbine plant 1 generates combustion gas 110 by burning an air compressor 2 that sucks and compresses intake air 101 from the atmosphere, combustion air 102 compressed by the air compressor 2, and hydrogen-containing gas fuel 201. A combustor 3, a turbine 4 that guides and drives the generated combustion gas 110, a generator 6 that rotates by the turbine 4 and generates electric power, and a gas turbine activation motor 8 that activates the air compressor 2 when the gas turbine is activated are provided. The combustion gas 110 after driving the turbine 4 becomes exhaust gas 111 and is exhausted from the turbine 4.

次に、バーナ13の構造を説明する。バーナ13は、起動用燃料200を燃焼室5内に噴射する起動用燃料ノズル20が、燃焼器3の軸中心部に設けられている。本実施例では、起動用燃料として灯油や軽油などの油燃料や、液化天然ガス(LNG)や液化石油ガス(LPG)、メタンなどの高カロリガス燃料を想定する。起動用燃料ノズル20の外周には、燃料を微粒化するための噴霧空気103を噴射する噴霧空気ノズル21を設置している。噴霧空気ノズル21は、起動用燃料200が油燃料の場合に使用する。噴霧空気103は、空気圧縮機2から抽気した抽気空気104を、昇圧圧縮機7により昇圧した後に、噴霧空気ノズル21に供給される。噴霧空気ノズル21の外周には水素含有ガス燃料ノズル22を備えている。水素含有ガス燃料201は、水素含有ガス燃料孔18を通って燃焼室5に噴射する。水素含有ガス燃料は、製油所あるいは化学プラントで発生するオフガスや、製鉄プロセスで発生するコークス炉ガス,石炭や重質油を原料としそれらを酸素でガス化して得られるガス化ガスなどのガス燃料を想定する。水素含有ガス燃料ノズル22の外周には、火炎安定化のために燃焼用空気102aに旋回を与える空気旋回器17を備えている。燃焼用空気102aは、空気圧縮機2から燃焼器3に供給され、主室ライナ12を冷却した後に、空気旋回器17を通って燃焼室5に供給される。   Next, the structure of the burner 13 will be described. The burner 13 is provided with a starting fuel nozzle 20 for injecting the starting fuel 200 into the combustion chamber 5 at the axial center of the combustor 3. In this embodiment, oil fuel such as kerosene and light oil, and high calorie gas fuel such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), and methane are assumed as the starting fuel. A spray air nozzle 21 for injecting spray air 103 for atomizing the fuel is installed on the outer periphery of the starting fuel nozzle 20. The atomizing air nozzle 21 is used when the starting fuel 200 is oil fuel. The atomizing air 103 is supplied to the atomizing air nozzle 21 after boosting the extracted air 104 extracted from the air compressor 2 by the boosting compressor 7. A hydrogen-containing gas fuel nozzle 22 is provided on the outer periphery of the atomizing air nozzle 21. The hydrogen-containing gas fuel 201 is injected into the combustion chamber 5 through the hydrogen-containing gas fuel hole 18. Hydrogen-containing gas fuels are gas fuels such as off-gas generated at refineries or chemical plants, coke oven gas generated during the iron-making process, and gasified gas obtained by gasifying coal or heavy oil as raw materials with oxygen. Is assumed. An air swirler 17 is provided on the outer periphery of the hydrogen-containing gas fuel nozzle 22 to swirl the combustion air 102a for flame stabilization. Combustion air 102 a is supplied from the air compressor 2 to the combustor 3, cools the main chamber liner 12, and then is supplied to the combustion chamber 5 through the air swirler 17.

図3は、比較例におけるガスタービンプラントの着火・運転方法である。比較例では、負荷併入前まで起動用燃料のみでガスタービンを運転させ、負荷併入と同時に水素含有ガス燃料の供給を開始する例を示す。本図は、比較例の着火・運転方法において、ガスタービンの着火から定格負荷条件までの起動用燃料200と水素含有ガス燃料201の流量の時間変化を示す概念図である。図中の300は起動用燃料200の流量変化、301は水素含有ガス燃料201の流量変化を示している。また、a〜d,nの状態は、
a)着火
b)無負荷定格回転数
c)負荷併入
d)定格負荷条件
n)起動用燃料の供給停止
の時期を示している。
FIG. 3 shows an ignition / operation method of a gas turbine plant in a comparative example. In the comparative example, an example is shown in which the gas turbine is operated only with the starting fuel before the load is introduced, and the supply of the hydrogen-containing gas fuel is started simultaneously with the loading. This figure is a conceptual diagram showing temporal changes in the flow rates of the starting fuel 200 and the hydrogen-containing gas fuel 201 from the ignition of the gas turbine to the rated load condition in the ignition / operation method of the comparative example. In the figure, 300 indicates a change in the flow rate of the starting fuel 200, and 301 indicates a change in the flow rate of the hydrogen-containing gas fuel 201. Also, the states of a to d, n are
a) Ignition b) No-load rated speed c) Load loading d) Rated load condition n) Indicates the timing of stopping the supply of starting fuel.

起動時、ガスタービンはガスタービン起動用モータ8などの外部動力によって駆動する。燃焼器の着火条件に相当するガスタービン回転数まで上昇させた後、回転数を一定に保持することで、燃焼器3に着火相当の燃焼用空気102が供給され、着火条件が成立する。そこで、点火栓を作動させ、起動用燃料200を供給し着火する(a点)。着火後、起動用燃料200の流量を増加させることにより昇速させ、無負荷定格回転数の状態に達する(b点)。その後、負荷を併入し(c点)、起動用燃料200の流量を減少させつつ、水素含有ガス燃料201の供給を開始する。そして、燃料を切り替えながら負荷を上昇させ、定格負荷条件に達する(d点)。なお、起動用燃料200の供給は、定格負荷条件に達するまでに停止する(n点)。   At startup, the gas turbine is driven by external power such as a gas turbine startup motor 8. After raising the rotational speed of the gas turbine corresponding to the ignition condition of the combustor and holding the rotational speed constant, the combustion air 102 corresponding to the ignition is supplied to the combustor 3 and the ignition condition is satisfied. Therefore, the ignition plug is operated, the starting fuel 200 is supplied and ignited (point a). After ignition, the flow rate of the starting fuel 200 is increased to increase the speed and reach the state of the no-load rated rotational speed (point b). Thereafter, the load is added (point c), and the supply of the hydrogen-containing gas fuel 201 is started while the flow rate of the starting fuel 200 is decreased. Then, the load is increased while the fuel is switched to reach the rated load condition (point d). The supply of the starting fuel 200 is stopped until the rated load condition is reached (n point).

しかし、比較例の方法では水素含有ガス燃料201に切り替える条件まで起動用燃料200を供給する必要がある。製油所で副生するオフガスなどの安価な水素含有ガス燃料に対し、起動用燃料は一般に価格が高い。そのため、比較例の着火・運転方法では燃料費がかかるという課題があった。   However, in the method of the comparative example, it is necessary to supply the starting fuel 200 up to the condition for switching to the hydrogen-containing gas fuel 201. Start-up fuels are generally more expensive than cheap hydrogen-containing gas fuels such as off-gas produced as a by-product at refineries. For this reason, the ignition / operation method of the comparative example has a problem that fuel costs are required.

そこで、本実施例における着火・運転方法を図1で説明する。図中の310は起動用燃料200の流量変化、311は水素含有ガス燃料201の流量変化を示している。また、a〜d、nの状態は上記の通りである。図1では、着火の際に起動用燃料200と水素含有ガス燃料201を同時に供給する。燃焼器3に着火相当の燃焼用空気102を供給した着火条件において、点火栓を作動させて、起動用燃料200と同時に水素含有ガス燃料201を供給し、着火する(a点)。ここで、本実施例における「同時」とは、起動用燃料200を供給し着火した直後を意味する。また、起動用燃料200を供給し燃焼器3の着火を確認した後、直ちに水素含有ガス燃料201を供給することも含む。水素含有ガス燃料201は起動用燃料200とともに供給されるので、着火失敗や着火遅れは発生せず、ガスタービン下流の排気ダクト内で空気と燃料の混合気が可燃範囲になることを回避できる。着火後、起動用燃料200の流量を減少させつつ、水素含有ガス燃料201の流量を増加させ、昇速させて、無負荷定格回転数の状態にする(b点)。なお、起動用燃料200の供給は無負荷定格回転数の状態(b点)に達するまでに停止する(n点)。その後、負荷を併入し(c点)、水素含有ガス燃料201の流量を増加させることにより、負荷を上昇させ、定格負荷条件に達する(d点)。このように、水素含有ガス燃料への着火を早期に行うことで、ガスタービンの無負荷回転数に達する前に、起動用燃料の供給を停止することができる。   The ignition / operation method in this embodiment will be described with reference to FIG. In the figure, 310 indicates a change in the flow rate of the starting fuel 200, and 311 indicates a change in the flow rate of the hydrogen-containing gas fuel 201. The states a to d and n are as described above. In FIG. 1, the starting fuel 200 and the hydrogen-containing gas fuel 201 are simultaneously supplied at the time of ignition. Under the ignition condition in which combustion air 102 corresponding to ignition is supplied to the combustor 3, the spark plug is operated, the hydrogen-containing gas fuel 201 is supplied simultaneously with the starting fuel 200, and ignition is performed (point a). Here, “simultaneous” in this embodiment means immediately after the start-up fuel 200 is supplied and ignited. Further, it also includes supplying the hydrogen-containing gas fuel 201 immediately after supplying the starting fuel 200 and confirming the ignition of the combustor 3. Since the hydrogen-containing gas fuel 201 is supplied together with the start-up fuel 200, ignition failure or ignition delay does not occur, and it is possible to avoid the mixture of air and fuel in the combustible range in the exhaust duct downstream of the gas turbine. After ignition, the flow rate of the hydrogen-containing gas fuel 201 is increased while the flow rate of the starting fuel 200 is decreased, and the flow rate is increased to achieve a no-load rated rotational speed (b point). The supply of the starting fuel 200 is stopped (point n) before reaching the state of the no-load rated speed (point b). Thereafter, the load is added (point c), and the load is increased by increasing the flow rate of the hydrogen-containing gas fuel 201 to reach the rated load condition (point d). In this way, by igniting the hydrogen-containing gas fuel at an early stage, the supply of the starting fuel can be stopped before reaching the no-load rotational speed of the gas turbine.

このように、起動用燃料200の供給開始(a点)から停止(n点)までの時間を短縮でき、その燃料費を節約することが可能である。なお、起動用燃料200の供給に関して、油燃料の場合は簡易的な燃料タンク、またガス燃料の場合は簡易的なガスボンベを設置し、それらから燃料を供給してもよい。   In this manner, the time from the start (point a) to the stop (point n) of supply of the starting fuel 200 can be shortened, and the fuel cost can be saved. Regarding the supply of the starting fuel 200, a simple fuel tank may be installed in the case of oil fuel, and a simple gas cylinder may be installed in the case of gas fuel, and the fuel may be supplied therefrom.

本実施例は、特許文献2で開示されている、蒸気や窒素を使用しない低NOx燃焼器の着火方法に関する。   The present embodiment relates to an ignition method of a low NOx combustor that does not use steam or nitrogen, which is disclosed in Patent Document 2.

図4,図5は予混合低NOx燃焼器の正面図および側面図を燃料供給系統とともに示している。燃焼器3は多缶で構成されるが、図4では点火栓缶3aと、隣接する燃焼器3b、3cのみを示している。また、燃焼器3は、隣接する燃焼器3b,3cへの火移り・着火を行うためのクロスファイヤー管90を備えている。点火栓缶3aにて着火後、圧力の上昇によって隣接する燃焼器3b,3cにクロスファイヤー管90を通じて燃焼ガス110が流れ、着火する。燃焼器3は、燃料を燃焼室5に供給する燃料ノズル30と、燃料ノズル30の下流側に配置され、燃焼用空気102を供給する空気孔31(空気ノズル)が多数配置されたバーナを複数個備えている。空気孔31(空気ノズル)は、空気孔プレートに配置されている。このような燃料ノズル及び空気孔(空気ノズル)の配置により、空気孔において燃料流の外周側に環状の空気流が流れる。本図には、燃焼器の軸中心部に中央バーナ51aを1つ、その外周に外周バーナを6つ(51b〜51g)備えた状態を示している。このような構造により、燃料と空気を急速に混合することで希薄予混合燃焼によるNOx低減を図っている。   4 and 5 show a front view and a side view of the premixed low NOx combustor together with the fuel supply system. Although the combustor 3 is composed of multiple cans, FIG. 4 shows only the spark plug can 3a and the adjacent combustors 3b and 3c. In addition, the combustor 3 includes a cross fire tube 90 for transferring and igniting the adjacent combustors 3b and 3c. After ignition in the spark plug can 3a, the combustion gas 110 flows through the cross fire pipe 90 to the adjacent combustors 3b and 3c due to the increase in pressure, and ignites. The combustor 3 includes a fuel nozzle 30 that supplies fuel to the combustion chamber 5, and a plurality of burners that are arranged on the downstream side of the fuel nozzle 30 and that have a large number of air holes 31 (air nozzles) that supply combustion air 102. I have one. The air hole 31 (air nozzle) is disposed in the air hole plate. Due to the arrangement of the fuel nozzle and the air hole (air nozzle), an annular air flow flows on the outer peripheral side of the fuel flow in the air hole. This figure shows a state in which one central burner 51a is provided at the axial center of the combustor and six outer peripheral burners (51b to 51g) are provided on the outer periphery thereof. With such a structure, fuel and air are rapidly mixed to reduce NOx by lean premixed combustion.

次に、本実施例の燃料供給系統を説明する。本実施例では、中央バーナ51aには水素含有ガス燃料201を供給し、外周バーナ51b〜51gには水素含有ガス燃料201および起動用燃料200を供給する燃料供給系統を備えている。図中には水素含有ガス燃料供給系統として、中央バーナ51aに燃料を供給する系統60a、および外周バーナを2つずつ組み合わせて燃料を供給する系統60b,60c,60gの合計4系統を示している。また、起動用燃料供給系統として、外周バーナ51b〜51gに起動用燃料を供給する系統70b,70c,70gの3系統を示している。そして、それぞれの燃料供給系統には、燃料流量を調整する燃料流量調整弁61a,61b,61c,61g,71b,71c,71g、及び緊急時に燃料を遮断する遮断弁62a,62b,62c,62g,72b,72c,72gを備えている。   Next, the fuel supply system of the present embodiment will be described. In the present embodiment, a hydrogen supply gas fuel 201 is supplied to the central burner 51a, and a fuel supply system that supplies the hydrogen-containing gas fuel 201 and the starting fuel 200 to the outer peripheral burners 51b to 51g is provided. In the figure, as a hydrogen-containing gas fuel supply system, a total of four systems including a system 60a for supplying fuel to the central burner 51a and systems 60b, 60c and 60g for supplying fuel by combining two outer burners are shown. . In addition, three systems of systems 70b, 70c, and 70g that supply the startup fuel to the outer peripheral burners 51b to 51g are shown as the startup fuel supply system. Each of the fuel supply systems includes fuel flow rate adjusting valves 61a, 61b, 61c, 61g, 71b, 71c, 71g, and cutoff valves 62a, 62b, 62c, 62g for shutting off the fuel in an emergency. 72b, 72c, 72g.

本実施例の着火・運転方法を図6で説明する。図中の320は外周バーナ51b〜51gに供給する起動用燃料200の流量(外周バーナ51b〜51gの合計)の時間変化、321は中央バーナ51aに供給する水素含有ガス燃料201の流量変化、また322は外周バーナ51b〜51gに供給する水素含有ガス燃料201の流量(外周バーナ51b〜51gの合計)の変化を示している。図中のa〜d,nの状態は実施例1で説明した通りである。   The ignition / operation method of the present embodiment will be described with reference to FIG. In the figure, 320 is a time change of the flow rate of the starting fuel 200 supplied to the outer peripheral burners 51b to 51g (total of the outer peripheral burners 51b to 51g), 321 is a flow rate change of the hydrogen-containing gas fuel 201 supplied to the central burner 51a, and Reference numeral 322 denotes a change in the flow rate of the hydrogen-containing gas fuel 201 supplied to the outer peripheral burners 51b to 51g (the total of the outer peripheral burners 51b to 51g). The states a to d, n in the figure are as described in the first embodiment.

本実施例では、上述の低NOx燃焼器および燃料供給システムにおいて、着火の際に起動用燃料200と水素含有ガス燃料201を同時に供給する。燃焼器3に着火相当の燃焼用空気102を供給した着火条件において、点火栓缶3aの点火栓を作動させて、外周バーナ51b〜51gに起動用燃料200を供給し、それと同時に中央バーナ51aに水素含有ガス燃料201も供給し着火する(a点)。ここで、「同時」とは、起動用燃料200を供給し着火した直後を意味する。また、起動用燃料200を供給し燃焼器3の着火を確認した後、直ちに水素含有ガス燃料201を供給することも含む。外周バーナ51b〜51gでは起動用燃料200により着火して燃焼ガスが形成される。一方、中央バーナ51aでは、外周バーナ51b〜51gで形成された燃焼ガスを火種にして、水素含有ガス燃料201により着火するため着火の失敗はなく、ガスタービン下流において、燃料と空気の混合気が可燃範囲となることを回避できる。また、点火栓缶3aの外周バーナ51bおよび51dで形成された燃焼ガスが、クロスファイヤー管90を通じて隣接する燃焼器3b,3cに移り、隣接する燃焼器3b,3cにおいても着火が起こる。本実施例では、外周バーナ51b〜51gのすべてに起動用燃料200を供給している。しかし、外周バーナ51bと51dにのみ起動用燃料200を供給しても、隣接する燃焼器3b,3cへの火移りが可能である。そのため、燃焼器3b,3cのみに起動用燃料を供給することで、起動用燃料の使用量を更に低減でき、より効果的である。また、燃焼器3b,3cのみに起動用燃料を供給する場合、起動用燃料供給系統は70bの1系統のみあればよいため、初期設備コストの低減も可能である。   In this embodiment, in the above-described low NOx combustor and fuel supply system, the starting fuel 200 and the hydrogen-containing gas fuel 201 are simultaneously supplied at the time of ignition. Under the ignition condition in which combustion air 102 corresponding to ignition is supplied to the combustor 3, the ignition plug of the ignition plug can 3a is operated to supply the starting fuel 200 to the outer peripheral burners 51b to 51g, and at the same time to the central burner 51a. Hydrogen-containing gas fuel 201 is also supplied and ignited (point a). Here, “simultaneously” means immediately after the start-up fuel 200 is supplied and ignited. Further, it also includes supplying the hydrogen-containing gas fuel 201 immediately after supplying the starting fuel 200 and confirming the ignition of the combustor 3. The peripheral burners 51b to 51g are ignited by the starting fuel 200 to form combustion gas. On the other hand, in the central burner 51a, the combustion gas formed by the outer peripheral burners 51b to 51g is used as a fire type and ignited by the hydrogen-containing gas fuel 201. Therefore, there is no failure in ignition. It is possible to avoid becoming a flammable range. In addition, the combustion gas formed by the outer peripheral burners 51b and 51d of the spark plug can 3a moves to the adjacent combustors 3b and 3c through the crossfire tube 90, and ignition occurs in the adjacent combustors 3b and 3c. In this embodiment, the starting fuel 200 is supplied to all of the outer peripheral burners 51b to 51g. However, even if the starting fuel 200 is supplied only to the outer peripheral burners 51b and 51d, it is possible to transfer to the adjacent combustors 3b and 3c. Therefore, by supplying the starting fuel only to the combustors 3b and 3c, the amount of the starting fuel used can be further reduced, which is more effective. In addition, when starting fuel is supplied only to the combustors 3b and 3c, only one starting fuel supply system 70b is required, so that the initial equipment cost can be reduced.

このような方法で着火した後、外周バーナ51b〜51gに供給していた起動用燃料200の流量を減少させつつ、中央バーナ51aの水素含有ガス燃料201の流量を増加させながら昇速させ、無負荷定格回転数の状態に達する(b点)。なお、起動用燃料200の供給は無負荷定格回転数の状態(b点)に達するまでに停止する(n点)。その後、負荷を併入し(c点)、中央バーナ51aの水素含有ガス燃料201の流量を減らしつつ、外周バーナ51b〜51gに水素含有ガス燃料201を供給して、その流量を増加させる。そして、負荷を上昇させ、定格負荷条件に達する(d点)。   After ignition by such a method, while increasing the flow rate of the hydrogen-containing gas fuel 201 in the central burner 51a while increasing the flow rate of the starting fuel 200 supplied to the outer peripheral burners 51b to 51g, the speed is increased. The state of the load rated speed is reached (point b). The supply of the starting fuel 200 is stopped (point n) before reaching the state of the no-load rated speed (point b). Thereafter, a load is added (point c), the hydrogen-containing gas fuel 201 is supplied to the outer peripheral burners 51b to 51g while the flow rate of the hydrogen-containing gas fuel 201 of the central burner 51a is reduced, and the flow rate is increased. Then, the load is increased to reach the rated load condition (point d).

このように、外周バーナ51b〜51gにおける起動用燃料200と、中央バーナ51aにおける水素含有ガス燃料201を同時に供給することにより、起動用燃料200の供給開始(a点)から停止(n点)までの時間を短縮できるため、その燃料費を節約することが可能である。   Thus, by simultaneously supplying the starting fuel 200 in the outer peripheral burners 51b to 51g and the hydrogen-containing gas fuel 201 in the central burner 51a, from the start of supply of the starting fuel 200 (point a) to the stop (point n). Therefore, the fuel cost can be saved.

図7は、本実施例における低NOx燃焼器の正面図を燃料供給系統とともに示す。燃焼器3の構造およびバーナ配置などは、実施例2と同様である。燃料供給系統では、中央バーナ51aに水素含有ガス燃料201および起動用燃料200を供給する系統、及び外周バーナ51b〜51gに水素含有ガス燃料201のみを供給する系統を備えている。図中の水素含有ガス燃料供給系統は、中央バーナ51aに燃料を供給する系統60a、および外周バーナを2つずつ組み合わせて燃料を供給する系統60b,60c,60gの合計4系統がある。また、起動用燃料供給系統は、中央バーナ51aに燃料を供給する系統70aの1系統がある。   FIG. 7 shows a front view of the low NOx combustor in this embodiment together with the fuel supply system. The structure and burner arrangement of the combustor 3 are the same as those in the second embodiment. The fuel supply system includes a system that supplies the hydrogen-containing gas fuel 201 and the starting fuel 200 to the central burner 51a, and a system that supplies only the hydrogen-containing gas fuel 201 to the outer peripheral burners 51b to 51g. The hydrogen-containing gas fuel supply system in the figure includes a total of four systems: a system 60a that supplies fuel to the central burner 51a, and systems 60b, 60c, and 60g that supply fuel by combining two outer peripheral burners. The starting fuel supply system includes one system 70a that supplies fuel to the central burner 51a.

上記の構成をもつガスタービンの着火・運転方法について、図8で説明する。図中の330は中央バーナ51aに供給する起動用燃料200の流量変化、331は中央バーナ51aに供給する水素含有ガス燃料201の流量変化、また332は外周バーナ51b〜51gに供給する水素含有ガス燃料201の流量(外周バーナ51b〜51gの合計)の変化を示している。図中のa〜d,nの状態は上述の通りである。燃焼器3に着火相当の燃焼用空気102を供給した着火条件において、点火栓缶3aの点火栓を作動させて、中央バーナ51aに起動用燃料200を供給し、それと同時に外周バーナ51b〜51gに水素含有ガス燃料201を供給し着火する(a点)。ここで、「同時」とは、起動用燃料200を供給し着火した直後を意味する。また、起動用燃料200を供給し燃焼器3の着火を確認した後、直ちに水素含有ガス燃料201を供給することも含む。中央バーナ51aでは起動用燃料200により着火して燃焼ガスが形成され、外周バーナ51b〜51gでは、中央バーナ51aで形成された燃焼ガスを火種にして水素含有ガス燃料201により着火するため、着火の失敗はない。また、点火栓缶3aの中央バーナ51aで形成された燃焼ガスがクロスファイヤー管90を通じて、隣接する燃焼器3b,3cに移り、隣接燃焼器においても着火が起こる。   The ignition / operation method of the gas turbine having the above-described configuration will be described with reference to FIG. In the figure, 330 is a flow rate change of the starting fuel 200 supplied to the central burner 51a, 331 is a flow rate change of the hydrogen-containing gas fuel 201 supplied to the central burner 51a, and 332 is a hydrogen-containing gas supplied to the outer peripheral burners 51b to 51g. A change in the flow rate of the fuel 201 (the total of the outer peripheral burners 51b to 51g) is shown. The states a to d, n in the figure are as described above. Under ignition conditions in which combustion air 102 equivalent to ignition is supplied to the combustor 3, the ignition plug of the ignition plug can 3a is operated to supply the starting fuel 200 to the central burner 51a, and at the same time to the outer peripheral burners 51b to 51g. Hydrogen-containing gas fuel 201 is supplied and ignited (point a). Here, “simultaneously” means immediately after the start-up fuel 200 is supplied and ignited. Further, it also includes supplying the hydrogen-containing gas fuel 201 immediately after supplying the starting fuel 200 and confirming the ignition of the combustor 3. The central burner 51a is ignited by the starting fuel 200 to form combustion gas, and the outer peripheral burners 51b to 51g are ignited by the hydrogen-containing gas fuel 201 using the combustion gas formed by the central burner 51a as a fire type. There is no failure. Further, the combustion gas formed by the central burner 51a of the spark plug can 3a moves to the adjacent combustors 3b and 3c through the cross fire tube 90, and ignition occurs in the adjacent combustors.

このように着火した後、中央バーナ51aの起動用燃料200の流量を減少させつつ、外周バーナ51b〜51gの水素含有ガス燃料201の流量を増加させる。そして、昇速させ、無負荷定格回転数の状態にする(b点)。なお、起動用燃料200の供給は無負荷定格回転数の状態(b点)に達するまでに停止する(n点)。その後、負荷を併入し(c点)、外周バーナ51b〜51gにおける水素含有ガス燃料201の流量は引き続き増やすとともに、中央バーナ51aに水素含有ガス燃料201を供給し流量を増加させる。そして、負荷を上昇させ、定格負荷条件に達する(d点)。   After ignition in this way, the flow rate of the hydrogen-containing gas fuel 201 in the outer peripheral burners 51b to 51g is increased while the flow rate of the starting fuel 200 in the central burner 51a is decreased. Then, the speed is increased to a no-load rated rotational speed (point b). The supply of the starting fuel 200 is stopped (point n) before reaching the state of the no-load rated speed (point b). Thereafter, a load is added (point c), the flow rate of the hydrogen-containing gas fuel 201 in the outer peripheral burners 51b to 51g is continuously increased, and the hydrogen-containing gas fuel 201 is supplied to the central burner 51a to increase the flow rate. Then, the load is increased to reach the rated load condition (point d).

このように、中央バーナ51aにおける起動用燃料200と、外周バーナ51b〜51gにおける水素含有ガス燃料201を同時に供給することにより、起動用燃料200の供給開始(a点)から停止(n点)までの時間を短縮でき、起動用燃料200の費用を節約することが可能である。   Thus, by simultaneously supplying the starting fuel 200 in the central burner 51a and the hydrogen-containing gas fuel 201 in the outer peripheral burners 51b to 51g, from the start of supply of the starting fuel 200 (point a) to the stop (point n). It is possible to reduce the cost of the start-up fuel 200.

実施例1におけるガスタービン着火・運転方法を示す概念図である。1 is a conceptual diagram illustrating a gas turbine ignition / operation method in Embodiment 1. FIG. 実施例1における燃焼器を含むガスタービンプラント概略構成図である。1 is a schematic configuration diagram of a gas turbine plant including a combustor in Embodiment 1. FIG. 拡散燃焼方式を採用する燃焼器を含むガスタービンの着火・運転方法を示す概念図である。It is a conceptual diagram which shows the ignition / operation method of the gas turbine containing the combustor which employ | adopts a diffusion combustion system. 実施例2における予混合低NOx燃焼器および燃料供給系統の正面図である。6 is a front view of a premixed low NOx combustor and a fuel supply system in Embodiment 2. FIG. 実施例2における予混合低NOx燃焼器および燃料供給系統の側面図である。6 is a side view of a premixed low NOx combustor and a fuel supply system in Embodiment 2. FIG. 実施例2におけるガスタービン着火・運転方法を示す概念図である。It is a conceptual diagram which shows the gas turbine ignition and operation method in Example 2. FIG. 実施例3における予混合低NOx燃焼器および燃料供給系統の正面図である。6 is a front view of a premixed low NOx combustor and a fuel supply system in Example 3. FIG. 実施例3におけるガスタービン着火・運転方法を示す概念図である。6 is a conceptual diagram illustrating a gas turbine ignition / operation method in Embodiment 3. FIG.

符号の説明Explanation of symbols

1 ガスタービンプラント
2 空気圧縮機
3 燃焼器
4 タービン
5 燃焼室
6 発電機
7 昇圧圧縮機
8 ガスタービン起動用モータ
12 主室ライナ
13 バーナ
17 空気旋回器
18 水素含有ガス燃料孔
20 起動用燃料ノズル
21 噴霧空気ノズル
22 水素含有ガス燃料ノズル
30 燃料ノズル
31 空気孔
51a 中央バーナ
51b,51c,51d,51e,51f,51g 外周バーナ
90 クロスファイヤー管
101 吸入空気
102,102a 燃焼用空気
103 噴霧空気
104 抽気空気
110 燃焼ガス
111 排気ガス
200 起動用燃料
201,201a 水素含有ガス燃料
DESCRIPTION OF SYMBOLS 1 Gas turbine plant 2 Air compressor 3 Combustor 4 Turbine 5 Combustion chamber 6 Generator 7 Booster compressor 8 Gas turbine starting motor 12 Main chamber liner 13 Burner 17 Air swirler 18 Hydrogen-containing gas fuel hole 20 Starting fuel nozzle 21 Atomizing air nozzle 22 Hydrogen-containing gas fuel nozzle 30 Fuel nozzle 31 Air hole 51a Central burner 51b, 51c, 51d, 51e, 51f, 51g Outer peripheral burner 90 Cross fire pipe 101 Intake air 102, 102a Combustion air 103 Spray air 104 Extraction Air 110 Combustion gas 111 Exhaust gas 200 Starting fuel 201, 201a Hydrogen-containing gas fuel

Claims (6)

燃焼室に燃料を噴射する燃料ノズルと、燃焼用空気を供給する空気ノズルを有するバーナを備え、
前記バーナは、ガスタービンの着火・起動に用いる起動用燃料の供給が可能な起動用燃料供給系統を備えたガスタービンの運転方法であって、
ガスタービン着火の際に、前記起動用燃料と前記燃料ノズルからの燃料を前記燃焼室に供給し、
ガスタービンの無負荷回転数に達する前に、前記起動用燃料の供給を停止することを特徴とするガスタービンの運転方法。
A fuel nozzle for injecting fuel into the combustion chamber, and a burner having an air nozzle for supplying combustion air;
The burner is a method for operating a gas turbine provided with a starting fuel supply system capable of supplying a starting fuel used for ignition and starting of the gas turbine,
Upon gas turbine ignition, supplying the starting fuel and fuel from the fuel nozzle to the combustion chamber,
A method of operating a gas turbine, characterized in that the start-up fuel supply is stopped before reaching the no-load rotational speed of the gas turbine.
燃焼室に水素含有ガス燃料を噴射する燃料ノズルと、該燃料ノズルの下流側に位置し、燃焼用空気を供給する空気ノズルを複数備えた中央バーナ、及び該中央バーナの外周側に配置された複数の周囲バーナとを備え、
ガスタービンの着火・起動に用いる起動用燃料を供給する起動用燃料供給系統が前記周囲バーナに配置されると共に、前記水素含有ガス燃料を供給する燃料供給系統が前記中央バーナと前記周囲バーナに配置されたガスタービンの運転方法であって、
ガスタービンの着火の際に、前記周囲バーナに前記起動用燃料を供給し、前記起動用燃料の供給と同時に前記中央バーナに前記水素含有ガス燃料も供給することを特徴とするガスタービンの運転方法。
A fuel nozzle for injecting hydrogen-containing gas fuel into the combustion chamber, a central burner located downstream of the fuel nozzle and provided with a plurality of air nozzles for supplying combustion air, and an outer peripheral side of the central burner With multiple surrounding burners,
A startup fuel supply system for supplying startup fuel used for ignition and startup of the gas turbine is disposed in the peripheral burner, and a fuel supply system for supplying the hydrogen-containing gas fuel is disposed in the central burner and the peripheral burner. A method for operating a gas turbine, comprising:
An operation method of a gas turbine, characterized in that, when the gas turbine is ignited, the starting fuel is supplied to the peripheral burner, and the hydrogen-containing gas fuel is supplied to the central burner simultaneously with the supply of the starting fuel. .
請求項2に記載のガスタービンの運転方法であって、
前記着火の後、前記外周バーナの前記起動用燃料の流量を減少させつつ、前記中央バーナの前記水素含有ガス燃料の流量を増加させながら設定条件まで昇速させ、
設定条件に到達後、前記中央バーナの前記水素含有ガス燃料の流量を減らしつつ、前記外周バーナに前記水素含有ガス燃料を供給して流量を増やしながら、負荷を上昇させ、定格負荷条件に到達させることを特徴とガスタービンの運転方法。
A method for operating a gas turbine according to claim 2,
After the ignition, while increasing the flow rate of the hydrogen-containing gas fuel of the central burner while increasing the flow rate of the hydrogen fuel gas in the central burner while increasing the flow rate of the starting fuel of the outer peripheral burner,
After reaching the set conditions, while reducing the flow rate of the hydrogen-containing gas fuel in the central burner, supplying the hydrogen-containing gas fuel to the outer peripheral burner and increasing the flow rate, the load is increased to reach the rated load condition Characteristic and operation method of gas turbine.
燃焼室に水素含有ガス燃料を噴射する燃料ノズルと、該燃料ノズルの下流側に位置し、燃焼用空気を供給する空気ノズルを複数備えた中央バーナ、及び該中央バーナの外周側に配置された複数の周囲バーナとを備え、
ガスタービンの着火・起動に用いる起動用燃料を供給する起動用燃料供給系統が前記中央バーナに配置されると共に、前記水素含有ガス燃料を供給する燃料供給系統が前記中央バーナと前記周囲バーナに配置されたガスタービンの運転方法であって、
ガスタービンの着火の際に、前記中央バーナに前記起動用燃料を供給し、前記起動用燃料の供給と同時に前記外周バーナに前記水素含有ガス燃料も供給することを特徴とするガスタービンの運転方法。
A fuel nozzle for injecting hydrogen-containing gas fuel into the combustion chamber, a central burner located downstream of the fuel nozzle and provided with a plurality of air nozzles for supplying combustion air, and an outer peripheral side of the central burner With multiple surrounding burners,
A startup fuel supply system for supplying startup fuel used for ignition and startup of the gas turbine is disposed in the central burner, and a fuel supply system for supplying the hydrogen-containing gas fuel is disposed in the central burner and the peripheral burners. A method for operating a gas turbine, comprising:
An operation method for a gas turbine, characterized in that, when the gas turbine is ignited, the starting fuel is supplied to the central burner, and the hydrogen-containing gas fuel is supplied to the outer peripheral burner simultaneously with the supply of the starting fuel. .
請求項4に記載のガスタービンの運転方法であって、
前記着火の後、前記中央バーナの前記起動用燃料の流量を減少させつつ、前記外周バーナの前記水素含有ガス燃料の流量を増加させながら、設定条件まで昇速させ、
設定条件に到達後、前記外周バーナの前記水素含有ガス燃料の流量を増やしつつ、前記中央バーナに前記水素含有ガス燃料を供給して流量を増やしながら、負荷を上昇させ、定格負荷条件に到達させることを特徴とするガスタービンの運転方法。
A method for operating a gas turbine according to claim 4,
After the ignition, while increasing the flow rate of the hydrogen-containing gas fuel of the outer peripheral burner while increasing the flow rate of the hydrogen-containing gas fuel of the outer peripheral burner while decreasing the flow rate of the starting fuel of the central burner,
After reaching the set condition, while increasing the flow rate of the hydrogen-containing gas fuel of the outer peripheral burner, increasing the load while supplying the hydrogen-containing gas fuel to the central burner and increasing the flow rate, to reach the rated load condition A gas turbine operating method characterized by the above.
燃焼室に水素含有ガス燃料を噴射する燃料ノズルと、燃焼用空気を供給する空気ノズルを有するバーナを備え、
前記バーナは、ガスタービンの着火・起動に用いる起動用燃料の供給が可能な起動用燃料供給系統を備えたガスタービン燃焼器であって、
ガスタービンの着火の際に、前記起動用燃料の供給と同時に、前記水素含有ガス燃料の供給を開始するために、前記燃料ノズルに燃料を供給する燃料供給系統に燃料流量調整弁を設けることを特徴とするガスタービン燃焼器。
A fuel nozzle for injecting hydrogen-containing gas fuel into the combustion chamber, and a burner having an air nozzle for supplying combustion air;
The burner is a gas turbine combustor provided with a starting fuel supply system capable of supplying a starting fuel used for ignition and starting of a gas turbine,
In order to start the supply of the hydrogen-containing gas fuel simultaneously with the supply of the start-up fuel when the gas turbine is ignited, a fuel flow rate adjusting valve is provided in a fuel supply system for supplying fuel to the fuel nozzle. Characteristic gas turbine combustor.
JP2008310376A 2008-12-05 2008-12-05 Gas turbine operating method and gas turbine combustor Active JP4997217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310376A JP4997217B2 (en) 2008-12-05 2008-12-05 Gas turbine operating method and gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008310376A JP4997217B2 (en) 2008-12-05 2008-12-05 Gas turbine operating method and gas turbine combustor

Publications (2)

Publication Number Publication Date
JP2010133339A true JP2010133339A (en) 2010-06-17
JP4997217B2 JP4997217B2 (en) 2012-08-08

Family

ID=42344849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310376A Active JP4997217B2 (en) 2008-12-05 2008-12-05 Gas turbine operating method and gas turbine combustor

Country Status (1)

Country Link
JP (1) JP4997217B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155626A (en) * 2012-01-27 2013-08-15 Hitachi Ltd Gas turbine combustor and operation method of gas turbine combustor
JP2013185585A (en) * 2012-03-05 2013-09-19 General Electric Co <Ge> Method of operating combustor from liquid fuel operation to gas fuel operation
JP2016014371A (en) * 2014-07-03 2016-01-28 三菱日立パワーシステムズ株式会社 Two-shaft gas turbine
JP2016513867A (en) * 2013-03-15 2016-05-16 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Integration of molten carbonate fuel cells in refinery arrangements.
JP2018071354A (en) * 2016-10-24 2018-05-10 三菱日立パワーシステムズ株式会社 Gas turbine combustor and method for operating the same
JP2021055644A (en) * 2019-10-01 2021-04-08 三菱パワー株式会社 Gas turbine combustor and operation method thereof
WO2023140183A1 (en) * 2022-01-20 2023-07-27 三菱重工業株式会社 Control method for gas turbine combustor and control device for gas turbine combustor
JP7457851B2 (en) 2020-02-14 2024-03-28 株式会社豊田中央研究所 Gas turbine combustor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603658A (en) * 2016-03-15 2018-09-28 杰伊·凯勒 Non- premixed swirl burner end and combustion strategies

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097290A (en) * 2001-09-25 2003-04-03 Hitachi Ltd Power generation plant and operating method therefor
JP2004060623A (en) * 2002-07-31 2004-02-26 Central Res Inst Of Electric Power Ind Gas turbine combustor for gasification power generation plant
JP2007033022A (en) * 2005-06-24 2007-02-08 Hitachi Ltd Burner, gas turbine combustor, burner cooling method, and burner modifying method
JP2007291897A (en) * 2006-04-24 2007-11-08 Hitachi Ltd Heavy oil reformed fuel burning gas turbine and method for operating heavy oil reformed fuel burning gas turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097290A (en) * 2001-09-25 2003-04-03 Hitachi Ltd Power generation plant and operating method therefor
JP2004060623A (en) * 2002-07-31 2004-02-26 Central Res Inst Of Electric Power Ind Gas turbine combustor for gasification power generation plant
JP2007033022A (en) * 2005-06-24 2007-02-08 Hitachi Ltd Burner, gas turbine combustor, burner cooling method, and burner modifying method
JP2007291897A (en) * 2006-04-24 2007-11-08 Hitachi Ltd Heavy oil reformed fuel burning gas turbine and method for operating heavy oil reformed fuel burning gas turbine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155626A (en) * 2012-01-27 2013-08-15 Hitachi Ltd Gas turbine combustor and operation method of gas turbine combustor
JP2013185585A (en) * 2012-03-05 2013-09-19 General Electric Co <Ge> Method of operating combustor from liquid fuel operation to gas fuel operation
JP2016513867A (en) * 2013-03-15 2016-05-16 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Integration of molten carbonate fuel cells in refinery arrangements.
JP2016014371A (en) * 2014-07-03 2016-01-28 三菱日立パワーシステムズ株式会社 Two-shaft gas turbine
JP2018071354A (en) * 2016-10-24 2018-05-10 三菱日立パワーシステムズ株式会社 Gas turbine combustor and method for operating the same
US10794296B2 (en) 2016-10-24 2020-10-06 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor and method of operating the same
JP2021055644A (en) * 2019-10-01 2021-04-08 三菱パワー株式会社 Gas turbine combustor and operation method thereof
JP7200077B2 (en) 2019-10-01 2023-01-06 三菱重工業株式会社 Gas turbine combustor and its operation method
US11746704B2 (en) 2019-10-01 2023-09-05 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor and its operating method
JP7457851B2 (en) 2020-02-14 2024-03-28 株式会社豊田中央研究所 Gas turbine combustor
WO2023140183A1 (en) * 2022-01-20 2023-07-27 三菱重工業株式会社 Control method for gas turbine combustor and control device for gas turbine combustor

Also Published As

Publication number Publication date
JP4997217B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4997217B2 (en) Gas turbine operating method and gas turbine combustor
JP4728176B2 (en) Burner, gas turbine combustor and burner cooling method
JP5075900B2 (en) Hydrogen-containing fuel compatible combustor and its low NOx operation method
CN107975429B (en) Gas turbine combustor and method of operating the same
JP6262616B2 (en) Gas turbine combustor
US9638423B2 (en) Multifuel gas turbine combustor with fuel mixing chamber and supplemental burner
EP2551596B1 (en) Combustor, burner, and gas turbine
JP5889754B2 (en) Gas turbine combustor
JP6033887B2 (en) Multi-fuel compatible gas turbine combustor
EP0898117B1 (en) Coal gasification combined cycle power generation plant
JP7291090B2 (en) gas turbine combustor
JP6285807B2 (en) Gas turbine combustor
US20060168966A1 (en) Self-Purging Pilot Fuel Injection System
JP5063538B2 (en) Gas turbine fuel supply method
JP2012031730A (en) LOW-NOx COMBUSTION METHOD FOR GAS TURBINE COMBUSTOR
CN110878947A (en) Gas turbine combustor
EP2565427B1 (en) Method for switching over a combustion device of a gas turbine engine from operation with a first premixed fuel to a second premixed fuel
JP6474951B2 (en) Combustor
WO2016056180A1 (en) Gas turbine engine combustor and operating method for same
JP2012037104A (en) Gas turbine combustor
KR20090067122A (en) Method for the controlled purging of the fuel feeding system in the combustor of a gas turbine
JP6004920B2 (en) Gas turbine combustor and gas turbine combustor control method
JP2010230287A (en) Coal gasification power-generating plant and combustion method for coal gasification power-generating plant
CN111623373A (en) Sequential combustor for a gas turbine, method of operating the same and method of refurbishing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4997217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250