JP2010129440A - Three-component system electrode material particles for lithium battery or hybrid capacitor, and their manufacturing method - Google Patents

Three-component system electrode material particles for lithium battery or hybrid capacitor, and their manufacturing method Download PDF

Info

Publication number
JP2010129440A
JP2010129440A JP2008304272A JP2008304272A JP2010129440A JP 2010129440 A JP2010129440 A JP 2010129440A JP 2008304272 A JP2008304272 A JP 2008304272A JP 2008304272 A JP2008304272 A JP 2008304272A JP 2010129440 A JP2010129440 A JP 2010129440A
Authority
JP
Japan
Prior art keywords
carbon
tin
particles
lithium battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008304272A
Other languages
Japanese (ja)
Other versions
JP5273655B2 (en
Inventor
Osamu Tanaike
修 棚池
Noriko Yoshizawa
徳子 吉澤
Tomoki Tsumura
朋樹 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Oita University
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Oita University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Oita University filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008304272A priority Critical patent/JP5273655B2/en
Publication of JP2010129440A publication Critical patent/JP2010129440A/en
Application granted granted Critical
Publication of JP5273655B2 publication Critical patent/JP5273655B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide electrode material particles for lithium battery or hybrid capacitor, which can be used for an electrode of a lithium ion battery and a hybrid capacitor, are capable of fabricating an electrode with a small internal resistance, and are composed of a carbon coated TiO<SB>2</SB>-TiN compound material; and to provide a manufacturing method. <P>SOLUTION: The electrode material particles for lithium battery or hybrid capacitor are composed of a carbon coated TiO<SB>2</SB>-TiN compound material consisting of titanium nitride particulates having a thin carbon layer and a thin titanium oxide layer existing between the carbon layer and titanium nitride. Then, the electrode material particles for lithium battery or hybrid capacitor and their manufacturing method are obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオンを利用するリチウム電池やハイブリットキャパシタの電極材用粒子及びその製造方法より詳しくは、リチウムイオンを利用するリチウム電池やハイブリットキャパシタ用三成分系電極材用粒子及びその製造方法に関する。   More specifically, the present invention relates to a particle for a lithium battery or a hybrid capacitor using lithium ions, a method for manufacturing the same, and a method for manufacturing the same. .

(高出力型リチウム電池開発の背景)
ハイブリット自動車の回生エネルギー用電池や工具や重機用の電池など、低い充放電深度で頻繁に大電流の充放電を繰り返す用途に使用する二次電池においては、電池の内部抵抗を小さくすることが、大電流の瞬時の出入力はもちろん、熱消費による電力ロスを抑え、寿命が長持ちする大きな要素ともなる。一般に、集電体上に活物質層を薄く構築し、電子やイオンの伝導経路を短くすると、電極の内部抵抗を低減し、高出力に有効なことは知られている。さらに、ナノサイズまで小さくした活物質粒子の合成や、表面積の大きなナノ細孔性集電体材料上に活物質層を薄くコーティングすることで、イオンの経路を短くする取組みがなされている。
一方で、上記用途に用いられる電池として期待される、リチウム電池やキャパシタなどに用いられる電極活物質は、黒鉛を除くと、酸化物や活性など、それ自身は導電性が乏しいものがほとんどで、通常は、導電助剤を混入した合剤電極を作る必要があるが、導電性の低い粒子の接触抵抗を大きくするだけでなく、導電助剤粉体の混合によりイオンや導電の経路を複雑とするため、内部抵抗の上昇を招く要素が大きくなる。そこで、高出力型電池を目的とした、内部抵抗を革新的に下げる解決法として、たとえば、規則性細孔構造を有する集電体上に活物質を薄く配置する、導電性の高い材料に活物質層を被覆した粒子を用いる、配向したカーボンナノチューブのように、それ自体が導電助剤無しでも使用可能な活物質を用いるなど、活物質電極中の導電性領域の精密な設計と確保を行う手法が知られている。この手法によって得られた材料は、導電助剤の混入を必要とせず、電極を構成した時の内部抵抗がより低減できるとされている。
(Background of high-power lithium battery development)
In secondary batteries used for applications that repeatedly charge and discharge large currents at low charge / discharge depths, such as batteries for regenerative energy of hybrid vehicles and batteries for tools and heavy machinery, reducing the internal resistance of the battery can be reduced. In addition to instantaneous input / output of large currents, power loss due to heat consumption is suppressed, which is a major factor in long life. In general, it is known that when an active material layer is thinly formed on a current collector and the conduction path of electrons and ions is shortened, the internal resistance of the electrode is reduced and effective for high output. Furthermore, efforts have been made to shorten the ion path by synthesizing active material particles that have been reduced to nano-size, or by thinly coating the active material layer on a nanoporous current collector material having a large surface area.
On the other hand, electrode active materials used for lithium batteries and capacitors, which are expected as batteries used in the above applications, are mostly poor in conductivity, such as oxides and activities, excluding graphite. Usually, it is necessary to make a mixture electrode mixed with a conductive additive, but it not only increases the contact resistance of particles with low conductivity, but also makes the ion and conductive paths complicated by mixing conductive additive powder. Therefore, an element that causes an increase in internal resistance increases. Therefore, as a solution for reducing the internal resistance for the purpose of a high-power battery, for example, an active material can be applied to a highly conductive material by thinly arranging an active material on a current collector having a regular pore structure. Perform precise design and securing of the conductive region in the active material electrode, such as using an active material that itself can be used without a conductive aid, such as oriented carbon nanotubes using particles coated with a material layer Techniques are known. It is said that the material obtained by this method does not require mixing of a conductive additive, and the internal resistance when the electrode is configured can be further reduced.

(リチウム電池におけるチタン材料の位置づけ)
リチウムイオン電池の電極活物質としては正負極ともに様々な材料が検討されてきている。最も著名な学術雑誌Nature誌においても、その材料と動作電位、容量が紹介されており、それぞれが、固有の特徴を有していることから、用途に合わせて適切なものを用いることが必要である(非特許文献1参照)。このうち、酸化チタンはその格子空間中にリチウムの可逆的挿入脱離が可能であり、比較的合成が容易で、また、チタンはカーボン系材料を除くと、他の金属と比べて軽量で安価なものであることから、電池用材料としての魅力は大きい。一方、チタン系活物質は、黒鉛やシリコンなどと比べ、リチウム挿入の電位が比較的高く、電池としての作動電圧が低くなるので、エネルギー密度は小さいことが欠点である。その代わり、低い作動電圧の結果、電解液の分解が抑えられるので、電解液・電解質の選択幅がひろがり、寿命や安全性を重視する自動車用途などで期待できる電池材料としても位置付けられている。また、酸化チタンは様々な形態のものが作れることが知られ、高比表面積の材料を合成できることから、リチウム電解液を用いるハイブリットキャパシタ電極材料としても検討が可能である。
(Positioning of titanium materials in lithium batteries)
Various materials, both positive and negative, have been studied as electrode active materials for lithium ion batteries. The most prominent academic journal Nature also introduces its materials, operating potential, and capacity, and each has its own characteristics, so it is necessary to use the appropriate one according to the application. Yes (see Non-Patent Document 1). Of these, titanium oxide can reversibly insert and desorb lithium in its lattice space and is relatively easy to synthesize. Titanium is lighter and less expensive than other metals, except for carbon-based materials. Therefore, it is very attractive as a battery material. On the other hand, titanium-based active materials have a disadvantage that the energy density is small because the lithium insertion potential is relatively high and the operating voltage of the battery is low as compared with graphite and silicon. Instead, since the decomposition of the electrolytic solution is suppressed as a result of the low operating voltage, the selection range of the electrolytic solution / electrolyte is widened, and it is positioned as a battery material that can be expected in automobile applications that place importance on life and safety. In addition, it is known that titanium oxide can be produced in various forms, and since a material having a high specific surface area can be synthesized, it can be examined as a hybrid capacitor electrode material using a lithium electrolyte.

(チタン系材料のメカニズムと背景技術)
酸化チタンへのリチウム挿入脱離の電位は、約1.5V前後であり、おもに負極としての使用が求められるが、黒鉛の0Vに比べて1Vほど高いことから、実際の電池の起電力は低い。したがって、エネルギー密度は、黒鉛を用いたリチウムイオン電池よりは小さくなってしまう。また、酸化チタンは半導体として知られ、そのままでは導電性がないため、電極として用いる場合は、導電助剤の混入が必要となる。したがって、エネルギー密度、出力密度、どちらの特性においても、酸化チタンを電極として用いる場合は、飛躍的な材料改質や電極作製法が必要である。
(Mechanism and background technology of titanium materials)
The potential for lithium insertion / extraction to / from titanium oxide is about 1.5 V, and the use as a negative electrode is mainly required. However, the actual electromotive force of the battery is low because it is about 1 V higher than 0 V of graphite. . Therefore, the energy density is smaller than that of a lithium ion battery using graphite. Titanium oxide is known as a semiconductor and has no electrical conductivity as it is. Therefore, when used as an electrode, it is necessary to mix a conductive auxiliary. Therefore, when using titanium oxide as an electrode in both characteristics of energy density and power density, dramatic material modification and electrode fabrication methods are required.

(酸化チタンと窒化チタンの組み合わせによる高出力型電池活物質)
ここで、チタンはリチウム挿入脱離を行う酸化物と導電性の高い窒化物の両方の化合物を作れるため、その構造・組成を一つの粒子内で傾斜させた複合粒子、もしくは、その双方の特徴を併せ持ったチタン化合物粒子を合成できれば、[0002]に記したような概念に基づいて、内部抵抗の小さな電極を作れる可能性がある。非特許文献2には、酸化チタン(TiO2)を直接アンモニア接触法により部分的に窒化することで、リチウムが挿入脱離可能なTiO2と高い導電性を有する窒化チタン(TiN)の両方の構造・性質を共存させた化合物の合成に成功し、カーボンブラック導電助剤を混入しなくても動作が可能で、かつ、高速でリチウム挿入脱離が可能な材料としての特性を報告した(非特許文献2参照)。

J. M. Tarascon, M. Armand, Nature, 414(2001) 359. T. Tsumura, O.Tanaike, et al, Ammonia-treatedtitania as anode material of lithium-ion battery with high-rate capability,PRiME2008, Honolulu Hawaii, October 12-17, 2008.
(High power battery active material using a combination of titanium oxide and titanium nitride)
Here, since titanium can produce both oxides that perform lithium insertion / extraction and nitrides with high conductivity, composite particles with their structures and compositions tilted within one particle, or features of both If it is possible to synthesize titanium compound particles having both, it is possible to make an electrode with low internal resistance based on the concept described in [0002]. Non-Patent Document 2, partly by nitriding of titanium oxide (TiO 2) direct ammonia contact method, both titanium nitride lithium has a high electrical conductivity and deintercalation possible TiO2 (TiN) Structure・ Succeeded in synthesizing compounds with coexisting properties, and reported properties as a material that can be operated without mixing carbon black conductive aid and that can insert and desorb lithium at high speed (non-patented) Reference 2).

JM Tarascon, M. Armand, Nature, 414 (2001) 359. T. Tsumura, O. Tanaike, et al, Ammonia-treated titania as anode material of lithium-ion battery with high-rate capability, PRiME2008, Honolulu Hawaii, October 12-17, 2008.

それ自体がきわめて高い導電性を有する窒化チタンの表面部を、同じチタン化合物である酸化チタンに改質すると同時に、電位窓の大きなカーボンで被覆させることで、二種類のリチウム挿入活物質を表面に有した窒化チタンとして、内部抵抗の小さなリチウム挿入電極材用粒子に用いることができる三成分系カーボンコートTiO2- TiN複合材料及びその製造方法を提供する。 By modifying the surface of titanium nitride, which itself has extremely high conductivity, to titanium oxide, which is the same titanium compound, and covering it with carbon having a large potential window, two types of lithium insertion active materials are applied to the surface. Provided is a ternary carbon-coated TiO 2 -TiN composite material that can be used as particles for lithium insertion electrode material having a low internal resistance as titanium nitride, and a method for producing the same.

本発明は、上記課題を達成すべく、表面部分にTiO2を介在させたカーボン被覆窒化チタンの一段階合成を試み、カーボンコートTiO2- TiN複合材料を得ることに成功した。
すなわち、本発明は、薄いカーボン層、当該カーボン層と窒化チタンとの間に存在する薄い酸化チタン層を有する窒化チタン微粒子からなることを特徴とするカーボンコートTiO2- TiN複合材料粒子である。
また、本発明のカーボンコートTiO2- TiN複合材料粒子においては、リチウム挿入活物質である薄いカーボン層及び薄い酸化チタン層が数ナノメートルの厚さであることが、リチウムの拡散距離を短くするのに好適である。窒化チタン微粒子は導電性基材としての役割であるため、できるだけ体積分率は小さい方が好ましく、実施例においては平均粒径が1.43マイクロメートルのものを用いたが、より小さな粒子であることは活物質層の割合を増やす観点から、むしろより好ましい。
さらに、本発明は、窒化チタン微粒子を、熱分解時に酸化性ガスを生じる熱可塑性樹脂と共に加熱し、カーボン被覆と同時に、窒化チタン微粒子の表面を酸化して酸化チタンを合成することを特徴とするカーボンコートTiO2- TiN複合材料粒子の製造方法である。
また、本発明のカーボンコートTiO2- TiN複合材料粒子の製造方法においては、熱分解温度が800〜1000℃であり、加熱時間が0.5〜3時間、不活性ガスの存在下で行うことが好ましい。
さらに、本発明のカーボンコートTiO2- TiN複合材料粒子の製造方法においては、熱分解時に酸化性ガスを生じ、かつ、液相を経由して炭素化をする熱可塑性樹脂である、ポリビニルアルコール(PVA)を用いることが望ましいが、カーボン被覆を行うために好適な液相を経由して炭素化する樹脂の中で、比較的高温で酸素を含んだガスを放出しながら熱分解をする熱可塑性樹脂であれば構わない。
In order to achieve the above object, the present invention succeeded in obtaining a carbon-coated TiO 2 —TiN composite material by attempting one-step synthesis of carbon-coated titanium nitride with TiO 2 interposed in the surface portion.
That is, the present invention is a carbon-coated TiO 2 -TiN composite particle comprising a titanium nitride fine particle having a thin carbon layer and a thin titanium oxide layer present between the carbon layer and titanium nitride.
In the carbon-coated TiO 2 -TiN composite particles of the present invention, the thin carbon layer and the thin titanium oxide layer, which are lithium insertion active materials, are several nanometers in thickness, thereby shortening the lithium diffusion distance. It is suitable for. Since the titanium nitride fine particles play a role as a conductive base material, it is preferable that the volume fraction is as small as possible. In the examples, particles having an average particle diameter of 1.43 micrometers were used. This is more preferable from the viewpoint of increasing the proportion of the active material layer.
Furthermore, the present invention is characterized in that the titanium nitride fine particles are heated together with a thermoplastic resin that generates an oxidizing gas upon pyrolysis, and simultaneously with the carbon coating, the surface of the titanium nitride fine particles is oxidized to synthesize titanium oxide. This is a method for producing carbon-coated TiO 2 -TiN composite particles.
In the method for producing carbon-coated TiO 2 -TiN composite particles according to the present invention, the thermal decomposition temperature is 800 to 1000 ° C., the heating time is 0.5 to 3 hours, and the inert gas is used. Is preferred.
Furthermore, in the method for producing carbon-coated TiO 2 —TiN composite material particles of the present invention, polyvinyl alcohol (a thermoplastic resin that generates an oxidizing gas during pyrolysis and carbonizes via a liquid phase) PVA) is desirable, but it is a thermoplastic that undergoes thermal decomposition while releasing a gas containing oxygen at a relatively high temperature in a resin that is carbonized via a liquid phase suitable for carbon coating. Any resin can be used.

本発明のカーボンコートTiO2- TiN複合材料粒子は、リチウムイオンの拡散経路の短い、ナノメートルサイズでのカーボンと酸化チタンの二種類のリチウム挿入活物質を構築でき、かつ、高い導電性を有するTiNを基質にしていることで、導電性の低い酸化チタンとPVA由来カーボンの両方共にリチウム挿入脱離反応が高速で応答することができることから、内部抵抗の小さなチタン系材料リチウムイオン電池電極またはキャパシタ電極として用いることができる。 The carbon-coated TiO 2 -TiN composite particles of the present invention can construct two types of lithium insertion active materials of carbon and titanium oxide in a nanometer size with a short lithium ion diffusion path and have high conductivity. Since TiN is used as a substrate, both low-conductivity titanium oxide and PVA-derived carbon can respond to lithium insertion and desorption at high speed, so titanium-based materials with low internal resistance Lithium ion battery electrodes or capacitors It can be used as an electrode.

本発明の概要を図1に示す。
本発明は、黒鉛の約50倍、金属に匹敵する導電性材料である窒化チタンを、熱分解時に酸化性ガスを生じる熱可塑性樹脂とともに加熱することで、カーボン被覆窒化チタンを合成し、内部抵抗の小さな電極として用いることである。
すなわち、カーボン被覆時に生じた酸化性ガスによって窒化チタン粒子の表面層を酸化し、リチウム挿入活物質である酸化チタンに変換し、その上からカーボン被覆を行う直接合成法により、カーボンコートTiO2- TiN複合材料を合成する。
このことにより、高導電性材料TiNの上に、リチウム電池活物質TiO2領域を作製し、さらにその表面に電位窓の広いカーボン材料活物質を重ねることで、ひとつの粒子内で出力・起電力に好適な機能をそれぞれ傾斜配置したチタン系電極活物質とすることができる。
結果として、出力に関しては、非常に高い導電性のTiNの表面層のみがリチウム拡散距離の短いTiO2層となるため、小さな内部抵抗と瞬時のイオンの出し入れが可能となり、高出力を得ることが見込まれる。起電力に関しては、電解液に濡れる部分をカーボンで覆うため、TiO2よりもより卑な電位で動作を可能とし、かつ、カーボン自身もその卑な電位でリチウムの挿入脱離特性を有するため、二段階の電位での電池反応が期待でき、起電力を大きくすることが可能となる。
An outline of the present invention is shown in FIG.
The present invention synthesizes carbon-coated titanium nitride by heating titanium nitride, which is a conductive material comparable to metal, about 50 times that of graphite, together with a thermoplastic resin that generates an oxidizing gas during thermal decomposition, and has an internal resistance. It is used as a small electrode.
That is, the surface layer of titanium nitride particles is oxidized by an oxidizing gas generated during carbon coating, converted to titanium oxide, which is a lithium insertion active material, and then carbon coated on the carbon coating TiO 2 − Synthesize TiN composite material.
As a result, the TiO 2 region of the lithium battery active material is fabricated on the highly conductive material TiN, and the carbon material active material with a wide potential window is superimposed on the surface, so that the output and electromotive force within one particle. It is possible to obtain a titanium-based electrode active material in which the functions suitable for each are inclined.
As a result, regarding the output, only the surface layer of very high conductivity TiN becomes a TiO 2 layer with a short lithium diffusion distance, so that a small internal resistance and instantaneous ions can be taken in and out, and a high output can be obtained. Expected. As for the electromotive force, since the portion wetted by the electrolytic solution is covered with carbon, it is possible to operate at a lower potential than TiO 2 , and the carbon itself has lithium insertion / extraction characteristics at the lower potential, A battery reaction at a two-stage potential can be expected, and the electromotive force can be increased.

本発明で用いる窒化チタン微粒子は、窒化チタン微粒子であればなんでも良く、純度95%以上のものが望ましく、平均粒子径は0.01〜5μメートル、とくに粒子径の小さいものを入手できれば、改質可能な表面積を大きくすることができるので、高出力に加え、容量の増加を期待できる。
本発明のカーボンコートTiO2- TiN三成分系リチウム電池電極材用粒子の製造方法において用いる不活性ガスは、ヘリウム、ネオン、アルゴン等の希ガス元素、窒素等を挙げることができるが、経済的には窒素で十分である。
本発明のカーボンコートTiO2- TiN三成分系リチウム電池電極材用粒子の製造方法において用いる熱分解時に酸化性ガスを生じる熱可塑性樹脂は、とくに液相を経由して炭素化するタイプの熱可塑性樹脂がカーボン被覆には好ましいことから、とくにポリビニルアルコール(PVA)を好ましく用いることができる。
次に実施例を示すが、本発明はこれに拘束されるものではない。
The titanium nitride fine particles used in the present invention may be anything as long as they are titanium nitride fine particles, and those having a purity of 95% or more are desirable, and the average particle size is 0.01 to 5 μm. Since the possible surface area can be increased, an increase in capacity can be expected in addition to high output.
Examples of the inert gas used in the method for producing particles for carbon-coated TiO 2 -TiN ternary lithium battery electrode material according to the present invention include rare gas elements such as helium, neon, and argon, and nitrogen. Nitrogen is sufficient for this.
The thermoplastic resin that generates an oxidizing gas at the time of thermal decomposition used in the method for producing particles for carbon-coated TiO 2 -TiN ternary lithium battery electrode material of the present invention is a thermoplastic that is particularly carbonized via a liquid phase. Since the resin is preferable for carbon coating, polyvinyl alcohol (PVA) can be particularly preferably used.
Next, although an Example is shown, this invention is not restrained by this.

(カーボンコートTiO2- TiN三成分系リチウム電池電極材用粒子の製造)
添川工業製窒化チタン(TiN:99%、平均粒径1.43?m)とポリビニルアルコール(PVA:和光純薬、平均重合度3100〜3900)を、質量比1:1で混合し、純窒素下、昇温速度10℃/min.で900℃まで加熱・1時間保持することで、カーボンコートTiO2- TiN三成分系リチウム電池電極材用粒子を得た。以下、PVA-TiN(実施例1)とする。
また、本発明の試料の特徴を明確化するための比較試料として、表1のように5種の比較例を用意した。

Figure 2010129440
(Manufacture of particles for carbon coated TiO 2 -TiN ternary lithium battery electrode material)
Soekawa Kogyo's titanium nitride (TiN: 99%, average particle size 1.43? M) and polyvinyl alcohol (PVA: Wako Pure Chemical Industries, average polymerization degree 3100-3900) are mixed at a mass ratio of 1: 1, and under pure nitrogen, By heating to 900 ° C. at a rate of temperature increase of 10 ° C./min and holding for 1 hour, carbon coated TiO 2 -TiN ternary lithium battery electrode material particles were obtained. Hereinafter, it is referred to as PVA-TiN (Example 1).
As comparative samples for clarifying the characteristics of the sample of the present invention, five comparative examples were prepared as shown in Table 1.
Figure 2010129440

(電極特性評価法)
電気化学測定用の電極は、表1の試料を、10wt.%のポリフッ化ビニリデン(PVdF)とともにN-メチルピロリドン中で混合したスラリーをニッケルメッシュ上に塗布、150℃で乾燥・圧延して得た。これらの電極を作用極、リチウム金属箔(本城金属)を対極と参照極に用い、1MのLiBF4を溶かしたエチレンカーボネート/ジエチルカーボネート(EC:DEC=50:50、富山薬品工業)の電解液中で、サイクリックボルタンメトリーの測定を行った。 図2に、表1に示した本発明のTiN-PVA、および比較例5試料のサイクリックボルタモグラム(CV)を示す。
(Electrode property evaluation method)
Electrodes for electrochemical measurements were obtained by applying a slurry of Table 1 mixed with 10 wt.% Polyvinylidene fluoride (PVdF) in N-methylpyrrolidone onto a nickel mesh, drying and rolling at 150 ° C. It was. Using these electrodes as working electrode, lithium metal foil (Honjo Metal) as counter electrode and reference electrode, electrolyte solution of ethylene carbonate / diethyl carbonate (EC: DEC = 50: 50, Toyama Pharmaceutical) dissolving 1M LiBF4 Among them, cyclic voltammetry was measured. FIG. 2 shows a cyclic voltammogram (CV) of the TiN-PVA of the present invention shown in Table 1 and the sample of Comparative Example 5.

(実施例1の電極特性)
図2 (a)において、TiN-PVA(実施例1)は1.5−2.0Vの範囲で可逆的、かつ、シャープな、酸化チタンへのリチウム挿入脱離による酸化還元ピークと、0V−1V付近のブロードなカーボンへのリチウム挿入脱離の酸化還元ピークの両方を示していることがわかり、二種類のリチウム挿入活物質が窒化チタン上に存在していることを示している。
(Electrode characteristics of Example 1)
In FIG. 2 (a), TiN-PVA (Example 1) is reversible and sharp in the range of 1.5-2.0V, and has a redox peak due to lithium insertion / extraction from titanium oxide, and 0V- It can be seen that both of the redox peaks of lithium insertion and desorption to broad carbon around 1 V are shown, indicating that two types of lithium insertion active materials are present on titanium nitride.

(比較例1)<PVCによるカーボン被覆処理>
酸化性の水性ガスを熱分解時に発生させるPVAが本発明に有効であることを示すため、分子構造内に酸素を有しないポリ塩化ビニル(PVC)を用いた対照試料を比較とした。TiNとPVC(和光純薬、平均重合度1100)を、質量比1:1で混合し、純窒素下、昇温速度10℃/min.で900℃まで加熱・1時間保持することでカーボン被覆処理を行ったのち、TiN-PVCとした。図5(a)のように、TiN-PVC(比較例1)の電極特性においては、0V−1V付近のブロードなカーボンへのリチウム挿入脱離の酸化還元ピークのみがみられ、1.5−2.0Vの範囲での酸化チタンへのリチウム挿入脱離による酸化還元ピークがみられない。したがって、本発明は、熱分解時に酸化物を合成できる水性ガスを放出するPVAを用いることが重要であり、塩化水素ガスしか放出しないPVCでは本発明はなしえないことを示している。
(Comparative Example 1) <Carbon coating treatment with PVC>
A control sample using polyvinyl chloride (PVC) having no oxygen in the molecular structure was used as a comparison in order to show that PVA that generates oxidizing water during pyrolysis is effective for the present invention. Carbon coating by mixing TiN and PVC (Wako Pure Chemical Industries, average polymerization degree 1100) at a mass ratio of 1: 1, heating to 900 ° C at a heating rate of 10 ° C / min. Under pure nitrogen, and holding for 1 hour After the treatment, TiN-PVC was obtained. As shown in FIG. 5 (a), in the electrode characteristics of TiN-PVC (Comparative Example 1), only a redox peak of lithium insertion / extraction from a broad carbon near 0V-1V is observed. No redox peak due to lithium insertion / extraction from titanium oxide in the range of 2.0 V is observed. Therefore, it is important for the present invention to use PVA that releases water gas capable of synthesizing oxides during pyrolysis, which indicates that the present invention cannot be achieved with PVC that releases only hydrogen chloride gas.

(比較例2)<PVA由来カーボンの単なる混合>
TiNがカーボン被覆の反応時点で改質されることを示すため、900℃で焼成したPVA由来カーボンを5wt.%の割合で乳鉢でTiNに混合したもの、すなわち、TiNとは別にPVAを炭素化したものを、その900℃でのカーボン収率に基づいた割合でTiNに後から混入させた試料をTiN/PVAとし、比較に用いることで、TiNとPVAを同時に熱処理する本発明の特徴に対する対象実験とした。
図5(a)のように、TiN/PVA(比較例2)のCVにおいては、0V−1V付近のブロードなカーボンへのリチウム挿入脱離の酸化還元ピークのみがみられている。
したがって、酸化チタンへのリチウム挿入脱離による酸化還元ピークは、TiNをPVAと一緒に熱処理を行うことで初めて生じるものであることが示された。
また、0−1Vのピークについても、本発明のTiN-PVAの方が、別途混合によるTiN/PVAにくらべて大きいことから、被覆処理の効果によって、カーボンの表面積がより電解液に大きく露出され、電極に好適な構造にあることが判る。
(Comparative example 2) <Simple mixing of PVA-derived carbon>
In order to show that TiN is modified at the time of carbon coating reaction, PVA-derived carbon baked at 900 ° C is mixed with TiN in a mortar at a rate of 5 wt.%, That is, PVA is carbonized separately from TiN A sample that was later mixed in TiN at a rate based on the carbon yield at 900 ° C. was used as a TiN / PVA sample, and it was used for comparison to simultaneously heat treat TiN and PVA. It was an experiment.
As shown in FIG. 5 (a), in the CV of TiN / PVA (Comparative Example 2), only the redox peak of lithium insertion / extraction to broad carbon near 0V-1V is observed.
Therefore, it was shown that the oxidation-reduction peak due to lithium insertion / extraction from titanium oxide occurs only when TiN is heat-treated with PVA.
Also, regarding the 0-1V peak, the TiN-PVA of the present invention is larger than the separately mixed TiN / PVA, so that the carbon surface area is more exposed to the electrolyte due to the effect of the coating treatment. It can be seen that the structure is suitable for the electrode.

(比較例3)<未処理TiN>
TiN基材そのものがリチウム挿入挙動を示さないことを示すため、単独で評価を行った。図5(a)のように、TiN単独(比較例3)では酸化還元ピークが一切見られず、それ単体では可逆的な半電池反応を示していないことを示している。したがって、本発明の効果は、TiNの表面が、化学反応によって2種類の活物質によって覆われ、改質されたことを示すものである。
(Comparative Example 3) <Untreated TiN>
In order to show that the TiN substrate itself does not show lithium insertion behavior, it was evaluated alone. As shown in FIG. 5 (a), TiN alone (Comparative Example 3) shows no redox peak, indicating that it alone does not show a reversible half-cell reaction. Therefore, the effect of the present invention shows that the surface of TiN is covered and modified by two kinds of active materials by a chemical reaction.

(比較例4)<カーボン被覆TiO2
石原産業製酸化チタン(TiO2:ST-01)をPVAを用いてカーボン被覆処理したものをTiO2-PVAとし、カーボン被覆酸化チタンの電気化学特性を同定することで、本発明試料における酸化チタンの存在の証拠となる比較データを得た。図1 (b)において、TiO2-PVA(比較例4)では、酸化チタンへのリチウム挿入脱離によるブロードな酸化還元ピークのみが確認されており、カーボンのリチウム挿入脱離の可逆的ピークは見られない。これは、被覆カーボン、酸化チタン、ともに導電性が低く、高い導電性を有するTiN基材を含んでいないTiO2-PVAでは、カーボン層、酸化チタン層ともに高速の電極応答性が失われていることを意味しており、本発明によるTiN-PVAが被覆カーボン、酸化チタン両の酸化還元ピークを明確に示すことが、導電性の高いTiNを基材にしていることに起因することが判る。
(Comparative Example 4) <Carbon-coated TiO 2 >
Titanium oxide in the sample of the present invention is obtained by identifying the electrochemical characteristics of carbon-coated titanium oxide by using TiO 2 -PVA as a result of carbon coating of titanium oxide (TiO 2 : ST-01) manufactured by Ishihara Sangyo Co., Ltd. We obtained comparative data that proved the existence of. In FIG. 1 (b), in TiO 2 -PVA (Comparative Example 4), only a broad redox peak due to lithium insertion / extraction from titanium oxide is confirmed, and the reversible peak of carbon lithium insertion / extraction is can not see. This is because the coated carbon and titanium oxide have low conductivity, and in TiO 2 -PVA which does not contain a highly conductive TiN base material, the high-speed electrode response is lost in both the carbon layer and the titanium oxide layer. This means that the TiN-PVA according to the present invention clearly shows the redox peaks of both the coated carbon and the titanium oxide because it is based on TiN having high conductivity.

(比較例5)<カーボンブラック導電助剤混合TiO2
TiO2に10wt%のカーボンブラック(DENKA Black)を乳鉢で混合したものをTiO2/CBとし、典型的な酸化チタン電極として比較とした。
TiO2/CB(比較例5)においては、酸化チタンへのリチウム挿入脱離によるシャープな酸化還元ピークが得られている。これは、カーボンブラックが導電助剤として機能的に導電経路確保に働き、非導電性の酸化チタンの酸化還元応答性を高めている証拠であり、同じようなシャープなピークを示した本発明のTiN-PVAの高い電極応答性が、導電性TiN上にあることに起因することが判る。
(Comparative Example 5) <Carbon black conductive additive mixed TiO 2 >
A mixture of TiO 2 and 10 wt% carbon black (DENKA Black) in a mortar was designated as TiO 2 / CB, and a typical titanium oxide electrode was compared.
In TiO 2 / CB (Comparative Example 5), a sharp redox peak due to lithium insertion / extraction from titanium oxide is obtained. This is evidence that carbon black functionally secures the conductive path as a conductive auxiliary agent and enhances the redox responsiveness of non-conductive titanium oxide, and shows a similar sharp peak of the present invention. It can be seen that the high electrode responsiveness of TiN-PVA is attributed to being on the conductive TiN.

(走査電子顕微鏡写真)
図3に、発明の原料の窒化チタン粒子と本発明のTiN-PVAの走査電子顕微鏡写真を示す。カーボン被覆処理前後で形態は全く変わっていないことから、カーボン層は非常に薄く、TiN粒子の表面のみが改質されたことが判る。
(Scanning electron micrograph)
FIG. 3 shows scanning electron micrographs of the raw material titanium nitride particles and the TiN-PVA of the present invention. Since the form did not change at all before and after the carbon coating treatment, it can be seen that the carbon layer was very thin and only the surface of the TiN particles was modified.

(透過電子顕微鏡写真)
図4に、本発明のTiN-PVAの透過電子顕微鏡写真を示す。基材TiN表面にナノメートルサイズで非晶質層ができており、カーボンと酸化チタンの層が生成していることを示すものである。また、TiN粒子内部は、元の窒化チタン構造を保っており、カーボン被覆処理で粒子内部までは改質されないことを示している。
したがって、より小さなTiN粒子を原料に用いることで改質される表面積を増やし、TiNに対するカーボンとTiO2の割合を増やすことができ、容量を大きくすることが可能となることが判った。
(Transmission electron micrograph)
FIG. 4 shows a transmission electron micrograph of TiN-PVA of the present invention. An amorphous layer having a nanometer size is formed on the surface of the base material TiN, indicating that a carbon and titanium oxide layer is formed. In addition, the inside of the TiN particles maintains the original titanium nitride structure, indicating that the inside of the particles is not modified by the carbon coating treatment.
Therefore, it was found that by using smaller TiN particles as a raw material, the surface area to be modified can be increased, the ratio of carbon and TiO 2 to TiN can be increased, and the capacity can be increased.

(X線回折)
原料TiNとTiN-PVAのX線回折パターンを図5に示す。カーボン被覆処理前後で結晶構造に変化は全くなく、どちらも岩塩構造の窒化チタンの回折線のみが得られ、カーボンや酸化チタンのピークはほとんど確認できなかった。
したがって、カーボン被覆処理によってTiN粒子の表面のみが改質され、カーボン質相、酸化チタン相ともに、TiNのごく表面のみに少量生成し、高速の電気化学反応に応答していると考えることができる。
(X-ray diffraction)
The X-ray diffraction patterns of the raw materials TiN and TiN-PVA are shown in FIG. There was no change in the crystal structure before and after the carbon coating treatment, and only the diffraction lines of titanium nitride having a rock salt structure were obtained, and the peaks of carbon and titanium oxide were hardly confirmed.
Therefore, it can be considered that only the surface of TiN particles is modified by the carbon coating treatment, and both the carbonaceous phase and the titanium oxide phase are generated in a small amount only on the very surface of TiN and respond to high-speed electrochemical reaction. .

以上、サイクリックボルタモグラムと電子顕微鏡観察、X線回折法により、本発明の手法により、TiN粒子の表面部分にカーボンと酸化チタンのナノメートルサイズの薄い層が生成していることが示された。また、サイクリックボルタモグラムから、酸化チタンとカーボンの電気化学特性が得られるため、カーボン被覆TiO2-TiN複合活物質粒子であることが判った。比較例試料との比較から、熱分解時に酸化性ガスを放出する熱可塑性樹脂とTiNとを混合加熱処理することで得られるカーボン被覆粒子のみが、カーボンと酸化チタンの双方の電極特性を有した活物質粒子であることが判った。これらカーボンと酸化チタンは、導電性の高いTiN上に存在することで、高いリチウム挿入脱離の応答性を備えていることが判った。
一方、TiN粒子の内部は、合成・電気化学反応いずれにも寄与していないので、より小さなTiN粒子を用い、活物質層の割合を増やすことで、容量の改善が見込まれることも明確に示された。
As described above, it was shown that a thin nanometer-sized layer of carbon and titanium oxide was formed on the surface portion of the TiN particle by the method of the present invention by cyclic voltammogram, electron microscope observation, and X-ray diffraction method. From the cyclic voltammogram, it was found that the particles were carbon-coated TiO 2 —TiN composite active material particles because the electrochemical characteristics of titanium oxide and carbon were obtained. From the comparison with the comparative sample, only the carbon-coated particles obtained by mixing and heat-treating the thermoplastic resin and TiN that release the oxidizing gas during pyrolysis had both carbon and titanium oxide electrode characteristics. It was found to be active material particles. These carbon and titanium oxide were found to have high lithium insertion / extraction responsiveness by being present on highly conductive TiN.
On the other hand, the inside of TiN particles does not contribute to either synthesis or electrochemical reaction, so it is clearly shown that capacity can be improved by using smaller TiN particles and increasing the proportion of active material layer. It was done.

本発明のカーボンコートTiO2- TiN三成分系リチウム電池電極材用粒子は、大電流の出し入れを瞬時に、かつ、頻繁に繰り返し、軽量であることが求められる蓄電デバイス、たとえば、ハイブリット車や燃料電池車に搭載する回生エネルギー用電池、または、重機・工具における大出力リチウム電池、または、負極においてリチウムイオン挿入を動作メカニズムにするハイブリットキャパシタの電極材料として利用することができ、産業上の利用可能性が高いものである。 The particles for carbon-coated TiO 2 -TiN ternary lithium battery electrode material of the present invention are used for power storage devices that are required to be lightweight by instantaneously and frequently repeating large currents in and out, such as hybrid cars and fuels. It can be used as an electrode material for regenerative energy batteries mounted on battery cars, high-power lithium batteries in heavy machinery and tools, or hybrid capacitors that use lithium ion insertion as an operating mechanism in the negative electrode, and can be used industrially. It is highly probable.

本発明の概略図Schematic diagram of the present invention 表1の試料のサイクリックボルタモグラム(CV)Cyclic voltammogram (CV) of the sample in Table 1 本発明の原料の窒化チタン粒子と本発明の合成粒子の走査電子顕微鏡写真Scanning electron micrographs of raw material titanium nitride particles and synthetic particles of the present invention 本発明の合成粒子(三成分系活物質)の表面層の透過電子顕微鏡写真Transmission electron micrograph of the surface layer of the synthetic particles (ternary active material) of the present invention 本発明の合成粒子(三成分系活物質)のX線回折パターンX-ray diffraction pattern of the synthetic particle (ternary active material) of the present invention

Claims (5)

薄いカーボン層、当該カーボン層と窒化チタンとの間に存在する薄い酸化チタン層を有する窒化チタン微粒子からなることを特徴とするカーボンコートTiO2- TiN複合材料からなるリチウム電池またはハイブリットキャパシタ用電極材用粒子。 Lithium battery or hybrid capacitor electrode material comprising a carbon-coated TiO 2 -TiN composite material comprising a thin carbon layer, and titanium nitride fine particles having a thin titanium oxide layer present between the carbon layer and titanium nitride Particles. 薄いカーボン層及び薄い酸化チタン層が数ナノメートルの厚さであり、窒化チタン微粒子が0.01〜5μメートルである請求項1に記載したカーボンコートTiO2- TiN複合材料からなるリチウム電池またはハイブリットキャパシタ用電極材用粒子。 The lithium battery or hybrid comprising a carbon-coated TiO 2 -TiN composite material according to claim 1, wherein the thin carbon layer and the thin titanium oxide layer are several nanometers thick, and the titanium nitride fine particles are 0.01 to 5 µm. Particles for capacitor electrode materials. 窒化チタン微粒子を、熱分解時に酸化性ガスを生じる熱可塑性樹脂と共に加熱し、窒化チタン微粒子の表面に薄いカーボンの被覆層と同時に、酸化チタン領域を同時に形成することを特徴とするカーボンコートTiO2- TiN複合材料からなるリチウム電池またはハイブリットキャパシタ用電極材用粒子の製造方法。 Carbon-coated TiO 2 characterized in that titanium nitride fine particles are heated together with a thermoplastic resin that generates an oxidizing gas during thermal decomposition, and a titanium oxide region is formed simultaneously with a thin carbon coating layer on the surface of the titanium nitride fine particles. -A method for producing particles for electrode materials for lithium batteries or hybrid capacitors comprising a TiN composite material. 熱分解温度が800〜1000℃であり、加熱時間が0.5〜3時間、不活性ガスの存在下で行う請求項3に記載したカーボンコートTiO2- TiN複合材料からなるリチウム電池またはハイブリットキャパシタ用電極材用粒子の製造方法。 The lithium battery or hybrid capacitor comprising a carbon-coated TiO 2 -TiN composite material according to claim 3, wherein the thermal decomposition temperature is 800 to 1000 ° C, and the heating time is 0.5 to 3 hours in the presence of an inert gas. For producing particles for an electrode material for use in an automobile. 熱分解時に酸化性ガスを生じる熱可塑性樹脂が、ポリビニルアルコール(PVA)である請求項3又は請求項4に記載したカーボンコートTiO2- TiN複合材料からなるリチウム電池またはハイブリットキャパシタ用電極材用粒子の製造方法。
5. The electrode material for a lithium battery or a hybrid capacitor comprising a carbon-coated TiO 2 -TiN composite material according to claim 3 or 4, wherein the thermoplastic resin that generates an oxidizing gas upon pyrolysis is polyvinyl alcohol (PVA). Manufacturing method.
JP2008304272A 2008-11-28 2008-11-28 Particles for three-component electrode material for lithium battery or hybrid capacitor and method for producing the same Expired - Fee Related JP5273655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304272A JP5273655B2 (en) 2008-11-28 2008-11-28 Particles for three-component electrode material for lithium battery or hybrid capacitor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008304272A JP5273655B2 (en) 2008-11-28 2008-11-28 Particles for three-component electrode material for lithium battery or hybrid capacitor and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010129440A true JP2010129440A (en) 2010-06-10
JP5273655B2 JP5273655B2 (en) 2013-08-28

Family

ID=42329686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304272A Expired - Fee Related JP5273655B2 (en) 2008-11-28 2008-11-28 Particles for three-component electrode material for lithium battery or hybrid capacitor and method for producing the same

Country Status (1)

Country Link
JP (1) JP5273655B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014200076A1 (en) * 2013-06-14 2014-12-18 株式会社クラレ Non-stoichiometric titanium compound-carbon composite, method for producing same, negative electrode active material and lithium ion secondary battery
CN105761939A (en) * 2016-04-25 2016-07-13 辽宁鑫金铂科技有限公司 High specific capacitance capacitor cathode foil and film coating apparatus manufacturing the same
WO2016147404A1 (en) * 2015-03-19 2016-09-22 株式会社 東芝 Negative electrode active material, non-aqueous electrolyte cell, and cell pack
CN107749499A (en) * 2017-09-15 2018-03-02 福建翔丰华新能源材料有限公司 Application of the nano TiN as the additive for improving full battery heat dispersion

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63319262A (en) * 1987-06-23 1988-12-27 Onoda Cement Co Ltd Titanium nitride-based sintered body
JPH0945330A (en) * 1995-05-24 1997-02-14 Sharp Corp Nonaqueous secondary battery
JP2000251888A (en) * 1999-02-25 2000-09-14 Kyocera Corp Lithium battery
JP2001015111A (en) * 1999-04-30 2001-01-19 Hydro Quebec New high surface conductivity electrode material
JP2005161203A (en) * 2003-12-02 2005-06-23 Japan Science & Technology Agency Metal oxynitride electrode catalyst
JP2006032321A (en) * 2004-06-16 2006-02-02 Matsushita Electric Ind Co Ltd Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it
JP2006066084A (en) * 2004-08-24 2006-03-09 Konpon Kenkyusho:Kk Anode for lithium secondary battery and its utilization
JP2007115687A (en) * 2005-10-17 2007-05-10 Samsung Sdi Co Ltd Negative electrode active substance, method of manufacturing same, negative electrode and lithium battery adopting same
WO2007077870A1 (en) * 2005-12-27 2007-07-12 Matsushita Electric Industrial Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery using same
JP2010040480A (en) * 2008-08-08 2010-02-18 Oita Univ Material of electrode, electrode, lithium-ion battery, electric double-layered capacitor, manufacturing method for material of electrode

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63319262A (en) * 1987-06-23 1988-12-27 Onoda Cement Co Ltd Titanium nitride-based sintered body
JPH0945330A (en) * 1995-05-24 1997-02-14 Sharp Corp Nonaqueous secondary battery
JP2000251888A (en) * 1999-02-25 2000-09-14 Kyocera Corp Lithium battery
JP2001015111A (en) * 1999-04-30 2001-01-19 Hydro Quebec New high surface conductivity electrode material
JP2005161203A (en) * 2003-12-02 2005-06-23 Japan Science & Technology Agency Metal oxynitride electrode catalyst
JP2006032321A (en) * 2004-06-16 2006-02-02 Matsushita Electric Ind Co Ltd Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it
JP2006066084A (en) * 2004-08-24 2006-03-09 Konpon Kenkyusho:Kk Anode for lithium secondary battery and its utilization
JP2007115687A (en) * 2005-10-17 2007-05-10 Samsung Sdi Co Ltd Negative electrode active substance, method of manufacturing same, negative electrode and lithium battery adopting same
WO2007077870A1 (en) * 2005-12-27 2007-07-12 Matsushita Electric Industrial Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery using same
JP2010040480A (en) * 2008-08-08 2010-02-18 Oita Univ Material of electrode, electrode, lithium-ion battery, electric double-layered capacitor, manufacturing method for material of electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014200076A1 (en) * 2013-06-14 2014-12-18 株式会社クラレ Non-stoichiometric titanium compound-carbon composite, method for producing same, negative electrode active material and lithium ion secondary battery
JPWO2014200076A1 (en) * 2013-06-14 2017-02-23 株式会社クラレ Nonstoichiometric titanium compound / carbon composite, method for producing the same, negative electrode active material, and lithium ion secondary battery
US10276863B2 (en) 2013-06-14 2019-04-30 Kuraray Co., Ltd. Non-stoichiometric titanium compound-carbon composite, method for producing same, negative electrode active material and lithium ion secondary battery
WO2016147404A1 (en) * 2015-03-19 2016-09-22 株式会社 東芝 Negative electrode active material, non-aqueous electrolyte cell, and cell pack
JP6096984B2 (en) * 2015-03-19 2017-03-15 株式会社東芝 Negative electrode active material, non-aqueous electrolyte battery, battery pack and vehicle
JPWO2016147404A1 (en) * 2015-03-19 2017-04-27 株式会社東芝 Negative electrode active material, non-aqueous electrolyte battery, battery pack and vehicle
CN105761939A (en) * 2016-04-25 2016-07-13 辽宁鑫金铂科技有限公司 High specific capacitance capacitor cathode foil and film coating apparatus manufacturing the same
CN107749499A (en) * 2017-09-15 2018-03-02 福建翔丰华新能源材料有限公司 Application of the nano TiN as the additive for improving full battery heat dispersion

Also Published As

Publication number Publication date
JP5273655B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
Cao et al. Hierarchical three-dimensional flower-like Co 3 O 4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries
Li et al. MOF‐derived metal oxide composites for advanced electrochemical energy storage
Yan et al. Design, synthesis, and application of metal sulfides for Li–S batteries: progress and prospects
Chen et al. Biotemplated synthesis of three-dimensional porous MnO/CN nanocomposites from renewable rapeseed pollen: an anode material for lithium-ion batteries
Luo et al. Dual anode materials for lithium-and sodium-ion batteries
Qiu et al. MXenes nanocomposites for energy storage and conversion
Zeng et al. Architecture and performance of the novel sulfur host material based on Ti2O3 microspheres for lithium–sulfur batteries
Hu et al. Green and rational design of 3D layer-by-layer MnO x hierarchically mesoporous microcuboids from MOF templates for high-rate and long-life Li-ion batteries
Lee et al. Web-structured graphitic carbon fiber felt as an interlayer for rechargeable lithium-sulfur batteries with highly improved cycling performance
JP5675989B2 (en) Method for producing positive electrode material for lithium air secondary battery and lithium air secondary battery
JP6182901B2 (en) Method for producing carbon-sulfur composite
Hou et al. Lithium oxides precipitation in nonaqueous Li–air batteries
Jae et al. Raspberry-like hollow Ni/NiO nanospheres anchored on graphitic carbon sheets as anode material for lithium-ion batteries
Na et al. A Core–Shell Fe/Fe2O3 Nanowire as a High‐Performance Anode Material for Lithium‐Ion Batteries
Yu et al. Oxygen vacancy-rich MnO nanoflakes/N-doped carbon nanotubes modified separator enabling chemisorption and catalytic conversion of polysulfides for Li-S batteries
Wang et al. Compound-hierarchical-sphere LiNi0. 5Co0. 2Mn0. 3O2: synthesis, structure, and electrochemical characterization
Park et al. Synthesis of carbonaceous/carbon-free nanofibers consisted of Co3V2O8 nanocrystals for lithium-ion battery anode with ultralong cycle life
JP5427661B2 (en) Metal-air secondary battery
JP5273655B2 (en) Particles for three-component electrode material for lithium battery or hybrid capacitor and method for producing the same
Xu et al. Achieving Ultralong‐Cycle Zinc‐Ion Battery via Synergistically Electronic and Structural Regulation of a MnO2 Nanocrystal–Carbon Hybrid Framework
Chen et al. Synthesis of CuCo2O4 nanoparticles as an anode material with high performance for lithium-ion batteries
Kato et al. All 2D materials as electrodes for high power hybrid energy storage applications
Al-Hajri et al. Review on Recent Applications of Nitrogen‐Doped Carbon Materials in CO2 Capture and Energy Conversion and Storage
Yang et al. Hollow porous carbon nanospheres containing polar cobalt sulfide (Co9S8) nanocrystals as electrocatalytic interlayers for the reutilization of polysulfide in lithium–sulfur batteries
Li et al. Carbon nanotubes coupled with metal ion diffusion layers stabilize oxide conversion reactions in high-voltage lithium-ion batteries

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5273655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees