JP2010115756A - Precision grinding device - Google Patents

Precision grinding device Download PDF

Info

Publication number
JP2010115756A
JP2010115756A JP2008291662A JP2008291662A JP2010115756A JP 2010115756 A JP2010115756 A JP 2010115756A JP 2008291662 A JP2008291662 A JP 2008291662A JP 2008291662 A JP2008291662 A JP 2008291662A JP 2010115756 A JP2010115756 A JP 2010115756A
Authority
JP
Japan
Prior art keywords
grinding
grindstone
grinding wheel
bearing
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008291662A
Other languages
Japanese (ja)
Other versions
JP5260237B2 (en
Inventor
Etsuo Fujita
悦男 藤田
Fumihiro Sano
文宏 佐野
Tomio Kubo
富美夫 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Machine Tool Works Ltd
Original Assignee
Okamoto Machine Tool Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Machine Tool Works Ltd filed Critical Okamoto Machine Tool Works Ltd
Priority to JP2008291662A priority Critical patent/JP5260237B2/en
Publication of JP2010115756A publication Critical patent/JP2010115756A/en
Application granted granted Critical
Publication of JP5260237B2 publication Critical patent/JP5260237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-precision (nano-accuracy) grinding device. <P>SOLUTION: The grinding device 1 includes a grinding stage TS provided with a rotationally/directly movable grinding wheel axis 13 borne by a magnetic bearing and a static pressure water bearing, rotationally/directly movable complex actuators 16 and 18 to rotationally/directly move the grinding wheel axis, a position measurement means 85 to measure the travel distance of the grinding wheel axis, and a drive means 9 to linearly move the column 7, which fixes the grinding wheel axis 13, in the grinding wheel axis direction, and a work stage WS provided with a rotary holder 20 to hold the surface of a workpiece in the right angle direction against the grinding surface of a grinding wheel 14 borne by the grinding wheel axis and with a rotary drive means to rotationally drive the main axis of the rotary holder borne by the static pressure water bearing. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、磁気軸受と静圧水軸受により軸受けされる回転/直動可能な砥石軸と、この砥石軸に軸承される砥石に対し、直角方向に被研削物を保持する回転保持具を供える研削装置に関する。この研削装置は、半導体基板の溝切加工機、光学部品(レンズや光学部品金型)やセラミック製品表面の成形加工に適している。   The present invention provides a grindstone shaft that can be rotated / linearly supported by a magnetic bearing and a hydrostatic water bearing, and a rotating holder that holds an object to be ground in a direction perpendicular to the grindstone supported by the grindstone shaft. The present invention relates to a grinding apparatus. This grinding apparatus is suitable for a semiconductor substrate grooving machine, optical component (lens or optical component mold) and ceramic product surface forming.

砥石を回転させるスピンドル装置と、ワークを保持するワーク保持手段と、これらスピンドル装置の砥石とワーク保持手段に保持されたワークとを相対的に移動させる送り手段とを備えた内面円筒研削装置であって、前記スピンドル装置は、砥石を先端に取付けたスピンドルを、静圧気体軸受と磁気軸受とが、互いに兼用部分が生じるように複合化された静圧磁気複合軸受を介して、スピンドル装置本体に回転自在に設置し、前記スピンドルは、ラジアル軸受とアキシャル軸受とを介してスピンドル装置本体に設置し、前記ラジアル軸受を前記静圧磁気複合軸受とし、かつ、前記スピンドルを回転駆動する駆動源と、スピンドルの変位を求める変位測定手段とを設けた内面円筒研削装置は知られている(例えば、特許文献1参照。)。   An internal cylindrical grinding apparatus comprising a spindle device for rotating a grindstone, a workpiece holding means for holding a workpiece, and a feeding means for relatively moving the grindstone of the spindle device and the workpiece held by the workpiece holding means. The spindle device has a spindle with a grindstone attached to the spindle device body via a hydrostatic magnetic compound bearing in which a hydrostatic gas bearing and a magnetic bearing are combined so that a combined portion is generated. The spindle is installed in a main body of a spindle device via a radial bearing and an axial bearing, the radial bearing is the hydrostatic magnetic composite bearing, and a drive source that rotationally drives the spindle; 2. Description of the Related Art An internal cylindrical grinding apparatus provided with a displacement measuring means for determining the displacement of a spindle is known (for example, see Patent Document 1).

また、機械フレーム、前記機械フレーム上に設けたベースと、このベース上に設けられた第一セラミック製ガイドウエイ上を第一セラミック製スライドウエイがリニアモータ駆動により左右方向に直動する静圧水軸受直動ツールテーブル、前記静圧水軸受直動ツールテーブル上に設けた砥石台に、静圧水軸受で支持され複合アクチュエータにより回転および直動される砥石軸に平面研削砥石を回転自在に軸承させた砥石軸頭、前記機械フレーム上に設けたベースと、このベース上に前記第一セラミック製ガイドウエイに対してL字形状に設けられた第二セラミック製ガイドウエイ上を第二セラミック製スライドウエイがリニアモータ駆動により前後方向に直動する静圧水軸受直動ワークテーブル、および、前記静圧水軸受直動ワークテーブル上に設けたワーク主軸台に、静圧水軸受で水平方向に支持されアクチュエータにより回転駆動される主軸先端にワーク保持チャックテーブルを軸承させたワーク保持チャックを備える平面研削装置も知られている(例えば、特許文献2参照。)。   Further, a static pressure water in which a first ceramic slideway moves linearly in a lateral direction by a linear motor drive on a machine frame, a base provided on the machine frame, and a first ceramic guideway provided on the base. A bearing grinding tool is mounted on a grinding wheel base that is supported on a hydrostatic bearing and supported by a hydrostatic water bearing. A grinding wheel head, a base provided on the machine frame, and a second ceramic slide on a second ceramic guideway provided in an L shape with respect to the first ceramic guideway on the base. Hydrostatic bearing direct acting work table in which way moves linearly in the front-rear direction by linear motor drive, and said hydrostatic bearing direct acting work table There is also known a surface grinding apparatus provided with a workpiece holding chuck in which a workpiece holding chuck table is supported at the tip of a spindle that is supported by a hydrostatic water bearing in a horizontal direction and is driven to rotate by an actuator. , See Patent Document 2).

一方、円盤状の研削砥石と、被研削物(ワークピース)の回転軸に対して前記研削砥石の砥石回転軸が直交し、さらに前記被研削物上で接する前記研削砥石の回転方向が被研削物の回転方向と平行となるように配置された状態で、前記研削砥石を被研削物の半径方向及び回転軸方向に駆動させ、複数の不連続な曲面で構成される軸対称な非球面形状レンズを研削加工させる図5に示す研削装置も知られている(例えば、特許文献3参照。)。   On the other hand, the grinding wheel rotation axis of the grinding wheel is orthogonal to the rotation axis of the disk-shaped grinding wheel and the workpiece (workpiece), and the rotation direction of the grinding wheel that is in contact with the workpiece is ground. Axisymmetric aspherical shape composed of a plurality of discontinuous curved surfaces by driving the grinding wheel in the radial direction and the rotational axis direction of the object to be ground in a state of being arranged in parallel with the rotation direction of the object. A grinding apparatus shown in FIG. 5 for grinding a lens is also known (for example, see Patent Document 3).

さらに、被加工物の回転装置と、上記被加工物を加工する回転砥石を備えた砥石スピンドルと、上記砥石スピンドルの軸を円弧運動させる手段と、上記被加工物の回転軸と上記砥石スピンドルの円弧運動の中心軸間の距離を変化させる手段と、上記被加工物の回転角位置を検出する第1の検出器と、上記砥石スピンドルの円弧運動の角位置を検出する第2の検出器と、上記第1と第2の検出器で検出された二つの角位置信号に対応させて、予め蓄積手段に蓄積された制御データを読み出し、上記読み出された制御データに基づいて上記軸間距離を変化すべく構成した制御装置を有して構成したトーリック形状および非球面形状物体の加工装置において、上記被加工物の回転運動の中心軸の回転フレを検出する手段と、この検出された回転フレのデータを上記制御データへフィードバックし、上記軸間距離を変化させる手段を設けたことを特徴とするトーリック形状および非球面形状物体の加工装置も提案されている(例えば、特許文献4参照。)。
Furthermore, a rotating device for the workpiece, a grindstone spindle provided with a rotating grindstone for machining the workpiece, means for moving the axis of the grindstone spindle in an arc, a rotation shaft for the workpiece, and a grindstone spindle Means for changing the distance between the central axes of the arc motion, a first detector for detecting the rotational angular position of the workpiece, and a second detector for detecting the angular position of the arc motion of the grindstone spindle; The control data previously stored in the storage means is read in correspondence with the two angular position signals detected by the first and second detectors, and the inter-axis distance is read based on the read control data. In a processing apparatus for toric and aspherical objects configured with a control device configured to change the position of the workpiece, means for detecting rotational flutter of the central axis of the rotational motion of the workpiece, and the detected rotation Fure The data fed back to the control data, the processing device of toric shape and aspheric shape object, characterized in that a means for changing the distance between the shaft has also been proposed (e.g., see Patent Document 4.).

さらにまた、回転保持テーブルに保持された半導体基板表面にチップ切断ストリート(溝)を回転砥石により施削するダイシング装置も提案されている(例えば、特許文献5参照。)。   Furthermore, a dicing apparatus has also been proposed in which chip cutting streets (grooves) are abraded with a rotating grindstone on the surface of a semiconductor substrate held on a rotating holding table (see, for example, Patent Document 5).

研削砥石軸の静圧水軸受部材(ブッシング)として、軸受部材の内周面に円周方向に適宜の間隔をあけて複数の静圧ポケットが列設され、静圧ポケット以外の区域にランドが設けられ、軸受け部材には給水孔および排水孔が形成され、給水孔は一端側が外部の給水手段に連通されるとともに他端側が静圧ポケットに開口し、排水孔は一端側がランドに適宜開口するとともに他端側が大氣の吸引を防止するように排水経路に接続された自己補償型静圧水軸受部材も提案されている(例えば、特許文献6参照。)。   As a hydrostatic water bearing member (bushing) for a grinding wheel shaft, a plurality of hydrostatic pockets are arranged at appropriate intervals in the circumferential direction on the inner circumferential surface of the bearing member, and lands are formed in areas other than the hydrostatic pockets. The bearing member is formed with a water supply hole and a drainage hole. One end side of the water supply hole communicates with an external water supply means, the other end side opens into the static pressure pocket, and the drainage hole opens at one end side to the land as appropriate. At the same time, a self-compensating hydrostatic water bearing member whose other end is connected to a drainage path so as to prevent the suction of a large bowl has also been proposed (see, for example, Patent Document 6).

さらに、磁気軸受と静圧空気軸受により軸受けされる回転/直動可能なツール軸の移動距離測定装置も提案されている(例えば、特許文献7参照。)。   Furthermore, a moving distance measuring device for a rotatable / linearly movable tool shaft supported by a magnetic bearing and a hydrostatic air bearing has also been proposed (see, for example, Patent Document 7).

特開2000−24805号公報JP 2000-24805 A 特開2008−149434号公報JP 2008-149434 A 特開2000−237942号公報JP 2000-237942 A 特開2001−113451号公報JP 2001-113451 A 特開2006−303367号公報JP 2006-303367 A 米国特許第5,484,208号明細書US Pat. No. 5,484,208 米国特許出願公開第2007/0222401号明細書US Patent Application Publication No. 2007/0222401

砥石軸と被研削物とが直交して用いられる従来の溝加工装置や非球面レンズ研削加工装置においては、砥石軸の直進運動の駆動手段としてリニアモータやアクチュエータ、サーボモータ駆動ボールネジを備えるスライドウエイを利用していた。ナノ精密加工を施すためには、砥石の磨耗により研削加工中に砥石ドレッシング作業を行う必要があることもあった。本発明は、砥石軸と被研削物とが直交して用いられる従来のナノ精密研削装置において、砥石軸の直線方向の前後移動を遂行させる駆動手段を前記特許文献1および特許文献2に記載される磁気軸受による0.1〜1,000μmの移動と、砥石軸を固定する固定板のスライドウエイの移動手段による0.001〜1,000mmの移動に分け、被研削物の砥石による切り込みナノ加工を前記駆動手段による微量の移動により行わせしめるとともに、砥石軸の軸受構造として静圧水軸受を採用し、環境に優しい研削装置の実現を提供するものである。   In conventional grooving devices and aspherical lens grinding devices in which the grinding wheel shaft and workpiece are used orthogonally, a slide way having a linear motor, an actuator, and a servo motor driving ball screw as a drive means for the linear movement of the grinding wheel shaft. Was used. In order to perform nano precision machining, it was sometimes necessary to perform a grinding wheel dressing operation during grinding due to wear of the grinding wheel. In the conventional nano precision grinding apparatus in which the grindstone shaft and the object to be ground are used orthogonally, the present invention is described in Patent Document 1 and Patent Document 2 as drive means for performing the longitudinal movement of the grindstone shaft in the linear direction. Nanomachining by cutting a workpiece with a grindstone by dividing it into 0.1 to 1,000 μm by a magnetic bearing and 0.001 to 1,000 mm by a moving means of a slide way of a fixed plate for fixing a grindstone shaft. Is carried out by a small amount of movement by the drive means, and a hydrostatic bearing is adopted as the bearing structure of the grindstone shaft to provide an environment-friendly grinding apparatus.

請求項1の発明は、磁気軸受と静圧水軸受により軸受けされる回転/直動可能な砥石軸、前記砥石軸を回転/直動させる回転/直動複合アクチュエータ、前記砥石軸の直線移動距離を測定する位置測定手段、および、前記砥石軸を固定するコラムを前記砥石軸方向に直線移動させる駆動手段を備える研削ステージと、
前記砥石軸に軸承される砥石の研削加工面に対し、被研削物表面を直角方向に保持する回転保持具、および、静圧水軸受で軸受けされた前記回転保持具の主軸を回転駆動させる回転駆動手段を備えるワークステージ、を供える研削装置を提供するものである。
According to the first aspect of the present invention, there is provided a grindstone shaft capable of rotation / linear movement supported by a magnetic bearing and a hydrostatic water bearing, a combined rotary / linear motion actuator for rotating / linearly moving the grindstone shaft, and a linear movement distance of the grindstone shaft. A grinding stage comprising: a position measuring means for measuring the angle; and a driving means for linearly moving a column for fixing the grindstone axis in the direction of the grindstone axis;
A rotating holder that holds the surface of the object to be ground in a direction perpendicular to the grinding surface of the grindstone that is supported by the grindstone shaft, and a rotation that rotates the main shaft of the rotating holder that is supported by a hydrostatic bearing. The present invention provides a grinding apparatus provided with a work stage provided with a driving means.

砥石軸の直線方向の移動を遂行させる駆動を、磁気軸受による0.1〜1,000μmの移動による被研削物への精密研削加工と、砥石軸を固定する固定板のスライドウエイの移動手段による被研削物への接近および粗研削加工切り込みの0.001〜1,000mmの移動に振り分けることにより、砥石の磨耗により生じる砥石寸法ミクロンオーダーの減少の位置補正を磁気軸受により補償できるので、研削加工された被研削物の寸法精度が向上する。また、砥石軸の軸受構造として静圧水軸受を採用することにより環境に優しい研削装置とすることができる。   The drive for carrying out the movement of the grinding wheel shaft in the linear direction is carried out by means of precision grinding to the workpiece by movement of 0.1 to 1,000 μm by the magnetic bearing and moving means of the slide way of the fixed plate for fixing the grinding wheel shaft. By allocating to 0.001 to 1,000 mm movement of the approach to the workpiece and rough grinding cut, the position correction of the decrease in the grinding wheel dimension micron order caused by the grinding wheel wear can be compensated by the magnetic bearing, so grinding The dimensional accuracy of the workpiece to be ground is improved. Moreover, it can be set as an environment-friendly grinding apparatus by employ | adopting a hydrostatic water bearing as a bearing structure of a grindstone shaft.

以下、図を用いて本発明をさらに詳細に説明する。図1はロータリー研削装置の要部を示す斜視図、図2は研削ステージの側面断面図、図3はワークステージの正面断面図、図4はワークテーブルの主軸軸受けに用いたブッシングの斜視図、および、図5は非球面形状レンズ研削装置の斜視図(公知)である。   Hereinafter, the present invention will be described in more detail with reference to the drawings. 1 is a perspective view showing a main part of a rotary grinding apparatus, FIG. 2 is a side sectional view of a grinding stage, FIG. 3 is a front sectional view of a work stage, and FIG. 4 is a perspective view of a bushing used for a spindle bearing of a work table, FIG. 5 is a perspective view (known) of an aspherical lens grinding apparatus.

図1に示す精密研削装置1は、磁気軸受と静圧水軸受により軸受けされる回転/直動可能な砥石軸13、砥石14をこの砥石軸に軸承させた研削ヘッド10、前記砥石軸の砥石軸方向の位置を測定する位置測定手段85、前記砥石軸を固定する固定板6をコラム7に設けた案内ガイド8上をボールネジ9aの回転駆動で昇降させる駆動手段9、および、このコラム7を搭載するツールテーブル80をガイドウエイ80a上に前記砥石軸方向の前後方向(Y軸方向)に移動させる駆動手段81,82、砥石軸外周面と、ブッシング間の隙間距離を測定する変位センサープローブ86,86を備える研削ステージTSと、前記砥石軸に軸承される砥石14に対し、直角方向に被研削物を保持する回転保持具であるポーラスセラミック製ロータリーチャックテーブル21、および、前記ポーラスセラミック製ロータリーチャックテーブルの回転主軸を回転駆動させる回転駆動手段、およびロータリーテーブル機構20を搭載するスライドウエイ90、およびこのスライドウエイを前記ツールテーブル80の移動方向に対して直交する方向(X軸方向)にガイドウエイ91上を滑走させるリニアモータ91,92を具備するワークステージWSより構成される。   A precision grinding apparatus 1 shown in FIG. 1 includes a grindstone shaft 13 that is supported by a magnetic bearing and a hydrostatic water bearing and is capable of rotating / linearly moving, a grinding head 10 having a grindstone 14 supported by the grindstone shaft, and a grindstone of the grindstone shaft. Position measuring means 85 for measuring the position in the axial direction, driving means 9 for raising and lowering the guide guide 8 provided with the fixing plate 6 for fixing the grinding wheel shaft on the column 7 by the rotational drive of the ball screw 9a, and the column 7 Displacement sensor probe 86 for measuring the clearance distance between the driving means 81 and 82 for moving the mounted tool table 80 on the guideway 80a in the front-rear direction (Y-axis direction) in the grinding wheel axis direction, and the grinding wheel shaft outer peripheral surface. , 86 and a porous ceramic rotary which is a rotary holding tool for holding an object to be ground in a direction perpendicular to the grinding wheel 14 supported by the grinding wheel shaft. The slide table 90, the rotary drive means for rotating the rotary spindle of the porous ceramic rotary chuck table, the slide way 90 on which the rotary table mechanism 20 is mounted, and the slide way with respect to the moving direction of the tool table 80. The work stage WS includes linear motors 91 and 92 that slide on the guideway 91 in the orthogonal direction (X-axis direction).

上記ロータリーチャックテーブル21上に載置される被研削物表面と研削砥石14の外周面とは、互いに直交するよう配置される。砥石14と被研削物とが当接する面には研削液供給ノズル14aより研削液が供給される。砥石軸13の回転数は、被研削物の種類により500〜20,000rpmの範囲から選択できる。   The surface of the object to be ground placed on the rotary chuck table 21 and the outer peripheral surface of the grinding wheel 14 are arranged so as to be orthogonal to each other. The grinding liquid is supplied from the grinding liquid supply nozzle 14a to the surface where the grindstone 14 and the object to be ground come into contact. The rotation speed of the grindstone shaft 13 can be selected from a range of 500 to 20,000 rpm depending on the type of the object to be ground.

また、前記コラム7を搭載するツールテーブル80をガイドウエイ80a上に滑走させる駆動手段81,82は、前述の特許文献2の図3に開示されている静圧水軸受けのスライドウエイをガイドウエイ上で移動させるリニアモータ手段が利用できる。   Further, the driving means 81 and 82 for sliding the tool table 80 on which the column 7 is mounted on the guide way 80a are arranged on the guide way with the slide way of the hydrostatic bearing disclosed in FIG. The linear motor means to move can be used.

図2に示すように、研削ステージTSは、磁気軸受と静圧水軸受により軸受けされる回転/直動可能な砥石軸13、前記砥石軸を回転/直動させる回転/直動複合アクチュエータ16,18、前記砥石軸13の移動距離を測定する位置測定手段85、および、前記砥石軸を固定する固定板を直線移動させる駆動手段を備える。   As shown in FIG. 2, the grinding stage TS includes a rotating / directly moving grindstone shaft 13 that is supported by a magnetic bearing and a hydrostatic water bearing, and a rotary / direct acting combined actuator 16 that rotates / directly moves the grindstone shaft. 18. A position measuring means 85 for measuring the moving distance of the grindstone shaft 13 and a driving means for linearly moving a fixed plate for fixing the grindstone shaft.

砥石軸13は円筒状ハウジング15により囲繞され、砥石軸13の後方部は、静圧水ラジアル軸受される。円筒状ハウジング内壁には、水通路15eが設けられ、給水口15aより水は水通路15eへ供給される。円筒状ハウジング15内壁と砥石軸13外の間を流れて砥石軸13を冷却した水は、バキューム吸引管15bより排出される。基板研削終了後は、圧空供給口15cより加圧空気が供給され水通路15e内に残留する冷却水および水滴をドレン管15dより円筒状ハウジング15外へ放出する構造としている。   The grindstone shaft 13 is surrounded by a cylindrical housing 15, and the rear portion of the grindstone shaft 13 is hydrostatically supported by a radial hydrostatic bearing. A water passage 15e is provided on the inner wall of the cylindrical housing, and water is supplied from the water supply port 15a to the water passage 15e. The water that flows between the inner wall of the cylindrical housing 15 and the outside of the grindstone shaft 13 and cools the grindstone shaft 13 is discharged from the vacuum suction pipe 15b. After the substrate grinding is finished, pressurized air is supplied from the compressed air supply port 15c, and cooling water and water droplets remaining in the water passage 15e are discharged from the cylindrical housing 15 through the drain pipe 15d.

砥石軸13の中央部には、砥石軸13を水平方向に回転させるビルトインモータ16が設置され、ビルトインモータ16は円筒状ハウジング15に設けられた冷却液導入パイプ15fより供給された冷却液が円筒状ハウジング15内壁に設けられた冷却液流路15hを通って排出管15gへ導かれる。   A built-in motor 16 that rotates the grindstone shaft 13 in the horizontal direction is installed at the center of the grindstone shaft 13, and the built-in motor 16 is cylindrical with coolant supplied from a coolant introduction pipe 15 f provided in the cylindrical housing 15. Is led to the discharge pipe 15g through the coolant flow path 15h provided on the inner wall of the cylindrical housing 15.

前記ラジアル軸受される下方部室とビルトインモータ16の冷却液室とは、リップシール15jによりそれぞれの室に供給される液体が混合しないよう区画されている。   The lower chamber, which is radially supported, and the coolant chamber of the built-in motor 16 are partitioned by the lip seal 15j so that the liquid supplied to the respective chambers does not mix.

砥石軸13の後方には、砥石軸13の上端に設けられたボールターゲット17の位置検出素子である位置センサ85を搭載し、可動子(永久磁石)18aを固定した砥石軸13を前後方向(y軸方向)に0.1〜1,500μm程度移動させるためのコイル18bが設置されている。   A position sensor 85, which is a position detection element of the ball target 17 provided at the upper end of the grindstone shaft 13, is mounted behind the grindstone shaft 13, and the grindstone shaft 13 to which the mover (permanent magnet) 18a is fixed is moved in the front-rear direction ( A coil 18b for moving about 0.1 to 1,500 μm in the y-axis direction) is provided.

前記ビルトインモータ16で砥石軸13の回転を、可動子18aとコイル18bとの組み合わせのモータ18で砥石軸13の1.5mm以下のスラスト直動を行うことができ、これらモータ16,18を合わせて回転/直線複合アクチュエータと呼ぶ。   The built-in motor 16 can rotate the grindstone shaft 13, and the motor 18, which is a combination of the mover 18 a and the coil 18 b, can perform a thrust linear movement of 1.5 mm or less of the grindstone shaft 13. This is called a combined rotary / linear actuator.

図3に示すように前記ワークチャックロータリーテーブル機構20は、ポーラスセラミック製ロータリーチャックテーブル21が中空スピンドル22により軸承され、その中空スピンドル22が静圧水軸受のセラミック製円筒状ブッシング23により軸受けされており、前記ポーラスセラミック製ロータリーチャックテーブル21の水平方向表面が前記砥石軸13に軸承された砥石14の外周面と直交するよう設けられている。中空スピンドル22の下端はロータリージョイント29により図示されていない真空ポンプ、コンプレッサ、純水供給ポンプに接続する3本の供給管に接続されている。3本の供給管には切り替え弁が取り付けられ、基板加工プロセスに応じてワークピース吸着時の減圧、基板をポーラスセラミック製ロータリーチャックテーブルより外すときの加圧、ポーラスセラミック製ロータリーチャックテーブルの洗浄時の加圧水供給時に切り替える。   As shown in FIG. 3, the work chuck rotary table mechanism 20 has a porous ceramic rotary chuck table 21 supported by a hollow spindle 22, and the hollow spindle 22 is supported by a ceramic cylindrical bushing 23 of a hydrostatic bearing. The horizontal surface of the porous ceramic rotary chuck table 21 is provided so as to be orthogonal to the outer peripheral surface of the grindstone 14 supported by the grindstone shaft 13. The lower end of the hollow spindle 22 is connected to three supply pipes connected to a vacuum pump, a compressor, and a pure water supply pump (not shown) by a rotary joint 29. A switching valve is attached to the three supply pipes. Decompression during workpiece adsorption according to the substrate processing process, pressurization when the substrate is removed from the porous ceramic rotary chuck table, and cleaning of the porous ceramic rotary chuck table Switch when supplying pressurized water.

図4は、ワークテーブルの中空スピンドル22の静圧水軸受けに用いたブッシング23の斜視図である。   FIG. 4 is a perspective view of the bushing 23 used for the hydrostatic bearing of the hollow spindle 22 of the work table.

図3に示すワークチャックロータリーテーブル機構20は、ポーラスセラミック製ロータリーチャックテーブル21を軸承する中空スピンドル22が、内周壁に水通路23aが設けられた炭化珪素セラミック製円筒状ブッシング23と、この円筒状SCセラミック製ブッシュの水通路23aに水を供給する水供給口24a、排水する減圧排出口24b、前記水通路23aに残存する水をドレン排出口24dよりドレン抜きするために圧空を供給する圧空供給口24cを有する円筒状ハウジング部材24と、中空スピンドル22の上方に設けたスラスト軸受25aおよび中空スピンドル22の中央部に設けたラジアル軸受25bと、前記中空スピンドル22の下方部に設けた中空スピンドル回転駆動機構であるビルトインモータ27、エンコーダ28および中空スピンドル22下端で連結されるロータリージョイント29、ならびに、このロータリージョイント29を介して前記中空スピンドル22管内の流体を減圧する減圧機構である真空ポンプ、中空スピンドル管内を加圧する加圧気体供給機構であるコンプレッサおよび前記中空スピンドル22管内に純水を供給する給水ポンプに接続される管22a,22bを備える。 A work chuck rotary table mechanism 20 shown in FIG. 3 includes a hollow spindle 22 that supports a porous ceramic rotary chuck table 21, a silicon carbide ceramic cylindrical bushing 23 having an inner peripheral wall provided with a water passage 23 a, and the cylindrical shape. supplies S i C ceramic bushing of the water passage 23a to the water supply port 24a for supplying water, vacuum outlet 24b for draining, the pressure to drainage from the water drain port 24d remaining in the water passage 23a A cylindrical housing member 24 having a compressed air supply port 24 c, a thrust bearing 25 a provided above the hollow spindle 22, a radial bearing 25 b provided at the center of the hollow spindle 22, and a hollow provided below the hollow spindle 22 Built-in motor 27, which is a spindle rotation drive mechanism, A rotary joint 29 connected at the lower end of the encoder 28 and the hollow spindle 22, a vacuum pump that is a pressure reducing mechanism for depressurizing the fluid in the pipe of the hollow spindle 22 through the rotary joint 29, and pressurizing the inside of the hollow spindle pipe Pipes 22a and 22b connected to a compressor as a gas supply mechanism and a water supply pump for supplying pure water into the hollow spindle 22 pipe are provided.

上記中空スピンドル22および円筒状ブッシュ23の素材は、炭化珪素、窒化珪素、酸化珪素、アルミナ、ジルコニアなどのセラミックが好ましいが、従来のステンレスあるいはクロムメッキ鋼製スピンドル表面をセラミック化学蒸着で100〜500μm厚コーティングしたものでもよい。   The material of the hollow spindle 22 and the cylindrical bush 23 is preferably ceramic such as silicon carbide, silicon nitride, silicon oxide, alumina, zirconia, etc., but the surface of a conventional stainless steel or chrome plated steel spindle is 100 to 500 μm by ceramic chemical vapor deposition. A thick coating may be used.

前記スラスト軸受25aの水通路には、8箇所設けられている純水供給ノズル25aより純水が供給され、排出管25aより排水する。ラジアル軸受25bの水通路23aには、前記水供給口24aより水が給水され、減圧排出口24bより排水される。ビルトインモータ27の冷却水は、給水口26aより給水され、排出口26bより排水される。 Wherein the water passage of the thrust bearing 25a, the pure water from the pure water supply nozzle 25a 1 provided eight supplied, draining from the discharge pipe 25a 2. Water is supplied to the water passage 23a of the radial bearing 25b from the water supply port 24a and discharged from the decompression / discharge port 24b. The cooling water of the built-in motor 27 is supplied from the water supply port 26a and drained from the discharge port 26b.

被研削物は、ポーラスセラミック製ロータリーチャックテーブル21上に載置され、真空ポンプを稼動させてワークピースをポーラスセラミック製テーブル21上に位置固定し、ついで、ビルトインモータ27で中空スピンドル22を水平方向に回転させる。中空スピンドル22の回転数は10〜500rpmまで可能で、半導体基板や光学部品研削時は、50〜200rpmが一般的である。   An object to be ground is placed on a porous ceramic rotary chuck table 21, a vacuum pump is operated to fix the workpiece on the porous ceramic table 21, and the built-in motor 27 moves the hollow spindle 22 in the horizontal direction. Rotate to The number of revolutions of the hollow spindle 22 can be up to 10 to 500 rpm, and is generally 50 to 200 rpm when grinding a semiconductor substrate or optical component.

図1に示すロータリー研削装置1を用いてガラス材(被研削物)を軸対称非球面研削加工する工程を以下に説明する。   A process of axisymmetric aspherical grinding of a glass material (object to be ground) using the rotary grinding apparatus 1 shown in FIG. 1 will be described below.

1)ポーラスセラミック製ロータリーチャックテーブル21上に被研削物を載せ、バキューム吸着して被研削物を固定させる。   1) An object to be ground is placed on a porous chuck table 21 made of porous ceramic, and the object to be ground is fixed by vacuum suction.

2)ロータリーテーブル機構20を搭載するスライドウエイ90をリニアモータ91,92により左右方向に移動させ、ポーラスセラミック製ロータリーチャックテーブル21を研削開始位置へ移動させる。   2) The slide way 90 on which the rotary table mechanism 20 is mounted is moved left and right by the linear motors 91 and 92, and the porous ceramic rotary chuck table 21 is moved to the grinding start position.

3)ビルトインモータ27を駆動して中空スピンドル22を200rpmの回転数で回転させる。   3) The built-in motor 27 is driven to rotate the hollow spindle 22 at a rotational speed of 200 rpm.

4)コラム7を搭載するツールテーブツ80をリニアモータ81,82駆動により前進させ、砥石軸13に回転自在に固定された砥石14がポーラスセラミック製ロータリーチャックテーブル21上の所定位置となる砥石軸研削開始位置に移動させる。   4) The tool table 80 on which the column 7 is mounted is advanced by driving the linear motors 81 and 82, and the grindstone shaft grinding is started at which the grindstone 14 rotatably fixed to the grindstone shaft 13 becomes a predetermined position on the porous ceramic rotary chuck table 21. Move to position.

5)レジノイドダイヤモンド砥石14を備える砥石軸13をビルトインモータ16で200rpmの回転数で回転させる。   5) The grindstone shaft 13 provided with the resinoid diamond grindstone 14 is rotated by the built-in motor 16 at a rotation speed of 200 rpm.

6)サーボモータ9を駆動させて砥石軸に軸承された回転砥石14を被研削物に当接させて切り込み開始する。   6) The servo motor 9 is driven to bring the rotating grindstone 14 supported by the grindstone shaft into contact with the workpiece to start cutting.

7)以下、ロータリー研削装置1の数値制御装置により移動を管理される砥石軸昇降(Z軸方向)サーボモータ9、砥石軸13前後(Y軸方向)移動駆動手段81,82、および、ポーラスセラミック製テーブル21の左右方向(X軸方向)移動手段91,92を利用し、砥石14と被研削物の相対的な移動により被研削物の研削加工を行う。研削加工の際、供給ノズル14aより研削液が砥石外周面と被研削物表面間に供給され、砥石と被研削物を冷却する。   7) Hereinafter, the grinding wheel shaft raising / lowering (Z-axis direction) servo motor 9 whose movement is managed by the numerical control device of the rotary grinding device 1, the grinding wheel shaft 13 front and rear (Y-axis direction) movement driving means 81 and 82, and porous ceramics The left and right direction (X-axis direction) moving means 91 and 92 of the table 21 are used to grind the workpiece by relative movement of the grindstone 14 and the workpiece. At the time of grinding, the grinding liquid is supplied from the supply nozzle 14a between the outer peripheral surface of the grindstone and the surface of the workpiece to cool the grindstone and the workpiece.

8)研削加工中、砥石のY軸−リニアースケール位置のパルス信号を受けて発信された砥石14のY−軸位置数値と、位置センサ85から発信される砥石14のY−軸位置数値間に誤差があるときは、その誤差数値を補償するよう磁気軸受の可動子18aを固定した砥石軸13をコイル18bにより移動させる。   8) During grinding, between the Y-axis position value of the grindstone 14 transmitted in response to the pulse signal of the Y-axis-linear scale position of the grindstone and the Y-axis position value of the grindstone 14 transmitted from the position sensor 85 When there is an error, the grindstone shaft 13 on which the mover 18a of the magnetic bearing is fixed is moved by the coil 18b so as to compensate for the error value.

9)被研削物の研削加工終了後は、固定板6昇降機構のボールネジ9aをサーボモータ9駆動で上昇させることにより研削ヘッド10を上方へ後退させて被研削物より遠ざけ、ついで、砥石軸の回転を停止させた後、ツールテーブル80を待機位置まで戻す。   9) After the grinding of the object to be ground, the ball screw 9a of the fixed plate 6 lifting mechanism is raised by driving the servo motor 9 so that the grinding head 10 is retracted upward and away from the object to be ground. After stopping the rotation, the tool table 80 is returned to the standby position.

10)一方、被研削物の研削加工終了後、ロータリーテーブル機構20を搭載するスライドウエイ90をリニアモータ91,92により左右方向に移動させ、ポーラスセラミック製ロータリーチャックテーブル21を待機位置まで戻す。   10) On the other hand, after the grinding of the workpiece is completed, the slide way 90 on which the rotary table mechanism 20 is mounted is moved in the left-right direction by the linear motors 91 and 92, and the porous ceramic rotary chuck table 21 is returned to the standby position.

11)ポーラスセラミック製テーブル21を軸承する中空スピンドル22の減圧を停止し、ついで、中空スピンドル22内に加圧水を供給してポーラスセラミック製テーブル21より被研削物の取り剥がしを容易とし、被研削物を保管トレイへ搬送する。   11) Depressurization of the hollow spindle 22 that supports the porous ceramic table 21 is stopped, and then pressurized water is supplied into the hollow spindle 22 to facilitate removal of the object to be ground from the porous ceramic table 21. To the storage tray.

なお、砥石の磨耗を回復するドレッシング作業は、研削開始前、または、研削終了後に行うことでよい。   In addition, the dressing operation | work which recovers abrasion of a grindstone may be performed before grinding start or after completion | finish of grinding.

上記研削装置は、砥石軸13が横軸(Y軸)でワーク軸が縦軸(Z軸)の例であるが、本発明の別の態様として図5に示す研削装置のように、砥石軸13が縦軸(Z軸)でワーク軸が横軸(Y軸)となるよう設計することも可能である。   The grinding device is an example in which the grinding wheel shaft 13 is the horizontal axis (Y axis) and the workpiece axis is the vertical axis (Z axis). However, as another aspect of the present invention, the grinding wheel shaft as shown in FIG. It is also possible to design so that 13 is the vertical axis (Z axis) and the work axis is the horizontal axis (Y axis).

本発明の精密研削装置1は、砥石軸13の直線方向の移動を磁気軸受による微量の移動と、サーボモータ、アクチュエータ、リニアモータ等のより大きい量の移動を併用できるので、砥石の磨耗があっても磁気軸受による砥石軸の微量の移動で補償できるので、研削途中での砥石のドレッシング作業は不要であり、より寸法精度の高い被研削加工品を得ることができる。また、研削加工現場のツールスピンドル、ワークスピンドルの軸受を静圧水軸受としたことにより環境に優しい研削装置となった。   In the precision grinding apparatus 1 of the present invention, the movement of the grindstone shaft 13 in the linear direction can be used in combination with a small amount of movement by a magnetic bearing and a larger amount of movement of a servo motor, an actuator, a linear motor or the like. However, since it can be compensated by a small amount of movement of the grindstone shaft by the magnetic bearing, dressing work of the grindstone during grinding is unnecessary, and a workpiece to be ground with higher dimensional accuracy can be obtained. In addition, the tool spindle and workpiece spindle bearings at the grinding work site are made of hydrostatic water bearings, resulting in an environmentally friendly grinding machine.

本発明のロータリー研削装置の要部を示す斜視図である。It is a perspective view which shows the principal part of the rotary grinding apparatus of this invention. 研削ステージの側面断面図である。It is side surface sectional drawing of a grinding stage. ワークステージの正面断面図である。It is front sectional drawing of a work stage. ワークテーブルの主軸軸受けに用いたブッシングの斜視図である。It is a perspective view of the bushing used for the main shaft bearing of the work table. 非球面形状レンズ研削装置の斜視図(公知)である。It is a perspective view (known) of an aspherical shape lens grinding device.

符号の説明Explanation of symbols

1 研削装置
TS ツールステージ
6 砥石軸固定板
9 サーボモータ
10 研削ヘッド
13 砥石軸
14 砥石
15 円筒状ハウジング
16,18 回転/直動複合アクチュエータ
WS ワークステージ
20 ワークチャックロータリーテーブル機構
21 ポーラスセラミック製ロータリーチャックテーブル
22 中空スピンドル
23 セラミック製円筒状ブッシング
24 円筒状ハウジング部材
25a スラスト軸受
25b ラジアル軸受
23a,25a 水通路
27 ビルトインモータ
28 エンコーダ
29 ロータリージョイント
80 ツールテーブル
90 スライドウエイ
DESCRIPTION OF SYMBOLS 1 Grinding machine TS Tool stage 6 Grinding wheel axis fixed plate 9 Servo motor 10 Grinding head 13 Grinding wheel axis 14 Grinding wheel 15 Cylindrical housing 16, 18 Rotary / linear motion combined actuator WS Work stage 20 Work chuck rotary table mechanism 21 Porous ceramic rotary chuck Table 22 Hollow spindle 23 Ceramic cylindrical bushing 24 Cylindrical housing member 25a Thrust bearing 25b Radial bearing 23a, 25a Water passage 27 Built-in motor 28 Encoder 29 Rotary joint 80 Tool table 90 Slide way

Claims (1)

磁気軸受と静圧水軸受により軸受けされる回転/直動可能な砥石軸、前記砥石軸を回転/直動させる回転/直動複合アクチュエータ、前記砥石軸の直線移動距離を測定する位置測定手段、および、前記砥石軸を固定するコラムを前記砥石軸方向に直線移動させる駆動手段を備える研削ステージと、
前記砥石軸に軸承される砥石の研削加工面に対し、被研削物表面を直角方向に保持する回転保持具、および、静圧水軸受で軸受けされた前記回転保持具の主軸を回転駆動させる回転駆動手段を備えるワークステージ、を供える研削装置。
A grindstone shaft that can be rotated / linearly supported by a magnetic bearing and a hydrostatic bearing, a rotary / linear motion combined actuator that rotates / directly moves the grindstone shaft, a position measuring means that measures a linear movement distance of the grindstone shaft, And a grinding stage comprising a driving means for linearly moving a column for fixing the grinding wheel shaft in the grinding wheel shaft direction,
A rotating holder that holds the surface of the object to be ground in a direction perpendicular to the grinding surface of the grindstone that is supported by the grindstone shaft, and a rotation that rotates the main shaft of the rotating holder that is supported by a hydrostatic bearing. A grinding apparatus comprising a work stage provided with a driving means.
JP2008291662A 2008-11-14 2008-11-14 Precision grinding equipment Active JP5260237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291662A JP5260237B2 (en) 2008-11-14 2008-11-14 Precision grinding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291662A JP5260237B2 (en) 2008-11-14 2008-11-14 Precision grinding equipment

Publications (2)

Publication Number Publication Date
JP2010115756A true JP2010115756A (en) 2010-05-27
JP5260237B2 JP5260237B2 (en) 2013-08-14

Family

ID=42303725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291662A Active JP5260237B2 (en) 2008-11-14 2008-11-14 Precision grinding equipment

Country Status (1)

Country Link
JP (1) JP5260237B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176911A (en) * 2013-03-14 2014-09-25 Okamoto Machine Tool Works Ltd Double-column type grinding device and method of grinding workpiece using the same
CN106239360A (en) * 2016-10-11 2016-12-21 天津方准因特雷准科技有限公司 A kind of cast member burr polisher automatic charging chucking device
CN106425839A (en) * 2016-10-11 2017-02-22 天津方准因特雷准科技有限公司 Workpiece automatic locating mechanism of casting burr grinding machine
CN106514470A (en) * 2016-09-26 2017-03-22 浙江昱鑫光电科技有限公司 Mobile phone glass grinding machining system and mobile phone glass machining method
CN110774075A (en) * 2019-12-06 2020-02-11 江苏心力量智能科技有限公司 Manual surface grinding machine
US10605965B2 (en) 2012-11-21 2020-03-31 3M Innovative Properties Company Optical diffusing films and methods of making same
CN112571176A (en) * 2020-12-07 2021-03-30 温州述音机械科技有限公司 Rebound type blanking processing machine tool for blackening and polishing surface of stainless steel plate
CN113579872A (en) * 2021-07-27 2021-11-02 浙江顺天传动科技股份有限公司 High-precision grinding device for gear shaft machining
JP6999205B1 (en) 2020-10-06 2022-01-18 ユアサ化成株式会社 Polishing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151259U (en) * 1987-03-23 1988-10-05
JPH0655309A (en) * 1992-08-04 1994-03-01 Seiko Seiki Co Ltd Spindle supporting device
JPH1113759A (en) * 1997-04-28 1999-01-22 Ntn Corp Hydrostatic magnetic composite bearing and spindle device
JP2000024805A (en) * 1998-07-13 2000-01-25 Ntn Corp Working machine and spindle device therefor
JP2008149434A (en) * 2006-12-20 2008-07-03 Okamoto Machine Tool Works Ltd Surface grinding device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151259U (en) * 1987-03-23 1988-10-05
JPH0655309A (en) * 1992-08-04 1994-03-01 Seiko Seiki Co Ltd Spindle supporting device
JPH1113759A (en) * 1997-04-28 1999-01-22 Ntn Corp Hydrostatic magnetic composite bearing and spindle device
JP2000024805A (en) * 1998-07-13 2000-01-25 Ntn Corp Working machine and spindle device therefor
JP2008149434A (en) * 2006-12-20 2008-07-03 Okamoto Machine Tool Works Ltd Surface grinding device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10605965B2 (en) 2012-11-21 2020-03-31 3M Innovative Properties Company Optical diffusing films and methods of making same
JP2014176911A (en) * 2013-03-14 2014-09-25 Okamoto Machine Tool Works Ltd Double-column type grinding device and method of grinding workpiece using the same
CN106514470A (en) * 2016-09-26 2017-03-22 浙江昱鑫光电科技有限公司 Mobile phone glass grinding machining system and mobile phone glass machining method
CN106239360A (en) * 2016-10-11 2016-12-21 天津方准因特雷准科技有限公司 A kind of cast member burr polisher automatic charging chucking device
CN106425839A (en) * 2016-10-11 2017-02-22 天津方准因特雷准科技有限公司 Workpiece automatic locating mechanism of casting burr grinding machine
CN106239360B (en) * 2016-10-11 2018-10-19 天津方准因特雷准科技有限公司 A kind of cast member flash sander automatic charging chucking device
CN106425839B (en) * 2016-10-11 2018-10-19 天津方准因特雷准科技有限公司 A kind of automatic work piece positioning mechanism of cast member flash sander
CN110774075A (en) * 2019-12-06 2020-02-11 江苏心力量智能科技有限公司 Manual surface grinding machine
JP6999205B1 (en) 2020-10-06 2022-01-18 ユアサ化成株式会社 Polishing system
JPWO2022074738A1 (en) * 2020-10-06 2022-04-14
WO2022074738A1 (en) * 2020-10-06 2022-04-14 ユアサ化成株式会社 Polishing system
JP2022061456A (en) * 2020-10-06 2022-04-18 ユアサ化成株式会社 Polishing system
CN112571176A (en) * 2020-12-07 2021-03-30 温州述音机械科技有限公司 Rebound type blanking processing machine tool for blackening and polishing surface of stainless steel plate
CN113579872A (en) * 2021-07-27 2021-11-02 浙江顺天传动科技股份有限公司 High-precision grinding device for gear shaft machining
CN113579872B (en) * 2021-07-27 2023-05-02 浙江顺天传动科技股份有限公司 High-precision grinding device for gear shaft machining

Also Published As

Publication number Publication date
JP5260237B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5260237B2 (en) Precision grinding equipment
KR101311135B1 (en) Surface grinding machine of substrate
US6461228B2 (en) Grinding and polishing machines
CN101088706B (en) Grinding and polishing machine for grinding and/or polishing workpieces in optical quality
JP2009208212A (en) Processing device for thinning and flattening substrate
TW200800448A (en) Precision roll turning lathe
US10092956B2 (en) Device and method for machining an optical workpiece
JP5384196B2 (en) Ultra precision roll lathe
JP2009255186A (en) Grinder and grinding method
JP2008149434A (en) Surface grinding device
JP2009039808A (en) Back side grinding method for semiconductor substrate
JP2010207984A (en) Device and method for chamfering
JP4302430B2 (en) Machine tool spindle balancing method
JP2004308726A (en) Hydrostatic bearing device and double-head grinding device
JP2010274405A (en) Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine
JP2007222958A (en) Rotary working device and manufacturing method for it
JP2010172985A (en) Composite turning cutting machine of cylindrical workpiece
JP2006043881A (en) Annular groove forming method on fixed disc body
JPH07237122A (en) Grinding processor
JP5166064B2 (en) Work chuck rotary table mechanism
JP2007098477A (en) Machining apparatus and machining method
JPH11188622A (en) Grinding method, and grinding machine
JP2006055961A (en) Method and apparatus for machining axially symmetric aspheric surface by surface grinding machine
JP2009142962A (en) Machining method and machining device
JP4923813B2 (en) Machine Tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250