JP2010274405A - Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine - Google Patents

Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine Download PDF

Info

Publication number
JP2010274405A
JP2010274405A JP2009132161A JP2009132161A JP2010274405A JP 2010274405 A JP2010274405 A JP 2010274405A JP 2009132161 A JP2009132161 A JP 2009132161A JP 2009132161 A JP2009132161 A JP 2009132161A JP 2010274405 A JP2010274405 A JP 2010274405A
Authority
JP
Japan
Prior art keywords
fluid
grindstone
measuring
abrasive grains
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009132161A
Other languages
Japanese (ja)
Inventor
Tomokazu Yamashita
友和 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2009132161A priority Critical patent/JP2010274405A/en
Publication of JP2010274405A publication Critical patent/JP2010274405A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring a projection amount of abrasive grains in a grinding wheel, more easily measuring the projection amount of the abrasive grains of the grinding wheel without grinding a workpiece, and also to provide a grinding machine performing dressing at appropriate timing based on the projection amount of the abrasive grains obtained, and a method for measuring the surface roughness of a rotor more easily without being limited by the projection amount of the abrasive grains of the grinding wheel. <P>SOLUTION: In the method for measuring the surface roughness of the rotor by obtaining the surface roughness of the rotor, based on a physical amount of fluid detected by using a fluid detection means for measuring the physical amount of the fluid rotating with the rotor surface, a surface roughness-fluid physical amount characteristic which is obtained by measuring in advance at least either one of the fluid speed and pressure of the fluid corresponding to the surface roughness, is memorized, and the surface roughness of the rotor is obtained based on at least either one of the fluid speed or pressure of the fluid measured using the fluid detection means in a position departing from the surface of the rotor by a predetermined distance, and the surface roughness-fluid physical amount characteristic. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、回転体の表面の微細な凹凸による表面粗さの測定方法、砥石における砥粒の突き出し量の測定方法、及び研削盤に関する。   The present invention relates to a method for measuring surface roughness due to fine irregularities on the surface of a rotating body, a method for measuring the amount of protrusion of abrasive grains on a grindstone, and a grinding machine.

従来より、回転駆動される砥石をワークに接触させてワークを研削する研削盤が知られている。砥石Tは図2(A)に示すように、結合剤等からなるベース部Tbに、微細な砥粒Trが混在している構造を有しており、ベース部Tbの表面から突出している砥粒Trにて研削が行われる。
砥石Tの研削性能を大きく左右するのは、主に図2(A)に示す砥粒Trの突き出し量Haであり、砥粒Trが摩耗して突き出し量Haが小さくなると研削性能が低下するため、定期的にドレッシングを行って砥粒Trを削ることなくベース部Tbの表面を除去し、砥粒Trの突き出し量Haを初期化している。
なお、本明細書では、ベース部Tbの表面を除去して砥粒Trの突き出し量Haを大きくする(初期化する)ことを「ドレッシング」と記載するが、砥石Tの輪郭形状を整える、いわゆるツルーイングも、「ドレッシング」に含むものとする。
砥粒Trが摩耗して突き出し量Haが小さくなり研削性能が低下すると、加工時間の長時間化や、加工精度にも影響が及ぶため、適切な時期にドレッシングをする必要がある。しかし、砥粒Trの突き出し量Haは、例えば数十[μm]程度であり、直接的に測定するのは非常に困難であり、ドレッシング時期の判定は、非常に困難である。
そこで、従来では、過去の加工実績に基づいて、砥石の仕様と加工したワークの量からドレッシング時期を決定したり、作業者が実際の研削状態を確認してドレッシング時期を決定したり、研削盤の機外で(砥石Tを取り外して)砥石Tの表面を測定してドレッシング時期を決定したりしている。
また、例えば特許文献1に記載された従来技術では、砥石を駆動するモータの駆動電流を検出するセンサを設け、砥石でワークを研削した際のモータの電流を検出することで、モータの負荷を検出してドレッシング時期を決定する、研削盤のドレッシング装置が開示されている。
Conventionally, a grinding machine that grinds a workpiece by bringing a grindstone that is rotationally driven into contact with the workpiece is known. As shown in FIG. 2 (A), the grindstone T has a structure in which fine abrasive grains Tr are mixed in a base portion Tb made of a binder or the like and protrudes from the surface of the base portion Tb. Grinding is performed with the grains Tr.
The grinding performance of the grindstone T largely depends on the protrusion amount Ha of the abrasive grains Tr shown in FIG. 2A, and the grinding performance deteriorates when the abrasive grains Tr wear and the protrusion amount Ha decreases. The surface of the base portion Tb is removed without performing dressing periodically to remove the abrasive grains Tr, and the protruding amount Ha of the abrasive grains Tr is initialized.
In this specification, removing the surface of the base portion Tb to increase (initialize) the protruding amount Ha of the abrasive grains Tr is described as “dressing”, but the so-called contour shape of the grindstone T is adjusted. Truing is also included in “dressing”.
When the abrasive grains Tr are worn and the protruding amount Ha is reduced and the grinding performance is lowered, the processing time is prolonged and the processing accuracy is affected. Therefore, it is necessary to perform dressing at an appropriate time. However, the protrusion amount Ha of the abrasive grains Tr is, for example, about several tens [μm], and it is very difficult to directly measure, and the determination of the dressing time is very difficult.
Therefore, conventionally, based on the past processing results, the dressing time is determined from the specifications of the grindstone and the amount of the processed workpiece, the operator confirms the actual grinding state and determines the dressing time, The surface of the grinding wheel T is measured outside the machine (with the grinding wheel T removed) to determine the dressing time.
Moreover, in the prior art described in Patent Document 1, for example, a sensor that detects a drive current of a motor that drives a grindstone is provided, and the motor load is detected by detecting the current of the motor when a workpiece is ground with the grindstone. A dressing device for a grinding machine that detects and determines the dressing time is disclosed.

特開平5−77160号公報JP-A-5-77160

過去の加工実績や、作業者による研削状態の確認にてドレッシング時期を決定する従来の方法では、誤差が大きく、余裕を持たせるために比較的早期となるようにドレッシング時期が決定され、加工の中断回数の増加や、砥石の寿命の短縮化を招くので好ましくない。
また、機外で砥石Tの表面を測定する方法は、手間がかかるとともに測定にも時間がかかり、加工の中断時間が長くなるので好ましくない。
また、特許文献1に記載された従来技術では、実際に、砥石を用いて、実際のワークを研削しなければならない。
本発明は、このような点に鑑みて創案されたものであり、ワークを研削することなく、砥石の砥粒の突き出し量をより容易に測定することが可能な、砥石における砥粒の突き出し量の測定方法、及び、求めた砥粒の突き出し量に基づいて適切な時期にドレッシングを行うことができる研削盤、更に、砥石の砥粒の突き出し量に限定されず、より容易に回転体の表面粗さを測定する方法を提供することを課題とする。
In the conventional method of determining the dressing time by confirming the past machining results and the grinding state by the operator, the dressing time is determined so as to be relatively early in order to have a large error and allow a margin. This is not preferable because it increases the number of interruptions and shortens the life of the grindstone.
Further, the method of measuring the surface of the grindstone T outside the machine is not preferable because it takes time and time for measurement, and the processing interruption time becomes long.
Moreover, in the prior art described in Patent Document 1, an actual workpiece must actually be ground using a grindstone.
The present invention was devised in view of such points, and the amount of protrusion of abrasive grains in the grindstone that can more easily measure the amount of protrusion of abrasive grains of the grindstone without grinding the workpiece. And a grinding machine capable of performing dressing at an appropriate time based on the determined protruding amount of abrasive grains, and moreover, it is not limited to the protruding amount of abrasive grains of the grindstone, and more easily the surface of the rotating body It is an object of the present invention to provide a method for measuring roughness.

上記課題を解決するための手段として、本発明の第1発明は、請求項1に記載されたとおりの回転体の表面粗さの測定方法である。
請求項1に記載の回転体の表面粗さの測定方法は、回転駆動される回転体の表面に連れ回っている流体の物理量を測定可能な流体検出手段と、制御手段と、を用い、前記制御手段にて、前記流体検出手段を用いて検出した前記流体の物理量に基づいて、前記回転体の表面粗さを求めるステップを有する、回転体の表面粗さの測定方法である。
As means for solving the above-mentioned problems, the first invention of the present invention is a method for measuring the surface roughness of a rotating body as described in claim 1.
The method for measuring the surface roughness of a rotating body according to claim 1 uses a fluid detection means capable of measuring a physical quantity of a fluid that is rotating around the surface of the rotating body that is rotationally driven, and a control means. It is a method for measuring the surface roughness of a rotating body, including a step of obtaining a surface roughness of the rotating body based on a physical quantity of the fluid detected by the control means using the fluid detecting means.

また、本発明の第2発明は、請求項2に記載されたとおりの回転体の表面粗さの測定方法である。
請求項2に記載の回転体の表面粗さの測定方法は、請求項1に記載の回転体の表面粗さの測定方法であって、前記流体は、前記回転体の周囲の気体、または前記回転体の表面にかけられた液体であり、前記流体検出手段は、前記気体または前記液体、の流速または圧力の少なくとも一方を検出可能であり、予め前記表面粗さに対応する流体の流速または圧力の少なくとも一方を測定した表面粗さ−流体物理量特性を記憶した記憶手段を用いる。
そして前記制御手段にて、前記回転体の表面から所定距離だけ離れた位置の前記流体検出手段を用いて、回転駆動される前記回転体の表面の近傍の前記気体または前記液体、の流速または圧力の少なくとも一方を測定するステップと、測定した前記流速または前記圧力の少なくとも一方と、前記表面粗さ−流体物理量特性と、に基づいて前記回転体の表面粗さを求めるステップと、を有する回転体の表面粗さの測定方法である。
The second invention of the present invention is a method for measuring the surface roughness of a rotating body as described in claim 2.
The measuring method of the surface roughness of the rotating body according to claim 2 is the measuring method of the surface roughness of the rotating body according to claim 1, wherein the fluid is a gas around the rotating body, or the It is a liquid applied to the surface of the rotating body, and the fluid detection means can detect at least one of the flow velocity or pressure of the gas or the liquid, and the flow velocity or pressure of the fluid corresponding to the surface roughness in advance. A storage means that stores the surface roughness-fluid physical quantity characteristics measured at least one of them is used.
Then, in the control means, the flow rate or pressure of the gas or the liquid in the vicinity of the surface of the rotating body that is rotationally driven by using the fluid detecting means at a position away from the surface of the rotating body by a predetermined distance. A rotating body having a step of measuring at least one of: a surface roughness of the rotating body based on at least one of the measured flow velocity or pressure and the surface roughness-fluid physical quantity characteristic It is a measuring method of the surface roughness of.

また、本発明の第3発明は、請求項3に記載されたとおりの砥石における砥粒の突き出し量の測定方法である。
請求項3に記載の砥石における砥粒の突き出し量の測定方法は、砥石の表面に突出している砥粒の突き出し量を測定する、砥石における砥粒の突き出し量の測定方法であって、回転駆動される前記砥石の表面に連れ回っている流体の物理量を測定可能な流体検出手段と、制御手段と、を用い、前記制御手段にて、前記流体検出手段を用いて検出した前記流体の物理量に基づいて前記砥石の表面の砥粒の突き出し量を求めるステップを有する、砥石における砥粒の突き出し量の測定方法である。
A third invention of the present invention is a method for measuring an amount of protrusion of abrasive grains in a grindstone as described in claim 3.
The method for measuring the amount of protrusion of abrasive grains in the grindstone according to claim 3 is a method for measuring the amount of protrusion of abrasive grains protruding on the surface of the grindstone, and measuring the amount of protrusion of abrasive grains in the grindstone, which is rotationally driven. The fluid detection means capable of measuring the physical quantity of the fluid circulating on the surface of the grindstone, and the control means, and the control means detects the physical quantity of the fluid detected by the fluid detection means. It is the measuring method of the protrusion amount of the abrasive grain in a grindstone which has the step which calculates | requires the protrusion amount of the abrasive grain on the surface of the said grindstone based on.

また、本発明の第4発明は、請求項4に記載されたとおりの砥石における砥粒の突き出し量の測定方法である。
請求項4に記載の砥石における砥粒の突き出し量の測定方法は、請求項3に記載の砥石における砥粒の突き出し量の測定方法であって、前記流体は、砥石の周囲の空気、または砥石の表面にかけられたクーラントであり、前記流体検出手段は、前記空気または前記クーラント、の流速または圧力の少なくとも一方を検出可能であり、予め砥粒の突き出し量に対応する前記空気または前記クーラント、の流速または圧力の少なくとも一方を測定した突き出し量−流体物理量特性を記憶した記憶手段を用いる。
そして前記制御手段にて、前記砥石の表面から所定距離だけ離れた位置の前記流体検出手段を用いて、回転駆動される前記砥石の表面の近傍の前記空気または前記クーラント、の流速または圧力の少なくとも一方を測定するステップと、測定した前記流速または前記圧力の少なくとも一方と、前記突き出し量−流体物理量特性と、に基づいて前記砥石の表面の砥粒の突き出し量を求めるステップと、を有する砥石における砥粒の突き出し量の測定方法である。
A fourth invention of the present invention is a method for measuring an amount of protrusion of abrasive grains in a grindstone as described in claim 4.
The method for measuring the amount of protrusion of abrasive grains in the grindstone according to claim 4 is a method for measuring the amount of protrusion of abrasive grains in the grindstone according to claim 3, wherein the fluid is air around the grindstone or the grindstone The coolant is applied to the surface of the air, and the fluid detection means is capable of detecting at least one of a flow velocity or a pressure of the air or the coolant, and the air or the coolant corresponding to the protruding amount of abrasive grains in advance. A storage means for storing a protruding amount-fluid physical quantity characteristic obtained by measuring at least one of the flow velocity and the pressure is used.
Then, in the control means, at least a flow rate or a pressure of the air or the coolant in the vicinity of the surface of the grindstone to be rotationally driven by using the fluid detection means at a position away from the grindstone surface by a predetermined distance. In a grindstone having a step of measuring one, and determining a protrusion amount of abrasive grains on the surface of the grindstone based on at least one of the measured flow velocity or pressure and the protrusion amount-fluid physical quantity characteristic It is a measuring method of the protrusion amount of an abrasive grain.

また、本発明の第5発明は、請求項5に記載されたとおりの研削盤である。
請求項5に記載の研削盤は、回転駆動される砥石と、前記砥石の周囲に連れ回る空気またはクーラント、の流速または圧力の少なくとも一方を検出可能な流体検出手段と、前記砥石をドレッシング可能なドレッシング手段と、制御手段と、を備えた研削盤である。
前記制御手段には、予め前記砥石の砥粒の突き出し量に対応する前記空気または前記クーラント、の流速または圧力の少なくとも一方を測定した突き出し量−流体物理量特性が記憶されている。
そして前記制御手段は、前記砥石の表面から所定距離だけ離れた位置の前記流体検出手段を用いて、回転駆動される前記砥石の表面の近傍の前記空気または前記クーラント、の流速または圧力の少なくとも一方を測定し、測定した前記流速または前記圧力の少なくとも一方と、前記突き出し量−流体物理量特性と、に基づいて前記砥石の表面の砥粒の突き出し量を求め、求めた砥粒の突き出し量が所定突き出し量以下の場合、前記ドレッシング手段を用いて前記砥石をドレッシングする。
The fifth invention of the present invention is a grinding machine as set forth in claim 5.
The grinding machine according to claim 5 is capable of dressing the grinding wheel, a fluid detection means capable of detecting at least one of a flow rate or a pressure of a grindstone that is rotationally driven, air or coolant that moves around the grinding stone. A grinding machine comprising dressing means and control means.
The control means stores in advance a protruding amount-fluid physical quantity characteristic obtained by measuring at least one of the flow velocity or pressure of the air or the coolant corresponding to the protruding amount of the abrasive grains of the grindstone.
And the control means uses at least one of the flow velocity or pressure of the air or the coolant in the vicinity of the surface of the grindstone to be rotationally driven by using the fluid detection means at a predetermined distance from the surface of the grindstone. The amount of protrusion of abrasive grains on the surface of the grindstone is determined based on at least one of the measured flow velocity or pressure and the amount of protrusion-fluid physical quantity characteristics. When the amount is not more than the protruding amount, the dressing means is used to dress the grindstone.

請求項1に記載の回転体の表面粗さの測定方法を用いれば、回転体の表面を傷つけることなく、より容易に表面粗さを測定することができる。   If the measuring method of the surface roughness of the rotating body according to claim 1 is used, the surface roughness can be measured more easily without damaging the surface of the rotating body.

また、請求項2に記載の回転体の表面粗さの測定方法によれば、回転体の表面を傷つけることなく、回転体の表面粗さを測定する方法を、比較的容易に実現することができる。   According to the method for measuring the surface roughness of the rotating body according to claim 2, it is possible to relatively easily realize the method for measuring the surface roughness of the rotating body without damaging the surface of the rotating body. it can.

また、請求項3に記載の砥石における砥粒の突き出し量の測定方法によれば、実際にワークを研削したり高精度な形状測定装置により直接砥粒の突き出し量を測定したりすることなく、より容易に砥石における砥粒の突き出し量を測定することができる。   Further, according to the method for measuring the protruding amount of abrasive grains in the grindstone according to claim 3, without actually grinding the workpiece or measuring the protruding amount of the abrasive grains directly with a highly accurate shape measuring device, The protruding amount of abrasive grains in the grindstone can be measured more easily.

また、請求項4に記載の砥石における砥粒の突き出し量の測定方法によれば、実際にワークを研削したり高精度な形状測定装置により直接砥粒の突き出し量を測定したりすることなく、砥石における砥粒の突き出し量を測定する方法を、比較的容易に実現することができる。また、流体の流速または圧力の少なくとも一方を測定する流体検出手段であれば、砥石を備えた研削盤の機上に容易に搭載可能である。   Further, according to the method for measuring the amount of protrusion of abrasive grains in the grindstone according to claim 4, without actually grinding the workpiece or measuring the amount of protrusion of abrasive grains directly with a highly accurate shape measuring device, A method for measuring the protruding amount of abrasive grains on the grindstone can be realized relatively easily. In addition, any fluid detection means that measures at least one of the fluid flow velocity or pressure can be easily mounted on a grinding machine equipped with a grindstone.

また、請求項5に記載の研削盤によれば、遅すぎず、且つ早すぎず、適切な時期に、適切なドレス量で砥石のドレッシングを行うことができるので、加工効率の低下や砥石寿命の低下、ドレスストーンの消費量やドレス時間を適切に抑制することができる研削盤を実現することができる。   Further, according to the grinding machine of claim 5, since the dressing of the grindstone can be performed with an appropriate dressing amount at an appropriate time without being too late and not too early, the processing efficiency is reduced and the grindstone life is shortened. It is possible to realize a grinding machine that can appropriately suppress the decrease in the consumption of dress stones and the dressing time.

本発明の研削盤1の一実施の形態を説明する平面図(A)、及び側面図(B)である。It is the top view (A) and side view (B) explaining one embodiment of the grinding machine 1 of the present invention. 砥石Tにおける砥粒Trの突き出し量Haを説明する図である。It is a figure explaining the protrusion amount Ha of the abrasive grain Tr in the grindstone T. 砥石Tにおける砥粒Trの突き出し量Haの測定方法を説明する図である。5 is a diagram for explaining a method for measuring the protrusion amount Ha of abrasive grains Tr on a grindstone T. FIG.

以下に本発明を実施するための形態を図面を用いて説明する。図1(A)は、本発明の研削盤1の一実施の形態における平面図の例を示しており、図1(B)は、研削盤1の右側面図の例を示している。なお、図1(B)では、主軸台(右)DRを備えた主軸装置(右)の記載を省略している。
また、X軸、Y軸、Z軸が記載されている全ての図面において、X軸とY軸とZ軸は互いに直交しており、Y軸は鉛直上向きを示しており、Z軸とX軸は水平方向を示している。そしてZ軸はワーク回転軸方向を示しており、X軸方向は砥石TがワークWに切り込む方向を示している。
EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated using drawing. FIG. 1A shows an example of a plan view in an embodiment of the grinding machine 1 of the present invention, and FIG. 1B shows an example of a right side view of the grinding machine 1. In FIG. 1B, the description of the spindle device (right) including the headstock (right) DR is omitted.
Moreover, in all drawings in which the X axis, the Y axis, and the Z axis are described, the X axis, the Y axis, and the Z axis are orthogonal to each other, the Y axis indicates a vertically upward direction, and the Z axis and the X axis Indicates the horizontal direction. The Z axis indicates the workpiece rotation axis direction, and the X axis direction indicates the direction in which the grindstone T cuts into the workpiece W.

●[研削盤1の全体構成(図1(A)、(B))]
図1(A)及び(B)に示すように、研削盤1は、ワーク回転軸WZ回りに回転しているワークWに対して、砥石回転軸TZ回りに回転している略円筒形状の砥石Tを相対移動させてワークWを研削する。なお、各可動体の位置等を検出して各駆動モータに制御信号を出力する制御手段(NC制御装置等)については、図示を省略する。なお、ワーク回転軸WZと砥石回転軸TZは、どちらもZ軸と平行である。
ワークWは、センタ部材CLを備えた主軸装置(左)と、センタ部材CRを備えた主軸装置(右)に両端(または両端近傍)が支持されている(センタ部材の代わりに少なくとも一方がチャックであってもよい)。
● [Overall configuration of grinding machine 1 (FIGS. 1A, 1B)]
As shown in FIGS. 1 (A) and 1 (B), the grinding machine 1 has a substantially cylindrical grindstone rotating about the grindstone rotation axis TZ with respect to the workpiece W rotating about the workpiece rotation axis WZ. The workpiece W is ground by moving T relatively. In addition, illustration is abbreviate | omitted about the control means (NC control apparatus etc.) which detects the position etc. of each movable body, and outputs a control signal to each drive motor. Both the workpiece rotation axis WZ and the grindstone rotation axis TZ are parallel to the Z axis.
The workpiece W is supported at both ends (or near both ends) by a spindle device (left) having a center member CL and a spindle device (right) having a center member CR (at least one chuck is used instead of the center member). May be).

主軸装置(左)は、基台BSに載置された主軸台(左)DLと、主軸台(左)DLに対してZ軸方向に往復移動可能な主軸ハウジング(左)HLと、主軸ハウジング(左)HL内でワーク回転軸WZ回りに回転可能に支持された主軸(左)SLとを備えている。また、主軸(左)SLの一端にはセンタ部材CLが設けられている。
主軸(左)SLには図示しない駆動モータが設けられており、制御手段は、センタ部材CLの先端をとおるワーク回転軸WZ回りに主軸(左)SLを、任意の角速度で任意の角度まで回転させることができる。
なお、主軸台(右)DRを備えた主軸装置(右)も同様であり、主軸装置(右)については説明を省略する。
制御手段は、主軸(左)SLと主軸(右)SRを同期させて回転させることができる。
The spindle device (left) includes a spindle base (left) DL mounted on a base BS, a spindle housing (left) HL that can reciprocate in the Z-axis direction with respect to the spindle base (left) DL, and a spindle housing (Left) A main shaft (left) SL supported rotatably around the workpiece rotation axis WZ in the HL. A center member CL is provided at one end of the main shaft (left) SL.
The main shaft (left) SL is provided with a drive motor (not shown), and the control means rotates the main shaft (left) SL around the work rotation axis WZ passing through the tip of the center member CL to an arbitrary angle at an arbitrary angular velocity. Can be made.
The same applies to the spindle device (right) including the headstock (right) DR, and the description of the spindle device (right) is omitted.
The control means can rotate the main shaft (left) SL and the main shaft (right) SR in synchronization.

また、基台BSには、Z軸駆動モータMXにて制御されるボールねじNXの回転角度に応じて、ガイドGXに沿ってZ軸方向の任意の位置に位置決めされる砥石スライドテーブル40が載置されている。制御手段はエンコーダ等の位置検出手段EXからの信号を検出しながらZ軸駆動モータMXに制御信号を出力する。
砥石スライドテーブル40には、X軸駆動モータMZにて制御されるボールねじNZの回転角度に応じて、ガイドGZに沿ってX軸方向の任意の位置に位置決めされる砥石進退テーブル41が載置されている。制御手段はエンコーダ等の位置検出手段EZからの信号を検出しながらX軸駆動モータMZに制御信号を出力する。
Also, on the base BS, a grindstone slide table 40 that is positioned at an arbitrary position in the Z-axis direction along the guide GX according to the rotation angle of the ball screw NX controlled by the Z-axis drive motor MX is mounted. Is placed. The control means outputs a control signal to the Z-axis drive motor MX while detecting a signal from the position detection means EX such as an encoder.
Mounted on the grindstone slide table 40 is a grindstone advance / retreat table 41 positioned at an arbitrary position in the X-axis direction along the guide GZ according to the rotation angle of the ball screw NZ controlled by the X-axis drive motor MZ. Has been. The control means outputs a control signal to the X-axis drive motor MZ while detecting a signal from the position detection means EZ such as an encoder.

砥石進退テーブル41には、砥石Tへの回転動力を発生させる砥石駆動モータMTが固定されている。
砥石駆動モータMTは駆動プーリ21に接続され、駆動プーリ21はベルト22を介して従動プーリ24に回転動力を伝達する。また従動プーリ24は、軸ホルダ25内にて砥石回転軸TZ回りに回転可能に支持された砥石軸部材の一端に接続されており、砥石軸部材の他端には略円板状の砥石Tが接続されている。
また、本実施の形態にて説明する研削盤1では、砥石Tの支持方法が片持ち式の例を示しているが、両持ち式で砥石Tを支持してもよい。
また、砥石Tは、少なくとも一部が開口した略箱状の砥石覆い12に収容されている。
A grindstone drive motor MT that generates rotational power to the grindstone T is fixed to the grindstone advance / retreat table 41.
The grindstone drive motor MT is connected to the drive pulley 21, and the drive pulley 21 transmits rotational power to the driven pulley 24 via the belt 22. The driven pulley 24 is connected to one end of a grindstone shaft member that is rotatably supported in the shaft holder 25 around the grindstone rotation axis TZ, and the other end of the grindstone shaft member has a substantially disc-shaped grindstone T. Is connected.
Moreover, in the grinding machine 1 demonstrated in this Embodiment, although the support method of the grindstone T has shown the example of the cantilever type, you may support the grindstone T by a double-support type.
The grindstone T is accommodated in a substantially box-shaped grindstone cover 12 having at least a part opened.

なお、図1(B)に示すように、砥石回転軸TZとワーク回転軸WZは仮想平面MF上に位置している。この状態で砥石TをワークWに対して相対的に近づけていき、ワークWと砥石Tとが接触した位置における砥石Tの側の点を砥石研削点TPとする。
また、研削盤1には、砥石研削点TPの近傍にクーラントを供給するクーラントノズルCNが設けられている。
また、図1(A)及び(B)の例に示す研削盤1では、砥石Tのドレッシングを行うドレッシング手段TRが、主軸ハウジング(左)HLに取り付けられており、ドレッシング手段TRに流体検出手段RSが取り付けられている。
As shown in FIG. 1B, the grindstone rotation axis TZ and the workpiece rotation axis WZ are located on the virtual plane MF. In this state, the grindstone T is brought relatively close to the workpiece W, and a point on the grindstone T side at a position where the workpiece W and the grindstone T are in contact with each other is defined as a grindstone grinding point TP.
Further, the grinding machine 1 is provided with a coolant nozzle CN that supplies coolant in the vicinity of the grinding wheel grinding point TP.
Further, in the grinding machine 1 shown in the examples of FIGS. 1A and 1B, the dressing means TR for dressing the grindstone T is attached to the spindle housing (left) HL, and the fluid detection means is connected to the dressing means TR. RS is attached.

●[砥石Tにおける砥粒Trの突き出し量Ha(図2(A))]
砥石Tは、例えば金属の円盤状のベース基盤に、結合剤等からなるベース部Tbに高硬度の砥粒Trが混在している円筒状の砥石部材が取り付けられた構成を有している。そして、図2(A)に示すように、ベース部Tbの表面から突出している砥粒Trにて研削が行われる。
砥石Tの研削性能は、砥粒Trの突き出し量Haが大きく影響し、砥粒Trの摩耗が進み、突き出し量Haが小さくなると(図2(C)参照)研削性能が低下するので、定期的にドレッシングを行い、砥粒Trを削ることなくベース部Tbの表面を除去して突き出し量Haを大きくする(初期化する)必要がある。
● [Protrusion amount Ha of the abrasive grains Tr on the grinding wheel T (FIG. 2A)]
The grindstone T has a configuration in which a cylindrical grindstone member in which high-hardness abrasive grains Tr are mixed is attached to a base portion Tb made of a binder or the like, for example, on a metal disc-shaped base base. And as shown to FIG. 2 (A), grinding is performed by the abrasive grain Tr which protrudes from the surface of the base part Tb.
The grinding performance of the grindstone T is greatly influenced by the protrusion amount Ha of the abrasive grains Tr. As the wear of the abrasive grains Tr progresses and the protrusion amount Ha decreases (see FIG. 2C), the grinding performance decreases. It is necessary to remove the surface of the base portion Tb without cutting the abrasive grains Tr and increase (initialize) the protruding amount Ha.

砥石Tのドレッシングの時期を見極めるには、砥粒Trの突き出し量Haを測定すればよいが、突き出し量Haは数十[μm]程度であり、しかも研削盤1に取り付けられている状態で突き出し量Haを正確に測定するのは非常に困難である。
そこで従来では、過去の加工実績からワークをn本加工する毎にドレッシングを行ったり、熟練作業者によるワークの加工状態からドレッシング時期を決定したりしていた。
しかし、この方法では誤差が大きく、余裕を持たせるために比較的早めにドレッシングを行う結果となり、加工の中断回数の増加や、砥石寿命の低下を招くので好ましくない。
また、特開平5−77160号公報に記載の砥石駆動モータの電流を計測する方法は、実際のワークを研削しなければならない。
本実施の形態にて説明する砥石Tにおける砥粒Trの突き出し量Haの測定方法では、実際のワークを研削することなく(砥石Tを摩耗させることなく)突き出し量Haを測定可能である。
To determine the timing of dressing of the grindstone T, the protrusion amount Ha of the abrasive grains Tr may be measured, but the protrusion amount Ha is about several tens [μm] and the protrusion is attached to the grinding machine 1. It is very difficult to accurately measure the quantity Ha.
Therefore, conventionally, dressing is performed every time n workpieces are processed based on past processing results, or the dressing time is determined from the processing state of the workpiece by a skilled worker.
However, this method is not preferable because the error is large and the dressing is performed relatively early in order to provide a margin, which increases the number of processing interruptions and decreases the life of the grinding wheel.
Moreover, the method of measuring the current of the grindstone drive motor described in Japanese Patent Application Laid-Open No. 5-77160 requires grinding an actual workpiece.
In the method for measuring the protrusion amount Ha of the abrasive grains Tr in the grindstone T described in the present embodiment, the protrusion amount Ha can be measured without grinding the actual workpiece (without wearing the grindstone T).

●[砥石Tにおける砥粒Trの突き出し量Haの測定方法(図2(B)、(C)、図3(A)〜(C))]
砥石Tを回転させると、砥石Tの周囲の流体が砥石Tの表面に連れ回って流動する。
例えば図2(B)と図2(C)は、突き出し量Haの他の条件(砥石Tの径、回転速度等)が同じ場合の例を示しており、この場合、突き出し量Haが小さい図2(C)よりも、突き出し量Haが大きい図2(B)のほうが、砥石Tの表面に連れ回る流体の物理量Vr(速度、流動体積等)が大きくなる。
従って、砥石Tで実際のワークを研削しなくても、回転駆動される砥石Tの表面に連れ回る流体の物理量を測定することで、突き出し量Haを求めることが可能となる。
[Measurement method of protrusion amount Ha of abrasive grains Tr on the grindstone T (FIGS. 2B, 3C, 3A to 3C)]
When the grindstone T is rotated, the fluid around the grindstone T flows along the surface of the grindstone T.
For example, FIG. 2 (B) and FIG. 2 (C) show examples in which other conditions (the diameter of the grindstone T, the rotational speed, etc.) of the protrusion amount Ha are the same. In this case, the protrusion amount Ha is small. The physical quantity Vr (velocity, flow volume, etc.) of the fluid that moves around the surface of the grindstone T is larger in FIG. 2B where the protruding amount Ha is larger than 2 (C).
Therefore, even if the actual workpiece is not ground with the grindstone T, it is possible to obtain the protrusion amount Ha by measuring the physical quantity of the fluid that moves around the surface of the grindstone T that is rotationally driven.

まず、予め、砥石仕様(砥粒の種類、砥石の径等)に対する、突き出し量Haと流体速度の関係を示す換算表またはグラフ等(図3(C)参照。突き出し量−流体物理量特性に相当)を作成する。種々の突き出し量Ha(この場合、レーザ測定器等、種々の測定器を用いて突き出し量Haを測定することができる)に対して、砥石Tから所定距離L1だけ離れた位置に流体検出手段RS(この場合、流体の速度を検出するセンサ)を配置して、砥石Tを研削盤1で用いる場合の所定回転数(例えば3000rpm程度)で回転させた場合の流体速度(この場合、砥石Tの周囲にて連れ回る空気の速度)を測定し、図3(C)に示すグラフや換算表等を作成する。そして、作成したグラフや換算表である「突き出し量−流体物理量特性」を研削盤1の制御手段(記憶手段に相当)に記憶しておく。ここで、図3(C)に示す「突き出し量−流体物理量特性」において、突き出し量がHmin(所定突き出し量に相当)以下の場合(あるいは流体速度がVmin以下の場合)、砥石Tのドレッシングが必要であるとする。   First, a conversion table or a graph showing the relationship between the protrusion amount Ha and the fluid velocity with respect to the grindstone specifications (abrasive type, grindstone diameter, etc.) in advance (see FIG. 3C). Corresponds to the protrusion amount-fluid physical quantity characteristics. ). With respect to various protrusions Ha (in this case, the protrusions Ha can be measured using various measuring instruments such as a laser measuring instrument), the fluid detection means RS is located at a position away from the grindstone T by a predetermined distance L1. (In this case, a sensor for detecting the speed of the fluid) is arranged, and the fluid speed when the grindstone T is rotated at a predetermined rotational speed (for example, about 3000 rpm) when used in the grinder 1 (in this case, the grindstone T The velocity of the air that moves around is measured, and a graph, a conversion table, and the like shown in FIG. The created graph and conversion table “projection amount-fluid physical quantity characteristics” are stored in the control means (corresponding to storage means) of the grinding machine 1. Here, in the “protrusion amount-fluid physical quantity characteristic” shown in FIG. 3C, when the protrusion amount is Hmin (corresponding to a predetermined protrusion amount) or less (or when the fluid velocity is Vmin or less), the dressing of the grindstone T is performed. Suppose it is necessary.

研削盤1には、図1(A)及び(B)に示すように、流体検出手段RSが設けられており、制御手段は、所定タイミング(例えばワークをm本加工する毎)にて、流体検出手段RSから所定距離L1だけ離れた位置に砥石Tの表面が位置するように、流体検出手段RSに対して砥石Tを相対移動させる。
次のステップでは、制御手段は、砥石Tを所定回転数にて回転させて、流体検出手段RSの検出信号に基づいて流体の速度を測定する。
そして次のステップでは、制御手段は、測定した流体の速度と、突き出し量−流体物理量特性とに基づいて、砥粒の突き出し量を求める。
そして次のステップでは、制御手段は、求めた突き出し量がHminより大きければ特にドレッシングは必要ないと判断し、求めた突き出し量がHmin以下である場合、ドレッシングが必要であると判断し、ドレッシング手段TRに対して砥石Tを相対移動させて砥石Tをドレッシングして、砥粒Trの突き出し量Haを初期化する。
As shown in FIGS. 1A and 1B, the grinding machine 1 is provided with a fluid detection means RS, and the control means fluids at a predetermined timing (for example, every m workpieces are processed). The grindstone T is moved relative to the fluid detection means RS so that the surface of the grindstone T is located at a position separated from the detection means RS by a predetermined distance L1.
In the next step, the control means rotates the grindstone T at a predetermined number of revolutions, and measures the fluid velocity based on the detection signal of the fluid detection means RS.
In the next step, the control means obtains the protrusion amount of the abrasive grain based on the measured fluid velocity and the protrusion amount-fluid physical quantity characteristic.
In the next step, the control means determines that dressing is not particularly necessary if the obtained protrusion amount is larger than Hmin, and determines that dressing is necessary if the obtained protrusion amount is equal to or less than Hmin. The grindstone T is moved relative to TR to dress the grindstone T, and the protrusion amount Ha of the abrasive grains Tr is initialized.

上記の説明では、測定する流体として砥石Tの周囲の空気(気体)を用いたが、砥石Tにおける砥石研削点TPの近傍にクーラントノズルCNから供給されるクーラント(液体)の速度を測定してもよい。
また、測定する流体(空気(気体)またはクーラント(液体))の物理量は、圧力であってもよく、圧力と速度の少なくとも一方を測定するようにしてもよい。
あるいは、砥石Tの回転速度を低回転(第1所定回転数)と、高回転(第2所定回転数)にして、流体速度の差、または圧力の差、を「突き出し量−流体物理量特性」として記憶し、実機における低回転時の測定結果と高回転時の測定結果との差と比較するようにしてもよい。
また、砥粒Trの突き出し量Haが予め判っている場合、所定距離L1だけ離れた位置で、流体の物理量(この場合、流体速度)を測定すれば、砥石Tの回転速度を求めることも可能である。
In the above description, air (gas) around the grindstone T is used as the fluid to be measured. However, the velocity of the coolant (liquid) supplied from the coolant nozzle CN in the vicinity of the grindstone grinding point TP in the grindstone T is measured. Also good.
Moreover, the physical quantity of the fluid (air (gas) or coolant (liquid)) to be measured may be a pressure, and at least one of the pressure and the speed may be measured.
Alternatively, the rotation speed of the grindstone T is set to a low rotation speed (first predetermined rotation speed) and a high rotation speed (second predetermined rotation speed), and the difference in fluid speed or pressure is expressed as “projection amount-fluid physical quantity characteristic”. And may be compared with the difference between the measurement result at the time of low rotation and the measurement result at the time of high rotation in the actual machine.
Further, when the protrusion amount Ha of the abrasive grains Tr is known in advance, the rotational speed of the grindstone T can be obtained by measuring the physical quantity of the fluid (in this case, the fluid speed) at a position separated by a predetermined distance L1. It is.

以上、本実施の形態にて説明した砥石Tにおける砥粒Trの突き出し量Haの測定方法を用いれば、実際のワークを研削することなく、機上で突き出し量Haをより正確に測定することが可能であり、砥石Tのドレッシングの回数を必要最低限にすることが可能となり、加工の中断回数を低減することができる。また、不良品を出すことなく限界直前まで砥石Tを使用することができるので、砥石寿命を延ばすことができる。
また、砥石Tにおける砥粒Trの突き出し量Haに限定されず、回転体の表面粗さの測定方法にも適用することができる。この場合、予め回転体の表面粗さに応じた「表面粗さ−流体物理量特性」のグラフ等を作成し、測定対象の回転体の表面から所定距離L1だけ離れた位置にて流体(気体または液体)の物理量(速度または圧力の少なくとも一方)を測定し、測定した物理量と「表面粗さ−流体物理量特性」に基づいて、回転体の表面粗さを測定することができる。この場合、回転体の表面を傷つけることなく、表面粗さを測定することができる。
As described above, if the method for measuring the protrusion amount Ha of the abrasive grains Tr in the grindstone T described in the present embodiment is used, the protrusion amount Ha can be measured more accurately on the machine without grinding the actual workpiece. It is possible to minimize the number of dressings of the grindstone T, and the number of processing interruptions can be reduced. Moreover, since the grindstone T can be used until just before the limit without producing defective products, the grindstone life can be extended.
Further, the present invention is not limited to the protrusion amount Ha of the abrasive grains Tr in the grindstone T, and can also be applied to a method for measuring the surface roughness of the rotating body. In this case, a “surface roughness-fluid physical quantity characteristic” graph or the like corresponding to the surface roughness of the rotating body is created in advance, and a fluid (gas or gas) is separated from the surface of the rotating body to be measured by a predetermined distance L1. The physical quantity (at least one of speed and pressure) of the liquid is measured, and the surface roughness of the rotating body can be measured based on the measured physical quantity and the “surface roughness-fluid physical quantity characteristic”. In this case, the surface roughness can be measured without damaging the surface of the rotating body.

以上、本実施の形態の説明では、突き出し量(表面粗さ)−流体物理量特性(図3(C)参照)を用いて、測定した流体の物理量から、どの程度の表面粗さ(この場合、どの程度の長さの突き出し量)であるか、を求める例を説明したが、突き出し量(表面粗さ)−流体物理量特性を用いずに、所定突き出し量(所定表面粗さ)以上であるか否か、のみを求めることも可能である。この場合、所定突き出し量(所定表面粗さ)となる流体物理量(流体閾値)を予め測定して記憶しておき、測定した流体の物理量が、流体閾値以上であるか否かを判定すればよい。例えば砥石Tにおける砥粒Trの突き出し量に対して、砥石Tのドレッシングが不要である突き出し量が最小の状態にて、その状態における流体の物理量を予め流体閾値として記憶しておく。そして、測定した流体の物理量が流体閾値未満である場合に突き出し量(表面粗さ)が所定突き出し量未満である(所定表面粗さ未満である)と求めることが可能であり、その場合は砥石Tのドレッシングを実行すればよい。なお、この流体閾値は、突き出し量(表面粗さ)−流体物理量特性の一例でもある。   As described above, in the description of the present embodiment, the surface roughness (in this case, from the physical quantity of the fluid measured using the protrusion amount (surface roughness) -fluid physical quantity characteristic (see FIG. 3C)). Although the example which calculates | requires how long the protrusion amount is) was demonstrated, it is more than predetermined protrusion amount (predetermined surface roughness) without using the protrusion amount (surface roughness) -fluid physical quantity characteristic It is also possible to ask only for no. In this case, a fluid physical quantity (fluid threshold value) that becomes a predetermined protrusion amount (predetermined surface roughness) is measured and stored in advance, and it is determined whether or not the measured physical quantity of the fluid is greater than or equal to the fluid threshold value. . For example, the physical quantity of the fluid in that state is stored in advance as a fluid threshold in a state where the protrusion amount of the grindstone T that does not require dressing is minimal with respect to the protrusion amount of the abrasive grains Tr in the grindstone T. When the measured physical quantity of the fluid is less than the fluid threshold, it is possible to determine that the protrusion amount (surface roughness) is less than the predetermined protrusion amount (less than the predetermined surface roughness). T dressing may be executed. This fluid threshold value is also an example of the protrusion amount (surface roughness) -fluid physical quantity characteristic.

本発明の砥石における砥粒の突き出し量の測定方法、砥石のドレッシング方法、及び回転体の表面粗さの測定方法は、本実施の形態で説明した処理、方法等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
流体検出手段RS、及びドレッシング手段TRを設ける位置は、図1(A)及び(B)に示す位置に限定されず、研削盤1のどこに設けられていてもよい。
The method for measuring the protruding amount of abrasive grains, the dressing method for the grindstone, and the method for measuring the surface roughness of the rotating body in the grindstone of the present invention are not limited to the processing, method, etc. described in the present embodiment. Various changes, additions and deletions can be made without changing the gist.
The positions where the fluid detection means RS and the dressing means TR are provided are not limited to the positions shown in FIGS. 1A and 1B, and may be provided anywhere on the grinding machine 1.

1 研削盤
12 砥石覆い
25 軸ホルダ
40 砥石スライドテーブル
41 砥石進退テーブル
BS 基台
CL、CR センタ部材
CN クーラントノズル
Ha 突き出し量
MT 砥石駆動モータ
MX Z軸駆動モータ
MZ X軸駆動モータ
GX、GZ ガイド
RS 流体検出手段
SL、SR 主軸(左)、主軸(右)
T 砥石
Tb ベース部
TP 砥石研削点
TR ドレッシング手段
Tr 砥粒
TZ 砥石回転軸
W ワーク
WZ ワーク回転軸

DESCRIPTION OF SYMBOLS 1 Grinding machine 12 Grinding wheel cover 25 Axis holder 40 Grinding wheel slide table 41 Grinding wheel advance / retreat table BS Base CL, CR Center member CN Coolant nozzle Ha Protrusion amount MT Grinding wheel drive motor MX Z axis drive motor MZ X axis drive motor GX, GZ guide RS Fluid detection means SL, SR Spindle (left), Spindle (right)
T Grinding wheel Tb Base part TP Grinding point TR Dressing means Tr Abrasive grain TZ Grinding wheel rotation axis W Work WZ Work rotation axis

Claims (5)

回転駆動される回転体の表面に連れ回っている流体の物理量を測定可能な流体検出手段と、制御手段と、を用い、
前記制御手段にて、
前記流体検出手段を用いて検出した前記流体の物理量に基づいて、前記回転体の表面粗さを求めるステップを有する、
回転体の表面粗さの測定方法。
Using a fluid detection means capable of measuring a physical quantity of a fluid that is rotating around the surface of a rotationally driven rotor, and a control means,
In the control means,
Obtaining a surface roughness of the rotating body based on a physical quantity of the fluid detected using the fluid detection means;
Measuring method of surface roughness of rotating body.
請求項1に記載の回転体の表面粗さの測定方法であって、
前記流体は、前記回転体の周囲の気体、または前記回転体の表面にかけられた液体であり、
前記流体検出手段は、前記気体または前記液体、の流速または圧力の少なくとも一方を検出可能であり、
予め前記表面粗さに対応する流体の流速または圧力の少なくとも一方を測定した表面粗さ−流体物理量特性を記憶した記憶手段を用い、
前記制御手段にて、
前記回転体の表面から所定距離だけ離れた位置の前記流体検出手段を用いて、回転駆動される前記回転体の表面の近傍の前記気体または前記液体、の流速または圧力の少なくとも一方を測定するステップと、
測定した前記流速または前記圧力の少なくとも一方と、前記表面粗さ−流体物理量特性と、に基づいて前記回転体の表面粗さを求めるステップと、を有する、
回転体の表面粗さの測定方法。
It is a measuring method of the surface roughness of the rotary body according to claim 1,
The fluid is a gas around the rotating body or a liquid applied to the surface of the rotating body,
The fluid detection means is capable of detecting at least one of a flow rate or a pressure of the gas or the liquid,
Using storage means for storing in advance surface roughness-fluid physical quantity characteristics obtained by measuring at least one of the flow velocity or pressure of the fluid corresponding to the surface roughness,
In the control means,
A step of measuring at least one of the flow velocity or pressure of the gas or the liquid in the vicinity of the surface of the rotating body that is rotationally driven, using the fluid detection means located at a predetermined distance from the surface of the rotating body. When,
Obtaining the surface roughness of the rotating body based on at least one of the measured flow velocity or the pressure and the surface roughness-fluid physical quantity characteristic,
Measuring method of surface roughness of rotating body.
砥石の表面に突出している砥粒の突き出し量を測定する、砥石における砥粒の突き出し量の測定方法であって、
回転駆動される前記砥石の表面に連れ回っている流体の物理量を測定可能な流体検出手段と、制御手段と、を用い、
前記制御手段にて、
前記流体検出手段を用いて検出した前記流体の物理量に基づいて前記砥石の表面の砥粒の突き出し量を求めるステップを有する、
砥石における砥粒の突き出し量の測定方法。
Measuring the protrusion amount of abrasive grains protruding on the surface of a grindstone, a method for measuring the protrusion amount of abrasive grains in a grindstone,
Using a fluid detection means capable of measuring a physical quantity of the fluid that is rotating around the surface of the grindstone that is rotationally driven, and a control means,
In the control means,
Obtaining a protrusion amount of abrasive grains on the surface of the grindstone based on a physical quantity of the fluid detected using the fluid detection means;
A method for measuring the protruding amount of abrasive grains in a grindstone.
請求項3に記載の砥石における砥粒の突き出し量の測定方法であって、
前記流体は、砥石の周囲の空気、または砥石の表面にかけられたクーラントであり、
前記流体検出手段は、前記空気または前記クーラント、の流速または圧力の少なくとも一方を検出可能であり、
予め砥粒の突き出し量に対応する前記空気または前記クーラント、の流速または圧力の少なくとも一方を測定した突き出し量−流体物理量特性を記憶した記憶手段を用い、
前記制御手段にて、
前記砥石の表面から所定距離だけ離れた位置の前記流体検出手段を用いて、回転駆動される前記砥石の表面の近傍の前記空気または前記クーラント、の流速または圧力の少なくとも一方を測定するステップと、
測定した前記流速または前記圧力の少なくとも一方と、前記突き出し量−流体物理量特性と、に基づいて前記砥石の表面の砥粒の突き出し量を求めるステップと、を有する、
砥石における砥粒の突き出し量の測定方法。
It is a measuring method of the protrusion amount of the abrasive grain in the whetstone according to claim 3,
The fluid is air surrounding the wheel or coolant applied to the surface of the wheel;
The fluid detection means is capable of detecting at least one of a flow rate or pressure of the air or the coolant,
Using a storage means that stores in advance a protrusion amount-fluid physical quantity characteristic obtained by measuring at least one of the flow rate or pressure of the air or the coolant corresponding to the protrusion amount of the abrasive grains,
In the control means,
Measuring at least one of the flow rate or pressure of the air or the coolant in the vicinity of the surface of the grindstone that is rotationally driven, using the fluid detection means at a position away from the surface of the grindstone by a predetermined distance;
Obtaining a protrusion amount of abrasive grains on the surface of the grindstone based on at least one of the measured flow velocity or pressure and the protrusion amount-fluid physical quantity characteristic,
A method for measuring the protruding amount of abrasive grains in a grindstone.
回転駆動される砥石と、
前記砥石の周囲に連れ回る空気またはクーラント、の流速または圧力の少なくとも一方を検出可能な流体検出手段と、
前記砥石をドレッシング可能なドレッシング手段と、
制御手段と、を備えた研削盤であって、
前記制御手段には、予め前記砥石の砥粒の突き出し量に対応する前記空気または前記クーラント、の流速または圧力の少なくとも一方を測定した突き出し量−流体物理量特性が記憶されており、
前記制御手段は、
前記砥石の表面から所定距離だけ離れた位置の前記流体検出手段を用いて、回転駆動される前記砥石の表面の近傍の前記空気または前記クーラント、の流速または圧力の少なくとも一方を測定し、
測定した前記流速または前記圧力の少なくとも一方と、前記突き出し量−流体物理量特性と、に基づいて前記砥石の表面の砥粒の突き出し量を求め、
求めた砥粒の突き出し量が所定突き出し量以下の場合、前記ドレッシング手段を用いて前記砥石をドレッシングする、
研削盤。

A grindstone that is driven to rotate;
Fluid detection means capable of detecting at least one of a flow rate or a pressure of air or coolant that moves around the grinding wheel;
Dressing means capable of dressing the grinding wheel;
A grinding machine comprising control means,
The control means stores in advance a protrusion amount-fluid physical quantity characteristic obtained by measuring at least one of the flow rate or pressure of the air or the coolant corresponding to the protrusion amount of the abrasive grains of the grindstone.
The control means includes
Using the fluid detection means at a position away from the surface of the grindstone by a predetermined distance, measure at least one of the flow velocity or pressure of the air or the coolant in the vicinity of the surface of the grindstone that is rotationally driven,
Based on at least one of the measured flow velocity or pressure and the protrusion amount-fluid physical quantity characteristic, the protrusion amount of abrasive grains on the surface of the grindstone is obtained,
When the amount of protrusion of the determined abrasive is equal to or less than the predetermined protrusion amount, dressing the grindstone using the dressing means,
Grinder.

JP2009132161A 2009-06-01 2009-06-01 Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine Pending JP2010274405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132161A JP2010274405A (en) 2009-06-01 2009-06-01 Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132161A JP2010274405A (en) 2009-06-01 2009-06-01 Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine

Publications (1)

Publication Number Publication Date
JP2010274405A true JP2010274405A (en) 2010-12-09

Family

ID=43421833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132161A Pending JP2010274405A (en) 2009-06-01 2009-06-01 Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine

Country Status (1)

Country Link
JP (1) JP2010274405A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206865A (en) * 2010-03-29 2011-10-20 Sanko Sangyo Kk Surface treatment device
US9375132B2 (en) 2011-06-23 2016-06-28 Kabushiki Kaisha Toshiba Medical image processing apparatus and medical image diagnosis apparatus
CN110064971A (en) * 2016-04-28 2019-07-30 株式会社捷太格特 Machine tool system and Surface Roughness Detecting Method
CN112222965A (en) * 2020-10-17 2021-01-15 江苏汉印机电科技股份有限公司 Electronic equipment printed circuit board detecting system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206865A (en) * 2010-03-29 2011-10-20 Sanko Sangyo Kk Surface treatment device
US9375132B2 (en) 2011-06-23 2016-06-28 Kabushiki Kaisha Toshiba Medical image processing apparatus and medical image diagnosis apparatus
CN110064971A (en) * 2016-04-28 2019-07-30 株式会社捷太格特 Machine tool system and Surface Roughness Detecting Method
CN112222965A (en) * 2020-10-17 2021-01-15 江苏汉印机电科技股份有限公司 Electronic equipment printed circuit board detecting system
CN112222965B (en) * 2020-10-17 2021-10-08 江苏汉印机电科技股份有限公司 Electronic equipment printed circuit board detecting system

Similar Documents

Publication Publication Date Title
JP5857660B2 (en) Grinding machine truing device
JP5082621B2 (en) Workpiece grinding method and processing apparatus
JP6252270B2 (en) Truing method for grinding wheel of grinding machine and grinding machine
JP6405098B2 (en) Method for identifying topography deviation of dressing tool of polishing machine and CNC control machine configured accordingly
US20090203296A1 (en) Device and method for truing a machining wheel by means of a rotating truing tool as well as machine tool with a device of this kind
JP2009006447A5 (en)
KR20130122760A (en) Centering method for optical elements
JP2020069600A (en) Machine tool
JP2010274405A (en) Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine
JP2010194623A (en) Thread grinding machine and thread groove grinding method
JP5321813B2 (en) Chamfering apparatus and chamfering method
JP5402546B2 (en) Cylindrical workpiece grinding method
JP4940904B2 (en) Bulk quantity measuring device
JP2010274406A (en) Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine
JP2009078326A (en) Wafer chamfering device and wafer chamfering method
JP5428497B2 (en) Grinding wheel forming method
JP7172636B2 (en) Machine tool maintenance support device and machine tool system
JP5679171B2 (en) Dicing apparatus and dicing method
JP5326661B2 (en) Grinding wheel forming method
WO2023047437A1 (en) Processing estimation device
JPS63114877A (en) Grindstone processing device in numerically controlled grinder
JP5471055B2 (en) Grinding wheel forming method and grinding machine
WO2024075284A1 (en) Contact dynamic stiffness calculation system, machining estimation device, and proccessing system
JP2000094322A (en) Precision grinding machine and grinding wheel radius measuring method
JP2013071204A (en) Rigidity measuring method and grinder