JP2010115026A - Control circuit of complex power supply device - Google Patents

Control circuit of complex power supply device Download PDF

Info

Publication number
JP2010115026A
JP2010115026A JP2008286042A JP2008286042A JP2010115026A JP 2010115026 A JP2010115026 A JP 2010115026A JP 2008286042 A JP2008286042 A JP 2008286042A JP 2008286042 A JP2008286042 A JP 2008286042A JP 2010115026 A JP2010115026 A JP 2010115026A
Authority
JP
Japan
Prior art keywords
storage battery
command value
current
discharge
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008286042A
Other languages
Japanese (ja)
Other versions
JP5381026B2 (en
Inventor
Junichi Shimomura
潤一 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2008286042A priority Critical patent/JP5381026B2/en
Publication of JP2010115026A publication Critical patent/JP2010115026A/en
Application granted granted Critical
Publication of JP5381026B2 publication Critical patent/JP5381026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that in a complex power supply system wherein an electric double-layer capacitor is connected in parallel to a secondary battery, the life of the secondary battery is shortened depending on an internal impedance ratio due to a load current condition, a change in surrounding environment, etc. <P>SOLUTION: In a complex power supply device, a step-up/down chopper is provided between an electric double-layer capacitor and an inverter. A differential signal between a command value for the voltage of a storage battery and a detected voltage of the storage battery is input into a PI controller, which performs PI calculation, and the step-up/down chopper is controlled via a PWM control unit so that the voltage value of a secondary battery may conform to the command value for the voltage of the storage battery. During this chopper control, a fluctuation of the voltage of the secondary battery can be suppressed by varying the command value for the voltage of the storage battery in charging and discharging. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、二次電池と電気二重層キャパシタで構成された複合電源装置の制御方法に係り、特に二次電池の寿命低下を抑制する制御回路に関するものである。   The present invention relates to a control method for a composite power supply device including a secondary battery and an electric double layer capacitor, and more particularly to a control circuit that suppresses a reduction in the lifetime of the secondary battery.

バッテリーフォークリフトや無人車両、電気自動車などの移動車両には、その電源として鉛蓄電池やリチウム電池などの二次電池が搭載され、駆動用ACモータは、この二次電池を電源としてインバータを介して制御される。駆動装置に搭載される二次電池は、蓄電エネルギー密度は高いが比較的内部抵抗が高いため、ACモータに対して過渡駆動に応じた短時間大電流の充放電を行うと、電圧変動や発熱が生じ、二次電池の寿命が低下する。そのため、二次電池は容量の大きいものを用いる必要がある。   Mobile vehicles such as battery forklifts, unmanned vehicles, and electric vehicles are equipped with secondary batteries such as lead-acid batteries and lithium batteries as their power sources, and the drive AC motor is controlled via an inverter using these secondary batteries as power sources. Is done. The secondary battery installed in the drive device has a high storage energy density but relatively high internal resistance. Therefore, when charging and discharging a large current for a short time according to transient drive to an AC motor, voltage fluctuations and heat generation Occurs, and the life of the secondary battery is reduced. Therefore, it is necessary to use a secondary battery having a large capacity.

この対策として、
図20で示すように蓄電池B(二次電池)に対して、内部抵抗の低い電気二重層キャパシタEDLCや電解コンデンサを並列接続した複合電源装置が採用されている。これは、蓄電池Bに対して電気二重層キャパシタEDLCは内部抵抗が低いこと、及び蓄電池Bは電気二重層キャパシタEDLCに対して蓄電エネルギーが高い特性を利用して、負荷の加速減速時のような過渡状態では必要な電力を電気二重層キャパシタEDLCから供給し、等速時の定常状態では蓄電池Bから供給する方式である。これにより、二次電池の電圧変動が抑制されるため、二次電池の長寿命化、容量削減、及び保水等のメンテナンスの軽減が可能となる。なお、図20でIVはインバータ、MはACモータである。
As a countermeasure,
As shown in FIG. 20, a composite power supply apparatus in which an electric double layer capacitor EDLC having a low internal resistance and an electrolytic capacitor are connected in parallel to a storage battery B (secondary battery) is employed. This is because the electric double layer capacitor EDLC has a low internal resistance with respect to the storage battery B, and the storage battery B uses the characteristic that the stored energy is higher than that of the electric double layer capacitor EDLC. In the transient state, necessary electric power is supplied from the electric double layer capacitor EDLC, and in the steady state at constant speed, it is supplied from the storage battery B. Thereby, since the voltage fluctuation of the secondary battery is suppressed, it is possible to extend the life of the secondary battery, reduce the capacity, and reduce maintenance such as water retention. In FIG. 20, IV is an inverter, and M is an AC motor.

また、特許文献1の段落0008〜0009、及び図3には、キャパシタをDC/DCコンバータを介して蓄電池と並列接続し、インバータへのエネルギー供給は蓄電池から行い、急峻なエネルギー供給や回生はDC/DCコンバータを通してキャパシタから行うことで、インバータの出力電圧を一定に保つことが記載されている。
特開2003−143713の特に図3
Further, in paragraphs 0008 to 0009 of FIG. 1 and FIG. 3, a capacitor is connected in parallel with a storage battery via a DC / DC converter, and energy is supplied to the inverter from the storage battery. It is described that the output voltage of the inverter is kept constant by performing from a capacitor through a DC converter.
In particular, FIG. 3 of JP-A-2003-143713.

図20で示す二次電池に、電気二重層キャパシタや電解コンデンサを直接並列接続する複合電源方式では、回路構成は簡単であるが、次のような問題点を有している。
(1)二次電池とキャパシタの内部インピーダンスにより、複合電源装置の性能が決まる。つまり、二次電池とキャパシタの内部インピーダンスで決まる比率で蓄電池電流とキャパシタ電流が流れる。これにより、蓄電池電流への過渡的な負過電流はキャパシタが分担する分だけ負担軽減されるが、負荷電流条件や内部インピーダンス比率によっては、二次電池の寿命低下が生じる問題がある。
また、内部インピーダンス比率を考慮した場合、複合電源装置を構成する蓄電素子の直並列数や電極面積に制約が生じる。
(2)二次電池と電気二重層キャパシタの経年変化等による劣化、周囲環境の変化によって内部インピーダンスが変化すると、複合電源装置の性能変化となる。
仮に、複合電源装置の設計時に、電流の分流比が最適となる内部インピーダンス比率で構成したとしても、周囲環境変化等で複合電源装置の性能が変化する。
The composite power supply system in which an electric double layer capacitor and an electrolytic capacitor are directly connected in parallel to the secondary battery shown in FIG. 20 has a simple circuit configuration, but has the following problems.
(1) The performance of the composite power supply apparatus is determined by the internal impedance of the secondary battery and the capacitor. That is, the storage battery current and the capacitor current flow at a ratio determined by the internal impedance of the secondary battery and the capacitor. Thereby, the burden of the transient negative overcurrent to the storage battery current is reduced by the share of the capacitor, but there is a problem that the life of the secondary battery is reduced depending on the load current condition and the internal impedance ratio.
Further, when the internal impedance ratio is taken into consideration, there are restrictions on the number of power storage elements constituting the composite power supply apparatus and the electrode area.
(2) When the internal impedance changes due to deterioration of the secondary battery and the electric double layer capacitor due to aging, etc., or changes in the surrounding environment, the performance of the composite power supply device changes.
Even when the composite power supply apparatus is designed with an internal impedance ratio that optimizes the current shunt ratio, the performance of the composite power supply apparatus changes due to changes in the surrounding environment.

なお、特許文献1の図3では、DC/DCコントローラをどのように制御するかの記載はなく、二次電池の寿命低下を抑制することについての記載はない。   In addition, in FIG. 3 of patent document 1, there is no description of how to control a DC / DC controller, and there is no description about suppressing the lifetime reduction of a secondary battery.

本発明が目的とするとこは、内部インピーダンス比率に関係なく、複合電源装置の寿命低下を抑制する制御方法を提供することにある。   An object of the present invention is to provide a control method that suppresses a reduction in the lifetime of a composite power supply device regardless of the internal impedance ratio.

本発明は、インバータを介して制御されるACモータの電源として、蓄電池と電気二重層キャパシタを充放電制御する昇降圧チョッパを並列接続した複合電源装置において、
前記蓄電池電圧指令値と検出した蓄電池電圧の差信号をPI制御器に入力してPI演算を実行し、この演算値を電気二重層キャパシタの充放電設定値とし、この充放電設定値に基づいてPWM制御部を介して昇降圧チョッパを制御することを特徴としたものである。
The present invention provides a power supply for an AC motor controlled via an inverter, in a composite power supply device in which a step-up / step-down chopper for charge / discharge control of a storage battery and an electric double layer capacitor is connected in parallel.
A difference signal between the storage battery voltage command value and the detected storage battery voltage is input to a PI controller to perform a PI calculation. This calculation value is used as a charge / discharge set value for the electric double layer capacitor, and based on the charge / discharge set value. The step-up / step-down chopper is controlled via the PWM control unit.

本発明の請求項2は、充電時蓄電池電圧指令値と放電時蓄電池電圧指令値を各別に設け、
充電時蓄電池電圧指令値と検出した蓄電池電圧の差信号は、蓄電池電圧>充電時蓄電池電圧指令値のときに発生するキャパシタ充電フラグと乗算部で乗算した後にPI制御器でPI演算を実行し、放電時蓄電池電圧指令値と検出した蓄電池電圧の差信号は、蓄電池電圧<放電時蓄電池電圧指令値のときに発生するキャパシタ放電フラグと乗算部で乗算した後にPI制御器でPI演算を実行し、各PI演算値を電気二重層キャパシタの充電設定値と放電設定値とすることを特徴としたものである。
Claim 2 of the present invention separately provides a storage battery voltage command value during charging and a storage battery voltage command value during discharging,
The difference signal between the storage battery voltage command value during charging and the detected storage battery voltage is multiplied by the capacitor charging flag generated by the multiplication unit when the storage battery voltage is greater than the storage battery voltage command value during charging, and then PI calculation is performed by the PI controller. The difference signal between the discharged storage battery voltage command value and the detected storage battery voltage is multiplied by a capacitor discharge flag generated when the storage battery voltage <the discharged storage battery voltage command value and the multiplication unit, and then PI calculation is performed by the PI controller. Each PI calculation value is set as a charge set value and a discharge set value of the electric double layer capacitor.

本発明の請求項3は、インバータを介して制御されるACモータの電源として、蓄電池と電気二重層キャパシタを充放電制御する昇降圧チョッパを並列接続した複合電源装置において、
充電時チョッパ電流指令値、充電時蓄電池電力指令値、及び放電時蓄電池電力指令値を各別に設け、充電時チョッパ電流指令値とチョッパ電流の差信号は、0<蓄電池電力<充電時蓄電池電力指令値のときに発生するキャパシタ充電フラグと乗算部で乗算した後にPI制御器でPI演算を実行し、
充電時蓄電池電力指令値と蓄電池電力の差信号は、蓄電池電力<0のときに発生するキャパシタ充電フラグと乗算部で乗算した後にPI制御器でPI演算を実行し、
放電時蓄電池電力指令値と蓄電池電力の差信号は、蓄電池電力>放電時蓄電池電力指令値のときに発生するキャパシタ充電フラグと乗算部で乗算した後にPI制御器でPI演算を実行し、
各PI演算値を電気二重層キャパシタの充電設定値と放電設定値を算出することを特徴としたものである。
Claim 3 of the present invention is a composite power supply apparatus in which a step-up / step-down chopper for charge / discharge control of a storage battery and an electric double layer capacitor is connected in parallel as a power source of an AC motor controlled via an inverter.
A chopper current command value during charging, a battery power command value during charging, and a battery power command value during discharging are provided separately, and the difference signal between the chopper current command value during charging and the chopper current is 0 <storage battery power <charging battery power command. PI multiplication is performed by the PI controller after multiplying the capacitor charging flag generated at the time of the value by the multiplication unit,
The difference signal between the charging battery power command value and the storage battery power is multiplied by the capacitor charging flag generated when the storage battery power <0 and the multiplication unit, and then PI calculation is performed by the PI controller.
The difference signal between the storage battery power command value at the time of discharge and the storage battery power is multiplied by the capacitor charging flag generated by the multiplication unit when the storage battery power> the storage battery power command value at the time of discharge, and then the PI operation is performed by the PI controller.
Each PI calculation value is calculated as a charge set value and a discharge set value of the electric double layer capacitor.

本発明の請求項4は、インバータを介して制御されるACモータの電源として、蓄電池と電気二重層キャパシタを充放電制御する昇降圧チョッパを並列接続した複合電源装置において、
充電時蓄電池電流指令値と放電時蓄電池電流指令値を各別に設け、
充電時蓄電池電流指令値と蓄電池電流の差信号は、蓄電池電流<充電時蓄電池電流指令値のときに発生するキャパシタ充電フラグと乗算部で乗算した後にPI制御器でPI演算を実行し、
放電時蓄電池電流指令値と蓄電池電流の差信号は、蓄電池電流>放電時蓄電池電流指令値のときに発生するキャパシタ放電フラグと乗算部で乗算した後にPI制御器でPI演算を実行し、各PI演算値を電気二重層キャパシタの充電設定値と放電設定値とすることを特徴としたものである。
According to a fourth aspect of the present invention, as a power source for an AC motor controlled via an inverter, a composite power supply device in which a step-up / step-down chopper for charge / discharge control of a storage battery and an electric double layer capacitor is connected in parallel,
A battery current command value for charging and a battery current command value for discharging are provided separately,
The difference signal between the storage battery current command value during charging and the storage battery current is multiplied by a capacitor charging flag generated by the multiplier when the storage battery current <the storage battery current command value during charging, and then a PI operation is performed by the PI controller.
The difference signal between the battery current command value during discharge and the battery current is obtained by multiplying the capacitor discharge flag generated when the battery current> the battery current command value during discharge by the multiplier and then performing PI calculation in the PI controller. The calculated values are set as a charge set value and a discharge set value of the electric double layer capacitor.

本発明の請求項5は、前記キャパシタ充電フラグは、負荷電流<充電時蓄電池電流指令値のときに発生し、前記キャパシタ放電フラグは、負荷電流>充電時蓄電池電流指令値のときに発生することを特徴としたものである。   According to a fifth aspect of the present invention, the capacitor charge flag is generated when load current <charge battery current command value, and the capacitor discharge flag is generated when load current> charge battery current command value. It is characterized by.

本発明の請求項6は、インバータを介して制御されるACモータの電源として、蓄電池と電気二重層キャパシタを充放電制御する昇降圧チョッパを並列接続した複合電源装置において、
昇降圧チョッパの充電時チョッパ変調率が一定の変調率に設定された充電時チョッパ変調率設定部と、放電時チョッパ変調率が一定の変調率に設定された放電時チョッパ変調率設定部を設け、検出された負荷電流が充電時蓄電池電流指令値より小のときに充電時チョッパ変調率設定部、及びPWM制御部を介して昇降圧チョッパの充電制御を実行し、負荷電流が充電時蓄電池電流指令値より大のとき放電時チョッパ変調率設定部、及びPWM制御部を介して昇降圧チョッパの放電制御を行うこと特徴としたものである。
Claim 6 of the present invention is a composite power supply apparatus in which a step-up / step-down chopper for charge / discharge control of a storage battery and an electric double layer capacitor is connected in parallel as a power source of an AC motor controlled via an inverter.
A chopper modulation rate setting unit for charging and a chopper modulation rate setting unit for discharging and setting a constant chopper modulation rate for discharging and a chopper modulation rate setting for discharging are provided. When the detected load current is smaller than the charging battery current command value, charging control of the step-up / step-down chopper is executed via the charging chopper modulation factor setting unit and the PWM control unit, and the load current is charging battery current When the value is larger than the command value, the discharge control of the step-up / step-down chopper is performed through the chopper modulation factor setting unit during discharge and the PWM control unit.

本発明の請求項7は、インバータを介して制御されるACモータの電源として、蓄電池と電気二重層キャパシタを充放電制御する昇降圧チョッパを並列接続した複合電源装置において、
前記電気二重層キャパシタの充電電流指令値とキャパシタ電流の差信号を入力してキャパシタ充電電流を演算するPI制御器と、放電電流指令値とキャパシタ電流の差信号を入力してキャパシタ放電電流を演算するPI制御器と、各PI制御器にて算出されたPI制御信号に基づいて昇降圧チョッパの制御信号を生成するPWM制御部を設け、直流電流が蓄電池、電気二重層キャパシタ側に流れている
ときに前記電気二重層キャパシタの充電制御を行い、直流電流がACモータ側に流れているときに放電制御を行うよう構成したことを特徴としたものである。
Claim 7 of the present invention is a composite power supply apparatus in which a step-up / step-down chopper for charge / discharge control of a storage battery and an electric double layer capacitor is connected in parallel as a power source of an AC motor controlled via an inverter.
PI controller that calculates the capacitor charge current by inputting the charge current command value of the electric double layer capacitor and the capacitor current, and the capacitor discharge current by inputting the difference signal of the discharge current command value and the capacitor current And a PWM control unit that generates a control signal for the step-up / step-down chopper based on the PI control signal calculated by each PI controller, and direct current flows to the storage battery and the electric double layer capacitor side The charging control of the electric double layer capacitor is sometimes performed, and the discharging control is performed when a direct current is flowing to the AC motor side.

以上のとおり、本発明によれば、昇降圧チョッパによる二次電池電圧制御、電力制御、電流制御やキャパシタ充放電制御を行うことにより蓄電池の電圧変動、電流変動を抑制したものである。これにより、負荷電流条件や二次電池と電気二重層キャパシタによる内部インピーダンス比率に関係なく、二次電池の寿命を延ばすことが可能となる。また、電気二重層キャパシタ、又はACモータ駆動装置に異常発生が生じた場合には、昇降圧チョッパをゲートブロックすることによって両者の分離が可能となり、他方への影響を防ぐことができて、安全、信頼性の向上が可能となる。   As described above, according to the present invention, the secondary battery voltage control, power control, current control and capacitor charge / discharge control by the buck-boost chopper are performed to suppress the voltage fluctuation and current fluctuation of the storage battery. As a result, the life of the secondary battery can be extended regardless of the load current condition and the internal impedance ratio of the secondary battery and the electric double layer capacitor. In addition, when an abnormality occurs in the electric double layer capacitor or AC motor drive device, the buck-boost chopper can be gate-blocked to be separated from each other, and the influence on the other can be prevented. Reliability can be improved.

図1は本発明の主回路構成を示したもので、電気二重層キャパシタEDLCは、昇降圧チョッパChを介して蓄電池Bに並列接続される。昇降圧チョッパChは、降圧(放電)用スイッチング素子S1と昇圧(充電)用スイッチング素子S2、及びリアクトルLを有している。スイッチング素子S1、S2は、ここではIGBTが使用されている。Bは二次電池が使用される蓄電池、Cは電解コンデンサ、IVはインバータ、MはACモータである。
本発明では、昇降圧チョッパChを介して蓄電池電圧、蓄電池電流、又は蓄電池電力を制御することで、蓄電池の電圧変動を抑制するものである。以下、実施例に基づいて詳述する。
FIG. 1 shows a main circuit configuration of the present invention. An electric double layer capacitor EDLC is connected in parallel to a storage battery B via a step-up / step-down chopper Ch. The step-up / step-down chopper Ch has a step-down (discharge) switching element S1, a step-up (charge) switching element S2, and a reactor L. Here, IGBTs are used as the switching elements S1 and S2. B is a storage battery in which a secondary battery is used, C is an electrolytic capacitor, IV is an inverter, and M is an AC motor.
In the present invention, the voltage fluctuation of the storage battery is suppressed by controlling the storage battery voltage, the storage battery current, or the storage battery power via the step-up / step-down chopper Ch. Hereinafter, it explains in full detail based on an Example.

図2は、本発明の第1の実施例を示す昇降圧チョッパChの制御部構成図で、蓄電池の電圧制御を行うものである。
1は減算部で、設定された電池電圧指令値VbRefと検出された蓄電池電圧Vbが入力されて差演算が実行すされる。2はPI制御部で、減算部1で求められた偏差信号は、このPI制御部2に入力されて比例・積分演算が行われる。
3は除算部で、この除算部3ではPI制御部2から入力された信号を、電気二重層キャパシタEDLCの検出電圧Vcで除することで昇降圧チョッパChの設定値ChRefとする。4は極性反転部、5及び6はリミッタ部で、昇降圧チョッパの設定値ChRefがChRef<0のときには、除算部3での演算信号ChRefは極性反転部4において極性反転された後、リミッタ部5を介してPWM制御部10に入力される。また、ChRef>0のときにはリミッタ部6を介してPWM制御部10に入力される。
FIG. 2 is a block diagram of the controller of the step-up / step-down chopper Ch showing the first embodiment of the present invention, and controls the voltage of the storage battery.
Reference numeral 1 denotes a subtracting unit that inputs the set battery voltage command value VbRef and the detected storage battery voltage Vb, and executes a difference calculation. Reference numeral 2 denotes a PI control unit, and the deviation signal obtained by the subtraction unit 1 is input to the PI control unit 2 for proportional / integral calculation.
Reference numeral 3 denotes a division unit. In the division unit 3, the signal input from the PI control unit 2 is divided by the detection voltage Vc of the electric double layer capacitor EDLC to obtain a set value ChRef of the step-up / down chopper Ch. 4 is a polarity reversing unit, and 5 and 6 are limiter units. When the setting value ChRef of the step-up / step-down chopper is ChRef <0, the operation signal ChRef in the dividing unit 3 is reversed in polarity by the polarity reversing unit 4 and then the limiter unit. 5 to the PWM control unit 10. Further, when ChRef> 0, it is input to the PWM control unit 10 via the limiter unit 6.

PWM制御部10では、各リミッタ部5,6を通して入力された昇降圧チョッパ設定値とキャリア信号に基づいてPWM信号を生成するが、ChRef>0のときには昇降圧チョッパの降圧用スイッチング素子S1をオン・オフ制御することで、電気二重層キャパシタEDLCに蓄積されたエネルギーを放電する。また、ChRef<0のときには昇圧用スイッチング素子S2を制御することで電気二重層キャパシタEDLCへの充電制御を実行する。   The PWM control unit 10 generates a PWM signal based on the step-up / step-down chopper setting value and the carrier signal input through the limiter units 5 and 6, but when ChRef> 0, the step-down switching element S1 of the step-up / down chopper is turned on -Discharge the energy stored in the electric double layer capacitor EDLC by turning it off. Further, when ChRef <0, the charge switching to the electric double layer capacitor EDLC is executed by controlling the step-up switching element S2.

図3はシミュレーション結果を示したものである。同図の上部に示す電圧圧波形図において、線aは電気二重層キャパシタEDLCを用いないときの蓄電池電圧、
線bは電気二重層キャパシタEDLCを設置して本実施例に基づいて蓄電池電圧制御を実施した時の電圧波形図で、負荷電流Iを±300A変動させた例である。この例によると、線aで示す電気二重層キャパシタEDLCなしの場合の蓄電池電圧変動は41.4〜54.6V変動し、その差は13.2Vとなっている。
一方、線bで示す本実施例によれば、43.4〜50.7Vでその変動幅は 7.3Vとなっている。また、電気二重層キャパシタEDLCなしの場合、蓄電池電流Ibは負荷電流ILと略同等の電流値となるが、蓄電池電圧制御を実施したことで、電気二重層キャパシタEDLCにキャパシタ電流Icが分流され、蓄電池電流の変動幅も抑制される。
蓄電池の電圧・電流の変動抑制幅は、実際の装置においてどの変動幅まで抑制すべきか等の仕様から求められる電気二重層キャパシタEDLCの容量により決まってくることは勿論である。
FIG. 3 shows the simulation results. In the voltage-pressure waveform diagram shown at the top of the figure, line a represents the storage battery voltage when the electric double layer capacitor EDLC is not used,
Line b is a voltage waveform diagram when the electric double layer capacitor EDLC is installed and the storage battery voltage control is performed based on the present embodiment, and is an example in which the load current I is varied by ± 300 A. According to this example, the storage battery voltage fluctuation without the electric double layer capacitor EDLC shown by the line a fluctuates by 41.4 to 54.6V, and the difference is 13.2V.
On the other hand, according to the present embodiment shown by the line b, the fluctuation range is 7.3V at 43.4-50.7V. In addition, in the case without the electric double layer capacitor EDLC, the storage battery current Ib has a current value substantially equal to the load current IL, but by executing the storage battery voltage control, the capacitor current Ic is shunted to the electric double layer capacitor EDLC, The fluctuation range of the storage battery current is also suppressed.
It goes without saying that the voltage / current fluctuation suppression width of the storage battery is determined by the capacity of the electric double layer capacitor EDLC obtained from the specifications such as to what fluctuation range the actual device should be suppressed.

この実施例によれば、PI制御により蓄電池電圧値Vbを、電池電圧指令値VbRefと一致するように電圧制御したものである。これにより、負荷電流条件や使用環境等による内部インピーダンス比率の変化に関係なく、PI制御部2は蓄電池電圧を常に一定抑制するよう動作することで、蓄電池の長寿命化が可能となるものである。   According to this embodiment, the storage battery voltage value Vb is voltage-controlled by PI control so as to coincide with the battery voltage command value VbRef. As a result, regardless of the change in the internal impedance ratio due to the load current condition, the usage environment, etc., the PI control unit 2 operates so as to always keep the storage battery voltage constant, thereby extending the life of the storage battery. .

図4は、本発明の第2の実施例を示す昇降圧チョッパChの制御部構成図で、蓄電池の電圧制御を行うものである。この実施例で第1の実施例と相違する点は、充電時と放電時との蓄電池電圧指令を変えたことである。通常、充電時の蓄電池電圧指令値VbChgRefは定格蓄電池電圧より高めに設定し、放電時の蓄電池電圧指令値VbDisChgRefは定格蓄電池電圧より低めに設定する。そして、蓄電池電圧の検出値Vbが充電時の蓄電池電圧指令値VbChgRef以上となったときに、蓄電池電圧Vbが充電時の蓄電池電圧指令値VbChgRefに一致するよう電気二重層キャパシタEDLCを充電する。その反対に蓄電池電圧Vbが放電時の蓄電池電圧指令値VbDisChgRef以下となったときに、蓄電池電圧Vbが充電時の蓄電池電圧指令値VbChgRefに一致するよう電気二重層キャパシタEDLCを放電制御する。   FIG. 4 is a block diagram of the controller of the step-up / step-down chopper Ch showing the second embodiment of the present invention, and controls the voltage of the storage battery. This embodiment is different from the first embodiment in that the storage battery voltage command is changed between charging and discharging. Usually, the storage battery voltage command value VbChgRef during charging is set higher than the rated storage battery voltage, and the storage battery voltage command value VbDisChgRef during discharging is set lower than the rated storage battery voltage. When the detected value Vb of the storage battery voltage becomes equal to or higher than the storage battery voltage command value VbChgRef during charging, the electric double layer capacitor EDLC is charged so that the storage battery voltage Vb matches the storage battery voltage command value VbChgRef during charging. Conversely, when the storage battery voltage Vb becomes equal to or lower than the storage battery voltage command value VbDisChgRef at the time of discharging, the electric double layer capacitor EDLC is controlled to discharge so that the storage battery voltage Vb matches the storage battery voltage command value VbChgRef at the time of charging.

すなわち、図4において、充電時の蓄電池電圧指令値VbChgRefは、減算部11に入力されて蓄電池電圧Vbとの差信号が求められ、放電時の蓄電池電圧指令値VbDisChgRefは、減算部21に入力されて蓄電池電圧Vbとの差信号が求められる。16、26は乗算部で、減算部11、21で求められた各差信号とキャパシタ充電フラグ、及び放電フラグとの乗算がそれぞれ実行される。   That is, in FIG. 4, the storage battery voltage command value VbChgRef during charging is input to the subtraction unit 11 to obtain a difference signal from the storage battery voltage Vb, and the storage battery voltage command value VbDisChgRef during discharging is input to the subtraction unit 21. Thus, a difference signal from the storage battery voltage Vb is obtained. Reference numerals 16 and 26 denote multiplication units, which respectively multiply the difference signals obtained by the subtraction units 11 and 21, the capacitor charge flag, and the discharge flag.

キャパシタフラグは、図5で示すフラグ発生手段により生成される。8は充電フラグ発生部、9は放電フラグ発生部で、検出された蓄電池電圧Vbと充電時の蓄電池電圧指令値VbChgRefの大小関係が、Vb>VbChgRefのときには充電フラグ発生部8でキャパシタ充電フラグ1を立てる。また、蓄電池電圧Vbと放電時の蓄電池電圧指令値VbDisChgRefの大小関係が、Vb<VbDisChgRefのときには放電フラグ発生部9でキャパシタ充電フラグ1を立てる。   The capacitor flag is generated by flag generation means shown in FIG. 8 is a charge flag generation unit, and 9 is a discharge flag generation unit. When the magnitude relationship between the detected storage battery voltage Vb and the storage battery voltage command value VbChgRef during charging is Vb> VbChgRef, the charge flag generation unit 8 uses the capacitor charge flag 1. Stand up. Further, when the magnitude relation between the storage battery voltage Vb and the storage battery voltage command value VbDisChgRef at the time of discharge is Vb <VbDisChgRef, the discharge flag generator 9 sets the capacitor charge flag 1.

キャパシタフラグ1が立てられた側のPI制御部12、又は22では、減算部11、又は21で求められた偏差信号は、PI制御部12、又は22に入力されて比例・積分演算が行われ、その演算値は除算部13、又は23において検出されたキャパシタ電圧Cvにより除されて昇降圧チョッパの設定値となる。この設定値は、除算部13の出力のみ極性反転部14において極性反転された後、リミッタ部15を介してPWM制御部10に入力され、また、除算部23の出力は、リミッタ部25を介してPWM制御部10に入力される。   In the PI control unit 12 or 22 on the side where the capacitor flag 1 is set, the deviation signal obtained by the subtraction unit 11 or 21 is input to the PI control unit 12 or 22, and proportional / integral calculation is performed. The calculated value is divided by the capacitor voltage Cv detected by the dividing unit 13 or 23 to become a set value of the step-up / down chopper. Only the output of the dividing unit 13 is inverted in polarity by the polarity inverting unit 14 and then input to the PWM control unit 10 through the limiter unit 15, and the output of the dividing unit 23 is input through the limiter unit 25. Are input to the PWM controller 10.

PWM制御部10では、第1の実施例と同様に、各リミッタ部15,26を通して入力された昇降圧チョッパ設定値とキャリア信号に基づいてPWM信号を生成し、キャパシタフラグが充電フラグ発生部9に立てられたときには、昇降圧チョッパの降圧用スイッチング素子S1をオン・オフ制御することで、電気二重層キャパシタEDLCに蓄積されたエネルギーを放電する。
また、キャパシタフラグが充電フラグ発生部8に立てられたときには、昇圧用スイッチング素子S2を制御することで電気二重層キャパシタEDLCへの充電制御を実行する。
As in the first embodiment, the PWM control unit 10 generates a PWM signal based on the step-up / step-down chopper setting value and the carrier signal input through the limiter units 15 and 26, and the capacitor flag becomes the charge flag generation unit 9 Is set to ON / OFF, the energy stored in the electric double layer capacitor EDLC is discharged by controlling on / off of the step-down switching element S1 of the step-up / step-down chopper.
Further, when the capacitor flag is set in the charge flag generation unit 8, the electric double layer capacitor EDLC is charged by controlling the step-up switching element S2.

図6は第2実施例におけるシミュレーション結果を示したものである。
線aで示す電気二重層キャパシタEDLCなしの場合の蓄電池電圧変動は41.4〜54.6V変動し、その差は13.2Vとなっている。一方、線bで示す本実施例によれば、45.7〜50.2Vでその変動幅は4.5Vとなって、線aよりも蓄電池電圧の変動が抑制されていることが判る。
また、キャパシタ電流Icが大幅に電流分担することで、蓄電池電流Ibの電流変動幅も大幅に抑制されていることが判る。
FIG. 6 shows a simulation result in the second embodiment.
The battery voltage fluctuation in the case without the electric double layer capacitor EDLC indicated by the line a fluctuates by 41.4 to 54.6V, and the difference is 13.2V. On the other hand, according to the present embodiment indicated by the line b, the fluctuation range is 4.5 V at 45.7 to 50.2 V, and it can be seen that the fluctuation of the storage battery voltage is suppressed more than the line a.
In addition, it can be seen that the current fluctuation width of the storage battery current Ib is greatly suppressed because the capacitor current Ic is largely shared.

この実施例によれば、充電と放電を各別の設定値とし、この充放電の制御判断は蓄電池電圧で行なうことで、常に、蓄電池電圧が一定となる。   According to this embodiment, charging and discharging are set to different set values, and the charging / discharging control determination is performed by the storage battery voltage, so that the storage battery voltage is always constant.

図7は第3の実施例を示す昇降圧チョッパChの構成図で、蓄電池の電力制御を行うものである。この実施例で第2実施例と相違する点は、蓄電池電力を制御することである。蓄電池電力Wbは、蓄電池電圧Vbと蓄電池電流Ibの乗算によって求められる。この電力値が負の値、つまりACモータが回生時の場合には、昇降圧チョッパChを流れるチョッパ電流Icが、充電時チョッパ電流指令値IcChgRefに一致するよう電気二重層キャパシタEDLCを充電する。また、充電時の蓄電池電力指令値WbChgRef以下のときには、蓄電池電力Wbの値が充電時の蓄電池電力指令値WbChgRefに一致するよう電気二重層キャパシタEDLCを充電し、放電時の蓄電池電力指令値WbDisChgRef以上のときには、蓄電池電圧Vbの値が放電時蓄電池電力指令値WbDisChgRefに一致するよう電気二重層キャパシタEDLCの放電制御を実行する。   FIG. 7 is a block diagram of a step-up / step-down chopper Ch showing a third embodiment, and performs power control of the storage battery. This embodiment is different from the second embodiment in that the storage battery power is controlled. The storage battery power Wb is obtained by multiplying the storage battery voltage Vb and the storage battery current Ib. When the power value is negative, that is, when the AC motor is in regeneration, the electric double layer capacitor EDLC is charged so that the chopper current Ic flowing through the step-up / step-down chopper Ch matches the charging chopper current command value IcChgRef. In addition, when the battery power command value WbChgRef at the time of charging is less than or equal to, the electric double layer capacitor EDLC is charged so that the value of the battery power Wb matches the battery power command value WbChgRef at the time of charging, and the battery power command value WbDisChgRef or more at the time of discharging In this case, the discharge control of the electric double layer capacitor EDLC is executed so that the value of the storage battery voltage Vb matches the discharged storage battery power command value WbDisChgRef.

すなわち、図7において、充電時チョッパ電流指令値IcChgRefは、減算部31に入力されてチョッパ電流Icとの差信号が求められる。充電時蓄電池電力指令値WbChgRefは、減算部41に入力されて蓄電池電力Wbとの差信号が求められ、放電時蓄電池電力指令値WbDisChgRefは、減算部51に入力されて蓄電池電力Wbとの差信号が求められる。求められた各差信号は、乗算部36,46、及び56に入力されて各別のキャパシタ充電フラグF1,F2及び放電フラグF3との乗算がそれぞれ実行される。   That is, in FIG. 7, the charging chopper current command value IcChgRef is input to the subtractor 31 to obtain a difference signal from the chopper current Ic. The charging battery power command value WbChgRef is input to the subtraction unit 41 to obtain a difference signal from the storage battery power Wb, and the discharging storage battery power command value WbDisChgRef is input to the subtraction unit 51 and the difference signal from the storage battery power Wb. Is required. The obtained difference signals are input to the multipliers 36, 46, and 56, and multiplications with the different capacitor charge flags F1, F2 and the discharge flag F3 are respectively performed.

フラグF1〜F3は、図8で示すフラグ発生手段により生成される。すなわち、乗算部37とフラグ発生部39、49、及び59により構成される。乗算部37は、蓄電池電圧Vbと蓄電池電流Ibを乗算して蓄電池電力Wbを求めて各フラグ発生部に出力する。フラグ発生部39は、入力された蓄電池電力Wbと充電時の蓄電池電力指令値WbChgRefとの大小関係が、0<Wb<WbChgRefのときにキャパシタ充電フラグF1を1に立てる。フラグ発生部49は、入力された蓄電池電力Wbが、Wb<0のときにキャパシタ充電フラグF2を1に立てる。また、フラグ発生部59は、蓄電池電力Wbと放電時の蓄電池電力指令値WbDisChgRefとの間に、Wb>WbDisChgRefとなったときにキャパシタ放電フラグF3を1に立てる。   The flags F1 to F3 are generated by flag generation means shown in FIG. That is, it comprises a multiplication unit 37 and flag generation units 39, 49, and 59. Multiplier 37 multiplies storage battery voltage Vb and storage battery current Ib to determine storage battery power Wb, and outputs it to each flag generator. The flag generation unit 39 sets the capacitor charge flag F1 to 1 when the magnitude relationship between the input storage battery power Wb and the storage battery power command value WbChgRef at the time of charging is 0 <Wb <WbChgRef. The flag generator 49 sets the capacitor charge flag F2 to 1 when the input storage battery power Wb is Wb <0. Further, the flag generating unit 59 sets the capacitor discharge flag F3 to 1 when Wb> WbDisChgRef between the storage battery power Wb and the storage battery power command value WbDisChgRef during discharge.

PI制御部32は、フラグ発生部39により充電フラグF1が立てられると、減算部31で算出された差信号に基づいて比例・積分演算を実行し、その演算値は除算部33においてキャパシタ電圧Cvにより除されて電気二重層キャパシタEDLCを充電するための昇降圧チョッパの電流制御指令となる。この電流制御指令は、極性反転部34、リミッタ部35、及び加算部48を介してPWM制御部10に入力されてPWM処理が実行されて昇圧用スイッチング素子S2のゲート信号になる。   When the charging flag F1 is set by the flag generation unit 39, the PI control unit 32 executes a proportional / integral calculation based on the difference signal calculated by the subtraction unit 31, and the calculated value is obtained by the division unit 33 at the capacitor voltage Cv. Is a current control command of the step-up / step-down chopper for charging the electric double layer capacitor EDLC. This current control command is input to the PWM control unit 10 via the polarity inversion unit 34, the limiter unit 35, and the addition unit 48, and PWM processing is executed to become a gate signal for the boosting switching element S2.

PI制御部42は、フラグ発生部49により充電フラグF2が立てられると、減算部41で算出された差信号に基づいて比例・積分演算を実行し、その演算値は除算部43においてキャパシタ電圧Cvにより除され、昇降圧チョッパの充電制御指令となる。したがって、この充電制御指令は、リミッタ部45、及び加算部48を介してPWM制御部10に入力され、PWM処理が実行されて昇圧用スイッチング素子S2のゲート信号になり、この信号による制御によって蓄電池電力制御が行われる。   When the flag generation unit 49 sets the charge flag F2, the PI control unit 42 executes a proportional / integral calculation based on the difference signal calculated by the subtraction unit 41, and the calculated value is obtained by the division unit 43 at the capacitor voltage Cv. The charge control command for the step-up / step-down chopper is obtained. Therefore, the charge control command is input to the PWM control unit 10 via the limiter unit 45 and the addition unit 48, and PWM processing is executed to become a gate signal of the boost switching element S2, and the storage battery is controlled by this signal. Power control is performed.

PI制御部52は、フラグ発生部59により充電フラグF3が立てられると、減算部51で算出された差信号に基づいて比例・積分演算を実行し、その演算値は除算部43においてキャパシタ電圧Cvにより除され、昇降圧チョッパによる放電制御指令となる。したがって、この放電制御指令は、極性反転部54、リミッタ部55を介してPWM制御部10に入力され、PWM処理が実行されて降圧用スイッチング素子S1のゲート信号になり、この信号による制御によって蓄電池の電力制御が実行される。   When the charging flag F3 is set by the flag generating unit 59, the PI control unit 52 executes a proportional / integral calculation based on the difference signal calculated by the subtracting unit 51, and the calculated value is calculated by the dividing unit 43 at the capacitor voltage Cv. And becomes a discharge control command by the step-up / down chopper. Therefore, this discharge control command is input to the PWM control unit 10 via the polarity inverting unit 54 and the limiter unit 55, and the PWM process is executed to become the gate signal of the step-down switching element S1, and the storage battery is controlled by this signal. The power control is executed.

図9は第3実施例におけるシミュレーション結果を示したものである。
線aで示す電気二重層キャパシタEDLCなしの場合の蓄電池電圧変動は41.4〜54.6V変動し、変動幅13.2Vとなっているところ、線bで示す本実施例によれば、43.9〜51.2Vでその変動幅は7.3Vとなって、線aよりも蓄電池電圧の変動が抑制されていることが判る。
また、キャパシタ電流Icが大幅に電流分担することで、蓄電池電流Ibの電流変動幅も抑制されていることが判る。
FIG. 9 shows a simulation result in the third embodiment.
The battery voltage fluctuation without the electric double layer capacitor EDLC indicated by the line a varies from 41.4 to 54.6 V, and the fluctuation range is 13.2 V. According to the present embodiment indicated by the line b, 43 The fluctuation range is 7.3 V at .9 to 51.2 V, and it can be seen that the fluctuation of the storage battery voltage is suppressed more than the line a.
Further, it can be seen that the current fluctuation width of the storage battery current Ib is also suppressed by the capacitor current Ic sharing a large amount of current.

この実施例によれば、蓄電池に対する充放電電力を一定に制御すると共に、昇降圧チョッパの充電電流を一定に制御することで、蓄電池の電力変動の抑制が可能となる。   According to this embodiment, the charging / discharging power of the storage battery is controlled to be constant, and the charging current of the step-up / step-down chopper is controlled to be constant, thereby suppressing the power fluctuation of the storage battery.

図10は第4の実施例を示す昇降圧チョッパChの制御部構成図で、蓄電池の電流制御を行うものである。この実施例で第2実施例と相違する点は、蓄電池電流の値を蓄電池電流指令値と一致するよう制御することである。通常、充電時の蓄電池電流指令値IbChgRefは、放電時の蓄電池電流指令値IbDisChgRefより低く設定される。そして、蓄電池電流Ibが放電時の蓄電池電流指令値IbDisChgRef以上になったとき、蓄電池電流Ibが放電時の蓄電池電流指令値IbDisChgRefに一致するよう電気二重層キャパシタEDLCの蓄積エネルギーを放出する。また、蓄電池電流Ibが充電時の蓄電池電流指令値IbChgRef以下になったとき、蓄電池電流Ibが充電時の蓄電池電流指令値IbChgRefに一致するよう電気二重層キャパシタEDLCを充電する。   FIG. 10 is a block diagram of the control unit of the step-up / step-down chopper Ch showing the fourth embodiment, which controls the current of the storage battery. This embodiment is different from the second embodiment in that the value of the storage battery current is controlled to coincide with the storage battery current command value. Usually, the storage battery current command value IbChgRef during charging is set lower than the storage battery current command value IbDisChgRef during discharging. When the storage battery current Ib becomes equal to or greater than the storage battery current command value IbDisChgRef at the time of discharge, the stored energy of the electric double layer capacitor EDLC is released so that the storage battery current Ib matches the storage battery current command value IbDisChgRef at the time of discharge. Further, when the storage battery current Ib becomes equal to or less than the storage battery current command value IbChgRef during charging, the electric double layer capacitor EDLC is charged so that the storage battery current Ib matches the storage battery current command value IbChgRef during charging.

図10において、充電時の蓄電池電流指令値IbChgRefは、減算部61に入力されて蓄電池電流Ibとの差信号が求められ、放電時の蓄電池電流指令値IbDisChgRefは、減算部71に入力されて蓄電池電流Ibとの差信号が求められる。66、76は乗算部で、減算部61、71で求められた各差信号とキャパシタ充電フラグ及び放電フラグとの乗算がそれぞれ実行される。   In FIG. 10, the storage battery current command value IbChgRef at the time of charging is input to the subtraction unit 61 to obtain a difference signal from the storage battery current Ib, and the storage battery current command value IbDisChgRef at the time of discharging is input to the subtraction unit 71. A difference signal from the current Ib is obtained. Reference numerals 66 and 76 denote multiplication units, which respectively multiply the difference signals obtained by the subtraction units 61 and 71 by the capacitor charge flag and the discharge flag.

キャパシタフラグは、図11で示すフラグ発生手段により生成される。68は充電フラグ発生部、78は放電フラグ発生部で、検出された蓄電池電流Ibと充電時の蓄電池電流指令値IbChgRefの大小関係が、Ib<IbChgRefのときに充電フラグ発生部68でキャパシタ充電フラグ1を立てる。また、蓄電池電流Ibと放電時の蓄電池電流指令値IbDisChgRefの大小関係が、Ib>IbDisChgRefのときには放電フラグ発生部78でキャパシタ放電フラグ1を立てる。   The capacitor flag is generated by the flag generating means shown in FIG. 68 is a charge flag generation unit, and 78 is a discharge flag generation unit. When the magnitude relationship between the detected storage battery current Ib and the storage battery current command value IbChgRef at the time of charge is Ib <IbChgRef, the charge flag generation unit 68 uses the capacitor charge flag. Set 1 Further, when the magnitude relationship between the storage battery current Ib and the storage battery current command value IbDisChgRef at the time of discharge is Ib> IbDisChgRef, the discharge flag generator 78 sets the capacitor discharge flag 1.

キャパシタフラグ1の立てられた側のPI制御部62、又は72では、減算部
61、又は71で求められた偏差信号は、PI制御部62、又は72に入力されて比例・積分演算が行われ、その演算値は除算部63、又は73において検出されたキャパシタ電圧Cvにより除されて昇降圧チョッパの設定値となる。この設定値は、除算部73の出力のみ極性反転部74において極性反転された後、リミッタ部75を介してPWM制御部10に入力され、また、除算部63の出力は、リミッタ部65を介してPWM制御部10に入力される。
In the PI control unit 62 or 72 on the side where the capacitor flag 1 is set, the deviation signal obtained by the subtraction unit 61 or 71 is input to the PI control unit 62 or 72 and proportional / integral calculation is performed. The calculated value is divided by the capacitor voltage Cv detected by the division unit 63 or 73 to become the set value of the step-up / down chopper. Only the output of the division unit 73 is inverted in polarity by the polarity inversion unit 74 and then input to the PWM control unit 10 via the limiter unit 75, and the output of the division unit 63 is input through the limiter unit 65. Are input to the PWM controller 10.

PWM制御部10では、第2の実施例と同様に、各リミッタ部65,75を通して入力された昇降圧チョッパ設定値とキャリア信号に基づいてPWM信号を生成し、キャパシタフラグが放電フラグ発生部78に立てられたときには、昇降圧チョッパの降圧用スイッチング素子S1をオン・オフ制御することで、電気二重層キャパシタEDLCに蓄積されたエネルギーを放電する。
また、キャパシタフラグが充電フラグ発生部68に立てられたときには、昇圧用スイッチング素子S2を制御することで電気二重層キャパシタEDLCへの充電制御を実行する。
As in the second embodiment, the PWM controller 10 generates a PWM signal based on the step-up / step-down chopper set value and the carrier signal input through the limiters 65 and 75, and the capacitor flag becomes the discharge flag generator 78. Is set to ON / OFF, the energy stored in the electric double layer capacitor EDLC is discharged by controlling on / off of the step-down switching element S1 of the step-up / step-down chopper.
When the capacitor flag is set in the charge flag generator 68, the electric double layer capacitor EDLC is charged by controlling the step-up switching element S2.

図12は実施例4にけるシミュレーション結果を示したものである。
線aで示す電気二重層キャパシタEDLCなしの場合の蓄電池電圧変動は41.4〜54.6V変動し、その差は13.2Vとなっている。一方、線bで示す本実施例によれば、44.2〜48.0Vでその変動幅は3.8Vとなって、線aよりも蓄電池電圧の変動が抑制されていることが判る。
また、キャパシタ電流Icが電流分担することで、キャパシタ電流Icは変動するが、蓄電池電流Ibの電流変動幅は大幅に抑制されていることが判る。
FIG. 12 shows a simulation result in the fourth embodiment.
The battery voltage fluctuation in the case without the electric double layer capacitor EDLC indicated by the line a fluctuates by 41.4 to 54.6V, and the difference is 13.2V. On the other hand, according to the present embodiment shown by the line b, the fluctuation range is 3.8 V at 44.2 to 48.0 V, and it can be seen that the fluctuation of the storage battery voltage is suppressed more than the line a.
Further, it can be seen that the capacitor current Ic varies due to the current sharing of the capacitor current Ic, but the current fluctuation width of the storage battery current Ib is greatly suppressed.

この実施例によれば、充電時、及び放電時の蓄電池電流を一定にするよう制御し、その充放電制御の判断を蓄電池電流で行うようにしたものである。これにより、蓄電池電圧の変動幅の抑制が可能となる。   According to this embodiment, the storage battery current during charging and discharging is controlled to be constant, and the determination of the charge / discharge control is performed based on the storage battery current. As a result, the fluctuation range of the storage battery voltage can be suppressed.

この実施例で実施例4と相違する点は、昇降圧チョッパChの制御部構成図を図10と同じ構成とし、キャパシタフラグ発生手段のみが図13で示すように、フラグ発生の判断基準を、主回路を流れる負荷電流ILと充放電時蓄電池電流指令値で行うようにしたものである。すなわち、充電フラグ発生部68aでは、
IL<IbChgRefのときにキャパシタ充電フラグを発生し、放電フラグ発生部78aでは、IL>IbDisChgRefのときにキャパシタ放電フラグを発生する。他は図11と同様である。
This embodiment is different from the fourth embodiment in that the controller block diagram of the step-up / step-down chopper Ch is the same as that in FIG. 10 and only the capacitor flag generating means shows the determination criterion for flag generation as shown in FIG. This is performed with the load current IL flowing through the main circuit and the storage battery current command value during charge / discharge. That is, in the charge flag generator 68a,
A capacitor charge flag is generated when IL <IbChgRef, and the discharge flag generator 78a generates a capacitor discharge flag when IL> IbDisChgRef. Others are the same as FIG.

図14は実施例5にけるシミュレーション結果を示したもので、蓄電池の電圧・電流の変動幅は実施例4と略同様である。   FIG. 14 shows a simulation result in Example 5, and the fluctuation range of the voltage / current of the storage battery is substantially the same as that in Example 4.

この実施例によれば、充電時、及び放電時の蓄電池電流を一定にするよう制御し、その充放電制御の判断を負荷電流で行うようにしたものである。これにより、蓄電池に対する電圧、電流の変動幅抑制が可能となる。   According to this embodiment, the storage battery current during charging and discharging is controlled to be constant, and the determination of the charge / discharge control is performed with the load current. Thereby, the fluctuation range of the voltage and current with respect to the storage battery can be suppressed.

図15は第6の実施例を示したもので、実施例5との相違点は、昇降圧チョッパChの制御部ゲート信号のオン・オフ制御を一定の変調率で充放電制御するものである。そのために、この実施例は充電時チョッパ変調率設定部80と放電時チョッパ変調率設定部90を備えている。図13で示す充電フラグ発生部68aにおいて、負荷電流ILと充電時蓄電池電流指令値IbChgRefとの間で、IL<IbChgRefとなったきにキャパシタ充電フラグを発生し、その信号を充電時チョッパ変調率設定部80へ出力する。充電時チョッパ変調率設定部80では、充電フラグ発生を受けて予め設定された一定の変調率となる信号を発生し、PWM制御部10にてゲート信号を生成して昇圧用スイッチング素子S1のゲート信号とする。   FIG. 15 shows the sixth embodiment. The difference from the fifth embodiment is that charge / discharge control is performed at a constant modulation rate on / off control of the control unit gate signal of the buck-boost chopper Ch. . For this purpose, this embodiment includes a charging chopper modulation factor setting unit 80 and a discharging chopper modulation factor setting unit 90. In the charge flag generating unit 68a shown in FIG. 13, a capacitor charge flag is generated between IL and IbChgRef between the load current IL and the chargeable battery current command value IbChgRef, and the signal is set as the charge chopper modulation factor. To the unit 80. The charging chopper modulation factor setting unit 80 generates a signal having a predetermined constant modulation factor in response to the generation of the charge flag, and the PWM control unit 10 generates a gate signal to generate the gate of the boost switching element S1. Signal.

一方、放電フラグ発生部78aでは、IL>IbDisChgRefを検出してキャパシタ放電フラグを発生し、その信号を放電時チョッパ変調率設定部90へ出力する。放電時チョッパ変調率設定部80では、放電フラグ発生を受けて予め設定された一定の変調率となる放電用の信号を発生し、PWM制御部10にてゲート信号を生成して降圧用スイッチング素子S2のゲート信号とする。   On the other hand, discharge flag generation unit 78a detects IL> IbDisChgRef, generates a capacitor discharge flag, and outputs the signal to discharge chopper modulation factor setting unit 90. The discharge chopper modulation factor setting unit 80 generates a discharge signal having a predetermined constant modulation factor in response to the generation of the discharge flag, and the PWM control unit 10 generates a gate signal to generate a step-down switching element. The gate signal of S2.

図16は実施例6にけるシミュレーション結果を示したものである。
線aで示す電気二重層キャパシタEDLCなしの場合の蓄電池電圧変動は41.4〜54.6V変動し、その差は13.2Vとなっている。一方、線bで示す本実施例によれば、42.5〜50.5Vでその変動幅は8Vとなって、線aよりも蓄電池電圧の変動が抑制されていることが判る。
また、キャパシタ電流Icが電流分担することで、蓄電池電流Ibの電流変動幅も抑制されていることが判る。
FIG. 16 shows a simulation result in the sixth embodiment.
The battery voltage fluctuation in the case without the electric double layer capacitor EDLC indicated by the line a fluctuates by 41.4 to 54.6V, and the difference is 13.2V. On the other hand, according to the present embodiment indicated by the line b, the fluctuation range is 8 V at 42.5 to 50.5 V, and it can be seen that the fluctuation of the storage battery voltage is suppressed more than the line a.
Further, it can be seen that the current fluctuation width of the storage battery current Ib is suppressed by the capacitor current Ic sharing the current.

この実施例によれば、昇降圧チョッパChのオン・オフ制御を一定の変調率で充放電制御するものである。これにより、蓄電池電圧の電圧・電流の変動幅抑制が可能となる。   According to this embodiment, on / off control of the step-up / step-down chopper Ch is performed with charge / discharge control at a constant modulation rate. Thereby, it is possible to suppress the fluctuation range of the voltage / current of the storage battery voltage.

図17は第6の実施例を示す制御フローで、この実施例は、ステップSt1で負荷電流ILの大きさを見て、その値がIL<0のときにはステップSt2で電気二重層キャパシタEDLCに対する充電制御を行い、ステップSt1でIL>0のときにステップSt3で放電制御を行うものである。そのための制御回路は図18のように構成される。   FIG. 17 is a control flow showing the sixth embodiment. In this embodiment, the magnitude of the load current IL is observed at step St1, and when the value IL <0, the charging to the electric double layer capacitor EDLC is performed at step St2. Control is performed, and when IL> 0 in step St1, discharge control is performed in step St3. The control circuit for this is configured as shown in FIG.

図18で、負荷電流IL<0で負荷電流が負のとき、すなわち、回生状態となったときに充電電流指令値(=負荷電流IL)は減算部11aに入力され、昇降圧チョッパを介して流れるキャパシタ電流Icとの差信号が算出される。偏差信号はPI制御部12aに入力されて比例・積分演算が行われた後、リミッタ15aを介しPWM制御部10に入力されて電気二重層キャパシタEDLCに対する充電制御信号が生成される。つまり、回生電流をこの信号により昇圧用スイッチング素子S1による電流制御で電気二重層キャパシタEDLCを充電する。
一方、負荷電流IL>0で負荷電流
正のとき、すなわち、力行時には放電電流指令値が減算部21aに入力されてキャパシタ電流Icとの差信号が算出される。偏差信号はPI制御部22aに入力されて比例・積分演算が行われた後、リミッタ26aを介しPWM制御部10に入力されて電気二重層キャパシタEDLCに対する放電制御信号を生成し、この信号で降圧用スイッチング素子S2を制御することでキャパシタから一定電流を放電する。
In FIG. 18, when the load current IL <0 and the load current is negative, that is, when the regenerative state is entered, the charging current command value (= load current IL) is input to the subtractor 11a and is passed through the step-up / down chopper. A difference signal from the flowing capacitor current Ic is calculated. The deviation signal is input to the PI control unit 12a and subjected to proportional / integral calculation, and then input to the PWM control unit 10 via the limiter 15a to generate a charge control signal for the electric double layer capacitor EDLC. That is, the electric double layer capacitor EDLC is charged by the regenerative current by this signal by the current control by the boost switching element S1.
On the other hand, when the load current IL> 0 and the load current is positive, that is, during power running, the discharge current command value is input to the subtractor 21a, and a difference signal from the capacitor current Ic is calculated. After the deviation signal is input to the PI control unit 22a and proportional / integral calculation is performed, the deviation signal is input to the PWM control unit 10 via the limiter 26a to generate a discharge control signal for the electric double layer capacitor EDLC. A constant current is discharged from the capacitor by controlling the switching element S2.

図19は、実施例7によるシミュレーション結果である。
この実施例では、回生エネルギーを全て電気二重層キャパシタEDLCに蓄え、力行時には蓄えたエネルギーを放出するものであるが、このことは、回生電流発生時である時刻t1〜t2では蓄電池電流Ibは流れず、回生電流は全てキャパシタ電流Icとなり、その結果、電気二重層キャパシタEDLCの充電電圧が徐々に上昇している。
したがって、この実施例によれば、キャパシタ電流を負荷電流(=充電電流指令値)に一致させるよう制御しているので、キャパシタ電流による充放電制御が優先された制御となっている。電気二重層キャパシタが満充電となった場合や、放電限界電圧となったときには、昇降圧チョッパを停止するか、若しくはチョッパ指令値を0にし、その後に蓄電池の充放電制御が行われる。このため、各実施例と同様に蓄電池の電圧・電流変動が抑制されるが、特に蓄電池の充放電制御が少なくなり、蓄電池の放電エネルギーの軽減化(蓄電池負担の軽減)が可能となることによって、より蓄電池の長寿命化が可能となるものである。
なお、電圧値、電流値、及び負荷変動パターンは、図19で示すパターンでなくともよいことは勿論である。
FIG. 19 shows a simulation result according to the seventh embodiment.
In this embodiment, all the regenerative energy is stored in the electric double layer capacitor EDLC, and the stored energy is released during power running. This means that the storage battery current Ib flows at time t1 to t2 when the regenerative current is generated. All of the regenerative current becomes the capacitor current Ic, and as a result, the charging voltage of the electric double layer capacitor EDLC gradually increases.
Therefore, according to this embodiment, since the capacitor current is controlled to coincide with the load current (= charge current command value), the charge / discharge control by the capacitor current is given priority. When the electric double layer capacitor is fully charged or reaches the discharge limit voltage, the step-up / step-down chopper is stopped or the chopper command value is set to 0, and then charge / discharge control of the storage battery is performed. For this reason, the voltage and current fluctuations of the storage battery are suppressed in the same manner as in each of the embodiments. In particular, the charge / discharge control of the storage battery is reduced, and the discharge energy of the storage battery can be reduced (reduction of the burden on the storage battery). Thus, the life of the storage battery can be extended.
Needless to say, the voltage value, current value, and load variation pattern need not be the patterns shown in FIG.

二次電池と電気二重層キャパシタを使用した複合電源装置の構成図。The block diagram of the composite power supply device using a secondary battery and an electrical double layer capacitor. 本発明の実施例1による制御装置の構成図。The block diagram of the control apparatus by Example 1 of this invention. 本発明の実施例1によるシミュレーション結果図。The simulation result figure by Example 1 of this invention. 本発明の実施例2による制御装置の構成図。The block diagram of the control apparatus by Example 2 of this invention. 実施例2に使用されるフラグ発生手段の構成図。The block diagram of the flag generation means used for Example 2. FIG. 本発明の実施例2によるシミュレーション結果図。The simulation result figure by Example 2 of this invention. 本発明の実施例3による制御装置の構成図。The block diagram of the control apparatus by Example 3 of this invention. 実施例3に使用されるフラグ発生手段の構成図。FIG. 6 is a configuration diagram of flag generation means used in the third embodiment. 本発明の実施例3によるシミュレーション結果図。The simulation result figure by Example 3 of this invention. 本発明の実施例4による制御装置の構成図。The block diagram of the control apparatus by Example 4 of this invention. 実施例4に使用されるフラグ発生手段の構成図。FIG. 9 is a configuration diagram of flag generation means used in the fourth embodiment. 本発明の実施例4によるシミュレーション結果図。The simulation result figure by Example 4 of this invention. 実施例5に使用されるフラグ発生手段の構成図。FIG. 10 is a configuration diagram of flag generation means used in the fifth embodiment. 本発明の実施例5によるシミュレーション結果図。The simulation result figure by Example 5 of this invention. 本発明の実施例6による制御装置の構成図。The block diagram of the control apparatus by Example 6 of this invention. 本発明の実施例6によるシミュレーション結果図。The simulation result figure by Example 6 of this invention. 本発明の実施例7による制御のフローチャート。The flowchart of control by Example 7 of this invention. 本発明の実施例7による制御装置の構成図。The block diagram of the control apparatus by Example 7 of this invention. 本発明の実施例7によるシミュレーション結果図。The simulation result figure by Example 7 of this invention. 二次電池と電気二重層キャパシタを使用した電動機駆動回路図。The motor drive circuit diagram using a secondary battery and an electric double layer capacitor.

符号の説明Explanation of symbols

B… 蓄電池(二次電池)
EDLC… 電気二重層キャパシタ
IV… インバータ
M… ACモータ
C… コンデンサ
Ch… 昇降圧チョッパ
S1… 昇圧用スイッチング素子
S2… 降圧用スイッチング素子
L… リアクトル
B ... Storage battery (secondary battery)
EDLC ... Electric double layer capacitor IV ... Inverter M ... AC motor C ... Capacitor Ch ... Buck-boost chopper S1 ... Step-up switching element S2 ... Step-down switching element L ... Reactor

Claims (7)

インバータを介して制御されるACモータの電源として、蓄電池と電気二重層キャパシタを充放電制御する昇降圧チョッパを並列接続した複合電源装置において、
前記蓄電池電圧指令値と検出した蓄電池電圧の差信号をPI制御器に入力してPI演算を実行し、この演算値を電気二重層キャパシタの充放電設定値とし、この充放電設定値に基づいてPWM制御部を介して昇降圧チョッパを制御することを特徴とした複合電源装置の制御回路。
As a power source for an AC motor controlled via an inverter, in a composite power supply apparatus in which a step-up / down chopper for charge / discharge control of a storage battery and an electric double layer capacitor is connected in parallel,
A difference signal between the storage battery voltage command value and the detected storage battery voltage is input to a PI controller to perform a PI calculation. This calculation value is used as a charge / discharge set value for the electric double layer capacitor, and based on the charge / discharge set value. A control circuit for a composite power supply apparatus, wherein the step-up / step-down chopper is controlled via a PWM control unit.
充電時蓄電池電圧指令値と放電時蓄電池電圧指令値を各別に設け、
充電時蓄電池電圧指令値と検出した蓄電池電圧の差信号は、蓄電池電圧>充電時蓄電池電圧指令値のときに発生するキャパシタ充電フラグと乗算部で乗算した後にPI制御器でPI演算を実行し、放電時蓄電池電圧指令値と検出した蓄電池電圧の差信号は、蓄電池電圧<放電時蓄電池電圧指令値のときに発生するキャパシタ放電フラグと乗算部で乗算した後にPI制御器でPI演算を実行し、各PI演算値を電気二重層キャパシタの充電設定値と放電設定値とすることを特徴とした請求項1記載の複合電源装置の制御回路。
A battery voltage command value for charging and a battery voltage command value for discharging are provided separately,
The difference signal between the storage battery voltage command value during charging and the detected storage battery voltage is multiplied by the capacitor charging flag generated by the multiplication unit when the storage battery voltage is greater than the storage battery voltage command value during charging, and then PI calculation is performed by the PI controller. The difference signal between the discharged storage battery voltage command value and the detected storage battery voltage is multiplied by a capacitor discharge flag generated when the storage battery voltage <the discharged storage battery voltage command value and the multiplication unit, and then PI calculation is performed by the PI controller. 2. The control circuit for a composite power supply apparatus according to claim 1, wherein each PI calculation value is set as a charge set value and a discharge set value of the electric double layer capacitor.
インバータを介して制御されるACモータの電源として、蓄電池と電気二重層キャパシタを充放電制御する昇降圧チョッパを並列接続した複合電源装置において、
充電時チョッパ電流指令値、充電時蓄電池電力指令値、及び放電時蓄電池電力指令値を各別に設け、充電時チョッパ電流指令値とチョッパ電流の差信号は、0<蓄電池電力<充電時蓄電池電力指令値のときに発生するキャパシタ充電フラグと乗算部で乗算した後にPI制御器でPI演算を実行し、
充電時蓄電池電力指令値と蓄電池電力の差信号は、蓄電池電力<0のときに発生するキャパシタ充電フラグと乗算部で乗算した後にPI制御器でPI演算を実行し、
放電時蓄電池電力指令値と蓄電池電力の差信号は、蓄電池電力>放電時蓄電池電力指令値のときに発生するキャパシタ充電フラグと乗算部で乗算した後にPI制御器でPI演算を実行し、
各PI演算値を電気二重層キャパシタの充電設定値と放電設定値を算出することを特徴とした複合電源装置の制御回路。
As a power source for an AC motor controlled via an inverter, in a composite power supply apparatus in which a step-up / down chopper for charge / discharge control of a storage battery and an electric double layer capacitor is connected in parallel,
A chopper current command value during charging, a battery power command value during charging, and a battery power command value during discharging are provided separately, and the difference signal between the chopper current command value during charging and the chopper current is 0 <storage battery power <charging battery power command. PI multiplication is performed by the PI controller after multiplying the capacitor charging flag generated at the time of the value by the multiplication unit,
The difference signal between the charging battery power command value and the storage battery power is multiplied by the capacitor charging flag generated when the storage battery power <0 and the multiplication unit, and then PI calculation is performed by the PI controller.
The difference signal between the storage battery power command value at the time of discharge and the storage battery power is multiplied by the capacitor charging flag generated by the multiplication unit when the storage battery power> the storage battery power command value at the time of discharge, and then the PI operation is performed by the PI controller.
A control circuit for a composite power supply apparatus, wherein each PI calculation value is calculated as a charge set value and a discharge set value of an electric double layer capacitor.
インバータを介して制御されるACモータの電源として、蓄電池と電気二重層キャパシタを充放電制御する昇降圧チョッパを並列接続した複合電源装置において、
充電時蓄電池電流指令値と放電時蓄電池電流指令値を各別に設け、
充電時蓄電池電流指令値と蓄電池電流の差信号は、蓄電池電流<充電時蓄電池電流指令値のときに発生するキャパシタ充電フラグと乗算部で乗算した後にPI制御器でPI演算を実行し、
放電時蓄電池電流指令値と蓄電池電流の差信号は、蓄電池電流>放電時蓄電池電流指令値のときに発生するキャパシタ放電フラグと乗算部で乗算した後にPI制御器でPI演算を実行し、各PI演算値を電気二重層キャパシタの充電設定値と放電設定値とすることを特徴とした複合電源装置の制御回路。
As a power source for an AC motor controlled via an inverter, in a composite power supply apparatus in which a step-up / down chopper for charge / discharge control of a storage battery and an electric double layer capacitor is connected in parallel,
A battery current command value for charging and a battery current command value for discharging are provided separately,
The difference signal between the storage battery current command value during charging and the storage battery current is multiplied by a capacitor charging flag generated by the multiplier when the storage battery current <the storage battery current command value during charging, and then a PI operation is performed by the PI controller.
The difference signal between the battery current command value during discharge and the battery current is obtained by multiplying the capacitor discharge flag generated when the battery current> the battery current command value during discharge by the multiplier and then performing PI calculation in the PI controller. A control circuit for a composite power supply apparatus, characterized in that a calculated value is a charge set value and a discharge set value of an electric double layer capacitor.
前記キャパシタ充電フラグは、負荷電流<充電時蓄電池電流指令値のときに発生し、前記キャパシタ放電フラグは、負荷電流>充電時蓄電池電流指令値のときに発生することを特徴とした請求項4記載の複合電源装置の制御回路。 5. The capacitor charge flag is generated when load current <charge-time battery current command value, and the capacitor discharge flag is generated when load current> charge-time battery current command value. Control circuit for the combined power supply. インバータを介して制御されるACモータの電源として、蓄電池と電気二重層キャパシタを充放電制御する昇降圧チョッパを並列接続した複合電源装置において、
昇降圧チョッパの充電時チョッパ変調率が一定の変調率に設定された充電時チョッパ変調率設定部と、放電時チョッパ変調率が一定の変調率に設定された放電時チョッパ変調率設定部を設け、検出された負荷電流が充電時蓄電池電流指令値より小のときに充電時チョッパ変調率設定部、及びPWM制御部を介して昇降圧チョッパの充電制御を実行し、負荷電流が充電時蓄電池電流指令値より大のとき放電時チョッパ変調率設定部、及びPWM制御部を介して昇降圧チョッパの放電制御を行うこと特徴とした複合電源装置の制御回路。
As a power source for an AC motor controlled via an inverter, in a composite power supply apparatus in which a step-up / down chopper for charge / discharge control of a storage battery and an electric double layer capacitor is connected in parallel
A chopper modulation rate setting unit for charging and a chopper modulation rate setting unit for discharging and setting a constant chopper modulation rate for discharging and a chopper modulation rate setting for discharging are provided. When the detected load current is smaller than the charging battery current command value, charging control of the step-up / step-down chopper is executed via the charging chopper modulation factor setting unit and the PWM control unit, and the load current is charging battery current A control circuit for a composite power supply apparatus, wherein discharge control of a step-up / step-down chopper is performed via a chopper modulation factor setting unit during discharge and a PWM control unit when larger than a command value.
インバータを介して制御されるACモータの電源として、蓄電池と電気二重層キャパシタを充放電制御する昇降圧チョッパを並列接続した複合電源装置において、
前記電気二重層キャパシタの充電電流指令値とキャパシタ電流の差信号を入力してキャパシタ充電電流を演算するPI制御器と、放電電流指令値とキャパシタ電流の差信号を入力してキャパシタ放電電流を演算するPI制御器と、各PI制御器にて算出されたPI制御信号に基づいて昇降圧チョッパの制御信号を生成するPWM制御部を設け、直流電流が蓄電池、電気二重層キャパシタ側に流れている
ときに前記電気二重層キャパシタの充電制御を行い、直流電流がACモータ側に流れているときに放電制御を行うよう構成したことを特徴とした複合電源装置の制御回路。
As a power source for an AC motor controlled via an inverter, in a composite power supply apparatus in which a step-up / down chopper for charge / discharge control of a storage battery and an electric double layer capacitor is connected in parallel,
PI controller that calculates the capacitor charge current by inputting the charge current command value of the electric double layer capacitor and the capacitor current, and the capacitor discharge current by inputting the difference signal of the discharge current command value and the capacitor current And a PWM control unit that generates a control signal for the step-up / step-down chopper based on the PI control signal calculated by each PI controller, and direct current flows to the storage battery and the electric double layer capacitor side A control circuit for a composite power supply apparatus, characterized in that charging control of the electric double layer capacitor is sometimes performed and discharging control is performed when a direct current is flowing to the AC motor side.
JP2008286042A 2008-11-07 2008-11-07 Control circuit for composite power supply Active JP5381026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008286042A JP5381026B2 (en) 2008-11-07 2008-11-07 Control circuit for composite power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008286042A JP5381026B2 (en) 2008-11-07 2008-11-07 Control circuit for composite power supply

Publications (2)

Publication Number Publication Date
JP2010115026A true JP2010115026A (en) 2010-05-20
JP5381026B2 JP5381026B2 (en) 2014-01-08

Family

ID=42303128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008286042A Active JP5381026B2 (en) 2008-11-07 2008-11-07 Control circuit for composite power supply

Country Status (1)

Country Link
JP (1) JP5381026B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658802A (en) * 2012-05-22 2012-09-12 无锡富洪科技有限公司 Automobile idle speed start-stop system and hybrid power supply
JP2012235610A (en) * 2011-04-28 2012-11-29 Toyota Motor Corp Battery system
JP2013021792A (en) * 2011-07-08 2013-01-31 Sanyo Denki Co Ltd Power supply system
WO2013127150A1 (en) * 2012-02-29 2013-09-06 华为技术有限公司 Power supply method, power supply device, and base station
JP2014054052A (en) * 2012-09-06 2014-03-20 Toshiba Tec Corp Power supply device, control method for power supply, and printing device
JP2014079078A (en) * 2012-10-10 2014-05-01 Fuji Electric Co Ltd Motor driving system
CN104184198A (en) * 2014-09-16 2014-12-03 哈尔滨恒誉名翔科技有限公司 Super capacitor charger based on STM 32F407IG
JP2015133883A (en) * 2014-01-11 2015-07-23 嶋田 隆一 capacitor bank
JP2016091523A (en) * 2014-11-11 2016-05-23 レノボ・シンガポール・プライベート・リミテッド Method of increasing capacity of backup module, nvdimm system, and information processing apparatus
CN105790422A (en) * 2016-04-13 2016-07-20 深圳市大疆创新科技有限公司 Unmanned aerial vehicle outage cruising method, device and system
WO2017085051A1 (en) * 2015-11-18 2017-05-26 Bayerische Motoren Werke Aktiengesellschaft Multiple storage system and method for operating a multiple storage system
CN110297446A (en) * 2019-05-31 2019-10-01 武汉大学 More vector rapid model prediction control methods under a kind of non-ideal grid conditions
CN110337767A (en) * 2017-01-19 2019-10-15 株式会社自动网络技术研究所 Vehicle-mounted power supply device
CN111756087A (en) * 2019-03-29 2020-10-09 日本特殊陶业株式会社 Discharge control apparatus and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109878507B (en) * 2019-01-14 2020-07-28 江苏理工学院 Vehicle-mounted hybrid power supply energy management control method based on lambda factor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666204U (en) * 1992-12-29 1994-09-16 いすゞ自動車株式会社 Vehicle power supply
JPH08308025A (en) * 1995-04-28 1996-11-22 Isuzu Motors Ltd Electric vehicle power source controller
JPH10155298A (en) * 1996-11-22 1998-06-09 Sanyo Denki Co Ltd Electric motor controlling device and regenerative power processing circuit
JP2004080907A (en) * 2002-08-19 2004-03-11 Toyo Electric Mfg Co Ltd Motor drive unit
JP2005328618A (en) * 2004-05-13 2005-11-24 Toshiba Corp Controller for vehicle
JP2008062722A (en) * 2006-09-06 2008-03-21 Toyo Electric Mfg Co Ltd Series hybrid type electric vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666204U (en) * 1992-12-29 1994-09-16 いすゞ自動車株式会社 Vehicle power supply
JPH08308025A (en) * 1995-04-28 1996-11-22 Isuzu Motors Ltd Electric vehicle power source controller
JPH10155298A (en) * 1996-11-22 1998-06-09 Sanyo Denki Co Ltd Electric motor controlling device and regenerative power processing circuit
JP2004080907A (en) * 2002-08-19 2004-03-11 Toyo Electric Mfg Co Ltd Motor drive unit
JP2005328618A (en) * 2004-05-13 2005-11-24 Toshiba Corp Controller for vehicle
JP2008062722A (en) * 2006-09-06 2008-03-21 Toyo Electric Mfg Co Ltd Series hybrid type electric vehicle

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9166418B2 (en) 2011-04-28 2015-10-20 Toyota Jidosha Kabushiki Kaisha Battery system and control method thereof
JP2012235610A (en) * 2011-04-28 2012-11-29 Toyota Motor Corp Battery system
CN103518303A (en) * 2011-04-28 2014-01-15 丰田自动车株式会社 Battery system and control method thereof
JP2013021792A (en) * 2011-07-08 2013-01-31 Sanyo Denki Co Ltd Power supply system
WO2013127150A1 (en) * 2012-02-29 2013-09-06 华为技术有限公司 Power supply method, power supply device, and base station
US9601937B2 (en) 2012-02-29 2017-03-21 Huawei Technologies Co., Ltd. Power supply method, power supply device, and base station
US8698448B2 (en) 2012-02-29 2014-04-15 Huawei Technologies Co., Ltd. Power supply method, power supply device, and base station
CN102658802A (en) * 2012-05-22 2012-09-12 无锡富洪科技有限公司 Automobile idle speed start-stop system and hybrid power supply
JP2014054052A (en) * 2012-09-06 2014-03-20 Toshiba Tec Corp Power supply device, control method for power supply, and printing device
JP2014079078A (en) * 2012-10-10 2014-05-01 Fuji Electric Co Ltd Motor driving system
JP2015133883A (en) * 2014-01-11 2015-07-23 嶋田 隆一 capacitor bank
CN104184198A (en) * 2014-09-16 2014-12-03 哈尔滨恒誉名翔科技有限公司 Super capacitor charger based on STM 32F407IG
CN104184198B (en) * 2014-09-16 2024-01-02 哈尔滨工程北米科技有限公司 Super capacitor charger based on STM32F407IG
JP2016091523A (en) * 2014-11-11 2016-05-23 レノボ・シンガポール・プライベート・リミテッド Method of increasing capacity of backup module, nvdimm system, and information processing apparatus
US10814739B2 (en) 2015-11-18 2020-10-27 Bayerische Motoren Werke Aktiengesellschaft Multiple storage system and method for operating a multiple storage system
WO2017085051A1 (en) * 2015-11-18 2017-05-26 Bayerische Motoren Werke Aktiengesellschaft Multiple storage system and method for operating a multiple storage system
CN108136928A (en) * 2015-11-18 2018-06-08 宝马股份公司 More reservoir systems and the method for running more reservoir systems
CN108136928B (en) * 2015-11-18 2021-11-09 宝马股份公司 Multi-storage system and method for operating a multi-storage system
CN105790422A (en) * 2016-04-13 2016-07-20 深圳市大疆创新科技有限公司 Unmanned aerial vehicle outage cruising method, device and system
CN110337767A (en) * 2017-01-19 2019-10-15 株式会社自动网络技术研究所 Vehicle-mounted power supply device
CN111756087A (en) * 2019-03-29 2020-10-09 日本特殊陶业株式会社 Discharge control apparatus and method
CN111756087B (en) * 2019-03-29 2023-10-03 日本特殊陶业株式会社 Discharge control apparatus and method
CN110297446B (en) * 2019-05-31 2021-08-03 武汉大学 Multi-vector rapid model prediction control method under non-ideal power grid condition
CN110297446A (en) * 2019-05-31 2019-10-01 武汉大学 More vector rapid model prediction control methods under a kind of non-ideal grid conditions

Also Published As

Publication number Publication date
JP5381026B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5381026B2 (en) Control circuit for composite power supply
Tahri et al. Management of fuel cell power and supercapacitor state-of-charge for electric vehicles
US9975447B2 (en) Temperature control apparatus for electricity storage device for use in electricity storage system including electricity storage devices
CN107925099B (en) Power regulation system and its control method
JP4536128B2 (en) DC / DC converter device, fuel cell vehicle equipped with the DC / DC converter device, and DC / DC converter control method
Zhong et al. Reduction of DC-bus voltage ripples and capacitors for single-phase PWM-controlled rectifiers
JP2017005944A (en) Dc stabilizing power source system
JP6496496B2 (en) Power storage system and control method thereof
CN102985281A (en) Charging device for electromotive vehicle
US9825529B2 (en) Voltage conversion control apparatus for a boost converter configured to boost or step down output voltage of an electricity storage apparatus
US20160028229A1 (en) Power supply system
JP2018007546A (en) Control method and system for charging electric vehicle
JP6162678B2 (en) Dual power load drive fuel cell system and fuel cell vehicle
Barote et al. A new control method for VRB SOC estimation in stand-alone wind energy systems
Ebrahimi et al. An auxiliary power unit for advanced aircraft electric power systems
JP2013059200A (en) Dc power supply device and battery evaluation device
Jia et al. DC-link voltage control strategy of a bi-directional DC/DC converter for electric vehicles
JP2005269825A (en) Hybrid system
JP2011167011A (en) Dc-dc converter system
JP2009268216A (en) Method of controlling operation of dc/dc converter apparatus
JP5359214B2 (en) DC power supply chopper control method and mobile vehicle using the DC power supply chopper control method
Thammasiriroj et al. Comparative study of model-based control of energy/current cascade control for a multiphase interleaved fuel cell boost converter
JP2012239252A (en) Ac motor driving device
JP2017091882A (en) Power adjusting system
JP2011229357A (en) Fuel cell-powered vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150