JP2010111536A - 金属酸化物分散液およびその製造方法 - Google Patents

金属酸化物分散液およびその製造方法 Download PDF

Info

Publication number
JP2010111536A
JP2010111536A JP2008284815A JP2008284815A JP2010111536A JP 2010111536 A JP2010111536 A JP 2010111536A JP 2008284815 A JP2008284815 A JP 2008284815A JP 2008284815 A JP2008284815 A JP 2008284815A JP 2010111536 A JP2010111536 A JP 2010111536A
Authority
JP
Japan
Prior art keywords
aqueous solution
metal oxide
dispersed
basic
transparent sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008284815A
Other languages
English (en)
Inventor
Kazuyoshi Sato
和好 佐藤
Hiroya Abe
浩也 阿部
Satoshi Ohara
智 大原
Takehisa Fukui
武久 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Osaka University NUC
Original Assignee
Kurimoto Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd, Osaka University NUC filed Critical Kurimoto Ltd
Priority to JP2008284815A priority Critical patent/JP2010111536A/ja
Publication of JP2010111536A publication Critical patent/JP2010111536A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Colloid Chemistry (AREA)

Abstract

【課題】金属酸化物分散液およびその製造方法に関し、特に、金属酸化物のナノ粒子が良分散した塩基性透明水溶液とその有利な製造方法を提供する。
【解決手段】塩基性金属酸化物分散ゾル水溶液の製造方法は、金属塩と第四級アンモニウム塩との中和反応を用いてアニオン性塩基性無機金属錯体を含む水溶液を製造する第1工程と、該第1工程で製造した水溶液を80〜150℃の水熱条件で水熱処理する第2工程と、を有する。
【選択図】なし

Description

本発明は、金属酸化物分散液およびその製造方法に関し、特に、金属酸化物のナノ粒子が良分散した塩基性金属酸化物分散透明ゾル水溶液とその有利な製造方法に関する。本発明において、良分散とは、動的光散乱法により測定した水溶液中における金属酸化物粒子の平均分散粒子径が50nm以下であるであることを意味する。
金属酸化物はその組成により、優れた機械的、電気的、磁気的および光学的な物性を発現することから、幅広い分野で利用されている。例えば、ジルコニア(ZrO)は高温で固体電解質となることから燃料電池や酸素センサの材料として用いられる一方、高硬度と高靭性を両立することから、ナイフや鋏の材料としても利用されている。また、チタニア(TiO)は強い光触媒活性を有することから、環境浄化用触媒として利用され、水の分解による一段階での水素合成、あるいは色素増感型太陽電池等への応用も期待されている。
近年、ナノサイズ化による材料物性の制御が注目され、上記金属酸化物に関してもナノ粒子を製造する方法が各方面で盛んに研究開発されている(例えば、特許文献1)。また、金属酸化物ナノ粒子を効率的に利用するためには、金属酸化物ナノ粒子を溶媒に分散する手法の確立が重要である。特に、金属酸化物ナノ粒子を均一分散させた複合材料を得る場合や金属酸化物ナノ粒子を原料にした金属酸化物バルク体の製造に関しては、金属酸化物分散ゾル水溶液を製造する簡便な技術の確立が求められている。
金属酸化物粒子を分散させた水溶液を得る方法としては、チタン酸ゲルを製造した後、該チタン酸ゲルを水に溶解し、水酸化四級アンモニウムを添加して水熱処理を行う方法が提案されている(特許文献2)。しかしながら、特許文献2で開示されているのはチタニア粒子を分散させた水溶液に関してのみであり、他の金属酸化物粒子に適用可能か否かは明らかではない。また、特許文献2に開示されている製造方法でチタニア粒子分散水溶液を得るためには、原料としてチタン酸ゲルを製造する必要があり、工程が煩雑になるという問題点が存在する。
特開2002−356326号公報 特開2007−320839号公報
金属酸化物ナノ粒子を効果的に利用するためには、金属酸化物ナノ粒子が溶媒中に良分散した金属酸化物分散透明ゾル水溶液を簡便に得る方法を確立する必要がある。また、種々の金属酸化物に適用可能な、汎用性のある製造方法であることが求められる。
本発明は上記課題に鑑みなされたものであり、金属酸化物分散透明ゾル水溶液およびその製造方法に関し、特に、金属酸化物のナノ粒子が良分散した塩基性透明水溶液とその有利な製造方法に関する。
本発明の塩基性金属酸化物分散透明ゾル水溶液の製造方法は、金属塩と第四級アンモニウム塩との中和反応を用いてアニオン性塩基性無機金属錯体を含む水溶液を製造する第1工程と、該第1工程で製造した水溶液を80〜150℃の水熱条件で水熱処理する第2工程と、を有している。
第1工程においては、金属酸化物分散ゾル水溶液に分散している金属酸化物の等電位点以上の塩基性領域でアニオン性塩基性無機錯体を製造することが好ましく、第2工程においては、pH8以上の塩基性領域で水熱処理することが好ましい。
第1工程で製造される水溶液に含まれるアニオン性塩基性無機錯体は、金属イオンと第四級アンモニウム塩の陰イオンとが結合したアニオン性塩基性無機金属錯体であることが好ましく、該第四級アンモニウム塩は水酸化テトラメチルアンモニウム、炭酸テトラメチルアンモニウムおよび重炭酸テトラメチルアンモニウムの少なくとも1つであることが好ましい。
本発明の塩基性金属酸化物分散透明ゾル水溶液は、結晶子径が1nm以上かつ20nm以下の金属酸化物粒子と水とから構成される塩基性金属酸化物分散透明ゾル水溶液であって、動的光散乱法により測定した水溶液中における金属酸化物粒子の平均分散粒子径が1nm以上かつ50nm以下である塩基性金属酸化物分散透明ゾル水溶液である。ここで、結晶子径とは、金属酸化物の結晶1つの大きさを意味する。また、分散粒子径とは、水溶液中における金属酸化物の大きさを表し、金属酸化物の結晶が凝集した凝集体の大きさを含む。
塩基性金属酸化物分散透明ゾル水溶液の金属酸化物粒子の含有率は0.1体積%以上かつ60体積%以下であることが好ましい。
本発明の塩基性金属酸化物分散透明ゾル水溶液の製造方法によれば、種々の金属酸化物に関し、塩基性金属酸化物分散透明ゾル水溶液を簡便に製造することができる。
本発明の塩基性金属酸化物分散透明ゾル水溶液は、金属酸化物ナノ粒子が水中に良分散しているため、金属酸化物ナノ粒子を均一分散させた複合材料を得る場合の原料として用いることができる。また、金属酸化物バルク体を製造する際の原料としても用いることができる。
本発明の塩基性金属酸化物分散ゾル水溶液の製造方法は、金属塩と第四級アンモニウム塩との中和反応を用いてアニオン性塩基性無機金属錯体を含む水溶液を製造する第1工程と、該第1工程で製造した水溶液を80〜150℃の水熱条件で水熱処理する第2工程と、を有している。
第1工程で用いる金属塩は特に限定されないが、例えば、ジルコニウム(Zr)、チタン(Ti)、錫(Sn)、亜鉛(Zn)等の塩化物や、該塩化物の水和物等を用いることができる。また、第四級アンモニウム塩としては、水酸化テトラメチルアンモニウム、炭酸テトラメチルアンモニウム、重炭酸テトラメチルアンモニウム、コリン、炭酸コリン、および重炭酸コリン等を例示することができる。
中和方法は特に限定されないが、例えば、金属塩を水に加えて水溶液とし、該水溶液に第四級アンモニウム塩を添加することで達成される。該中和反応により、第1工程の目的であるアニオン性塩基性無機金属錯体を含む水溶液を得ることができる。アニオン性塩基性無機金属錯体としては、Zr(CO(OH)4−X X−、Ti(OH)4+X X−、およびSn(OH)4+X X−等を例示することができる。
第1工程においては、本発明の塩基性金属酸化物分散透明ゾル水溶液の製造方法で製造される、塩基性金属酸化物分散透明ゾル水溶液に分散する金属酸化物の等電位点以上の塩基性領域でアニオン性塩基性無機金属錯体を製造することが好ましい。
等電位点とは、金属酸化物表面の電位が見かけ上零になる溶媒のpHを意味する。金属酸化物の表面は、水と接すると水和を起こしてOH基を持つことが知られている。このような表面では、水のpH値によって該表面の電位が変化する。低いpHではプロトンの付加によって正の電位を帯び、pHが高くなるとOH基からのプロトンの引き抜きで負に帯電する。なお、等電位点の値は金属酸化物の酸性度によって異なり、同じ金属酸化物でも、該金属酸化物の生成時の条件や履歴によってOH基の付き方が変わると等電位点の値も変化する場合がある。
本発明の塩基性金属酸化物分散ゾル水溶液の製造方法の第2工程は、第1工程で製造した水溶液を80〜150℃の水熱条件で水熱処理するものである。水熱処理の方法は特に限定されず、例えば、第1工程で製造された水溶液をオートクレーブ(耐熱耐圧の密閉容器)中で80〜150℃に加熱し、所定の時間保持することで達成される。オートクレーブを用いた水熱処理装置としては、バッチ式処理装置と連続式(流通式)処理装置が存在するが、どちらの装置を使用してもよい。また、水熱処理はpH8以上の塩基性領域で行うことが好ましい。
第1工程において製造される水溶液に含まれるアニオン性塩基性無機金属錯体は、金属イオンと第四級アンモニウム塩の陰イオンとが結合したアニオン性塩基性無機金属錯体であることが好ましい。第四級アンモニウム塩としては、水酸化テトラメチルアンモニウム、炭酸テトラメチルアンモニウム、重炭酸テトラメチルアンモニウム、コリン、炭酸コリン、および重炭酸コリン等を例示でき、これらの陰イオンと、金属塩を水に添加することで生成した金属イオンと、が結合することで、アニオン性塩基性無機金属錯体が形成される。
本発明の塩基性金属酸化物分散ゾル水溶液の製造方法によれば、塩基性金属酸化物分散ゾル水溶液を製造するために、金属酸化物を含むゲルを製造する必要がなく、アニオン性塩基性無機金属錯体を含む水溶液を80〜150℃の水熱条件で水熱処理するだけで塩基性金属酸化物分散ゾル水溶液を製造することができる。
本発明の塩基性金属酸化物分散透明ゾル水溶液は、結晶子径が1nm以上かつ20nm以下の金属酸化物粒子と水とから構成される塩基性金属酸化物分散透明ゾル水溶液であって、動的光散乱法により測定した水溶液中における金属酸化物粒子の平均分散粒子径が1nm以上かつ50nm以下である塩基性金属酸化物分散透明ゾル水溶液である。ここで、結晶子径とは、金属酸化物の結晶1つの大きさを意味する。また、分散粒子径とは、水溶液中における金属酸化物の大きさを表し、金属酸化物の結晶が凝集した凝集体の大きさを含む。
動的光散乱法とは、水溶液中の粒子のブラウン運動を検出することで、該粒子の粒子径や粒度分布を測定する方法である。水溶液中に分散した粒子のブラウン運動は、大きな粒子では遅く、小さな粒子になるほど早くなる。ブラウン運動の様子は散乱光の揺らぎとして観測されるため、ブラウン運動をしている粒子にレーザー光を照射し、該粒子からの散乱光を観測および解析することで、水溶液中の粒子の粒子径や粒度分布を測定することができる。
本発明の塩基性金属酸化物分散透明ゾル水溶液は、塩基性金属酸化物分散透明ゾル水溶液の金属酸化物粒子の含有率が0.1体積%以上かつ60体積%以下であることが好ましい。通常、水溶液中の金属酸化物粒子の含有率が高くなると、該金属酸化物粒子同士が凝集するため、金属酸化物粒子が良分散した透明なゾル水溶液を得ることは非常に困難である。これに対し、本発明の塩基性金属酸化物分散透明ゾル水溶液は、塩基性金属酸化物分散透明ゾル水溶液の金属酸化物粒子の含有率が0.1体積%以上かつ60体積%以下の範囲で該金属酸化物粒子が良分散し、水溶液は透明な状態を維持する。
本発明の塩基性金属酸化物分散透明ゾル水溶液は、上述の塩基性金属酸化物分散透明ゾル水溶液の製造方法によって、容易に製造することができる。
以下に本発明の実施例及び比較例を図面を参照して説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1 「塩基性ZrO分散透明ゾル水溶液およびその製造方法」
3.22gのZrOCl・8HOを20mlの蒸留水に溶解し、ここに25mass%の水酸化テトラメチルアンモニウム15mlと65mass%の重炭酸テトラメチルアンモニウム15mlとの混合溶液を添加し、アニオン性塩基性Zr(IV)炭酸塩錯体水溶液を得た。次に、該アニオン性塩基性Zr(IV)炭酸塩錯体水溶液を150℃で1h水熱処理することにより、固体含有率約0.4体積%の塩基性ZrO分散透明ゾル水溶液を得た。
得られた透明ゾル水溶液を乾燥させ、残った粉末を回収した。該粉末の粉末X線回折結果を図1に示す。粉末X線回折パターンから、粉末は主に単斜晶型の結晶構造を有するZrOであることが確認された。また、該粉末X線回折パターンからシェラー式を用いて見積もった結晶子径は約3nmであった。
得られた透明ゾル水溶液中に分散している粒子の平均分散粒子径を動的光散乱法(使用装置:日機装株式会社製、Nanotrac UPA−UT151)で測定した結果を図2に示す。図2より、得られた透明ゾル水溶液中に分散している粒子の平均分散粒子径は約13nmであることが確認された。また、得られた透明ゾル水溶液のpHは10.77であった。
実施例2 「塩基性SnO分散透明ゾル水溶液およびその製造方法」
3.51gのSnCl・5HOを20mlの蒸留水に溶解し、ここに25mass%の水酸化テトラメチルアンモニウムを30ml添加し、アニオン性塩基性Sn(IV)水酸化錯体水溶液を得た。次に、該アニオン性塩基性Sn(IV)水酸化錯体水溶液を125℃で1h水熱処理することにより、固体含有率約0.4体積%の塩基性SnO分散透明ゾル水溶液を得た。
得られた透明ゾル水溶液を乾燥させ、残った粉末を回収した。該粉末の粉末X線回折結果を図3に示す。粉末X線回折パターンから、粉末はルチル型の結晶構造を有するSnOであることが確認された。また、該粉末X線回折パターンからシェラー式を用いて見積もった結晶子径は約3nmであった。
回収した粉末の透過電子顕微鏡写真を図4に示す。回収した粉末は、形状および粒径のそろったキューブ状のSnOナノ粒子であることが分かる。また、透過電子顕微鏡写真から判断できるSnOナノ粒子の粒径は約3nmであり、粉末X線回折パターンからシェラー式を用いて見積もった結晶子径と一致する。
得られた透明ゾル水溶液中に分散している粒子の平均分散粒子径を動的光散乱法(使用装置:日機装株式会社製、Nanotrac UPA−UT151)で測定した結果を図5に示す。図5より、得られた透明ゾル水溶液中に分散している粒子の平均分散粒子径は約5nmであることが確認された。また、得られた透明ゾル水溶液のpHは13.27であった。
実施例3 「塩基性TiO分散透明ゾル水溶液およびその製造方法」
1.89gのTiClを20mlの蒸留水に添加し、続いて、25mass%の水酸化テトラメチルアンモニウムを30ml添加して酸化チタン水和物分散水溶液を得た。酸化チタン水和物分散水溶液は水熱処理の昇温過程でアニオン性塩基性Ti(IV)水和錯体水溶液へと転化し、該水溶液を125℃で1h水熱処理することにより、固体含有率約0.4体積%の塩基性TiO分散透明ゾル水溶液を得た。
得られた透明ゾル水溶液を乾燥させ、残った粉末を回収した。該粉末の粉末X線回折結果を図6に示す。粉末X線回折パターンから、粉末はアナターゼ型の結晶構造を有するTiOであることが確認された。また、該粉末X線回折パターンからシェラー式を用いて見積もった結晶子径は約3nmであった。
回収した粉末の透過電子顕微鏡写真を図7に示す。回収した粉末は、形状および粒径のそろったTiOナノ粒子であることが分かる。また、透過電子顕微鏡写真から判断できるTiOナノ粒子の粒径は約3nmであり、粉末X線回折パターンからシェラー式を用いて見積もった結晶子径と一致する。
得られた透明ゾル水溶液中に分散している粒子の平均分散粒子径を動的光散乱法(使用装置:日機装株式会社製、Nanotrac UPA−UT151)で測定した結果を図8に示す。図8より、得られた透明ゾル水溶液中に分散している粒子の平均分散粒子径は約10nmであることが確認された。また、得られた透明ゾル水溶液のpHは13.80であった。
実施例4 「水熱処理条件による金属酸化物の分散粒子径制御」
1.89gのTiClを20mlの蒸留水に添加し、続いて、25mass%の水酸化テトラメチルアンモニウムを30ml添加して酸化チタン水和物分散水溶液を得た。続いて、25mass%の水酸化テトラメチルアンモニウムを30ml添加して酸化チタン水和物分散水溶液を得た。酸化チタン水和物分散水溶液は水熱処理の昇温過程でアニオン性塩基性Ti(IV)水和錯体水溶液へと転化し、該アニオン性塩基性Ti(IV)水和錯体水溶液を100、 125 および150℃で1h水熱処理することにより、固体含有率約0.4体積%の塩基性TiO分散透明ゾル水溶液を3種類得た。
得られた透明ゾル水溶液中に分散している粒子の平均分散粒子径を動的光散乱法(使用装置:日機装株式会社製、Nanotrac UPA−UT151)で測定した結果を図9に示す。図9より、得られた透明ゾル水溶液中に分散している粒子の平均分散粒子径は水熱処理の温度によって変化し、水熱処理の温度が100、125および150℃の場合、平均分散粒子径はそれぞれ約8nm、約10nmおよび約12nmであることが確認された。
得られた3種類の塩基性TiO分散透明ゾル水溶液の写真を図10に示す。全ての塩基性TiO分散透明ゾル水溶液について、これらの水溶液を入れた透明容器の後方に配置されたパネルの文字が明確に確認される。該結果より、実施例4で製造された全ての塩基性TiO分散透明ゾル水溶液が高い透明性を有していることが分かる。
実施例1で得られた粉末の粉末X線回折結果である。 実施例1で得られた透明ゾル水溶液の分散粒子径の測定結果である。 実施例2で得られた粉末の粉末X線回折結果である。 実施例2で得られた粉末の透過電子顕微鏡写真である。 実施例2で得られた透明ゾル水溶液の分散粒子径の測定結果である。 実施例3で得られた粉末の粉末X線回折結果である。 実施例3で得られた粉末の透過電子顕微鏡写真である。 実施例3で得られた透明ゾル水溶液の分散粒子径の測定結果である。 実施例4で得られた透明ゾル水溶液の分散粒子径の測定結果である。 実施例4で得られた塩基性TiO分散透明ゾル水溶液の写真である。

Claims (6)

  1. 金属塩と第四級アンモニウム塩との中和反応を用いてアニオン性塩基性無機金属錯体を含む水溶液を製造する第1工程と、
    前記水溶液を80〜150℃の水熱条件で水熱処理する第2工程と、
    を有する塩基性金属酸化物分散透明ゾル水溶液の製造方法。
  2. 前記第1工程において、前記塩基性金属酸化物分散透明ゾル水溶液に分散している金属酸化物の等電位点以上の塩基性領域で前記アニオン性塩基性無機金属錯体を製造することを特徴とする請求項1に記載の塩基性金属酸化物分散透明ゾル水溶液の製造方法。
  3. 前記第2工程において、pH8以上の塩基性領域で水熱処理することを特徴とする請求項1〜2いずれか1項に記載の塩基性金属酸化物分散透明ゾル水溶液の製造方法。
  4. 前記第四級アンモニウム塩が水酸化テトラメチルアンモニウム、炭酸テトラメチルアンモニウムおよび重炭酸テトラメチルアンモニウムの少なくとも1つであることを特徴とする請求項1〜3いずれか1項に記載の塩基性金属酸化物分散透明ゾル水溶液の製造方法。
  5. 結晶子径が1nm以上かつ20nm以下の金属酸化物粒子と水とから構成される塩基性金属酸化物分散透明ゾル水溶液であって、動的光散乱法により測定した水溶液中における前記金属酸化物粒子の平均分散粒子径が1nm以上かつ50nm以下であることを特徴とする塩基性金属酸化物分散透明ゾル水溶液。
  6. 前記金属酸化物粒子の含有率が0.1体積%以上かつ60体積%以下であることを特徴とする請求項5に記載の塩基性金属酸化物分散透明ゾル水溶液。
JP2008284815A 2008-11-05 2008-11-05 金属酸化物分散液およびその製造方法 Pending JP2010111536A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284815A JP2010111536A (ja) 2008-11-05 2008-11-05 金属酸化物分散液およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284815A JP2010111536A (ja) 2008-11-05 2008-11-05 金属酸化物分散液およびその製造方法

Publications (1)

Publication Number Publication Date
JP2010111536A true JP2010111536A (ja) 2010-05-20

Family

ID=42300411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284815A Pending JP2010111536A (ja) 2008-11-05 2008-11-05 金属酸化物分散液およびその製造方法

Country Status (1)

Country Link
JP (1) JP2010111536A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051762A (ja) * 2010-09-01 2012-03-15 Nano Cube Japan Co Ltd 酸化スズ超微粒子の製造方法
JP2018108914A (ja) * 2016-12-31 2018-07-12 大研化学工業株式会社 単斜晶ジルコニア系ナノ粒子及びその製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469520A (en) * 1987-08-17 1989-03-15 Philips Nv Manufacture of ceramic powder with provskite structure
JPH0977503A (ja) * 1995-09-16 1997-03-25 Catalysts & Chem Ind Co Ltd 金属酸化物または水酸化物ゾルの製造方法
JP2003168495A (ja) * 2001-11-30 2003-06-13 Catalysts & Chem Ind Co Ltd 光電気セルおよび光触媒
JP2003301167A (ja) * 2002-02-07 2003-10-21 Nihon University ゾルの製造方法および基材の撥水処理方法
JP2005306635A (ja) * 2004-04-19 2005-11-04 National Institute Of Advanced Industrial & Technology 被覆アルミナ粒子、アルミナ成形体、アルミナ焼結体及びこれらの製造方法
WO2006019004A1 (ja) * 2004-08-17 2006-02-23 Nissan Chemical Industries, Ltd. 金属酸化物ゾルの製造方法
JP2007320839A (ja) * 2006-06-05 2007-12-13 Taki Chem Co Ltd アルカリ型酸化チタンゾル及びその製造方法
JP2008148726A (ja) * 2006-12-14 2008-07-03 Catalysts & Chem Ind Co Ltd 消臭抗菌性組成物
JP2008251518A (ja) * 2007-03-02 2008-10-16 Tokyo Univ Of Science 色素増感型太陽電池用光電極の製造方法および色素増感型太陽電池用光電極、並びに色素増感型太陽電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469520A (en) * 1987-08-17 1989-03-15 Philips Nv Manufacture of ceramic powder with provskite structure
JPH0977503A (ja) * 1995-09-16 1997-03-25 Catalysts & Chem Ind Co Ltd 金属酸化物または水酸化物ゾルの製造方法
JP2003168495A (ja) * 2001-11-30 2003-06-13 Catalysts & Chem Ind Co Ltd 光電気セルおよび光触媒
JP2003301167A (ja) * 2002-02-07 2003-10-21 Nihon University ゾルの製造方法および基材の撥水処理方法
JP2005306635A (ja) * 2004-04-19 2005-11-04 National Institute Of Advanced Industrial & Technology 被覆アルミナ粒子、アルミナ成形体、アルミナ焼結体及びこれらの製造方法
WO2006019004A1 (ja) * 2004-08-17 2006-02-23 Nissan Chemical Industries, Ltd. 金属酸化物ゾルの製造方法
JP2007320839A (ja) * 2006-06-05 2007-12-13 Taki Chem Co Ltd アルカリ型酸化チタンゾル及びその製造方法
JP2008148726A (ja) * 2006-12-14 2008-07-03 Catalysts & Chem Ind Co Ltd 消臭抗菌性組成物
JP2008251518A (ja) * 2007-03-02 2008-10-16 Tokyo Univ Of Science 色素増感型太陽電池用光電極の製造方法および色素増感型太陽電池用光電極、並びに色素増感型太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUAN YANG ET AL.: "Hydrothermal synthesis of Nanosized Titania Powders: Influence of Tetraalkyl Ammonium Hydroxides on", JOURNAL OF AMERICAN CERAMIC SOCIETY, vol. 84, no. 8, JPN6010057562, 2001, pages 1696 - 1702, ISSN: 0002612661 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051762A (ja) * 2010-09-01 2012-03-15 Nano Cube Japan Co Ltd 酸化スズ超微粒子の製造方法
JP2018108914A (ja) * 2016-12-31 2018-07-12 大研化学工業株式会社 単斜晶ジルコニア系ナノ粒子及びその製造方法
JP2019147733A (ja) * 2016-12-31 2019-09-05 大研化学工業株式会社 単斜晶ジルコニア系ナノ粒子及びその製造方法

Similar Documents

Publication Publication Date Title
Ribeiro et al. Anisotropic growth of oxide nanocrystals: insights into the rutile TiO2 phase
Yang et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets
Yanagisawa et al. Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature
Dontsova et al. Metaloxide nanomaterials and nanocomposites of ecological purpose
Liu et al. Anatase TiO2 with dominant high-energy {001} facets: synthesis, properties, and applications
Dai et al. Synthesis of anatase TiO2 nanocrystals with exposed {001} facets
Padmanabhan et al. A simple sol− gel processing for the development of high-temperature stable photoactive anatase titania
Zhang et al. Structure of nitrogen and zirconium co-doped titania with enhanced visible-light photocatalytic activity
Tsai et al. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments
Murakami et al. Shape-controlled anatase titanium (IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol
Nguyen et al. Axis-oriented, anatase TiO2 single crystals with dominant {001} and {100} facets
Xu et al. Synthesis and characterization of single-crystalline alkali titanate nanowires
Milosevic et al. Synergistic effect of fluorinated and N doped TiO2 nanoparticles leading to different microstructure and enhanced photocatalytic bacterial inactivation
Gonçalves et al. Photonic band gap and bactericide performance of amorphous sol-gel titania: An alternative to crystalline TiO2
Tominaka et al. Lepidocrocite-type titanate formation from isostructural prestructures under hydrothermal reactions: observation by synchrotron X-ray total scattering analyses
Alvarez-Roca et al. Selective synthesis of α-, β-, and γ-Ag2WO4 polymorphs: promising platforms for photocatalytic and antibacterial materials
Milošević et al. Synthesis and characterization of fluorinated anatase nanoparticles and subsequent N-doping for efficient visible light activated photocatalysis
Ding et al. Shape and size controlled synthesis of anatase nanocrystals with the assistance of ionic liquid
Yamaguchi et al. Preparation of core/shell and hollow nanostructures of cerium oxide by electrodeposition on a polystyrene sphere template
Starowicz et al. Electrochemical synthesis of ZnO nanoparticles
Xu et al. Unique anatase TiO2 twinning crystals formed by high-energy {001} facets and the improved photocatalytic activity
Gouveia et al. Reading at exposed surfaces: theoretical insights into photocatalytic activity of ZnWO4
Wang et al. Adjusting the crystal phase and morphology of titania via a soft chemical process
Wu et al. Evolution of oxyhalide crystals under electron beam irradiation: an in situ method to understand the origin of structural instability
CN102302932A (zh) 海水电解反应阳极Sn-Ru-Ir/TiO2纳米粒子催化剂及其制备方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20111110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131220