JP2010102934A - Method for manufacturing gas diffusion layer for fuel cell - Google Patents

Method for manufacturing gas diffusion layer for fuel cell Download PDF

Info

Publication number
JP2010102934A
JP2010102934A JP2008273040A JP2008273040A JP2010102934A JP 2010102934 A JP2010102934 A JP 2010102934A JP 2008273040 A JP2008273040 A JP 2008273040A JP 2008273040 A JP2008273040 A JP 2008273040A JP 2010102934 A JP2010102934 A JP 2010102934A
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion layer
fuel cell
layer
microporous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008273040A
Other languages
Japanese (ja)
Inventor
Masanori Suzuki
雅典 鈴木
Kazuhiro Taniwaki
和宏 谷脇
Kenji Sugiura
健二 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Chemical Co Ltd
Original Assignee
Toyota Motor Corp
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Aisin Chemical Co Ltd filed Critical Toyota Motor Corp
Priority to JP2008273040A priority Critical patent/JP2010102934A/en
Publication of JP2010102934A publication Critical patent/JP2010102934A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas diffusion layer having a two-layer structure of a substrate consisting of a porous material and a microporous layer by easier processing without deterioration of porosity of the substrate. <P>SOLUTION: A mixed solution 2 of a conductive material having at least a fibrous or slender shape that is a microporous layer constituting material and a water repellent agent is applied to one surface of a substrate 1 not subjected to water repellent treatment, and drying treatment of the applied mixed solution is performed so that the transpiration removal ratio of solvent in the mixed solution is high on the substrate side, compared with the microporous layer side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池の膜電極接合体で用いられるガス拡散層の製造方法に関する。   The present invention relates to a method for producing a gas diffusion layer used in a membrane electrode assembly of a fuel cell.

燃料電池の一形態として固体高分子型燃料電池が知られている。固体高分子型燃料電池は他の形態の燃料電池と比較して作動温度が低く(−30℃〜120℃程度)、また、低コスト、コンパクト化が可能なことから、自動車の動力源等として期待されている。   A solid polymer fuel cell is known as one form of the fuel cell. Solid polymer fuel cells have a lower operating temperature (about -30 ° C to 120 ° C) than other types of fuel cells, and can be reduced in cost and size. Expected.

固体高分子型燃料電池は、図2に示すように、発電部を構成する膜電極接合体(MEA)50を主要な構成要素とし、それを燃料(水素)ガス流路51aおよび空気ガス流路51bを備えたセパレータ52a、52bで挟持し、加圧締結することで、1つの燃料電池セル53としている。膜電極接合体50は、イオン交換膜である電解質膜55と、その両面に形成した触媒層56,56と触媒層の外側に積層したガス拡散層57,57とからなる電極58,58とで構成される。   As shown in FIG. 2, the polymer electrolyte fuel cell includes a membrane electrode assembly (MEA) 50 that constitutes a power generation unit as main components, which are used as a fuel (hydrogen) gas channel 51a and an air gas channel. One fuel battery cell 53 is formed by being sandwiched by separators 52a and 52b including 51b and press-fitting. The membrane electrode assembly 50 is composed of an electrolyte membrane 55 that is an ion exchange membrane, and electrodes 58 and 58 including catalyst layers 56 and 56 formed on both surfaces thereof and gas diffusion layers 57 and 57 laminated on the outside of the catalyst layer. Composed.

触媒層56は、白金のような触媒金属をカーボン粒子のような導電性材料の表面に担持させた粒子状の触媒物質と電解質樹脂とを、水または有機溶媒系の溶液内で分散させながら混合溶液(触媒物質含有インク)を作り、この混合溶液を固体高分子電解質膜に塗布した後、加熱乾燥して定着する等の手法により形成される。   The catalyst layer 56 is a mixture of a particulate catalyst substance in which a catalytic metal such as platinum is supported on the surface of a conductive material such as carbon particles and an electrolyte resin dispersed in water or an organic solvent-based solution. A solution (catalyst substance-containing ink) is prepared, and this mixed solution is applied to a solid polymer electrolyte membrane, and then heated and dried to fix.

ガス拡散層57は、ガス透過性と電子伝導性を合わせ備えるものであり、従来から、カーボンペーパーまたはカーボンクロスのような多孔性カーボン支持体が主に用いられている。また、ガス拡散層は発電時に生成する水の排水性を良好にするために高い撥水性を備えることが望ましく、特許文献1に記載のように、カーボンペーパーまたはカーボンクロスのような導電性多孔質材料からなる基材にポリテトラフルオロエチレン(PTFE)等の樹脂溶液またはペーストを含浸またはコーティングした後、乾燥させる撥水化処理が施される。   The gas diffusion layer 57 has both gas permeability and electronic conductivity, and conventionally, a porous carbon support such as carbon paper or carbon cloth has been mainly used. In addition, the gas diffusion layer preferably has high water repellency in order to improve the drainage of water generated during power generation. As described in Patent Document 1, a conductive porous material such as carbon paper or carbon cloth is used. The substrate made of the material is impregnated or coated with a resin solution or paste such as polytetrafluoroethylene (PTFE), and then subjected to a water repellency treatment for drying.

他のガス拡散層として、多孔質材料からなる基材(GDL)とマイクロポーラスレイヤー(MPL)の2層構造を持つガス拡散層が知られている(特許文献2など参照)。この拡散層では、多孔質材料からなる基材はセパレータ側に接触し、マイクロポーラスレイヤーは触媒層側に接触する。この2層構造からなるガス拡散層では、多孔質材料からなる基材は主にガス拡散層としての機能を果たし、マイクロポーラスレイヤーは主に集電層としての機能を果たす。いずれの層でも発電時に生成する水の排水性を良好にするために撥水性を備えることは必要であり、双方に適宜の撥水化処理が施される。   As another gas diffusion layer, a gas diffusion layer having a two-layer structure of a base material (GDL) made of a porous material and a microporous layer (MPL) is known (see Patent Document 2 and the like). In this diffusion layer, the substrate made of a porous material is in contact with the separator side, and the microporous layer is in contact with the catalyst layer side. In the gas diffusion layer having the two-layer structure, the base material made of a porous material mainly functions as a gas diffusion layer, and the microporous layer mainly functions as a current collecting layer. In any layer, it is necessary to provide water repellency in order to improve the drainage of water generated during power generation, and appropriate water repellency treatment is applied to both layers.

特開2008−71691号公報JP 2008-71691 A 特表2002−529890号公報Special Table 2002-529890

上記した、多孔質材料からなる基材(GDL)とマイクロポーラスレイヤー(MPL)の2層構造を持つガス拡散層を製造する場合、従来は、多孔質材料からなる基材に対して撥水処理を施しておき、その上に、撥水処理を施したマイクロポーラスレイヤーを積層して圧接するか、または、マイクロポーラスレイヤー構成材である導電性材料と撥水剤との混合溶液を塗布し乾燥させる処理を行っている。すなわち、基材とマイクロポーラスレイヤーとのそれぞれに別個に撥水処理を施しており、大きな作業負担となっている。また、マイクロポーラスレイヤーを基材に圧接する場合に、マイクロポーラスレイヤーを構成する導電性材料が基材表面に埋設して、基材の多孔度を低下させることも起こっている。   When manufacturing a gas diffusion layer having a two-layer structure of a porous material (GDL) and a microporous layer (MPL) as described above, conventionally, a water-repellent treatment is performed on the porous material. Then, a microporous layer that has been subjected to water repellent treatment is laminated and pressed on it, or a mixed solution of a conductive material and a water repellent that is a component of the microporous layer is applied and dried. The process to make it. That is, the water repellent treatment is separately applied to each of the base material and the microporous layer, which is a heavy work load. In addition, when the microporous layer is pressed against the base material, the conductive material constituting the microporous layer is embedded in the base material surface, and the porosity of the base material is lowered.

本発明は、上記の事情に鑑みてなされたものであり、多孔質材料からなる基材とマイクロポーラスレイヤーの2層構造を持つガス拡散層を、より簡単な処理でもって、かつ基材の多孔度を低下させることなく製造することのできる新たな製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances. A gas diffusion layer having a two-layer structure of a base material made of a porous material and a microporous layer can be processed with a simpler process and the porosity of the base material can be reduced. It is an object of the present invention to provide a new manufacturing method that can be manufactured without reducing the degree.

本発明による燃料電池用ガス拡散層の製造方法は、多孔質材料からなる基材とマイクロポーラスレイヤーの2層構造を持つ燃料電池用ガス拡散層の製造方法であって、撥水処理を施さない基材の一方面にマイクロポーラスレイヤー構成材である少なくとも繊維状または細長い形状の導電性材料と撥水剤との混合溶液を塗布し、塗布した前記混合溶液の乾燥処理を混合溶液の溶剤の蒸散除去割合がマイクロポーラスレイヤー側に比べて基材側で高くするようにして行うことを特長とする。   A method for producing a gas diffusion layer for a fuel cell according to the present invention is a method for producing a gas diffusion layer for a fuel cell having a two-layer structure of a base material made of a porous material and a microporous layer, and is not subjected to a water repellent treatment. A mixed solution of at least a fibrous or elongated conductive material, which is a microporous layer constituent material, and a water repellent is applied to one side of the substrate, and the applied mixed solution is dried, and the solvent of the mixed solution is evaporated. It is characterized in that the removal rate is made higher on the substrate side than on the microporous layer side.

上記の製造方法では、基材の一方面に塗布したマイクロポーラスレイヤー用の混合溶液の乾燥処理を、混合溶液の溶剤の蒸散除去割合がマイクロポーラスレイヤー側に比べて基材側で高くするようにして行うようにしており、乾燥処理の過程で、混合溶液中の撥水剤は基材中に染み込んでいく。それにより、基材には所要の撥水処理が施される。すなわち、製造に当たり、基材として撥水処理を施していない基材を用いることができるので、従来の基材に撥水処理を施す工程を省略することができる。   In the above manufacturing method, the drying treatment of the mixed solution for the microporous layer applied to one surface of the substrate is performed so that the solvent removal rate of the mixed solution is higher on the substrate side than on the microporous layer side. In the course of the drying process, the water repellent in the mixed solution soaks into the substrate. Thereby, a required water-repellent treatment is performed on the base material. In other words, since a base material that has not been subjected to water repellent treatment can be used as a base material for manufacturing, the conventional step of subjecting the base material to water repellent treatment can be omitted.

また、本発明による製造方法では、マイクロポーラスレイヤー構成材である導電性材料として、繊維状または細長い形状の導電性材料を用いている。そのために、前記のように乾燥処理を、混合溶液の溶剤の蒸散除去割合がマイクロポーラスレイヤー側に比べて基材側で高くするようにして行っても、導電性材料が基材中に入り込むのを抑制することができ、基材の多孔度を低下させることはない。   In the manufacturing method according to the present invention, a fibrous or elongated conductive material is used as the conductive material that is a constituent material of the microporous layer. Therefore, even when the drying treatment is performed such that the transpiration removal ratio of the solvent of the mixed solution is higher on the base material side than on the microporous layer side, the conductive material enters the base material. Can be suppressed, and the porosity of the substrate is not lowered.

本発明において、多孔質材料からなる基材には、従来のガス拡散層で用いられているガス透過性と導電性を備える任意の材料を用いることができる。例として、導電性無機材料が挙げられる。導電性無機材料としては、黒鉛および膨張黒鉛等の炭素材料やこれらのナノカーボン材料、ステンレススチール、モリブデン、チタン等を挙げることができる。導電性無機材料の形態は特に限定されるものではなく、例えば繊維状あるいは粒子状で用いられるが、ガス透過性の点から無機導電性繊維であって、特に炭素繊維が好ましい。織布あるいは不織布のいずれであってもよく、より具体的には、カーボンペーパーやカーボンクロスが好適な例として挙げられる。前記したように、それらの材料は撥水処理を施すことなく、基材として用いられる。   In the present invention, any material having gas permeability and conductivity used in a conventional gas diffusion layer can be used for the substrate made of a porous material. Examples include conductive inorganic materials. Examples of the conductive inorganic material include carbon materials such as graphite and expanded graphite, nanocarbon materials thereof, stainless steel, molybdenum, titanium, and the like. The form of the conductive inorganic material is not particularly limited. For example, the conductive inorganic material is used in the form of fibers or particles. From the viewpoint of gas permeability, it is an inorganic conductive fiber, and carbon fiber is particularly preferable. Either woven fabric or non-woven fabric may be used, and more specifically, carbon paper and carbon cloth are preferable examples. As described above, these materials are used as a base material without being subjected to water repellent treatment.

本発明において、マイクロポーラスレイヤー構成材である繊維状または細長い形状の導電性材料には、白金、パラジウム、ルテニウム、ロジウム、イリジウム、金、銀およびこれらの化合物または合金、さらには、導電性炭素材料が挙げられる。導電性炭素材料の例として、気相成長法で得られるカーボンファイバー(VGCF)、アセチレンブラック等が挙げられる。本発明において、繊維状または細長い形状とは、アスペクト比が1を越える形状をいっており、球状や縦横比が1(アスペクト比が1)の形状は含まない。本発明の製造方法において、マイクロポーラスレイヤー構成材である導電性材料が繊維状または細長い形状であることにより、乾燥処理の過程で導電性材料が基材の気孔中に入り込むことが大きく抑制され、基材の多孔度が低下するのを阻止している。   In the present invention, the fibrous or elongated conductive material that is a constituent material of the microporous layer includes platinum, palladium, ruthenium, rhodium, iridium, gold, silver, and a compound or alloy thereof, and further a conductive carbon material. Is mentioned. Examples of the conductive carbon material include carbon fiber (VGCF), acetylene black and the like obtained by a vapor phase growth method. In the present invention, the fibrous or elongated shape refers to a shape having an aspect ratio exceeding 1, and does not include a shape having a spherical shape or an aspect ratio of 1 (an aspect ratio of 1). In the manufacturing method of the present invention, when the conductive material that is the microporous layer constituent material is in a fibrous or elongated shape, it is greatly suppressed that the conductive material enters the pores of the base material in the course of the drying treatment, This prevents the porosity of the substrate from decreasing.

本発明において、撥水剤は、従来のガス拡散層を撥水処理するのに用いられている任意の撥水剤を用いることができる。好ましい例として、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素樹脂を挙げることができる。   In the present invention, as the water repellent, any water repellent used for water repellent treatment of a conventional gas diffusion layer can be used. Preferable examples include fluororesins such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA).

本発明において、マイクロポーラスレイヤー構成材である混合溶液は、適宜の溶剤を含む。溶剤は水系であってもよく、有機系溶剤であってもよい。水系溶剤の場合には、例えばカーボンである繊維状または細長い形状の導電性材料が水に濡れ難いことから、適宜の界面活性剤をさらに加えることが好ましい。界面活性剤を加える場合には、製造工程の最後に、ガス拡散層に対して界面活性剤を除去するために焼成処理を施すことが望ましい。有機系溶媒を用いる場合には、界面活性剤の添加は省略できる。   In the present invention, the mixed solution which is a constituent material of the microporous layer contains an appropriate solvent. The solvent may be aqueous or organic. In the case of an aqueous solvent, for example, a fibrous or elongated conductive material such as carbon is difficult to wet with water, and therefore it is preferable to further add an appropriate surfactant. In the case of adding a surfactant, it is desirable to perform a baking treatment at the end of the manufacturing process in order to remove the surfactant from the gas diffusion layer. When an organic solvent is used, the addition of a surfactant can be omitted.

本発明において、基材に対する前記混合溶液の塗布は、刷毛塗り、筆塗り、ロールコーター塗布、バーコーター塗布、ダイコーター塗布、スクリーン印刷、スプレー塗布などの方法で行うことができる。   In the present invention, the mixed solution can be applied to the substrate by methods such as brush coating, brush coating, roll coater coating, bar coater coating, die coater coating, screen printing, and spray coating.

本発明において、塗布した前記混合溶液の乾燥処理を混合溶液の溶剤の蒸散除去割合がマイクロポーラスレイヤー側に比べて基材側で高くするようにして行う方法は、任意であり、適宜の方法を採用することができる。例えば、マイクロポーラスレイヤー側を高い湿度環境(例えば飽和状態)におき、基材側を比較して低い湿度環境におく方法や、マイクロポーラスレイヤー側をシールドし、基材側を開放した環境におく方法や、基材側から吸引する方法、等を挙げることができる。湿度差を与える方法の具体例として、マイクロポーラスレイヤーの表面に水蒸気を含む空気を走らせ、基材の表面に乾燥した空気を走らせるような方法が挙げられる。   In the present invention, the method of performing the drying treatment of the applied mixed solution in such a manner that the transpiration removal ratio of the solvent of the mixed solution is higher on the substrate side than on the microporous layer side is arbitrary, and an appropriate method is used. Can be adopted. For example, a method in which the microporous layer side is placed in a high humidity environment (for example, a saturated state) and the substrate side is placed in a low humidity environment, or the microporous layer side is shielded and the substrate side is left open. Examples thereof include a method and a suction method from the substrate side. As a specific example of the method of giving the humidity difference, there is a method of running air containing water vapor on the surface of the microporous layer and running dry air on the surface of the substrate.

本発明によれば、多孔質材料からなる基材とマイクロポーラスレイヤーの2層構造を持つガス拡散層を、より簡単な処理でもって、かつ基材の多孔度を低下させることなく製造することができる。   According to the present invention, a gas diffusion layer having a two-layer structure of a base material made of a porous material and a microporous layer can be produced by a simpler process and without reducing the porosity of the base material. it can.

以下、実施例と比較例により本発明を説明する。
[実施例1]
(a)多孔質材料からなる基材として、多孔度が80%である撥水処理を施さないカーボンペーパーを用いた。マイクロポーラスレイヤー(MPL)構成材として、アスペクト比がほぼ10である気相成長法で得られたカーボンファイバー(VGCF)とPTFEと水と界面活性剤との混合溶液を用いた。
(b)図1(a)に示すように基材1を平坦面上に置き、図1(b)に示すようにその表面に混合溶液2をダイコーター法により塗布した。その後、塗布した混合溶液側をシールドした状態で一定時間放置して乾燥処理を行った。それにより、図1(c)に示すように、塗布した混合溶液2の溶剤の蒸散除去割合を混合溶液(マイクロポーラスレイヤー)2側に比べて基材1側で高くした状態で、乾燥処理が進行した。蒸散割合は、基材側がほぼ10であり、マイクロポーラスレイヤー側はほぼ0であった。
(c)乾燥後、界面活性剤を除去するために焼成処理を行い、図1(d)に示す多孔質材料からなる基材とマイクロポーラスレイヤーの2層構造を持つ燃料電池用ガス拡散層3を得た。
(d)得られた燃料電池用ガス拡散層3における、基材側の多孔度を測定したところほぼ80%であった。また、撥水性を確認するために、13wt%のエタノール溶液を用いて基材面の転落角を測定したところ、52度であった。
Hereinafter, the present invention will be described with reference to examples and comparative examples.
[Example 1]
(A) As a base material made of a porous material, carbon paper having a porosity of 80% and not subjected to water repellent treatment was used. As a microporous layer (MPL) constituent material, a mixed solution of carbon fiber (VGCF), PTFE, water and a surfactant obtained by a vapor phase growth method having an aspect ratio of about 10 was used.
(B) The substrate 1 was placed on a flat surface as shown in FIG. 1 (a), and the mixed solution 2 was applied to the surface by a die coater method as shown in FIG. 1 (b). Thereafter, the applied mixed solution side was left to stand for a certain period of time in a shielded state to perform a drying treatment. Thereby, as shown in FIG.1 (c), in the state which made the evaporation removal ratio of the solvent of the apply | coated mixed solution 2 high on the base material 1 side compared with the mixed solution (microporous layer) 2 side, a drying process is carried out. Progressed. The transpiration rate was approximately 10 on the substrate side and approximately 0 on the microporous layer side.
(C) After drying, firing treatment is performed to remove the surfactant, and the fuel cell gas diffusion layer 3 having a two-layer structure of a porous material and a microporous layer shown in FIG. Got.
(D) The substrate-side porosity of the obtained fuel cell gas diffusion layer 3 was measured and found to be approximately 80%. Moreover, in order to confirm water repellency, when the fall angle of the base-material surface was measured using the 13 wt% ethanol solution, it was 52 degree | times.

[比較例1]
実施例1で用いたカーボンペーパーにPTFEによる撥水処理を予め施した材料を基材として用いた。その基材の表面に実施例1で用いたと同じマイクロポーラスレイヤー用混合溶液を同じようにして塗布し、通常の方法で乾燥処理と焼成処理を行って多孔質材料からなる基材とマイクロポーラスレイヤーの2層構造を持つ燃料電池用ガス拡散層を得た。得られた燃料電池用ガス拡散層における、基材面の撥水性を、実施例1と同様に、13wt%のエタノール溶液を用いて基材面の転落角を測定したところ、52度であった。
[Comparative Example 1]
A material obtained by subjecting the carbon paper used in Example 1 to a water repellent treatment with PTFE in advance was used as a base material. The same microporous layer mixed solution as used in Example 1 was applied to the surface of the base material in the same manner, and the base material and the microporous layer made of a porous material were subjected to a drying process and a firing process in the usual manner. A gas diffusion layer for a fuel cell having a two-layer structure was obtained. The water repellency of the base material surface in the obtained gas diffusion layer for fuel cells was 52 degrees when the falling angle of the base material surface was measured using a 13 wt% ethanol solution in the same manner as in Example 1. .

[比較例2]
実施例1で用いたカーボンペーパーにPTFEによる撥水処理を予め施した材料を基材として用いた。マイクロポーラスレイヤー構成材として、アスペクト比がほぼ1であるアセチレンブラックとPTFEと水と界面活性剤との混合溶液を用い、前記基材の表面に実施例1と同様にして塗布した後、圧接した状態で乾燥処理を行い、焼成処理を行って多孔質材料からなる基材とマイクロポーラスレイヤーの2層構造を持つ燃料電池用ガス拡散層を得た。得られた燃料電池用ガス拡散層における、基材側の多孔度を測定したところほぼ75%に低下していた。基材面の撥水性を確認するために、13wt%のエタノール溶液を用いて基材面の転落角を測定したところ、52度であった。
[Comparative Example 2]
A material obtained by subjecting the carbon paper used in Example 1 to a water repellent treatment with PTFE in advance was used as a base material. As a microporous layer constituent material, a mixed solution of acetylene black, PTFE, water and a surfactant having an aspect ratio of approximately 1 was used and applied to the surface of the substrate in the same manner as in Example 1 and then pressed. A drying treatment was performed in the state, and a firing treatment was performed to obtain a gas diffusion layer for a fuel cell having a two-layer structure of a base material made of a porous material and a microporous layer. In the obtained gas diffusion layer for a fuel cell, the porosity on the substrate side was measured and found to be almost 75%. In order to confirm the water repellency of the base material surface, the falling angle of the base material surface was measured using a 13 wt% ethanol solution and found to be 52 degrees.

[比較例3]
マイクロポーラスレイヤー構成材として、アスペクト比がほぼ1であるアセチレンブラックとPTFEと水と界面活性剤との混合溶液を用いた以外は、実施例1と同様にして、多孔質材料からなる基材とマイクロポーラスレイヤーの2層構造を持つ燃料電池用ガス拡散層を得た。得られた燃料電池用ガス拡散層における、基材側の多孔度を測定したところほぼ75%に低下していた。基材面の撥水性を確認するために、13wt%のエタノール溶液を用いて基材面の転落角を測定したところ、52度であった。
[Comparative Example 3]
In the same manner as in Example 1, except that a mixed solution of acetylene black, PTFE, water, and a surfactant having an aspect ratio of approximately 1 was used as the microporous layer constituent material, A gas diffusion layer for a fuel cell having a two-layer structure of a microporous layer was obtained. In the obtained gas diffusion layer for a fuel cell, the porosity on the substrate side was measured and found to be almost 75%. In order to confirm the water repellency of the base material surface, the falling angle of the base material surface was measured using a 13 wt% ethanol solution and found to be 52 degrees.

[比較例4]
乾燥処理を、基材側をシールドした状態で一定時間放置することにより行った以外は、実施例1と同様にして、多孔質材料からなる基材とマイクロポーラスレイヤーの2層構造を持つ燃料電池用ガス拡散層を得た。蒸散割合は、基材側がほぼ0であり、マイクロポーラスレイヤー側はほぼ10であった。得られた燃料電池用ガス拡散層における、基材側の多孔度を測定したところほぼ80%であった。また、撥水性を確認するために、13wt%のエタノール溶液を用いて基材面の転落角を測定したところ、65度であった。
[Comparative Example 4]
A fuel cell having a two-layer structure of a base material made of a porous material and a microporous layer, in the same manner as in Example 1, except that the drying process was performed by leaving the base material side shielded for a certain period of time. A gas diffusion layer was obtained. The transpiration rate was approximately 0 on the substrate side and approximately 10 on the microporous layer side. In the obtained gas diffusion layer for fuel cells, the porosity on the substrate side was measured and found to be about 80%. Moreover, in order to confirm water repellency, when the falling angle of the base-material surface was measured using the 13 wt% ethanol solution, it was 65 degree | times.

[考察]
上記の結果を表1にまとめて示した。
[Discussion]
The above results are summarized in Table 1.

Figure 2010102934
Figure 2010102934

実施例1に示すように、本発明により製造されたガス拡散層は、比較例1である従来法によって製造したガス拡散層とおなじ、撥水性と多孔度を有している。このことは、本発明による製造方法により基材に撥水処理を施す処理を省略することができることを示しており、本発明の優位性が示される。   As shown in Example 1, the gas diffusion layer manufactured by the present invention has the same water repellency and porosity as the gas diffusion layer manufactured by the conventional method which is Comparative Example 1. This has shown that the process which performs a water-repellent process to a base material by the manufacturing method by this invention can be abbreviate | omitted, and the predominance of this invention is shown.

比較例2では、マイクロポーラスレイヤー(MPL)側のカーボンとしてアスペクト比がほぼ1であるカーボンを用いたことから、圧接によりカーボンの一部が基材表面に押し込められてしまい、結果として多孔度が低下していることがわかる。   In Comparative Example 2, since carbon having an aspect ratio of approximately 1 was used as carbon on the microporous layer (MPL) side, part of the carbon was pressed into the substrate surface by pressure welding, and as a result, porosity was increased. It turns out that it has fallen.

比較例3でも、マイクロポーラスレイヤー(MPL)側のカーボンとしてアスペクト比がほぼ1であるカーボンを用いたことから、乾燥処理時にカーボンの一部が基材表面に押し込められてしまい、結果として多孔度が低下していることがわかる。   Even in Comparative Example 3, carbon having an aspect ratio of approximately 1 was used as the carbon on the microporous layer (MPL) side, so that part of the carbon was pushed into the substrate surface during the drying process, resulting in porosity. It can be seen that is decreasing.

比較例4では、実施例1とは蒸散方向を逆としたために、基材の撥水性が実施例1と比べて低下していることがわかる。   In Comparative Example 4, since the transpiration direction was reversed from that in Example 1, it was found that the water repellency of the substrate was lower than that in Example 1.

本発明による製造方法を説明する図。The figure explaining the manufacturing method by this invention. 固体高分子型燃料電池の一例を説明する図。The figure explaining an example of a polymer electrolyte fuel cell.

符号の説明Explanation of symbols

1…多孔質材料からなる基材、
2…マイクロポーラスレイヤー構成材を含む混合溶液、
3…多孔質材料からなる基材とマイクロポーラスレイヤーの2層構造を持つ燃料電池用ガス拡散層
1 ... Base material made of porous material,
2 ... mixed solution containing microporous layer constituent material,
3 ... Gas diffusion layer for fuel cells having a two-layer structure of a porous material and a microporous layer

Claims (6)

多孔質材料からなる基材とマイクロポーラスレイヤーの2層構造を持つ燃料電池用ガス拡散層の製造方法であって、撥水処理を施さない基材の一方面にマイクロポーラスレイヤー構成材である少なくとも繊維状または細長い形状の導電性材料と撥水剤との混合溶液を塗布し、塗布した前記混合溶液の乾燥処理を混合溶液の溶剤の蒸散除去割合がマイクロポーラスレイヤー側に比べて基材側で高くするようにして行うことを特長とする燃料電池用ガス拡散層の製造方法。   A method for producing a gas diffusion layer for a fuel cell having a two-layer structure of a base material made of a porous material and a microporous layer, the microporous layer constituting material on at least one surface of the base material not subjected to water repellent treatment Applying a mixed solution of a fibrous or elongated conductive material and a water repellent, and drying the applied mixed solution, the solvent evaporation of the mixed solution is removed on the substrate side compared to the microporous layer side. A process for producing a gas diffusion layer for a fuel cell, characterized in that the method is carried out by increasing the height. 基材としてカーボンペーパーまたはカーボンクロスを用いることを特長とする請求項1に記載の燃料電池用ガス拡散層の製造方法。   2. The method for producing a gas diffusion layer for a fuel cell according to claim 1, wherein carbon paper or carbon cloth is used as the substrate. マイクロポーラスレイヤー構成材である繊維状または細長い形状の導電性材料としてカーボンファイバーまたはアスペトク比が1を越えるカーボンを用いることを特長とする請求項1に記載の燃料電池用ガス拡散層の製造方法。   2. The method for producing a gas diffusion layer for a fuel cell according to claim 1, wherein carbon fiber or carbon having an aspect ratio exceeding 1 is used as the conductive material having a fibrous or elongated shape which is a constituent material of the microporous layer. マイクロポーラスレイヤー構成材である撥水剤としてPTFEを用いることを特長とする請求項1に記載の燃料電池用ガス拡散層の製造方法。   2. The method for producing a gas diffusion layer for a fuel cell according to claim 1, wherein PTFE is used as the water repellent agent that is a constituent material of the microporous layer. 前記塗布した前記混合溶液の乾燥処理をマイクロポーラスレイヤー側をシールドした状態で行うことを特長とする請求項1〜4のいずれか一項に記載の燃料電池用ガス拡散層の製造方法。   The method for producing a gas diffusion layer for a fuel cell according to any one of claims 1 to 4, wherein the applied mixed solution is dried while the microporous layer side is shielded. 前記塗布した前記混合溶液の乾燥処理をマイクロポーラスレイヤー側を高湿度環境とし基材側を比較して低湿度環境として行うことを特長とする燃料電池用ガス拡散層の製造方法。   A method for producing a gas diffusion layer for a fuel cell, characterized in that the applied mixed solution is dried in a high humidity environment on the microporous layer side and in a low humidity environment by comparing the substrate side.
JP2008273040A 2008-10-23 2008-10-23 Method for manufacturing gas diffusion layer for fuel cell Pending JP2010102934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008273040A JP2010102934A (en) 2008-10-23 2008-10-23 Method for manufacturing gas diffusion layer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008273040A JP2010102934A (en) 2008-10-23 2008-10-23 Method for manufacturing gas diffusion layer for fuel cell

Publications (1)

Publication Number Publication Date
JP2010102934A true JP2010102934A (en) 2010-05-06

Family

ID=42293417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008273040A Pending JP2010102934A (en) 2008-10-23 2008-10-23 Method for manufacturing gas diffusion layer for fuel cell

Country Status (1)

Country Link
JP (1) JP2010102934A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006957A1 (en) * 2012-07-02 2014-01-09 トヨタ自動車株式会社 Fuel cell gas diffusion layer and method for forming same
JP2014241290A (en) * 2014-08-19 2014-12-25 大日本印刷株式会社 Gas diffusion layer formed with conductive porous layer for polymer electrolyte fuel cell, paste composition for forming conductive porous layer, method for producing the same, and polymer electrolyte fuel cell
JP2015233021A (en) * 2015-09-30 2015-12-24 トヨタ自動車株式会社 Gas diffusion layer for fuel cell
CN110492124A (en) * 2019-07-17 2019-11-22 珠海冠宇电池有限公司 A kind of high conductivity hydrophobic gas diffusion layer and preparation method thereof
CN112993280A (en) * 2021-03-11 2021-06-18 大连交通大学 Preparation method of microporous layer of gas diffusion layer of lithium-air battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006957A1 (en) * 2012-07-02 2014-01-09 トヨタ自動車株式会社 Fuel cell gas diffusion layer and method for forming same
CN104412429A (en) * 2012-07-02 2015-03-11 丰田自动车株式会社 Fuel cell gas diffusion layer and method for forming same
JP2014241290A (en) * 2014-08-19 2014-12-25 大日本印刷株式会社 Gas diffusion layer formed with conductive porous layer for polymer electrolyte fuel cell, paste composition for forming conductive porous layer, method for producing the same, and polymer electrolyte fuel cell
JP2015233021A (en) * 2015-09-30 2015-12-24 トヨタ自動車株式会社 Gas diffusion layer for fuel cell
CN110492124A (en) * 2019-07-17 2019-11-22 珠海冠宇电池有限公司 A kind of high conductivity hydrophobic gas diffusion layer and preparation method thereof
CN112993280A (en) * 2021-03-11 2021-06-18 大连交通大学 Preparation method of microporous layer of gas diffusion layer of lithium-air battery
CN112993280B (en) * 2021-03-11 2023-11-14 大连交通大学 Preparation method of microporous layer of gas diffusion layer of lithium air battery

Similar Documents

Publication Publication Date Title
JP2010267539A (en) Method of manufacturing gas diffusion layer for fuel cell
KR101931890B1 (en) Membrane electrode assembly
TWI644477B (en) Gas diffusion electrode substrate, membrane electrode assembly having the same, and fuel cell
JP6686437B2 (en) Gas diffusion electrode substrate and method for producing gas diffusion electrode substrate
TWI670227B (en) Method for preparing porous carbon sheet and precursor fiber sheet thereof, and porous carbon sheet
JP5835527B1 (en) GAS DIFFUSION ELECTRODE BASE, MEMBRANE ELECTRODE ASSEMBLY PROVIDED WITH THE SAME, AND FUEL CELL
JP6330282B2 (en) Gas diffusion electrode substrate for fuel cell and manufacturing method thereof
TW201407869A (en) Gas diffusion electrode substrate for fuel cell
JP2017509111A (en) Gas diffusion substrate
JP2010102934A (en) Method for manufacturing gas diffusion layer for fuel cell
JP2007012325A (en) Electrode for solid polymer fuel cell, and solid polymer fuel cell using this
JP4811992B2 (en) Conductive porous film
JP6863536B2 (en) Gas diffusion electrode, manufacturing method of gas diffusion electrode, membrane electrode assembly, fuel cell
JP7263774B2 (en) MICROPOROUS LAYER AND MANUFACTURING METHOD THEREOF, GAS DIFFUSION ELECTRODE BASE MATERIAL, FUEL CELL
JP7355143B2 (en) Porous electrode base material, gas diffusion layer, gas diffusion electrode, and manufacturing method thereof
JP2004164903A (en) Polymer electrolyte type fuel cell, and manufacturing method of its electrode
CN117063315A (en) Electrode base material and method for producing same
JP4985737B2 (en) Gas diffusion electrode with microporous layer, catalyst layer with microporous layer, gas diffusion electrode with catalyst layer, membrane-electrode assembly, and polymer electrolyte fuel cell for fuel cell
JP2009009768A (en) Method of manufacturing electrolyte membrane/membrane electrode assembly, and fuel cells
JP2006294267A (en) Catalyst ink for fuel cell electrode formation
TW201036240A (en) Membrane electrode assembly of fuel cell
WO2023127790A1 (en) Gas diffusion electrode base material and method for producing same, and fuel cell
JP2006092920A (en) Fuel cell and manufacturing method of fuel cell
CN116438687A (en) Gas diffusion electrode base material product and solid polymer fuel cell
JP2010062021A (en) Method of manufacturing gas diffusion layer, electrode for solid polymer fuel cell, and solid polymer fuel cell