JP2010097961A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP2010097961A
JP2010097961A JP2007002138A JP2007002138A JP2010097961A JP 2010097961 A JP2010097961 A JP 2010097961A JP 2007002138 A JP2007002138 A JP 2007002138A JP 2007002138 A JP2007002138 A JP 2007002138A JP 2010097961 A JP2010097961 A JP 2010097961A
Authority
JP
Japan
Prior art keywords
insulating layer
electrostatic
electrostatic adsorption
wafer
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007002138A
Other languages
Japanese (ja)
Inventor
Masaki Kano
正樹 狩野
Kazuichi Yamamura
和市 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007002138A priority Critical patent/JP2010097961A/en
Priority to PCT/JP2008/050018 priority patent/WO2008084770A1/en
Publication of JP2010097961A publication Critical patent/JP2010097961A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic chuck, having a long life and superior abrasion resistance which restrains wafer suction surface or the electrostatic suction mounting surface from being scratched, and which suppresses generation of dust. <P>SOLUTION: The electrostatic chuck 1 for chucking an object, such as, a semiconductor wafer or a glass substrate, such that an insulation layer 5, forming a surface for sucking the object, is formed to cover electrodes 3a, 3b for electrostatic chucking formed on one surface of a supporting substrate 2, the insulation layer 5 has a coefficient of dynamic friction of 0.3 or less and a large number of micro recesses are formed on the surface of the insulation layer 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体デバイスや液晶パネルの製造工程、検査工程等に使用される静電吸着機能を有する静電吸着装置に関する。   The present invention relates to an electrostatic chucking device having an electrostatic chucking function used in the manufacturing process and inspection process of semiconductor devices and liquid crystal panels.

従来、半導体デバイスの製造工程における半導体ウエハの加熱には、金属線を巻いたヒーターが使用されていた。しかし、このヒーターを使用した場合には、半導体ウエハヘの金属汚染の問題があったため、近年、セラミックス薄膜を発熱層として使用したセラミックス一体型ウエハ加熱装置の使用が提案されている(例えば、特許文献1:特開平4−124076号公報参照)。
中でも分子線エピタキシーやCVD、スパッタリング等におけるウエハの加熱方法としては、基体内からのアウトガスが無く、高純度、耐熱衝撃性に優れた熱分解窒化硼素(PBN)と熱分解黒鉛(PG)の複合セラミックヒーターを用いることが有効とされており(特許文献2:特開昭63−241921号公報参照)、このようなヒーターであると従来のタンタルワイヤーヒーターに比べて装着が容易で、熱変形、断線、ショート等のトラブルを起さないので使い易く、しかも面上ヒーターであるため比較的均熱が得られ易いという利点もある。
この半導体ウエハの加熱にあたっては、ヒーター上に半導体ウエハを固定するために減圧雰囲気では静電吸着装置が使用されており、プロセスの高温化に伴ってその材質は樹脂からセラミックスに移行している(特許文献3,4:特開昭52−67353号公報、特開昭59−124140号公報参照)。
Conventionally, a heater wound with a metal wire has been used for heating a semiconductor wafer in a semiconductor device manufacturing process. However, when this heater is used, there is a problem of metal contamination on the semiconductor wafer, and in recent years, use of a ceramic integrated wafer heating apparatus using a ceramic thin film as a heat generating layer has been proposed (for example, Patent Documents). 1: Refer to Japanese Patent Laid-Open No. 4-124076).
Above all, as a method for heating a wafer in molecular beam epitaxy, CVD, sputtering, etc., there is no outgas from the inside of the substrate, and it is a composite of pyrolytic boron nitride (PBN) and pyrolytic graphite (PG) that has high purity and excellent thermal shock resistance. It is effective to use a ceramic heater (see Patent Document 2: Japanese Patent Laid-Open No. 63-241922). Such a heater is easier to install than conventional tantalum wire heaters, There is also an advantage that it is easy to use because troubles such as disconnection and short-circuit do not occur, and that it is relatively easy to obtain uniform heat because it is a surface heater.
In heating the semiconductor wafer, an electrostatic adsorption device is used in a reduced-pressure atmosphere to fix the semiconductor wafer on the heater, and the material is changed from resin to ceramics as the temperature of the process increases ( Patent Documents 3 and 4: Refer to Japanese Patent Laid-Open Nos. 52-67353 and 59-124140.

また最近では、これらのセラミックス一体型ウエハ加熱装置と静電吸着装置を合体した静電吸着装置が提案されており、例えば、静電吸着装置の絶縁層にアルミナを用いたもの(非特許文献1:ニューセラミックス(7)、p49〜53、1994参照)、更にクリーニングガスの耐性を上げるために窒化アルミニウムを絶縁層に用いたものも開発されてきている。
この静電吸着装置において、上記非特許文献1に記載されているように、静電吸着力はこの絶縁層の体積抵抗率が低くなれば強くなるが、低過ぎるとリーク電流によるデバイスの破損が生じるため、静電吸着装置の絶縁層の体積抵抗値は108〜1018Ωcm、好ましくは109〜1013Ωcmであることが望ましい。
Recently, an electrostatic chucking device in which these ceramic integrated wafer heating device and electrostatic chucking device are combined has been proposed. For example, an insulating layer of an electrostatic chucking device uses alumina (Non-patent Document 1). : See New Ceramics (7), p. 49-53, 1994), and those using aluminum nitride as an insulating layer have also been developed to increase the resistance of the cleaning gas.
In this electrostatic adsorption apparatus, as described in Non-Patent Document 1, the electrostatic adsorption force increases as the volume resistivity of the insulating layer decreases, but if it is too low, damage to the device due to leakage current occurs. Therefore, it is desirable that the volume resistance value of the insulating layer of the electrostatic adsorption device is 10 8 to 10 18 Ωcm, preferably 10 9 to 10 13 Ωcm.

静電吸着装置の電圧が印加される電極の形状によって静電チャックは3種類に分類される。単一の内部電極をもつ単極型では被吸着物を接地する必要があり、それに対して一対の内部電極をもつ双極型や、一対の電極が櫛形に形成されている櫛形電極型では2つの電極各々に正負の電圧が印加されることから被吸着物であるウエハを接地する必要がなく、半導体用では後者のタイプが多く使われている。   The electrostatic chuck is classified into three types according to the shape of the electrode to which the voltage of the electrostatic adsorption device is applied. In the unipolar type having a single internal electrode, the object to be adsorbed must be grounded. On the other hand, in the bipolar type having a pair of internal electrodes and the comb electrode type having a pair of electrodes formed in a comb shape, Since positive and negative voltages are applied to each of the electrodes, it is not necessary to ground the wafer as an object to be adsorbed, and the latter type is often used for semiconductors.

近年、分子線エピタキシーやCVD、スパッタリング装置でセラミックス製の静電吸着装置が搭載されるようになってきたが、半導体デバイスの製造工程のなかには500℃を超えるような高温での使用要求も増えてきている。シリコンウエハ等の被吸着物が静電吸着装置に吸着されると、加熱されて熱膨張する。その際に被吸着物吸着面と静電吸着装置載置面が強く擦れるという現象が起きる。   In recent years, electrostatic adsorption devices made of ceramics have been mounted in molecular beam epitaxy, CVD, and sputtering devices, but the demand for use at high temperatures exceeding 500 ° C. has increased in the manufacturing process of semiconductor devices. ing. When an object to be adsorbed such as a silicon wafer is adsorbed by the electrostatic attraction apparatus, it is heated and thermally expanded. At that time, a phenomenon occurs in which the attracted object attracting surface and the electrostatic attracting device mounting surface are rubbed strongly.

シリコンウエハのビッカース硬度Hvはおよそ1100程度であるのに対し、セラミックス絶縁体層の材質となるアルミナ、窒化アルミニウムのビッカース硬度Hvは、それぞれ1500、1400である。このようなシリコンウエハよりも硬いアルミナ、窒化アルミニウムなどを絶縁体層に用いた静電吸着装置では、シリコンウエハを加熱・冷却する際にウエハ表面が絶縁体層によって削られてしまい、パーティクルを発生させ、更にウエハ吸着面にキズを発生させるという問題がある。   The Vickers hardness Hv of the silicon wafer is about 1100, whereas the Vickers hardness Hv of alumina and aluminum nitride used as the material of the ceramic insulator layer is 1500 and 1400, respectively. In an electrostatic chuck using alumina, aluminum nitride, etc., harder than a silicon wafer, as the insulator layer, the surface of the wafer is scraped by the insulator layer when the silicon wafer is heated or cooled, generating particles. Furthermore, there is a problem that scratches are generated on the wafer suction surface.

そこで、高温域で吸着しても被吸着物の吸着面にキズがつきにくい静電吸着装置が望まれていた。この課題を解決すべく、表面粗さがRa≦0.05μm、Rmax≦0.6μmであり、かつ前記絶縁体層の表面のビッカース硬度Hvが1000以下であることを特徴とする静電吸着機能を有する加熱装置が開発された(特許文献5:特開2005−72066号公報)。
しかし、被吸着物の吸着面にキズがつきにくくなったが、表面粗さがRa≦0.05μmと平滑なために密着性が向上し、パーティクル数が逆に増えてしまうという問題が発生した。
Therefore, there has been a demand for an electrostatic adsorption device that is difficult to damage the adsorption surface of an object to be adsorbed even if it is adsorbed in a high temperature range. In order to solve this problem, the surface roughness is Ra ≦ 0.05 μm, Rmax ≦ 0.6 μm, and the surface of the insulator layer has a Vickers hardness Hv of 1000 or less. Has been developed (Patent Document 5: Japanese Patent Laid-Open No. 2005-72066).
However, the adsorption surface of the object to be adsorbed became hard to be scratched, but the surface roughness was smooth as Ra ≦ 0.05 μm, so that the adhesion was improved and the number of particles was increased. .

特開平4−124076号公報JP-A-4-124076 特開昭63−241921号公報Japanese Unexamined Patent Publication No. 63-241922 特開昭52−67353号公報JP 52-67353 A 特開昭59−124140号公報JP 59-124140 A 特開2005−72066号公報JP 2005-72066 A ニューセラミックス(7)、p49〜53、1994、New ceramics (7), p49-53, 1994,

本発明は、上記事情に鑑みなされたもので、半導体ウエハやガラス基板等を静電吸着する際に、被加熱物の吸着面側にキズがつくことを防止し、また、発塵を抑え、耐摩耗性に優れた長寿命の静電吸着装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and when electrostatically adsorbing a semiconductor wafer, a glass substrate or the like, it prevents the adsorption surface side of the heated object from being scratched, and suppresses dust generation, It is an object of the present invention to provide a long-life electrostatic adsorption device having excellent wear resistance.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、半導体ウエハやガラス基板等の被吸着物を吸着するための静電吸着装置において、静電吸着用電極を覆うように形成され、被吸着物を吸着する絶縁層の動摩擦係数を0.3以下とし、表面に微小凹みを設けることにより、シリコンウエハ等の被吸着物を静電吸着装置載置面に静電吸着させて加熱・冷却を行う際に、ウエハ吸着面が静電吸着装置載置面の絶縁層と被吸着物との熱膨張による摩擦によりパーティクルが発生しにくいことを知見した。また、微小凹みを含む表面粗さRaを0.05μm以上0.30μm以下とし、加えて被吸着物と接する最表面部分の表面粗さRaを0.04μm以下とすることにより、格段にパーティクルの発生を抑えることができること、更に、ビッカース硬度Hvを50以上1000以下とすることにより、シリコンウエハ等の被吸着物を静電吸着装置載置面に静電吸着させて加熱・冷却を行う際に、ウエハ吸着面が静電吸着装置載置面の絶縁層と被吸着物との熱膨張による摩擦によりキズが発生するという問題を回避し得ることを知見し、本発明を完成させた。   As a result of intensive studies to achieve the above object, the inventors of the present invention have formed an electrostatic adsorption device for adsorbing an object to be adsorbed such as a semiconductor wafer or a glass substrate so as to cover the electrode for electrostatic adsorption. The dynamic friction coefficient of the insulating layer that adsorbs the object to be adsorbed is 0.3 or less, and the surface is provided with a micro-dent so that the object to be adsorbed such as a silicon wafer is electrostatically adsorbed to the surface of the electrostatic adsorption device. When heating / cooling, it was found that the wafer attracting surface hardly generates particles due to friction caused by thermal expansion between the insulating layer of the electrostatic attracting device mounting surface and the object to be attracted. In addition, by making the surface roughness Ra including minute dents 0.05 μm or more and 0.30 μm or less, and further by setting the surface roughness Ra of the outermost surface portion in contact with the object to be adsorbed to 0.04 μm or less, When heating and cooling are performed by electrostatically adsorbing an object to be adsorbed, such as a silicon wafer, on the surface of the electrostatic adsorption device by setting the Vickers hardness Hv to 50 or more and 1000 or less. The inventors have found that the wafer attracting surface can avoid the problem of scratches due to friction caused by thermal expansion between the insulating layer on the electrostatic attracting device mounting surface and the object to be attracted, thereby completing the present invention.

即ち、本発明によれば、半導体ウエハ、ガラス基板等の被吸着物を吸着するための静電吸着装置において、支持基板の一面に形成された静電吸着用電極を覆って上記被吸着物を吸着する吸着面をなす絶縁層が形成され、該絶縁層は、動摩擦係数が0.3以下であり、更に、絶縁層の表面に多数の微小凹みが形成されていることを特徴とする静電吸着装置が提供される(請求項1)。
また、前記静電吸着装置の微小凹みを含む表面の表面粗さRaが0.05μm以上0.30μm以下であり、かつ被吸着物と接する最表面部分の表面粗さRaが0.04μm以下であることを特徴とする静電吸着装置が提供される(請求項2)。
That is, according to the present invention, in an electrostatic adsorption device for adsorbing an object to be adsorbed such as a semiconductor wafer or a glass substrate, the object to be adsorbed is covered with an electrode for electrostatic adsorption formed on one surface of a support substrate. An insulating layer forming an adsorbing surface to be adsorbed is formed, the insulating layer has a dynamic friction coefficient of 0.3 or less, and a number of minute dents are formed on the surface of the insulating layer. An adsorption device is provided (claim 1).
Further, the surface roughness Ra of the surface including the micro dent of the electrostatic adsorption device is 0.05 μm or more and 0.30 μm or less, and the surface roughness Ra of the outermost surface portion in contact with the object to be adsorbed is 0.04 μm or less. There is provided an electrostatic adsorption device characterized in that (claim 2).

このものは絶縁層表面に微小凹みを有し、動摩擦係数を0.3以下とすることで被吸着物がキズつけられずにパーティクルの発生が大幅に低減した。更に、微小凹みを含む表面粗さRaを0.05μm以上0.30μm以下とすることにより、絶縁膜と被吸着物との密着性が改善されてパーティクルの発生が大幅に低減した。   This material has minute dents on the surface of the insulating layer, and by making the coefficient of dynamic friction 0.3 or less, the adsorbed material was not scratched and the generation of particles was greatly reduced. Furthermore, by setting the surface roughness Ra including the minute dents to 0.05 μm or more and 0.30 μm or less, the adhesion between the insulating film and the object to be adsorbed is improved, and the generation of particles is greatly reduced.

更に、上記絶縁膜で被吸着物と接する最表面部分を凹みを含まない表面粗さRaを0.04μm以下とすることにより、格段にパーティクルの発生を抑制することができた。   Further, the generation of particles can be remarkably suppressed by setting the surface roughness Ra, which does not include a dent, in the outermost surface portion in contact with the object to be adsorbed by the insulating film to 0.04 μm or less.

絶縁層表面の凹みを含む表面粗さRaが0.05μm未満の場合は、被吸着物と接する面積が多く、密着性が増してパーティクル数が増加してしまう。また、0.30μmを超えると、粗くなりすぎて逆にパーティクルが発生し易くなる。   When the surface roughness Ra including the depression on the surface of the insulating layer is less than 0.05 μm, the area in contact with the object to be adsorbed is large, the adhesion is increased, and the number of particles is increased. On the other hand, if it exceeds 0.30 μm, it becomes too coarse and particles are likely to be generated.

また、被吸着物と接する最表面部分の平滑さもパーティクル数の増減に影響を及ぼし、最表面部分の表面粗さRaを0.04μm以下とすることにより、パーティクルの発生を抑えることができる。粗くなりすぎると逆にパーティクルが発生し易くなる。   In addition, the smoothness of the outermost surface portion in contact with the object to be adsorbed also affects the increase or decrease of the number of particles, and the generation of particles can be suppressed by setting the surface roughness Ra of the outermost surface portion to 0.04 μm or less. On the other hand, if it becomes too coarse, particles are likely to be generated.

本発明の静電吸着装置は、絶縁層のビッカース硬度Hvが50以上1000以下であることが好ましい(請求項3)。   In the electrostatic adsorption device of the present invention, the insulating layer preferably has a Vickers hardness Hv of 50 or more and 1000 or less (claim 3).

前記絶縁層のビッカース硬度Hvが1000を超えると、静電吸着装置の載置面にはキズはつかないが、被吸着物の吸着面にキズが多発し、これが発塵源となり半導体デバイス不良が多発してしまうおそれが生じる。最悪の場合、デバイスが後工程にて熱処理される際に、熱応力を受けてキズを起点にしてウエハが割れてしまい、製造ラインを止めてしまうような大損害を与えるおそれがある。   When the Vickers hardness Hv of the insulating layer exceeds 1000, the mounting surface of the electrostatic chuck is not scratched, but scratches occur frequently on the chucking surface of the object to be adsorbed, which becomes a dust source and causes a semiconductor device failure. There is a risk of frequent occurrence. In the worst case, when the device is heat-treated in a subsequent process, the wafer is cracked starting from scratches due to thermal stress, and there is a risk of causing great damage such as stopping the production line.

前記絶縁層のビッカース硬度Hvが50未満の場合は、被吸着物の吸着面にはキズはつかないが、逆に、静電吸着装置側の吸着面にキズが多くついてしまい、ついには絶縁層が絶縁破壊を起こしてしまい、静電吸着装置が破壊してしまうおそれがある。また、静電吸着装置側の吸着面の擦れにより消耗が激しく、短寿命になってしまうおそれがある。更に擦れる際に発生するパーティクルによって半導体デバイス、又は液晶パネルの不良が多発するという問題が発生し易くなる。   When the Vickers hardness Hv of the insulating layer is less than 50, the attracting surface of the object to be adsorbed is not scratched, but conversely, the attracting surface on the electrostatic attracting device side is often scratched, and finally the insulating layer May cause dielectric breakdown and the electrostatic chuck may be destroyed. In addition, the wear on the suction surface on the electrostatic suction device side is extremely consumed, and there is a possibility that the service life may be shortened. Furthermore, the problem of frequent failures of the semiconductor device or the liquid crystal panel due to particles generated when rubbing easily occurs.

この静電吸着装置の絶縁層を熱分解窒化硼素とすることで、耐電圧性に優れ、絶縁層を薄くでき、強い吸着力が得られ、また、ビッカース硬度も100程度なので、ウエハに対し擦れによるキズをつけないという優位性が与えられる(請求項4)。   By using pyrolytic boron nitride as the insulating layer of this electrostatic adsorption device, it has excellent voltage resistance, the insulating layer can be made thin, a strong adsorption force is obtained, and the Vickers hardness is about 100, so it rubs against the wafer. The advantage of not scratching due to is given (claim 4).

また、更に上記絶縁層の熱分解窒化硼素に炭素、珪素、アルミニウム、イットリウム、チタンのうち少なくとも1種類の元素を0.01〜20質量%含ませることにより硬さを調整できる。0.01質量%未満であるとビッカース硬度Hvは50未満となってしまい、20質量%を超えるとビッカース硬度Hvは1000を超えてしまう(請求項5)。   Further, the hardness can be adjusted by adding 0.01 to 20% by mass of at least one element of carbon, silicon, aluminum, yttrium and titanium to the pyrolytic boron nitride of the insulating layer. If it is less than 0.01% by mass, the Vickers hardness Hv becomes less than 50, and if it exceeds 20% by mass, the Vickers hardness Hv exceeds 1000 (Claim 5).

この静電吸着装置は、加熱ヒーターを埋設することにより、600℃を超える温度までウエハを加熱できるので、半導体デバイス製造における高温プロセスに対応可能となる(請求項6)。   Since this electrostatic adsorption device can heat a wafer to a temperature exceeding 600 ° C. by embedding a heater, it can cope with a high temperature process in semiconductor device manufacturing.

なお、本発明の静電吸着装置の絶縁層は、化学気相蒸着法で形成するのがよい。このように、絶縁層を化学気相蒸着法で形成すれば、高純度、緻密質で、寸法精度に優れたものを作ることができ、耐熱性、化学的安定性に優れ、絶縁不良や剥離が極めて少なく、低発塵の静電吸着装置とすることができる。   Note that the insulating layer of the electrostatic adsorption device of the present invention is preferably formed by chemical vapor deposition. In this way, if the insulating layer is formed by chemical vapor deposition, it is possible to produce a high-purity, dense material with excellent dimensional accuracy, excellent heat resistance and chemical stability, poor insulation and peeling. Therefore, the electrostatic adsorption device can generate a low dust generation.

本発明によれば、ウエハ吸着面又は静電吸着装置載置面にキズがつくことを防止し、また、発塵を抑え、耐摩耗性に優れた長寿命の静電吸着装置を提供することができる。   According to the present invention, it is possible to provide a long-life electrostatic adsorption device that prevents the wafer adsorption surface or the electrostatic adsorption device mounting surface from being scratched, suppresses dust generation, and has excellent wear resistance. Can do.

本発明の静電吸着装置は、半導体ウエハやガラス基板等の被吸着物を吸着する吸着面を特定の絶縁層にて形成するものである。この場合、静電吸着装置としては、一例として、図1に示したような本発明の静電吸着機能を有するウエハの加熱装置を挙げることができるが、これに限定されるものではない。   The electrostatic adsorption device of the present invention forms an adsorption surface for adsorbing an object to be adsorbed, such as a semiconductor wafer or a glass substrate, with a specific insulating layer. In this case, as an example of the electrostatic adsorption apparatus, the wafer heating apparatus having the electrostatic adsorption function of the present invention as shown in FIG. 1 can be cited, but the electrostatic adsorption apparatus is not limited to this.

図1の静電吸着装置について更に詳述すると、1はこの静電吸着装置の静電吸着機能を有する加熱装置支持基材、2は支持基板、3a,3bは双極型静電吸着用電極、4は発熱層、5は絶縁層を示す。   1 will be described in more detail. 1 is a heating device supporting base material having an electrostatic adsorption function of the electrostatic adsorption device, 2 is a support substrate, 3a and 3b are bipolar electrostatic adsorption electrodes, Reference numeral 4 denotes a heat generating layer, and 5 denotes an insulating layer.

かかる静電吸着装置は、例えば、窒化硼素と窒化アルミニウムの混合焼結体からなる支持基板、該基板の一方の面に接合された熱分解グラファイトからなる発熱層、その上に設けられた熱分解窒化硼素からなる絶縁層、該基板の他方の面に接合された熱分解グラファイトからなる静電吸着用電極、その上に設けられた炭素、珪素、アルミニウム、イットリウム、チタンのいずれか1種類以上の元素を含んだ熱分解窒化硼素からなる絶縁層から構成されたものとされる。   Such an electrostatic adsorption device includes, for example, a support substrate made of a mixed sintered body of boron nitride and aluminum nitride, a heat generating layer made of pyrolytic graphite bonded to one surface of the substrate, and a pyrolysis provided thereon. An insulating layer made of boron nitride, an electrode for electrostatic adsorption made of pyrolytic graphite bonded to the other surface of the substrate, and one or more of carbon, silicon, aluminum, yttrium, and titanium provided thereon The insulating layer is made of pyrolytic boron nitride containing elements.

支持基板は、耐熱性があって絶縁性があればよく、例えば、窒化硼素と窒化アルミニウムの混合物を公知の方法で焼結させて得たものとすればよい。例えば、窒化硼素と窒化アルミニウムの混合割合は、窒化アルミニウムが多すぎると線膨張係数が大きすぎるという問題があり、少なすぎると線膨張係数が小さすぎる問題があるので、質量比で1:0.05〜1の範囲とすればよい(特開平8−227933号公報)。また、特許第3647064号公報のようなカーボンの周りに熱分解窒化硼素、酸化珪素、窒化アルミニウム、アルミナ及び窒化珪素から選択された材料を含む絶縁層が接合されたものでもよい。   The support substrate only needs to have heat resistance and insulation properties. For example, the support substrate may be obtained by sintering a mixture of boron nitride and aluminum nitride by a known method. For example, when the mixing ratio of boron nitride and aluminum nitride is too much aluminum nitride, there is a problem that the linear expansion coefficient is too large, and when it is too small, there is a problem that the linear expansion coefficient is too small. It may be in the range of 05 to 1 (Japanese Patent Laid-Open No. 8-227933). Further, an insulating layer containing a material selected from pyrolytic boron nitride, silicon oxide, aluminum nitride, alumina, and silicon nitride may be bonded around carbon as in Japanese Patent No. 3647064.

発熱層及び静電吸着用電極の熱分解グラファイトは、例えばメタンガスを2200℃、5Torrという条件下で熱分解することによって得られたものとすればよい。厚さは薄すぎると強度不足の問題があり、厚すぎると剥離の問題があるので、10〜300μmとすればよい。   The pyrolytic graphite of the heat generating layer and the electrostatic adsorption electrode may be obtained by pyrolyzing methane gas under conditions of 2200 ° C. and 5 Torr, for example. If the thickness is too thin, there is a problem of insufficient strength, and if it is too thick, there is a problem of peeling, so it may be 10 to 300 μm.

本発明において、絶縁層は、動摩擦係数が0.3以下、好ましくは0.01〜0.025、更に好ましくは0.01〜0.02であり、表面に多数の微小凹みを有するように形成される。この場合、このような微小凹みは、絶縁層をサンドブラスト処理することにより形成することができ、またサンドブラスト処理後、必要により形成されたサンドブラスト面の微小凹みをなくさないようにラッピング研摩することにより、上記動摩擦係数を有する絶縁層を形成することができる。また、サンドブラスト処理に用いる砥粒の種類、粒度、サンドブラスト処理条件等を選定し、更にはラッピング研摩条件等を選定することにより、微小凹みを含む表面粗さRaを0.05〜0.30μm、より好ましくは0.05〜0.25μm、更には0.05〜0.20μmに形成することが好ましい。
また、サンドブラストの代わりに固定砥粒と遊離砥粒で表面を研摩することでも同様な微小凹みを形成することができる。
In the present invention, the insulating layer has a dynamic friction coefficient of 0.3 or less, preferably 0.01 to 0.025, more preferably 0.01 to 0.02, and is formed so as to have a large number of micro-dents on the surface. Is done. In this case, such a micro dent can be formed by sand blasting the insulating layer, and after the sand blasting, lapping polishing is performed so as not to eliminate the micro dent on the sand blast surface formed as necessary. An insulating layer having the above dynamic friction coefficient can be formed. In addition, by selecting the type of abrasive grains used for the sandblasting treatment, the particle size, the sandblasting treatment conditions, and the like, and further by selecting the lapping polishing conditions etc., the surface roughness Ra including the micro dents is 0.05 to 0.30 μm, More preferably, it is 0.05 to 0.25 μm, and more preferably 0.05 to 0.20 μm.
Also, the same micro-dent can be formed by polishing the surface with fixed abrasive grains and loose abrasive grains instead of sand blasting.

更に、かかるラッピング研摩により、被吸着物と接する最表面部分の表面粗さRaを0.04μm以下、より好ましくは0.005〜0.04μm、更には0.01〜0.04μmとすることが好ましい。なお、図2は、絶縁層全体の表面粗さ(Ra)1と、被吸着物(ウエハ)と接する最表面部分の表面粗さ(Ra)2を示す説明図である。   Furthermore, by such lapping polishing, the surface roughness Ra of the outermost surface portion in contact with the object to be adsorbed is set to 0.04 μm or less, more preferably 0.005 to 0.04 μm, and further 0.01 to 0.04 μm. preferable. FIG. 2 is an explanatory diagram showing the surface roughness (Ra) 1 of the entire insulating layer and the surface roughness (Ra) 2 of the outermost surface portion in contact with the object to be adsorbed (wafer).

本発明の絶縁層は、ビッカース硬度Hvが50〜1000、より好ましくは50〜800、更には50〜500であることが好ましい。この場合、珪素のビッカース硬度Hvが1100であり、このため絶縁層を珪素より柔らかいビッカース硬度Hv1000以下の熱分解窒化硼素、あるいは炭素、珪素、アルミニウム、イットリウム、チタンのいずれか1種類以上の元素を0.01〜20質量%含んだ熱分解窒化硼素にて形成することが好ましいものであるが、これは静電吸着用電極の上に化学気相蒸着法で形成すればよく、これによればこの絶縁層の厚さを容易に調整することができる。この絶縁層の厚さは薄すぎると強度不足の問題があり、厚すぎると静電吸着力の低下の問題があるので、20〜300μmとすることが好ましい。   The insulating layer of the present invention preferably has a Vickers hardness Hv of 50 to 1000, more preferably 50 to 800, and even more preferably 50 to 500. In this case, the Vickers hardness Hv of silicon is 1100. Therefore, the insulating layer is made of pyrolytic boron nitride having a Vickers hardness Hv of 1000 or less, which is softer than silicon, or one or more elements of carbon, silicon, aluminum, yttrium, and titanium. It is preferable to form by pyrolytic boron nitride containing 0.01 to 20% by mass, but this may be formed by chemical vapor deposition on the electrode for electrostatic adsorption. The thickness of this insulating layer can be easily adjusted. If the thickness of this insulating layer is too thin, there is a problem of insufficient strength, and if it is too thick, there is a problem of a decrease in electrostatic attraction force.

例えば、炭素と珪素を含む熱分解窒化硼素絶縁層は、例えば基材を真空中にセットして例えば2,000℃に加熱し、三塩化硼素とアンモニアとメタンと四塩化珪素を容量比8:1:1:1の混合気体として導入し、5Torrという条件下で熱分解することによって得られる。厚さは薄すぎると絶縁破壊の問題があり、厚すぎると静電吸着力の低下の問題があるので、50〜300μmとすればよい。   For example, in the pyrolytic boron nitride insulating layer containing carbon and silicon, for example, the base material is set in a vacuum and heated to, for example, 2,000 ° C., and boron trichloride, ammonia, methane, and silicon tetrachloride are in a capacity ratio of 8: It is obtained by introducing as a 1: 1: 1 gas mixture and thermally decomposing under the condition of 5 Torr. If the thickness is too thin, there is a problem of dielectric breakdown, and if it is too thick, there is a problem of reduction in electrostatic attraction force, so it may be 50 to 300 μm.

以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
なお、本発明で摩擦摩耗試験は新東科学(株)の加重変動型摩擦摩耗試験機HHS2000、表面粗さ測定はキーエンス超深度形状測定顕微鏡VK−8550、ビッカース硬度Hv測定機は明石製作所HV−114を使用した。
動摩擦係数測定で用いた圧子はアルミナ鏡面体で、摺動速度は2mm/sec、加重は180〜200gとして測定を行い、その平均の値を本発明での動摩擦係数とした。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to these.
In the present invention, the friction wear test is a weighted variable friction wear tester HHS2000 from Shinto Kagaku Co., Ltd., the surface roughness measurement is a Keyence ultra-deep shape measurement microscope VK-8550, and the Vickers hardness Hv measurement machine is an Akashi Seisakusho HV- 114 was used.
The indenter used in the measurement of the dynamic friction coefficient was an alumina mirror body, the sliding speed was 2 mm / sec, the load was 180 to 200 g, and the average value was used as the dynamic friction coefficient in the present invention.

[実施例1、比較例1]
直径200mm、厚さ10mmのカーボン基材の全面をアンモニアと三塩化硼素を混合比(容量比)8:1で2,000℃にて反応させて熱分解窒化硼素を堆積させて、0.5mm厚でコーティングした円板状支持基材を作製した。
次いで、この上でメタンガスを2,200℃、5Torrの条件下で熱分解して、この円板状支持基材上に厚さ100μmの熱分解グラファイト層を形成し、表面の熱分解グラファイト層より電極パターンを、また裏面の熱分解グラファイト層よりヒーターパターンを加工して、それぞれ静電吸着用電極と発熱層とした。
更に、この両面にアンモニアと三塩化硼素の混合比(容量比)を1:1として圧力5Torrで反応させて、反応温度を1,900℃として、厚さ200μmの熱分解窒化硼素絶縁層を設け、静電吸着装置を作製した。この条件で作製された膜のビッカース硬度Hvは100であった。その表面にサンドブラストにて微小凹みを設けて、更に微小凹みを残しながらウエハと接する最表面をラッピング研摩して、微小凹みを含む表面を有する動摩擦係数が0.05〜0.5、凹みを含む表面の表面粗さRaが0.01〜0.50μm、更にウエハと接する最表面の表面粗さRaが0.01〜0.1μmである特性を有する種々の静電吸着装置と、一方、比較として全く微小凹みの無い表面仕上げをした動摩擦係数が0.1で、表面粗さRaが0.01μmの静電吸着装置を作製した。
[Example 1, Comparative Example 1]
The entire surface of a carbon substrate having a diameter of 200 mm and a thickness of 10 mm was reacted with ammonia and boron trichloride at a mixing ratio (volume ratio) of 8: 1 at 2,000 ° C. to deposit pyrolytic boron nitride, and 0.5 mm A disc-shaped support substrate coated with a thickness was prepared.
Next, methane gas is pyrolyzed on this at 2200 ° C. and 5 Torr to form a pyrolytic graphite layer having a thickness of 100 μm on the disk-shaped support base. From the pyrolytic graphite layer on the surface, The electrode pattern and the heater pattern were processed from the pyrolytic graphite layer on the back side to form an electrostatic adsorption electrode and a heating layer, respectively.
Furthermore, a pyrolytic boron nitride insulating layer having a thickness of 200 μm is provided on both surfaces by reacting at a pressure of 5 Torr with a mixing ratio (capacity ratio) of ammonia and boron trichloride of 1: 1 and a reaction temperature of 1,900 ° C. An electrostatic adsorption device was produced. The film prepared under these conditions had a Vickers hardness Hv of 100. A fine dent is provided on the surface by sand blasting, and the outermost surface in contact with the wafer is lapped and polished while leaving the fine dent, and the dynamic friction coefficient having the surface including the fine dent is 0.05 to 0.5, including the dent. On the other hand, various electrostatic adsorption devices having the characteristics that the surface roughness Ra of the surface is 0.01 to 0.50 μm and the surface roughness Ra of the outermost surface in contact with the wafer is 0.01 to 0.1 μm. As a result, an electrostatic adsorption device having a surface finish with no micro-dents and a dynamic friction coefficient of 0.1 and a surface roughness Ra of 0.01 μm was produced.

このように作製した静電吸着装置を600℃まで加熱して、そこにウエハを搬送して静電吸着装置の上に載せ、載せてから10秒後に静電吸着用電極に±300Vの電圧を印加してウエハを静電吸着してウエハを加熱した。3分後に印加電圧をOFFにし、リフトピンを上げることによってウエハを脱離させた。十分に冷却した後に、そのウエハの吸着面のキズ、付着したパーティクルの数をウエハ欠陥検査レビュー装置MAGICS M350にて測定した。
その結果、表面に微小凹みを有し、動摩擦係数が0.3以下、微小凹みを含む表面の表面粗さRaが0.05〜0.30μmのものは、ウエハ吸着面及び静電吸着装置の載置面にはキズ、凹みは肉眼ではほとんど確認されず、0.2μm以上のパーティクル総数はいずれも8インチウエハあたり10,000個以下と良好であった。動摩擦係数が0.3を超え、微小凹みを含む表面の表面粗さRaが0.05〜0.30μmのものは、静電吸着装置の載置面にキズが確認され、0.2μm以上のパーティクル総数はいずれも8インチウエハあたり20,000個と増加してしまった。
一方、表面に凹みを無くして仕上げたものでは、静電吸着装置の載置面にはキズが確認され、パーティクル総数も50,000個と更に増加してしまった。
The electrostatic chuck produced in this way is heated to 600 ° C., a wafer is transferred to the electrostatic chuck and placed on the electrostatic chuck, and a voltage of ± 300 V is applied to the electrostatic chucking electrode 10 seconds after the wafer is placed. The wafer was heated by applying electrostatic force to the wafer. After 3 minutes, the applied voltage was turned off, and the wafer was detached by raising the lift pins. After sufficiently cooling, the scratch on the suction surface of the wafer and the number of adhering particles were measured with a wafer defect inspection / review apparatus MAGICS M350.
As a result, when the surface has a micro dent, the coefficient of dynamic friction is 0.3 or less, and the surface roughness Ra of the surface including the micro dent is 0.05 to 0.30 μm, Scratches and dents were hardly confirmed on the mounting surface with the naked eye, and the total number of particles having a size of 0.2 μm or more was as good as 10,000 or less per 8 inch wafer. When the coefficient of dynamic friction exceeds 0.3 and the surface roughness Ra of the surface including minute dents is 0.05 to 0.30 μm, scratches are confirmed on the mounting surface of the electrostatic adsorption device, and the surface roughness Ra is 0.2 μm or more. The total number of particles increased to 20,000 per 8 inch wafer.
On the other hand, when the surface was finished with no dents, scratches were confirmed on the mounting surface of the electrostatic chuck, and the total number of particles further increased to 50,000.

[実施例2]
実施例1と同様に熱分解窒化硼素絶縁層を設けた静電吸着装置を作製し、その表面にサンドブラストにて微小凹みを設けて、更に微小凹みを残しながらウエハと接する最表面のみをラッピング研摩して、微小凹みを含む表面の表面粗さRaを0.05〜0.30μmとし、かつウエハと接する最表面の表面粗さRaを0.01〜0.04μmに仕上げて、被吸着物を吸着する絶縁層の動摩擦係数が0.3以下の特性を有する種々の静電吸着装置を作製した。
[Example 2]
As in Example 1, an electrostatic adsorption device provided with a pyrolytic boron nitride insulating layer was prepared, and a micro dent was provided on the surface thereof by sandblasting, and only the outermost surface contacting the wafer was left while lapping and polishing. Then, the surface roughness Ra of the surface including the minute dent is set to 0.05 to 0.30 μm, and the surface roughness Ra of the outermost surface in contact with the wafer is finished to 0.01 to 0.04 μm. Various electrostatic adsorption devices having the characteristic that the dynamic friction coefficient of the insulating layer to be adsorbed is 0.3 or less were prepared.

実施例1と同様にパーティクル測定を行ったところ、表面に微小凹みを有し、微小凹みを含む表面の表面粗さRaが0.05μm以上0.30μm以下で、かつ被吸着物と接する最表面の表面粗さRaを0.04μm以下としたものはウエハ吸着面及び静電吸着装置の載置面にはキズ、凹みは肉眼ではほとんど確認されず、0.2μm以上のパーティクル総数はいずれも8インチウエハあたり10,000個以下と良好であった。   When the particle measurement was performed in the same manner as in Example 1, the surface had a micro-dent, the surface roughness Ra of the surface including the micro-dent was 0.05 μm or more and 0.30 μm or less, and the outermost surface in contact with the object to be adsorbed When the surface roughness Ra is 0.04 μm or less, scratches and dents are hardly confirmed with the naked eye on the wafer attracting surface and the mounting surface of the electrostatic attracting device, and the total number of particles of 0.2 μm or more is 8 It was good at 10,000 or less per inch wafer.

[実施例3]
実施例1と同様に支持基材、静電吸着用電極と発熱層を設け、この両面にアンモニアと三塩化硼素とメタンと四塩化珪素の混合比(容量比)を8:1:1:1として圧力5Torrで反応させて、反応温度を1,600℃、1,700℃、1,800℃、1,900℃、2,000℃と条件を変えて、厚さ200μmの炭素と珪素を含有した熱分解窒化硼素絶縁層を設け、静電吸着装置を作製した。この条件で作製された膜には炭素0.01〜5質量%、珪素0.01〜15質量%が含有され、ビッカース硬度Hvは50〜1000の範囲であった。その表面に微小凹みを設けて、実施例2と同様に微小凹みを含む表面の表面粗さRaを0.05μm以上0.30μm以下に、ウエハと接する最表面の表面粗さRaを0.04μm以下に仕上げて、被吸着物を吸着する絶縁層の動摩擦係数が0.3以下の特性を有する種々の静電吸着装置を作製した。
その結果、ビッカース硬度Hvが50以上1000以下であるものは、ウエハ吸着面及び静電吸着装置の載置面にはキズ、凹みは肉眼ではほとんど確認されず、0.2μm以上のパーティクル総数はいずれも8インチウエハあたり10,000個以下と良好であった。
[Example 3]
In the same manner as in Example 1, a support base, an electrostatic adsorption electrode, and a heat generation layer were provided, and the mixing ratio (capacity ratio) of ammonia, boron trichloride, methane, and silicon tetrachloride was 8: 1: 1: 1 on both sides. The reaction temperature is 1,600 ° C., 1,700 ° C., 1,800 ° C., 1,900 ° C., 2,000 ° C., and the conditions are changed, and carbon and silicon with a thickness of 200 μm are contained. The pyrolytic boron nitride insulating layer was provided to produce an electrostatic adsorption device. The film produced under these conditions contained 0.01 to 5% by mass of carbon and 0.01 to 15% by mass of silicon, and the Vickers hardness Hv was in the range of 50 to 1000. A micro-dent is provided on the surface, the surface roughness Ra of the surface including the micro-dent is 0.05 μm or more and 0.30 μm or less, and the surface roughness Ra of the outermost surface in contact with the wafer is 0.04 μm as in Example 2. Finished as follows, various electrostatic adsorption devices having a characteristic that the coefficient of dynamic friction of the insulating layer that adsorbs the object to be adsorbed is 0.3 or less were produced.
As a result, when the Vickers hardness Hv is 50 or more and 1000 or less, scratches and dents are hardly confirmed with the naked eye on the wafer attracting surface and the mounting surface of the electrostatic attracting device, and the total number of particles of 0.2 μm or more Was as good as 10,000 or less per 8 inch wafer.

ビッカース硬度Hvが50以上1000以下の膜は炭素を0.1〜20質量%、珪素を0.1〜20質量%含有していた。また、炭素、珪素の他にアルミニウム、イットリウム、チタンのうち少なくとも1種類の元素が熱分解窒化硼素に含ませることにより同様の結果が得られた。   A film having a Vickers hardness Hv of 50 or more and 1000 or less contained 0.1 to 20% by mass of carbon and 0.1 to 20% by mass of silicon. Similar results were obtained by including pyrolytic boron nitride containing at least one element of aluminum, yttrium, and titanium in addition to carbon and silicon.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同
一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

本発明に係る静電吸着装置の一例を示す断面図である。It is sectional drawing which shows an example of the electrostatic attraction apparatus which concerns on this invention. 本発明の絶縁層における微小凹みを含む表面の表面粗さと被吸着物と接する最表面部分の表面粗さを説明する顕微鏡写真(A)と、微小凹みを含む表面の表面粗さを示すチャート(B)及び被吸着物と接する最表面部分の表面粗さを示すチャート(C)である。The micrograph (A) explaining the surface roughness of the surface including the minute dent in the insulating layer of the present invention and the surface roughness of the outermost surface portion in contact with the adsorbent, and the chart showing the surface roughness of the surface including the minute dent ( It is a chart (C) which shows the surface roughness of the outermost surface part which contacts B) and a to-be-adsorbed object.

符号の説明Explanation of symbols

1 静電吸着機能を有する加熱装置支持基材
2 支持基板
3a,3b 双極型静電吸着用電極
4 発熱層
5 絶縁層
DESCRIPTION OF SYMBOLS 1 Heating device support base material which has an electrostatic adsorption function 2 Support substrate 3a, 3b Bipolar type electrode for electrostatic adsorption 4 Heat generating layer 5 Insulating layer

Claims (6)

半導体ウエハ、ガラス基板等の被吸着物を吸着するための静電吸着装置において、支持基板の一面に形成された静電吸着用電極を覆って上記被吸着物を吸着する吸着面をなす絶縁層が形成され、該絶縁層は、動摩擦係数が0.3以下であり、更に、絶縁層の表面に多数の微小凹みが形成されていることを特徴とする静電吸着装置。   In an electrostatic adsorption apparatus for adsorbing an object to be adsorbed such as a semiconductor wafer or a glass substrate, an insulating layer that forms an adsorbing surface that covers the electrode for electrostatic adsorption formed on one surface of the support substrate and adsorbs the object to be adsorbed The electrostatic attraction apparatus is characterized in that the insulating layer has a dynamic friction coefficient of 0.3 or less, and a plurality of minute recesses are formed on the surface of the insulating layer. 前記静電吸着装置の微小凹みを含む表面の表面粗さRaが0.05μm以上0.30μm以下であり、かつ被吸着物と接する最表面部分の表面粗さRaが0.04μm以下であることを特徴とする請求項1に記載の静電吸着装置。   The surface roughness Ra of the surface including the micro-dents of the electrostatic adsorption device is 0.05 μm or more and 0.30 μm or less, and the surface roughness Ra of the outermost surface portion in contact with the object to be adsorbed is 0.04 μm or less. The electrostatic attraction apparatus according to claim 1. 前記絶縁層のビッカース硬度Hvが50以上1000以下であることを特徴とする請求項1又は2に記載の静電吸着装置。   The electrostatic adsorption device according to claim 1, wherein the insulating layer has a Vickers hardness Hv of 50 or more and 1000 or less. 前記絶縁層が熱分解窒化硼素であることを特徴とする請求項1乃至3のいずれか1項に記載の静電吸着装置。   The electrostatic attraction apparatus according to any one of claims 1 to 3, wherein the insulating layer is pyrolytic boron nitride. 前記絶縁層が熱分解窒化硼素であり、更に炭素、珪素、アルミニウム、イットリウム、チタンのうち少なくとも1種類の元素が0.01質量%以上20質量%以下含まれることを特徴とする請求項1乃至4のいずれか1項に記載の静電吸着装置。   The insulating layer is pyrolytic boron nitride, and further contains at least one element of carbon, silicon, aluminum, yttrium, and titanium in an amount of 0.01% by mass to 20% by mass. The electrostatic attraction apparatus according to any one of 4. 前記静電吸着装置に加熱ヒーターを埋設し、600℃以上の高温までウエハを吸着加熱できるようにしたことを特徴とする請求項1乃至5のいずれか1項に記載の静電吸着装置。   6. The electrostatic adsorption apparatus according to claim 1, wherein a heater is embedded in the electrostatic adsorption apparatus so that the wafer can be adsorbed and heated to a high temperature of 600 ° C. or higher.
JP2007002138A 2007-01-10 2007-01-10 Electrostatic chuck Pending JP2010097961A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007002138A JP2010097961A (en) 2007-01-10 2007-01-10 Electrostatic chuck
PCT/JP2008/050018 WO2008084770A1 (en) 2007-01-10 2008-01-07 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007002138A JP2010097961A (en) 2007-01-10 2007-01-10 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JP2010097961A true JP2010097961A (en) 2010-04-30

Family

ID=39608659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007002138A Pending JP2010097961A (en) 2007-01-10 2007-01-10 Electrostatic chuck

Country Status (2)

Country Link
JP (1) JP2010097961A (en)
WO (1) WO2008084770A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521344A (en) * 2015-07-02 2018-08-02 エーエスエムエル ネザーランズ ビー.ブイ. Substrate holder, lithographic apparatus, and device manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767719B2 (en) * 1997-10-30 2006-04-19 信越化学工業株式会社 Electrostatic chuck
JP2004014603A (en) * 2002-06-04 2004-01-15 Ngk Spark Plug Co Ltd Suction chuck
JP2004356350A (en) * 2003-05-28 2004-12-16 Kyocera Corp Electrostatic chuck
JP4309714B2 (en) * 2003-08-27 2009-08-05 信越化学工業株式会社 Heating device with electrostatic adsorption function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521344A (en) * 2015-07-02 2018-08-02 エーエスエムエル ネザーランズ ビー.ブイ. Substrate holder, lithographic apparatus, and device manufacturing method
US10453734B2 (en) 2015-07-02 2019-10-22 Asml Netherlands B.V. Substrate holder, a lithographic apparatus and method of manufacturing devices
JP2020129131A (en) * 2015-07-02 2020-08-27 エーエスエムエル ネザーランズ ビー.ブイ. Substrate holder, lithographic apparatus and method of manufacturing devices
JP7068378B2 (en) 2015-07-02 2022-05-16 エーエスエムエル ネザーランズ ビー.ブイ. Board holder, lithography equipment and device manufacturing method

Also Published As

Publication number Publication date
WO2008084770A1 (en) 2008-07-17

Similar Documents

Publication Publication Date Title
US10395963B2 (en) Electrostatic chuck
JP4417197B2 (en) Susceptor device
JP4739039B2 (en) Electrostatic chuck device
JP2008091353A (en) Electrostatic chuck
WO2012020831A1 (en) Electrostatic chuck
JP2020035905A (en) Electrostatic chuck device and manufacturing method therefor
JP2001351966A (en) Suscepter and method for manufacturing the suscepter
JP7001165B2 (en) Manufacturing method of electrostatic chuck device and electrostatic chuck device
JP2007201068A (en) Electrostatic chuck
KR100450475B1 (en) Electrostatic chucks and process for producing the same
JP4309714B2 (en) Heating device with electrostatic adsorption function
JP2007317820A (en) Electrostatic chucking device
JP2008300374A (en) Electrostatic suction apparatus
JP2008177339A (en) Electrostatic chuck
JP2010097961A (en) Electrostatic chuck
KR20050054950A (en) Electrostatic chuck having a low level of particle generation and method of fabricating same
JPH09237824A (en) Article holder
JP2008159900A (en) Ceramic heater with electrostatic chuck
JP2007299867A (en) Electrostatic chuck and its manufacturing method
JP6702526B1 (en) Electrostatic chuck device
WO2020170514A1 (en) Electrostatic chuck device
JP4676589B2 (en) Vacuum tweezers
JP4255019B2 (en) Material for heat treatment
KR20040105276A (en) Hot plate for semiconductor manufacturing apparatus
KR20130123268A (en) Chuck spacing mask for reducing contacting area to wafer and manufacturing method thereof