JP2010090192A - Anisotropically electroconductive resin film and method for manufacturing the same - Google Patents

Anisotropically electroconductive resin film and method for manufacturing the same Download PDF

Info

Publication number
JP2010090192A
JP2010090192A JP2008258644A JP2008258644A JP2010090192A JP 2010090192 A JP2010090192 A JP 2010090192A JP 2008258644 A JP2008258644 A JP 2008258644A JP 2008258644 A JP2008258644 A JP 2008258644A JP 2010090192 A JP2010090192 A JP 2010090192A
Authority
JP
Japan
Prior art keywords
film
resin
conductive particles
resin film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008258644A
Other languages
Japanese (ja)
Other versions
JP5339841B2 (en
Inventor
Koichi Kusakawa
公一 草川
Kazuhiko Motoi
和彦 許斐
Toru Shiraishi
透 白石
Motoaki Uchida
元昭 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2008258644A priority Critical patent/JP5339841B2/en
Publication of JP2010090192A publication Critical patent/JP2010090192A/en
Application granted granted Critical
Publication of JP5339841B2 publication Critical patent/JP5339841B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anisotropically electroconductive resin film which is capable of being made conductive not by adhering and connecting a resin film by means of heating but only by contacting the resin film at a very low pressure, not by connecting with bonding a resin film by means of heat. <P>SOLUTION: This anisotropically electroconductive film is such that a resin is blended with electroconductive particles in an amount of 0.2-10 vol% and is extruded or rolled to monodisperse the electroconductive particles, thus froming a resin film in which the electroconductive particles are not in contact with each pther in the plane direction, and the thickness of the film is larger than the diameter in the thickness direction of the electroconductive particle. Then, the front and rear surfaces of electroconductive particles whose diameter in the thickness direction thereof is larger than the thickness of the film resin part and which are exposed from the front and rear surfaces of the film are ground so as to be flattened. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、異方導電性樹脂フィルム及びその製造方法に関するものである。更に詳しくは、薄い樹脂フィルムの厚さ方向には導電性を有するが、樹脂フィルムの幅や長さ方向には導電性を有しない性質を備えた異方導電性樹脂フィルムに関するものである。   The present invention relates to an anisotropic conductive resin film and a method for producing the same. More specifically, the present invention relates to an anisotropic conductive resin film having the property of having conductivity in the thickness direction of a thin resin film but not having conductivity in the width or length direction of the resin film.

異方導電性樹脂フィルムは、液晶ディスプレーをはじめとしたフラットディスプレーの基板とこれに画像信号を送るドライバICとを接続する用途など、具体的には以下のように利用されている。   The anisotropic conductive resin film is used in the following manner, such as for connecting a flat display substrate such as a liquid crystal display and a driver IC for sending an image signal thereto.

特許文献1には、導電性粉末が樹脂シート中に単一分散され、かつ導電性粉末の両端がシートの両端から露出し、且つシート厚さ方向中央部に外向きに膨出している異方導電シートが開示され、また、特許文献2には、フッ素樹脂に導電材を均一に分散しシート状に成形後、シート両面をスパッタエッチングして導電材の両端を露出させる方法が開示されている。これらの技術においては、圧延により金属粒子をつぶすことが示唆されている。更に、導電性粉末の両端又は両端部を露出させるために、シート表面を有機溶剤で溶出する方法、または、スパッタエッチングあるいはイオンプレーティングで洗浄する方法を用いることが記載されている。   Patent Document 1 discloses an anisotropic material in which conductive powder is monodispersed in a resin sheet, both ends of the conductive powder are exposed from both ends of the sheet, and bulge outward in the center in the sheet thickness direction. A conductive sheet is disclosed, and Patent Document 2 discloses a method in which a conductive material is uniformly dispersed in a fluororesin and formed into a sheet shape, and then both sides of the conductive material are exposed by sputter etching on both sides of the sheet. . In these techniques, it is suggested that metal particles are crushed by rolling. Furthermore, in order to expose both ends or both end portions of the conductive powder, it is described that a method of eluting the sheet surface with an organic solvent or a method of cleaning by sputter etching or ion plating is used.

しかしながら、延伸による方法では導電性粉末の表面の樹脂を十分除去させることは不可能であり、更に有機溶剤による洗浄ではオレフィン系樹脂やポリエステル樹脂などの耐溶剤性の優れた樹脂を溶解することができる溶剤は存在しないといった問題を有していた。また、スパッタエッチングあるいはイオンプレーティングによる方法は、超真空下でアルゴンイオンなどを用いるエッチング方法で、そのエッチング深さはオングストロームのオーダーであり、ミクロンオーダーのエッチングを用いることは経済的ではない。   However, it is impossible to sufficiently remove the resin on the surface of the conductive powder by the stretching method, and further cleaning with an organic solvent can dissolve a resin having excellent solvent resistance such as an olefin resin or a polyester resin. There was a problem that no solvent was available. The sputter etching or ion plating method is an etching method using argon ions or the like under ultra-vacuum, and the etching depth is on the order of angstroms, and it is not economical to use micron order etching.

また、特許文献3には、樹脂シートヘ金属材料を埋め込み、表裏に金属材料の一部を露出させた異方導電シート及びそれを用いた電子部品の接続が開示されている。しかしながら、樹脂シートに金属を埋め込むには十分樹脂を軟化させるないと金属と樹脂の接着が不十分となり、更に金属のサイズが小さい場合には大面積に一定の押し圧をかける必要もあり工程的には無理があった。   Patent Document 3 discloses an anisotropic conductive sheet in which a metal material is embedded in a resin sheet and a part of the metal material is exposed on the front and back sides, and connection of an electronic component using the anisotropic conductive sheet. However, if the resin is not sufficiently softened to embed the metal in the resin sheet, the adhesion between the metal and the resin will be insufficient, and if the size of the metal is small, it is necessary to apply a constant pressing pressure to a large area. Was impossible.

さらに、特許文献4には、樹脂フィルムに貫通孔を設け、表面に導電膜が形成された変形可能な球体を、フィルム両面から突出した状態で貫通孔に配置し、各接点を絶縁樹脂で充填した電気接続用コネクタが開示されている。しかしながら、フィルムに100μm以下の穴を多数設けること及びその穴に球体を配置することは極めて生産性の悪い工程であり、更に液状の絶縁樹脂を注入する作業も煩雑で、さらにはフィルムとの接着性も必要があり使える材料に制限が出てくるなどといった欠点の多い技術であった。   Furthermore, in Patent Document 4, through-holes are provided in a resin film, deformable spheres having a conductive film formed on the surface are arranged in the through-holes in a state protruding from both sides of the film, and each contact is filled with an insulating resin. A connector for electrical connection is disclosed. However, providing a large number of holes of 100 μm or less in the film and arranging spheres in the holes is a process with extremely low productivity, and the operation of injecting a liquid insulating resin is also complicated, and further, adhesion to the film It was a technology with many drawbacks, such as the necessity of its properties and limitations on usable materials.

また、特許文献5には、導電性粒子を粘着材面に粘着固定し、該粘着材と非相溶なフィルム形成樹脂を導電性粒子間に充填し、該フィルム形成樹脂を乾燥又は硬化後、フィルム形成樹脂から粘着材を剥離する異方導電性樹脂フィルム状成形物の製造法が開示されている。しかしながら、この技術では、粘着材に予め導電性粒子を固定することや、液状のフィルム形成樹脂をそこに充填する、硬化後粘着材を剥離するなど工程が煩雑である。また、実施例ではフィルム形成樹脂としてポリイミドをアルカリ水溶液で溶解させているが、この方法では使用できる樹脂に限りがあり、更に溶かしだす樹脂厚さもきわめて薄いものに限られるといった問題があった。   Further, in Patent Document 5, conductive particles are adhesively fixed to the adhesive material surface, a film-forming resin incompatible with the adhesive material is filled between the conductive particles, and the film-forming resin is dried or cured, A method for producing an anisotropic conductive resin film-like molded article that peels an adhesive material from a film-forming resin is disclosed. However, in this technique, steps such as fixing conductive particles to the adhesive material in advance, filling a liquid film-forming resin therein, and peeling the adhesive material after curing are complicated. In the examples, polyimide is dissolved in an alkaline aqueous solution as a film-forming resin. However, this method has a problem that the resin that can be used is limited, and the resin thickness to be dissolved is limited to a very thin one.

以上のように、従来の異方導電性フィルムは、接着フィルムであるため使用される樹脂はエポキシ樹脂、フェノール樹脂、硬化性アクリル樹脂などの接着性の良い樹脂が用いられ、これらの樹脂の中に導電粒子を配合し、フィルム化するものであった。また、使用に当り電気接続部を加熱して樹脂を溶融硬化させて接着するものであるから、異方導電性フィルム自体はフィルム表裏面で電気抵抗は低くないのが一般的であった。   As described above, since the conventional anisotropic conductive film is an adhesive film, the resin used is an adhesive resin such as an epoxy resin, a phenol resin, or a curable acrylic resin. The conductive particles were blended to form a film. In addition, since the electrical connection part is heated and bonded by melting and curing the resin in use, the anisotropic conductive film itself is generally not low in electrical resistance on the front and back surfaces of the film.

特開昭61−1888189号公報JP-A-61-188189 特開昭61−200616号公報JP-A-61-2006166 特開平2−239578号公報JP-A-2-239578 特開平5−74512号公報JP-A-5-74512 特開平7−302666号公報JP-A-7-302666

本発明は、上記のような問題点に鑑みて成されたものであり、その目的とするところは、熱を用いて樹脂フィルムを接着して接続するものではなく、極めて低い圧力で接触させるだけで導通させることができる異方導電性樹脂フィルムを提供することにある。また、本発明は、上記の異方導電性樹脂シートを大量に且つ生産性高く製造する方法を提供することにもある。   The present invention has been made in view of the above-described problems, and its object is not to adhere and connect resin films using heat, but only to contact them at an extremely low pressure. It is in providing the anisotropic conductive resin film which can be made to conduct by. Moreover, this invention is also providing the method of manufacturing said anisotropic conductive resin sheet in large quantities and with high productivity.

本発明の異方導電性樹脂フィルムは、樹脂中に導電粒子が0.2〜10体積%単一分散され、且つ上記導電粒子が面方向非接触である樹脂フィルムであって、上記導電粒子の厚さ方向の径が上記フィルムの樹脂部の厚さより大きく、且つ、上記フィルムの表裏面から露出した上記導電粒子の表面が平坦化されるように、上記フィルム表裏面が研磨されていることを特徴としている。ここで、本発明においては、異方導電性樹脂フィルムの中で厚さ方向にはほぼ1つの導電粒子が存在していることを「単一分散」と定義した。このように導電粒子を単一分散しその表面を研磨することで厚さ方向を導電性にすることができる。また、フィルムの面方向に導電粒子同士が接触していない状態を「面方向非接触」と定義した。このように導電粒子が面方向非接触の状態にすることで面方向の導電性は全く無くなる。   The anisotropic conductive resin film of the present invention is a resin film in which conductive particles are monodispersed in a resin in an amount of 0.2 to 10% by volume, and the conductive particles are non-contact in the surface direction. The front and back surfaces of the film are polished so that the diameter in the thickness direction is larger than the thickness of the resin part of the film and the surfaces of the conductive particles exposed from the front and back surfaces of the film are flattened. It is a feature. Here, in the present invention, the presence of substantially one conductive particle in the thickness direction in the anisotropic conductive resin film is defined as “single dispersion”. Thus, the thickness direction can be made conductive by monodispersing the conductive particles and polishing the surface. Moreover, the state where the conductive particles are not in contact with each other in the surface direction of the film was defined as “non-contact in the surface direction”. Thus, the conductivity in the surface direction is completely eliminated by making the conductive particles non-contact in the surface direction.

また、本発明の異方導電性樹脂フィルムの製造方法は、樹脂に導電粒子を0.2〜10体積%配合し、押出し又は圧延にて上記導電粒子を単一分散させ、上記導電粒子同士の面方向非接触とした、上記フィルムの厚さが上記導電性粒子の厚さ方向の径より大きい樹脂フィルムを形成する工程と、上記導電粒子の厚さ方向の径が上記フィルムの樹脂部の厚さより大きく、且つ、上記フィルムの表裏面から露出した上記導電粒子の表面が平坦化されるように、上記フィルム表裏面を研磨する工程とを備えることを特徴としている。   Moreover, the manufacturing method of the anisotropically conductive resin film of this invention mix | blends 0.2-10 volume% of conductive particles with resin, the said conductive particles are monodispersed by extrusion or rolling, and the said conductive particles of each other are mixed. A step of forming a resin film in which the thickness of the film is larger than the diameter in the thickness direction of the conductive particles, and the thickness in the thickness direction of the conductive particles is the thickness of the resin portion of the film. And a step of polishing the front and back surfaces of the film so that the surfaces of the conductive particles exposed from the front and back surfaces of the film are flattened.

本発明の異方導電性樹脂フィルムによれば、導電粒子の厚さ方向の径がフィルムの樹脂部の厚さより大きく、且つ、フィルムの表裏面から露出した導電粒子の表面を平坦化することにより、フィルム自体を接着することなく、フィルム表面を軽く接触するだけで導通することができる。   According to the anisotropic conductive resin film of the present invention, the diameter of the conductive particles in the thickness direction is larger than the thickness of the resin portion of the film, and the surface of the conductive particles exposed from the front and back surfaces of the film is flattened. It is possible to conduct electricity only by lightly touching the film surface without adhering the film itself.

また、本発明の異方導電性樹脂フィルムの製造方法によれば、樹脂の押出しや圧延技術とフィルムの研磨技術という簡単な工程で、上記の異方導電性樹脂フィルムを大量に且つ高い生産性で製造することができる。   Further, according to the method for producing an anisotropic conductive resin film of the present invention, the anisotropic conductive resin film can be produced in a large amount and with a high productivity by a simple process of resin extrusion and rolling technology and film polishing technology. Can be manufactured.

本発明の異方導電性樹脂フィルムは、導電粒子が樹脂中に単一分散され、面方向に非接触である樹脂フィルムであるが、導電粒子の厚さ方向の径がフィルムの樹脂部の厚さより大きく、且つ、フィルムの表裏面から露出した導電粒子の表面が平坦化されるように、フィルム表裏面が研磨されていることが最大の特徴である。   The anisotropic conductive resin film of the present invention is a resin film in which conductive particles are monodispersed in the resin and are non-contact in the surface direction, but the diameter in the thickness direction of the conductive particles is the thickness of the resin portion of the film. The greatest feature is that the front and back surfaces of the film are polished so that the surface of the conductive particles larger than the thickness and exposed from the front and back surfaces of the film is flattened.

本発明における導電粒子としては、電気的に良好な導体で、例えば、鉄、銅、銀、ニッケル、ステンレス、などの金属ないし合金粉末を用いることができる。樹脂粉末又はガラスやセラミック粉末の表面をめっきしたものも使用できるが、高温の樹脂に配合することと研磨工程を考えると金属粉末が最も好ましい。導電粒子の形状は特に限定されるものではないが、樹脂フィルムの成形には略球状であることがより好ましい。この略球状には、真球状だけでなく、楕円状、円筒状、楕円柱状なども含まれ、さらには、小粒子が凝集して略球状になったものなども含まれる。   The conductive particles in the present invention are electrically good conductors, and for example, metal or alloy powders such as iron, copper, silver, nickel, and stainless steel can be used. Although resin powder or glass or ceramic powder plated on the surface can be used, metal powder is most preferable in consideration of blending with a high-temperature resin and a polishing step. The shape of the conductive particles is not particularly limited, but it is more preferable that the conductive film is substantially spherical for molding the resin film. The substantially spherical shape includes not only a true spherical shape but also an elliptical shape, a cylindrical shape, an elliptical columnar shape, and the like, and further includes a shape in which small particles are aggregated to become a substantially spherical shape.

本発明においては、粒子径にばらつきがある導電粒子を用いることもできるが、電気伝導に寄与する導電粒子の割合が増えるため、導電粒子の粒子径がそろっていることがより好ましい。粒子径がそろった導電粒子としては、予め粒子径の揃ったものを用いても良いし、分級により最大径をそろえたり、最大径と最小径をそろえるたものでもよい。また、導電粒子の粒子径は求めるフィルムの厚さで決まるが、例えばフィルム厚さを100μmを狙うのであれば、粒子の最大径は80〜95μmが好ましい。さらに、導電粒子の表面はブラスト処理で凹凸を設けることやメッキやケミカル処理などの樹脂とのアンカー効果などを狙い密着性を改善することもできる。   In the present invention, conductive particles having a variation in particle diameter can be used. However, since the ratio of conductive particles contributing to electrical conduction increases, it is more preferable that the conductive particles have the same particle diameter. As the conductive particles having the same particle diameter, those having a uniform particle diameter may be used, or the maximum diameter may be aligned by classification, or the maximum diameter and the minimum diameter may be aligned. The particle diameter of the conductive particles is determined by the desired film thickness. For example, if the film thickness is 100 μm, the maximum particle diameter is preferably 80 to 95 μm. Furthermore, the surface of the conductive particles can be provided with irregularities by blasting, and the adhesion can be improved by aiming at an anchor effect with a resin such as plating or chemical treatment.

本発明の異方導電性樹脂フィルムに使用できる樹脂としては、熱可塑性樹脂であればどの様なものも使えるが、水分透過率が0.5g/m/24hr/mm以下であることが好ましく、さらに、極性溶媒などと接触する環境でも使用可能な耐溶剤性に優れたものであることが好ましい。このような樹脂としては、N−メチルピロリドンのような極性溶媒に侵されない非極性樹脂としては、結晶性の高いオレフィン系熱可塑性樹脂、フタル酸エステル、ナフタレンジカルボン酸エステル、液晶ポリエステルが好ましい。オレフィン系熱可塑性樹脂としては、高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、エチレンを共重合したポリプロピレンが例示できる。また、フタル酸エステル、ナフタレンジカルボン酸エステルとして、ポリエチレンテレフタレート及びポリエチレンナフタレートも好ましい。液晶ポリエステルとしては、4−ヒドロキシ安息香酸、3−ヒドロキシ安息香酸、6−ヒドロキシ2−ナフトエ酸などの芳香族ヒドロキシカルボン酸を縮合重合した芳香族系ポリエステルが好適である。すなわち、本発明においては、オレフィン系熱可塑性樹脂、ポリエチレンテレフタレート、液晶ポリエステルのいずれかであることが好ましい。また、これらの熱可塑性樹脂は、フィルム化する時に1軸延伸や2軸延伸することで結晶性がさらに向上し、ガス透過性の低下や耐溶媒性の向上が図れ好ましい。 Examples of the resin which can be used in the anisotropic conductive resin film of the present invention, if the thermoplastic resin can also be used any kind of thing, it is preferable that the moisture permeability is less than 0.5g / m 2 / 24hr / mm Furthermore, it is preferable that the solvent has excellent solvent resistance that can be used even in an environment in contact with a polar solvent. As such a resin, as a nonpolar resin that is not affected by a polar solvent such as N-methylpyrrolidone, a highly crystalline olefin-based thermoplastic resin, phthalic acid ester, naphthalene dicarboxylic acid ester, or liquid crystal polyester is preferable. Examples of the olefinic thermoplastic resin include high density polyethylene, low density polyethylene, polypropylene, and polypropylene copolymerized with ethylene. Further, polyethylene terephthalate and polyethylene naphthalate are also preferable as the phthalic acid ester and naphthalenedicarboxylic acid ester. As the liquid crystal polyester, aromatic polyesters obtained by condensation polymerization of aromatic hydroxycarboxylic acids such as 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, and 6-hydroxy-2-naphthoic acid are preferable. That is, in the present invention, any of olefinic thermoplastic resin, polyethylene terephthalate, and liquid crystal polyester is preferable. In addition, these thermoplastic resins are preferably uniaxially or biaxially stretched to form a film, whereby crystallinity is further improved, gas permeability is lowered, and solvent resistance is improved.

本発明の異方導電性樹脂フィルムの製造方法は、樹脂フィルムを形成する工程と、フィルム表裏面を研磨する工程とが必須要件である。この樹脂フィルムの形成工程においては、上記樹脂に、上記導電粒子を0.2〜10体積%配合し、これらを予め混練した後、フィルム厚さを導電粒子の径より5〜50%厚めに設定して、押出し機にてダイスより押出しを又はカレンダーロールにて圧延を行い、フィルム状に成形する。このような工程により、樹脂中に導電粒子が単一分散され、導電粒子同士の面方向非接触とすることができる。   In the method for producing an anisotropic conductive resin film of the present invention, a step of forming a resin film and a step of polishing the front and back surfaces of the film are essential requirements. In this resin film forming step, 0.2 to 10% by volume of the conductive particles are blended in the resin, and after kneading them in advance, the film thickness is set to be 5 to 50% thicker than the diameter of the conductive particles. And it extrudes from a die | dye with an extruder, or it rolls with a calender roll, and shape | molds in a film form. By such a process, the conductive particles are monodispersed in the resin, and the conductive particles can be brought into non-contact in the surface direction.

導電粒子の配合量が0.2体積%以下であると、抵抗値が上昇し、導電性が低下してしまう。一方、配合量が10体積%を越えると、フィルムの厚さが導電粒子の径よりもはるかに厚くなり、研磨により厚さを整えたとしても導電粒子の樹脂からの脱粒が生じやすくなりフィルムに空隙が生じるので好ましくない。フィルムの厚さを導電粒子の径よりも1〜3割高めに調整でき、研磨による脱粒の起こりにくく、導電性も優れた最も好ましい導電粒子の樹脂に対する配合割合は、0.5〜3.0体積%である。また、ダイスを用いた押出し成形の場合、Tダイスより押出されたフィルムは引き取りロールにて押し圧をかけることが望ましい。   When the blending amount of the conductive particles is 0.2% by volume or less, the resistance value increases and the conductivity decreases. On the other hand, when the blending amount exceeds 10% by volume, the thickness of the film becomes much thicker than the diameter of the conductive particles, and even if the thickness is adjusted by polishing, the conductive particles are likely to be detached from the resin. Since voids are generated, it is not preferable. The thickness of the film can be adjusted to be 30 to 30% higher than the diameter of the conductive particles, and the proportion of the most preferable conductive particles having excellent conductivity with respect to the resin is 0.5 to 3.0. % By volume. Further, in the case of extrusion molding using a die, it is desirable that the film extruded from the T die is pressed with a take-up roll.

次いで、上記工程により形成された樹脂フィルムにおいては、フィルムの厚さが導電性粒子の厚さ方向の径より大きいため、導電粒子の厚さ方向の径がフィルムの樹脂部の厚さより大きく、且つ、フィルムの表裏面から露出した導電粒子の表面が平坦化されるように、次のフィルム表裏面の研磨工程により、樹脂フィルムを研磨する。   Next, in the resin film formed by the above process, since the thickness of the film is larger than the diameter in the thickness direction of the conductive particles, the diameter in the thickness direction of the conductive particles is larger than the thickness of the resin portion of the film, and The resin film is polished by the following polishing process for the front and back surfaces of the film so that the surfaces of the conductive particles exposed from the front and back surfaces of the film are flattened.

研磨方法には水をかけながら研磨する湿式研磨と、水をかけない乾式研磨の二つがある。本発明においては、湿式研磨は水により研磨熱が冷やされるためフィルムが熱により変形しにくく好ましい。また、研磨には、バフ研磨、研削ベルトによる研磨、研磨紙をロール状にしたロール研磨があるが、本発明では異方導電性樹脂フィルムの樹脂部の厚さが導電粒子の厚さ方向の径よりも薄くできるバフ研磨ないしは研削ベルトによる研磨が好ましい。さらに、バフ研磨に用いるバフ材は硬度の柔らかいものが好ましく、研削ベルトによる場合は被研磨物の下に柔らかいゴム材を敷くと、異方導電性樹脂フィルムの厚さ制御を効果的に行なうことができ好ましい。このように異方導電性樹脂フィルムの樹脂部の厚さを導電粒子の厚さ方向の径よりも薄くすることで体積抵抗率が安定して10Ωcm以下に制御できる。   There are two polishing methods: wet polishing in which water is applied and dry polishing in which water is not applied. In the present invention, wet polishing is preferable because the polishing heat is cooled by water and the film is not easily deformed by heat. Polishing includes buffing, polishing with a grinding belt, and roll polishing with a roll of abrasive paper. In the present invention, the thickness of the resin portion of the anisotropic conductive resin film is in the thickness direction of the conductive particles. Buffing which can be made thinner than the diameter or polishing with a grinding belt is preferred. Furthermore, it is preferable that the buff material used for buffing has a soft hardness. In the case of using a grinding belt, if a soft rubber material is laid under the object to be polished, the thickness of the anisotropic conductive resin film can be controlled effectively. This is preferable. Thus, by making the thickness of the resin part of the anisotropic conductive resin film thinner than the diameter in the thickness direction of the conductive particles, the volume resistivity can be stably controlled to 10 Ωcm or less.

また、本発明においては、上記研磨工程により、樹脂フィルム中に配合された導電粒子がフィルムの表裏面から露出され、この露出された導電粒子の表面がさらなる研磨により平坦化されて、接触面積が広くなるため、抵抗値が低減され、導電粒子の添加量が少なくても導電性が達成できる。さらに、この導電粒子の平坦化は、使用する導電粒子の直径が多少ばらついていても研磨で頭出しができるため、導電粒子の選択の幅が広いといった効果も奏する。また、本発明の異方導電性樹脂フィルムの製造方法においては、導電粒子の添加量を低減することができ、さらには、粒子径を大きく、形状を略球状とすることで、樹脂フィルム形成材料の粘度を低く抑えることができ、押出しにて極めて薄いフィルムを製造することができる。   In the present invention, the conductive particles blended in the resin film are exposed from the front and back surfaces of the film by the polishing step, and the surface of the exposed conductive particles is flattened by further polishing, so that the contact area is increased. Since it becomes wider, the resistance value is reduced, and conductivity can be achieved even if the amount of conductive particles added is small. Further, the flattening of the conductive particles has an effect that the selection range of the conductive particles is wide because the cue can be found by polishing even if the diameters of the conductive particles to be used are somewhat varied. Further, in the method for producing the anisotropic conductive resin film of the present invention, the amount of conductive particles added can be reduced, and further, the resin particle forming material can be obtained by increasing the particle diameter and making the shape substantially spherical. Can be kept low, and an extremely thin film can be produced by extrusion.

<実施例1>
メルトフローレート2.4g/10分のポリプロピレン(商品名:FY6C、日本ポリプロ社製)100部に、ステンレスSUS304の球状ビーズを90〜106μmに分級した導電粒子100部を混合し、2軸押出し機(商品名:HK−25D、L/D=41、パーカーコーポレーション社製)を用いて混練しペレットを得た。得られた混練ペレットを100℃で3時間乾燥した。次いで、混練ペレット20部にポリプロピレン(商品名:FY6C、日本ポリプロ社製)80部をドライブレンドし、Tダイ押出し機(L/D:38、ダイ幅300mm、創研社製)にてスクリュー温度200℃、ダイスのリップ幅140μmで押出し、異方導電性樹脂フィルムを得た。なお、得られた異方導電性樹脂フィルムは、導電粒子の配合割合が1.2体積%であり、厚さ120μm、体積抵抗率1015Ωcmであった。
<Example 1>
100 parts of polypropylene (trade name: FY6C, manufactured by Nippon Polypro Co., Ltd.) with 100 parts of melt flow rate of 2.4 g / 10 min are mixed with 100 parts of conductive particles obtained by classifying spherical beads of stainless steel SUS304 into 90 to 106 μm, and a twin screw extruder. (Product names: HK-25D, L / D = 41, manufactured by Parker Corporation) were kneaded to obtain pellets. The obtained kneaded pellets were dried at 100 ° C. for 3 hours. Next, 80 parts of polypropylene (trade name: FY6C, manufactured by Nippon Polypro Co., Ltd.) was dry blended with 20 parts of the kneaded pellets, and screw temperature was measured using a T-die extruder (L / D: 38, die width 300 mm, manufactured by Souken Co., Ltd.). Extrusion was performed at 200 ° C. and a die lip width of 140 μm to obtain an anisotropic conductive resin film. In addition, the anisotropic conductive resin film obtained had a blending ratio of conductive particles of 1.2% by volume, a thickness of 120 μm, and a volume resistivity of 10 15 Ωcm.

続いて、異方導電性樹脂フィルムの表裏面に対して、バフ(商品名:スコッチブライトHDSFフラップブラシ、住友スリーエム社製)を用いた研磨装置(商品名:10P600、石井表記社製)により研磨を行ない、本発明の実施例1の異方導電性樹脂フィルムを作製した。研磨された実施例1の異方導電性樹脂フィルムは、厚さ100μm、体積抵抗率6Ωcmであり、体積抵抗を飛躍的に低減させることができた。   Subsequently, the front and back surfaces of the anisotropic conductive resin film are polished by a polishing apparatus (trade name: 10P600, manufactured by Ishii Notation Co., Ltd.) using a buff (trade name: Scotch Bright HDSF flap brush, manufactured by Sumitomo 3M). The anisotropic conductive resin film of Example 1 of this invention was produced. The polished anisotropically conductive resin film of Example 1 had a thickness of 100 μm and a volume resistivity of 6 Ωcm, and the volume resistance could be drastically reduced.

上記のようにして製造された実施例1の異方導電性樹脂フィルムついて、研磨前後の表面写真を図1及び2に示した。これらの図1及び2から明らかなように、研磨前は導電粒子の表面が樹脂で覆われているが、研磨後は導電粒子の表面の樹脂が研削されてなくなり、導電粒子の厚さ方向の径がフィルムの樹脂部の厚さより大きく、且つ、フィルムの表裏面から露出した導電粒子の表面が平坦化されていることが観察された。また、導電粒子の配合割合が1.2体積%の場合には、研磨による導電粒子の脱粒が無いことが確認された。   1 and 2 show surface photographs before and after polishing of the anisotropic conductive resin film of Example 1 manufactured as described above. As is clear from FIGS. 1 and 2, the surface of the conductive particles is covered with a resin before polishing. However, after polishing, the resin on the surface of the conductive particles is not ground, and the conductive particles have a thickness direction. It was observed that the diameter was larger than the thickness of the resin part of the film, and the surface of the conductive particles exposed from the front and back surfaces of the film was flattened. Moreover, when the compounding ratio of the conductive particles was 1.2% by volume, it was confirmed that there was no degranulation of the conductive particles due to polishing.

さらに、研磨後のフィルム横断面を図3に示した。図3に示したように、本発明の異方導電性樹脂フィルムにおいては、樹脂部の厚さが導電粒子の厚さ方向の径よりも薄いことが確認された。   Furthermore, the cross section of the film after polishing is shown in FIG. As shown in FIG. 3, in the anisotropic conductive resin film of this invention, it was confirmed that the thickness of the resin part is thinner than the diameter of the conductive particles in the thickness direction.

<実施例2>
実施例1において得られた混練ペレット40部に、ポリプロピレン(商品名:FY6C、日本ポリプロ社製)60部をドレイブレンドした以外は、実施例1と同様にして、実施例2の異方導電性樹脂フィルムを製造した。なお、得られた異方導電性樹脂フィルムは、導電粒子の配合割合が2.8体積%であり、厚さが研磨前で140μm、研磨後で100μmであった。さらに、体積抵抗率は研磨前で1015Ωcm、研磨後で9Ωcmであり、体積抵抗を飛躍的に低減させることができた。また、実施例1と同様に、実施例2の異方導電性樹脂フィルムの表面を電子顕微鏡で撮影したところ、導電粒子の配合割合が2.8体積%の場合でも、研磨による導電粒子の脱粒が無いことが確認された。
<Example 2>
The anisotropic conductivity of Example 2 was the same as Example 1 except that 40 parts of polypropylene (trade name: FY6C, manufactured by Nippon Polypro Co., Ltd.) was subjected to a dry blend with 40 parts of the kneaded pellets obtained in Example 1. A resin film was produced. In addition, the obtained anisotropic conductive resin film had a blending ratio of conductive particles of 2.8% by volume, and had a thickness of 140 μm before polishing and 100 μm after polishing. Furthermore, the volume resistivity was 10 15 Ωcm before polishing and 9 Ωcm after polishing, and the volume resistance could be drastically reduced. Similarly to Example 1, when the surface of the anisotropic conductive resin film of Example 2 was photographed with an electron microscope, even if the blending ratio of the conductive particles was 2.8% by volume, the particles of the conductive particles were removed by polishing. It was confirmed that there was no.

<実施例3>
実施例1において得られた混練ペレット50部に、ポリプロピレン(商品名:FY6C、日本ポリプロ社製)50部をドレイブレンドした以外は、実施例1と同様にして、実施例3の異方導電性樹脂フィルムを製造した。なお、得られた異方導電性樹脂フィルムは、導電粒子の配合割合が3.7体積%であり、厚さが研磨前で160μm、研磨後で120μmであった。さらに、体積抵抗率は研磨前で1013Ωcm、研磨後で15Ωcmであり、体積抵抗を飛躍的に低減させることができた。また、実施例1と同様に、実施例3の異方導電性樹脂フィルムの表面を電子顕微鏡で撮影したところ、導電粒子の配合割合が3.7体積%の場合には、研磨による導電粒子の脱粒が僅かに観察されたが実用上問題はない程度であった。
<Example 3>
The anisotropic conductivity of Example 3 was the same as Example 1 except that 50 parts of polypropylene (trade name: FY6C, manufactured by Nippon Polypro Co., Ltd.) was blended with 50 parts of the kneaded pellets obtained in Example 1. A resin film was produced. In addition, the obtained anisotropic conductive resin film had a blending ratio of conductive particles of 3.7% by volume, and had a thickness of 160 μm before polishing and 120 μm after polishing. Furthermore, the volume resistivity was 10 13 Ωcm before polishing and 15 Ωcm after polishing, and the volume resistance could be drastically reduced. Similarly to Example 1, when the surface of the anisotropic conductive resin film of Example 3 was photographed with an electron microscope, when the blending ratio of the conductive particles was 3.7% by volume, Slight degranulation was observed, but there was no practical problem.

<比較例1>
実施例1において得られた混練ペレット2部に、ポリプロピレン(商品名:FY6C、日本ポリプロ社製)98部をドレイブレンドした以外は、実施例1と同様にして、比較例1の異方導電性樹脂フィルムを製造した。なお、得られた異方導電性樹脂フィルムは、導電粒子の配合割合が0.1体積%であり、厚さが研磨前で110μm、研磨後で100μmであった。さらに、体積抵抗率は研磨前で1015Ωcm、研磨後で10Ωcmであり、体積抵抗を実用レベルに低減させることができなかった。
<Comparative Example 1>
The anisotropic conductivity of Comparative Example 1 was the same as Example 1, except that 98 parts of polypropylene (trade name: FY6C, manufactured by Nippon Polypro Co., Ltd.) was drain-blended with 2 parts of the kneaded pellets obtained in Example 1. A resin film was produced. In addition, the obtained anisotropic conductive resin film had a blending ratio of conductive particles of 0.1% by volume, and had a thickness of 110 μm before polishing and 100 μm after polishing. Furthermore, the volume resistivity was 10 15 Ωcm before polishing and 10 3 Ωcm after polishing, and the volume resistance could not be reduced to a practical level.

<比較例2>
実施例1と同様にポリプロピレン(商品名:FY6C、日本ポリプロ社製)100部に、ステンレスSUS304の球状ビーズを90〜106μmに分級した導電粒子100部を混合し、2軸押出し機(商品名:HK−25D、L/D=41、パーカーコーポレーション社製)を用いて混練しペレットを得た。得られた混練ペレットだけで、実施例1と同様にして、比較例2の異方導電性樹脂フィルムを製造した。なお、得られた異方導電性樹脂フィルムは、導電粒子の配合割合が10.4体積%であり、厚さが研磨前で200μm、研磨後で120μmであった。さらに、体積抵抗率は研磨前で1013Ωcm、研磨後で10Ωcmであったが、研磨による導電粒子の脱粒が生じ、実用上問題を有するものであった。
<Comparative example 2>
Similarly to Example 1, 100 parts of conductive particles obtained by classifying spherical beads of stainless steel SUS304 into 90 to 106 μm were mixed with 100 parts of polypropylene (trade name: FY6C, manufactured by Nippon Polypro Co., Ltd.), and a twin screw extruder (trade name: HK-25D, L / D = 41, manufactured by Parker Corporation) and kneaded to obtain pellets. An anisotropic conductive resin film of Comparative Example 2 was produced in the same manner as Example 1 using only the obtained kneaded pellets. In addition, the obtained anisotropic conductive resin film had a blending ratio of conductive particles of 10.4% by volume, and had a thickness of 200 μm before polishing and 120 μm after polishing. Further, the volume resistivity was 10 13 Ωcm before polishing and 10 Ωcm after polishing. However, the conductive particles shed due to the polishing, which had practical problems.

本発明の実施例1の異方導電性樹脂フィルムの研磨前の表面を撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the surface before grinding | polishing of the anisotropically conductive resin film of Example 1 of this invention. 本発明の実施例1の異方導電性樹脂フィルムの研磨後の表面を撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the surface after grinding | polishing of the anisotropically conductive resin film of Example 1 of this invention. 本発明の実施例1の異方導電性樹脂フィルムの研磨後の横断面を撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the cross section after grinding | polishing of the anisotropically conductive resin film of Example 1 of this invention.

Claims (3)

樹脂中に導電粒子が0.2〜10体積%単一分散され、且つ上記導電粒子が面方向非接触である樹脂フィルムであって、上記導電粒子の厚さ方向の径が上記フィルムの樹脂部の厚さより大きく、且つ、上記フィルムの表裏面から露出した上記導電粒子の表面が平坦化されるように、上記フィルム表裏面が研磨されていることを特徴とした異方導電性樹脂フィルム。   A resin film in which conductive particles are monodispersed in a resin in an amount of 0.2 to 10% by volume, and the conductive particles are non-contact in the surface direction, and the diameter of the conductive particles in the thickness direction is a resin portion of the film An anisotropic conductive resin film, wherein the film front and back surfaces are polished so that the surface of the conductive particles exposed from the front and back surfaces of the film is flattened. 前記樹脂が、オレフィン系熱可塑性樹脂、ポリエチレンテレフタレート、液晶ポリエステルのいずれかであることを特徴とした請求項1に記載の異方導電性樹脂フィルム。   The anisotropic conductive resin film according to claim 1, wherein the resin is any one of an olefin-based thermoplastic resin, polyethylene terephthalate, and liquid crystal polyester. 樹脂に導電粒子を0.2〜10体積%配合し、押出し又は圧延にて上記導電粒子を単一分散させ、上記導電粒子同士の面方向非接触とした、上記フィルムの厚さが上記導電性粒子の厚さ方向の径より大きい樹脂フィルムを形成する工程と、
上記導電粒子の厚さ方向の径が上記フィルムの樹脂部の厚さより大きく、且つ、上記フィルムの表裏面から露出した上記導電粒子の表面が平坦化されるように、上記フィルム表裏面を研磨する工程とを備えることを特徴とした異方導電性樹脂フィルムの製造方法。
The conductive particles are mixed in the resin in an amount of 0.2 to 10% by volume, the conductive particles are monodispersed by extrusion or rolling, and the thickness of the film is non-contact in the surface direction between the conductive particles. Forming a resin film larger than the diameter in the thickness direction of the particles;
The front and back surfaces of the film are polished so that the diameter in the thickness direction of the conductive particles is larger than the thickness of the resin portion of the film and the surfaces of the conductive particles exposed from the front and back surfaces of the film are flattened. A method for producing an anisotropic conductive resin film, comprising: a step.
JP2008258644A 2008-10-03 2008-10-03 Anisotropic conductive resin film and manufacturing method thereof Expired - Fee Related JP5339841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258644A JP5339841B2 (en) 2008-10-03 2008-10-03 Anisotropic conductive resin film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258644A JP5339841B2 (en) 2008-10-03 2008-10-03 Anisotropic conductive resin film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010090192A true JP2010090192A (en) 2010-04-22
JP5339841B2 JP5339841B2 (en) 2013-11-13

Family

ID=42253234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258644A Expired - Fee Related JP5339841B2 (en) 2008-10-03 2008-10-03 Anisotropic conductive resin film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5339841B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101932337B1 (en) * 2017-04-12 2018-12-26 한국과학기술원 Anisotropic conductive film including polymer layer for suppressing movement of conductive particles and manufacturing method thereof using vertical ultrasonic wave

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212222A (en) * 1983-05-19 1984-12-01 Kiyoichi Matsumoto Preparation of thermoplastic synthetic resin film with electric conductive anisotropy
JPS61123507A (en) * 1984-11-20 1986-06-11 Nitto Electric Ind Co Ltd Manufacture of anisotropically conductive sheet
JPS61206107A (en) * 1985-03-08 1986-09-12 日東電工株式会社 Anisotropic conducting film
JPS62229713A (en) * 1986-03-31 1987-10-08 日東電工株式会社 Anisotropic conductive sheet
JPH04121905A (en) * 1990-09-13 1992-04-22 Fuji Xerox Co Ltd Anisotropic conductive material and its manufacture
JPH07230840A (en) * 1994-02-17 1995-08-29 Hitachi Chem Co Ltd Connecting member and electrode connecting structure using the same
JPH08148211A (en) * 1994-11-25 1996-06-07 Hitachi Chem Co Ltd Connection member and structure and method for connecting electrode using the same
JP2002008665A (en) * 2000-06-21 2002-01-11 Toray Ind Inc Electricity conductive resin sheet and its manufacturing method
JP2003295481A (en) * 2002-04-01 2003-10-15 Seiko Epson Corp Image carrying member and method for manufacturing the same
JP2004167821A (en) * 2002-11-20 2004-06-17 Dainippon Printing Co Ltd Member for printing equipment, surface treating method therefor, and printing equipment using the member
JP2004217747A (en) * 2003-01-14 2004-08-05 Naito Kikinzoku Seisakusho:Kk Method for manufacturing rubber, silicone rubber or resin containing germanium
JP2006335958A (en) * 2005-06-03 2006-12-14 Polymatech Co Ltd Thermally conductive shaped article, and method for producing the same and method for fitting the same
JP2007232627A (en) * 2006-03-02 2007-09-13 Asahi Kasei Electronics Co Ltd Anisotropic conductive film for inspecting minute circuit
JP2008027676A (en) * 2006-07-19 2008-02-07 Tokai Rubber Ind Ltd Manufacturing method of anisotropic conductive film and anisotropic conductive film

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212222A (en) * 1983-05-19 1984-12-01 Kiyoichi Matsumoto Preparation of thermoplastic synthetic resin film with electric conductive anisotropy
JPS61123507A (en) * 1984-11-20 1986-06-11 Nitto Electric Ind Co Ltd Manufacture of anisotropically conductive sheet
JPS61206107A (en) * 1985-03-08 1986-09-12 日東電工株式会社 Anisotropic conducting film
JPS62229713A (en) * 1986-03-31 1987-10-08 日東電工株式会社 Anisotropic conductive sheet
JPH04121905A (en) * 1990-09-13 1992-04-22 Fuji Xerox Co Ltd Anisotropic conductive material and its manufacture
JPH07230840A (en) * 1994-02-17 1995-08-29 Hitachi Chem Co Ltd Connecting member and electrode connecting structure using the same
JPH08148211A (en) * 1994-11-25 1996-06-07 Hitachi Chem Co Ltd Connection member and structure and method for connecting electrode using the same
JP2002008665A (en) * 2000-06-21 2002-01-11 Toray Ind Inc Electricity conductive resin sheet and its manufacturing method
JP2003295481A (en) * 2002-04-01 2003-10-15 Seiko Epson Corp Image carrying member and method for manufacturing the same
JP2004167821A (en) * 2002-11-20 2004-06-17 Dainippon Printing Co Ltd Member for printing equipment, surface treating method therefor, and printing equipment using the member
JP2004217747A (en) * 2003-01-14 2004-08-05 Naito Kikinzoku Seisakusho:Kk Method for manufacturing rubber, silicone rubber or resin containing germanium
JP2006335958A (en) * 2005-06-03 2006-12-14 Polymatech Co Ltd Thermally conductive shaped article, and method for producing the same and method for fitting the same
JP2007232627A (en) * 2006-03-02 2007-09-13 Asahi Kasei Electronics Co Ltd Anisotropic conductive film for inspecting minute circuit
JP2008027676A (en) * 2006-07-19 2008-02-07 Tokai Rubber Ind Ltd Manufacturing method of anisotropic conductive film and anisotropic conductive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101932337B1 (en) * 2017-04-12 2018-12-26 한국과학기술원 Anisotropic conductive film including polymer layer for suppressing movement of conductive particles and manufacturing method thereof using vertical ultrasonic wave
US11161988B2 (en) 2017-04-12 2021-11-02 Korea Advanced Institute Of Science And Technology Method of manufacturing anisotropic conductive film using vertical ultrasonic waves

Also Published As

Publication number Publication date
JP5339841B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5075180B2 (en) Conductive particles and anisotropic conductive film containing the same
KR102031611B1 (en) Electromagnetic wave absorption film and method for manufacturing same
US10987893B2 (en) Thermally conductive thin film sheet and article comprising same
Lei et al. Novel electrically conductive composite filaments based on Ag/saturated polyester/polyvinyl butyral for 3D-printing circuits
JP2007229989A (en) Conductive molded body and its manufacturing method
EP1867464A1 (en) Composite material sheet and production method thereof
TWI322540B (en) Durable electronic assembly with conductive adhesive
US11198780B2 (en) Antistatic carbon composite, molded product, and preparation method therefor
TW201741416A (en) Anisotropic conductive film, connecting method and joined structure
KR102309135B1 (en) Resin composition, manufacturing method of resin composition, and structure
JP2008097922A (en) Adhesive for electrode connection
JP6247577B2 (en) Polyester film for electromagnetic wave shield film transfer
JP2007297501A (en) Conductive molded product and its manufacturing method
JP5339841B2 (en) Anisotropic conductive resin film and manufacturing method thereof
JP2017034219A (en) Heat radiating material comprising mixed graphite
JP4860587B2 (en) Method for producing novel conductive fine particles and use of the fine particles
JP2006032335A (en) Anisotropic conductive adhesion film
TW201213406A (en) Light-reflective film, light-reflective laminate, and light-reflective circuit board
JP2022113635A (en) Electromagnetic wave-shielding composition, production method of substrate with electromagnetic wave-shielding sheet attached, electromagnetic wave-shielding sheet, and printed wiring board
JP5788130B2 (en) Conductive resin film and method for producing the same
JP2003258490A (en) Electromagnetic wave shielding material, and manufacturing method thereof
TWI784126B (en) Conductive Adhesive Composition
JP2005200542A (en) Adhesive sheet
WO2022019252A1 (en) Powder composition and composite particles
JP4697360B2 (en) Transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees