JP2010089000A - Method of manufacturing separation membrane - Google Patents

Method of manufacturing separation membrane Download PDF

Info

Publication number
JP2010089000A
JP2010089000A JP2008260770A JP2008260770A JP2010089000A JP 2010089000 A JP2010089000 A JP 2010089000A JP 2008260770 A JP2008260770 A JP 2008260770A JP 2008260770 A JP2008260770 A JP 2008260770A JP 2010089000 A JP2010089000 A JP 2010089000A
Authority
JP
Japan
Prior art keywords
membrane
precursor solution
separation membrane
film
monolith substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008260770A
Other languages
Japanese (ja)
Inventor
Shogo Takeno
省吾 武野
Akimasa Ichikawa
明昌 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2008260770A priority Critical patent/JP2010089000A/en
Publication of JP2010089000A publication Critical patent/JP2010089000A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a separation membrane by which a membrane of a precursor solution of a separation membrane formed on one surface of a porous substrate is dried evenly in the entire membrane and which is excellent in dense membrane formation. <P>SOLUTION: The method of manufacturing a separation membrane involves a membrane formation step of forming a membrane 2 of a precursor solution on one surface 39 by depositing the precursor solution for giving the separation membrane on one surface 39 of the porous substrate 100 and a drying step of ventilation-drying the membrane 2 of the precursor solution by hot air. In the drying step, ventilation-drying of the membrane 2 of the precursor solution is carried out by making hot air pass above the surface 39 while suppressing gas from flowing out of the other surface 38 of the porous substrate 100 in a state that the surface 38, which is to be a permeating surface in use of the separation membrane, is kept air-tightly. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、各種混合物からの特定成分の分離に使用される分離膜の製造方法に関する。   The present invention relates to a method for producing a separation membrane used for separating a specific component from various mixtures.

近年、環境保護や廃材の有効利用といった観点から、バイオマス技術を利用したエタノールの生産が注目を集めている。従来、このようなバイオマス技術によって生産されたエタノールを回収する方法として、ゼオライト膜の選択透過性を利用した方法が知られている。これは、木質系バイオマスから得られた水とエタノールとを含有する液体混合物をゼオライト膜に接触させ、水だけを選択的に透過させることで、エタノールと水とを分離するものである。   In recent years, ethanol production using biomass technology has attracted attention from the viewpoint of environmental protection and effective use of waste materials. Conventionally, a method using selective permeability of a zeolite membrane is known as a method for recovering ethanol produced by such biomass technology. This is to separate ethanol and water by bringing a liquid mixture containing water and ethanol obtained from woody biomass into contact with the zeolite membrane and selectively allowing only water to permeate.

ところで、木質系バイオマスから得られる液体混合物には、水とエタノールの他に、酢酸等の有機酸も混在しているが、一般にゼオライト膜は耐酸性が低いため、有機酸による分離性能の低下や早期劣化が懸念される。   By the way, in the liquid mixture obtained from the woody biomass, in addition to water and ethanol, an organic acid such as acetic acid is also mixed. However, since the zeolite membrane is generally low in acid resistance, the separation performance due to the organic acid is reduced. There is concern about early deterioration.

そこで、最近では、従来、主に気体混合物からの特定成分の分離に使用されてきた炭素膜を、水とエタノール等の有機溶剤との分離に利用する研究も行われている。炭素膜はゼオライト膜に比べて耐酸性に優れており、有機酸の存在下においても長期に渡って安定した分離性能を発揮する。こうした目的で用いられる炭素膜の代表的な使用形態として、多孔質のモノリス基材の貫通孔の表面に炭素膜が配設されたものが知られている。   Therefore, recently, research has been conducted to use a carbon membrane, which has been conventionally used mainly for separating a specific component from a gas mixture, for separating water from an organic solvent such as ethanol. Carbon membranes have superior acid resistance compared to zeolite membranes, and exhibit stable separation performance over a long period even in the presence of organic acids. As a typical usage form of the carbon film used for such a purpose, one in which a carbon film is disposed on the surface of a through-hole of a porous monolith substrate is known.

従来、このような炭素膜の製造は、一例を挙げると、まず、多孔質のモノリス基材に形成された複数の貫通孔内にポリアミド酸溶液を通すことにより、前記貫通孔の表面にポリアミド酸膜を成膜し、次いで、モノリス基材を乾燥機内に入れて200℃程度の温度でポリアミド酸膜を乾燥させ、その後、乾燥機内の温度を300℃程度まで上昇させて、ポリアミド酸をイミド化させてポリイミド膜とする。そして、このポリイミド膜を窒素雰囲気等の還元雰囲気下にて熱分解することにより炭化させ、炭素膜とする(例えば、特許文献1参照)。   Conventionally, such a carbon film can be produced by, for example, first passing a polyamic acid solution through a plurality of through-holes formed in a porous monolith substrate, thereby forming a polyamic acid on the surface of the through-holes. A film is formed, and then the monolith substrate is placed in a dryer, the polyamic acid film is dried at a temperature of about 200 ° C., and then the temperature in the dryer is increased to about 300 ° C. to imidize the polyamic acid. Let it be a polyimide film. Then, this polyimide film is carbonized by pyrolysis under a reducing atmosphere such as a nitrogen atmosphere to form a carbon film (see, for example, Patent Document 1).

しかしながら、前記のように乾燥機内での定置乾燥により膜の乾燥やイミド化を行う場合には、モノリス基材の外側から内側へ熱が伝達する過程で、モノリス基材内に温度分布が生じるため、膜全体の均一な乾燥や均一なイミド化が困難であり、それが最終的に得られる炭素膜の分離性能に悪影響を及ぼしていた。また、乾燥機内へのモノリス基材の設置に手間と時間を要するため、生産効率が悪いという問題もあった。   However, when the film is dried or imidized by stationary drying in the dryer as described above, temperature distribution occurs in the monolith substrate during the process of transferring heat from the outside to the inside of the monolith substrate. Further, uniform drying and uniform imidization of the entire membrane are difficult, which adversely affects the separation performance of the finally obtained carbon membrane. In addition, since it takes time and labor to install the monolith substrate in the dryer, there is also a problem that production efficiency is poor.

図5は、従来の分離膜の製造方法における通風乾燥の方法の一例を示す説明図である。従来例においては、モノリス基材1の一端面側にドライヤー4を配置し、当該一端面側に開口した貫通孔の開孔より、ドライヤー4から排出される所定温度に加熱された通風気体(熱風)を貫通孔内に送り込み、モノリス基材1の他端面側に開口した貫通孔の開孔より排気する。このようにして貫通孔に通風気体を通すことにより、貫通孔の表面に成膜されたポリアミド酸膜等の前駆体溶液からなる膜の全体を通風気体にて加熱し、乾燥やイミド化を膜の表面から進行させるものである。   FIG. 5 is an explanatory view showing an example of a ventilation drying method in a conventional method for producing a separation membrane. In the conventional example, the dryer 4 is arranged on one end surface side of the monolith substrate 1, and the ventilating gas (hot air) heated to a predetermined temperature discharged from the dryer 4 through the opening of the through hole opened on the one end surface side. ) Is fed into the through hole and exhausted from the through hole opened on the other end surface side of the monolith substrate 1. By passing the ventilation gas through the through-holes in this way, the entire film made of a precursor solution such as a polyamic acid film formed on the surface of the through-hole is heated with the ventilation gas, and drying or imidization is performed on the membrane. It is made to progress from the surface.

上述の環境保護や廃材の有効利用といった観点でバイオマス技術を利用したエタノールの生産等に分離膜を用いる場合、設置や運用にかかるコストを抑制することがその規模と効果を増大させる鍵を握っている。しかしながら、現状の分離膜の性能は充分とは言えず、世界的規模の環境問題に対応するためには生産コストと分離膜の性能の更なる向上が求められていた。
特開2003−286018号公報
When using separation membranes for the production of ethanol using biomass technology from the viewpoint of environmental protection and effective use of waste materials as described above, holding down the cost of installation and operation is the key to increasing its scale and effectiveness. Yes. However, the performance of the current separation membrane is not sufficient, and further improvement in production cost and performance of the separation membrane has been demanded in order to cope with global environmental problems.
JP 2003-286018 A

本発明は、このような従来の事情に鑑みてなされたものであり、その目的とするところは、多孔質基材の表面に成膜された分離膜の前駆体溶液からなる膜を、膜全体に渡って均一に乾燥やイミド化させることが可能で、かつ、乾燥機内への多孔質基材の設置のような煩雑な工程を要しない生産性に優れた分離膜の製造方法を提供することにある。   The present invention has been made in view of such a conventional situation, and an object of the present invention is to form a membrane composed of a precursor solution of a separation membrane formed on the surface of a porous base material as a whole membrane. To provide a method for producing a separation membrane that can be uniformly dried and imidized over a wide area and that does not require a complicated process such as the installation of a porous substrate in a dryer. It is in.

上記目的を達成するため、本発明によれば、以下の分離膜の製造方法が提供される。   In order to achieve the above object, the present invention provides the following method for producing a separation membrane.

[1] 多孔質基材の一の表面に分離膜とするための前駆体溶液を付着させることにより、前記一の表面に、前記前駆体溶液からなる膜を成膜する成膜工程と、前記前駆体溶液からなる膜を熱風により通風乾燥する乾燥工程とを含む、分離膜の製造方法であって、前記乾燥工程において、少なくとも前記分離膜の使用時に透過性表面とされる他の表面を気密にした状態で、前記多孔質基材の前記他の表面からの気体の流出を抑制しつつ、前記一の表面上で熱風を通過させながら前記前駆体溶液からなる膜を通風乾燥する分離膜の製造方法。 [1] A film forming step of forming a film made of the precursor solution on the one surface by attaching a precursor solution for forming a separation film to one surface of the porous substrate; A method for producing a separation membrane, comprising: drying a membrane comprising a precursor solution with hot air, wherein at least another surface that is a permeable surface when the separation membrane is used is hermetically sealed in the drying step. In the state of the separation membrane, the membrane of the precursor solution is air-dried while passing hot air over the one surface while suppressing the outflow of gas from the other surface of the porous substrate. Production method.

[2] 長手方向の一方の端縁側の開孔から前記長手方向の他方の端縁側の開孔まで貫通する流体の流路となる少なくとも一つの貫通孔が形成された筒状のモノリス基材を前記多孔質基材とし、前記貫通孔の表面を前記一の表面とし、前記モノリス基材の外周面を前記他の表面とし、前記成膜工程において、前記貫通孔内に前記前駆体溶液を通すことにより、前記貫通孔の表面に、前記前駆体溶液からなる膜を成膜し、前記乾燥工程において、前記モノリス基材の外周面側を気密にした状態で、前記モノリス基材の前記外周面からの気体の流出を抑制しつつ、前記貫通孔内を長手方向の前記一方の端縁側の開孔から前記他方の端縁側の開孔へと熱風を通過させながら前記前駆体溶液からなる膜を通風乾燥する前記[1]に記載の分離膜の製造方法。 [2] A cylindrical monolith substrate having at least one through-hole formed as a fluid flow path penetrating from an opening on one edge side in the longitudinal direction to an opening on the other edge side in the longitudinal direction. The porous base material, the surface of the through hole as the one surface, the outer peripheral surface of the monolith base material as the other surface, and the precursor solution is passed through the through hole in the film forming step. By forming a film made of the precursor solution on the surface of the through-hole, and in the drying step, the outer peripheral surface of the monolith substrate is airtight on the outer peripheral surface side of the monolith substrate. A film made of the precursor solution while passing hot air from the opening on the one end edge side in the longitudinal direction to the opening on the other end edge side in the through hole while suppressing the outflow of gas from Manufacture of separation membrane according to [1] above, which is dried by ventilation Law.

[3] 前記乾燥工程において、前記モノリス基材を両端部が開口した管状乾燥容器の内部に収容し、前記モノリス基材の前記長手方向の両端縁の前記外周面と前記管状乾燥容器内面とを耐熱シール材で気密に固定し、前記モノリス基材の外周面側を気密とした状態で前記前駆体溶液からなる膜を通風乾燥する前記[2]に記載の分離膜の製造方法。 [3] In the drying step, the monolith substrate is accommodated in a tubular drying container having both ends opened, and the outer peripheral surface of the both ends in the longitudinal direction of the monolith substrate and the inner surface of the tubular drying container are The method for producing a separation membrane according to [2], wherein the membrane made of the precursor solution is blown and dried in an airtight state with a heat-resistant sealing material and the outer peripheral surface side of the monolith substrate is airtight.

[4] 前記乾燥工程において前記前駆体溶液からなる膜を通風乾燥させた後、乾燥させた前記前駆体溶液からなる膜を最終的に熱分解して炭化させることにより分離膜とする前記[1]〜[3]のいずれかに記載の分離膜の製造方法。 [4] After the membrane made of the precursor solution is air-dried in the drying step, the dried membrane made of the precursor solution is finally pyrolyzed and carbonized to obtain a separation membrane [1] ] The manufacturing method of the separation membrane in any one of [3].

[5] 前記前駆体溶液としてポリイミド溶液を使用した前記[1]〜[4]のいずれかに記載の分離膜の製造方法。 [5] The method for producing a separation membrane according to any one of [1] to [4], wherein a polyimide solution is used as the precursor solution.

[6] 前記前駆体溶液としてポリアミド酸溶液を使用し、前記乾燥工程において、前記膜を通風乾燥させるとともにイミド化させる前記[1]〜[4]のいずれかに記載の分離膜の製造方法。 [6] The method for producing a separation membrane according to any one of [1] to [4], wherein a polyamic acid solution is used as the precursor solution, and the membrane is air-dried and imidized in the drying step.

本発明の製造方法によれば、多孔質基材の表面に成膜された分離膜の前駆体溶液からなる膜の乾燥を、通風気体による通風乾燥にて行うため、通風気体(熱風)と接触する膜の表面から、膜全体に均一な熱伝達をもたらしつつ乾燥させることができ、その結果、膜全体を均一に乾燥させることができる。   According to the production method of the present invention, the membrane made of the separation membrane precursor solution formed on the surface of the porous substrate is dried by ventilation drying with ventilation gas, so that it is in contact with ventilation gas (hot air). The surface of the film to be dried can be dried while providing uniform heat transfer to the entire film, and as a result, the entire film can be dried uniformly.

また、本発明の製造方法においては、定置乾燥用の乾燥機を使用せず、通風乾燥のみによって膜の乾燥を行う構成においては、乾燥機内への多孔質基材の設置のような時間と手間のかかる煩雑な工程が無く、生産効率が向上する。   Further, in the production method of the present invention, in the configuration in which the membrane is dried only by ventilation drying without using a stationary dryer, the time and labor required for setting the porous substrate in the dryer is reduced. There is no complicated process and production efficiency is improved.

更に、本発明の製造方法では、通風乾燥により、膜の乾燥だけでなく、イミド化を行うことも可能であり、その際には、加熱された通風気体(熱風)と接触する膜の表面から、膜全体に均一な熱伝達をもたらしつつイミド化を進行させることができるので、膜全体を均一にイミド化させることができる。   Furthermore, in the production method of the present invention, not only drying of the membrane but also imidization can be performed by ventilation drying, and in this case, from the surface of the membrane that is in contact with the heated ventilation gas (hot air). Since the imidization can proceed while providing uniform heat transfer to the entire film, the entire film can be uniformly imidized.

また、本発明の分離膜の製造方法によれば、多孔質基材の表面に成膜された前駆体溶液からなる膜の乾燥工程において、分離膜使用時に透過性表面とされる面を気密とした状態で通風乾燥することにより、前駆体溶液からなる膜以外からの蒸発を抑制して膜面の緻密化を促進し、膜性能を向上させることができる。   Further, according to the method for producing a separation membrane of the present invention, in the drying step of the membrane made of the precursor solution formed on the surface of the porous substrate, the surface that is the permeable surface when using the separation membrane is airtight. By performing ventilation drying in such a state, it is possible to suppress evaporation from other than the film made of the precursor solution, promote densification of the film surface, and improve the film performance.

以下、本発明を具体的な実施形態に基づき説明するが、本発明は、これに限定されて解釈されるもではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。   Hereinafter, the present invention will be described based on specific embodiments, but the present invention should not be construed as being limited thereto and based on the knowledge of those skilled in the art without departing from the scope of the present invention. Various changes, modifications, and improvements can be added.

本発明の分離膜の製造方法は、多孔質基材の一の表面に分離膜とするための前駆体溶液を付着させることにより、前記一の表面に、前記前駆体溶液からなる膜を成膜する成膜工程と、前記前駆体溶液からなる膜を熱風により通風乾燥する乾燥工程とを含む、分離膜の製造方法であって、前記乾燥工程において、前記分離膜の使用時に透過性表面とされる他の表面を気密にした状態で、前記多孔質基材の前記他の表面からの気体の流出を抑制しつつ、前記一の表面上で熱風を通過させながら前記前駆体溶液からなる膜を通風乾燥することを、主要な特徴とするものである。   In the method for producing a separation membrane of the present invention, a film made of the precursor solution is formed on the one surface by attaching a precursor solution for forming a separation membrane to one surface of a porous substrate. A separation membrane manufacturing method, and a drying step in which a membrane comprising the precursor solution is dried by ventilation with hot air, wherein in the drying step, the permeable surface is used when the separation membrane is used. A film made of the precursor solution while passing hot air over the one surface while suppressing the outflow of gas from the other surface of the porous substrate while the other surface is airtight. Ventilation drying is the main feature.

本発明の分離膜の製造方法は、具体的には、例えば図1Bに示すように、多孔質基材100の一の表面39に分離膜とするための前駆体溶液をディップ成膜法やかけ流し法等によって付着させることにより、一の表面39に、前駆体溶液からなる膜2を成膜する成膜工程と、前駆体溶液からなる膜2を熱風により通風乾燥する乾燥工程とを含む分離膜の製造方法である。そして、本発明の分離膜の製造方法は、更に、乾燥工程において、分離膜の使用時に透過性表面とされる他の表面38を気密にした状態で、多孔質基材100の他の表面38からの気体の流出を抑制しつつ、前記一の表面39上で熱風を通過させながら前記前駆体溶液からなる膜2を通風乾燥することを、主要な特徴とするものである。   Specifically, for example, as shown in FIG. 1B, the method for producing a separation membrane of the present invention uses a dip film formation method or a method in which a precursor solution for forming a separation membrane on one surface 39 of a porous substrate 100 is used. Separation including a film forming process for forming the film 2 made of the precursor solution on the one surface 39 by adhering by a flow method or the like, and a drying process for drying the film 2 made of the precursor solution by hot air. It is a manufacturing method of a film | membrane. In the method for producing a separation membrane of the present invention, the other surface 38 of the porous substrate 100 is further sealed in the drying step while the other surface 38 that is a permeable surface when the separation membrane is used is hermetically sealed. The main feature is that the film 2 made of the precursor solution is air-dried while passing hot air over the surface 39 while suppressing the outflow of gas from the surface.

本発明における「多孔質基材」とは、特にその形状は限定するものではないが、分離膜が形成される一の表面39と、分離膜の使用時に透過性表面とされる他の表面38とを有する多孔質の基材を言う。例えば、図1Aに示すような一の表面39と、他の表面38を備えた板状の多孔質基材100が挙げられる。多孔質基材100の材質としては、強度や化学的安定性の観点から、アルミナ、シリカ、コージェライト、ムライト、チタニア、ジルコニア、炭化珪素等のセラミックス材料からなるものが好ましい。多孔質基材100の気孔率は、当該基材の強度と透過性の観点から25〜55%程度とすることが好ましい。また、多孔質基材100の平均細孔径は、0.005〜5μm程度とすることが好ましい。   The “porous substrate” in the present invention is not particularly limited in its shape, but one surface 39 on which a separation membrane is formed and another surface 38 that is made a permeable surface when the separation membrane is used. A porous substrate having For example, a plate-like porous substrate 100 having one surface 39 and another surface 38 as shown in FIG. The material of the porous substrate 100 is preferably made of a ceramic material such as alumina, silica, cordierite, mullite, titania, zirconia, silicon carbide, etc. from the viewpoint of strength and chemical stability. The porosity of the porous substrate 100 is preferably about 25 to 55% from the viewpoint of the strength and permeability of the substrate. The average pore diameter of the porous substrate 100 is preferably about 0.005 to 5 μm.

本明細書における「多孔質基材の他の表面を気密にする」とは、「多孔質基材の他の表面を覆うことにより、多孔質基材の他の表面を除いて気体が流通しない閉じた空間を形成すること」または「多孔質基材の他の表面を除いて気体が流通しないように多孔質基材の他の表面を隙間なく覆うこと」を意味する。   In this specification, “to make the other surface of the porous substrate airtight” means “by covering the other surface of the porous substrate, gas does not flow except for the other surface of the porous substrate. It means “to form a closed space” or “to cover the other surface of the porous substrate without any gap so that no gas flows except for the other surface of the porous substrate”.

本発明の分離膜の前駆体溶液からなる膜を成膜する成膜工程において、多孔質基材の一の表面に前駆体溶液を付着させる方法としては特に限定するものではないが、例えば、ディップ成膜法やかけ流し法等を用いるのが好ましい。このような方法により、図1Aに示すように、一の表面39は多孔質基材100の表面に前駆体溶液からなる膜2が成膜された多孔質基材100が得られる。   In the film forming process for forming a membrane comprising the precursor solution of the separation membrane of the present invention, the method for attaching the precursor solution to one surface of the porous substrate is not particularly limited. It is preferable to use a film forming method, a pouring method or the like. By such a method, as shown in FIG. 1A, the porous substrate 100 in which the film 2 made of the precursor solution is formed on the surface of the porous substrate 100 on the surface 39 is obtained.

従来の乾燥工程においては、図1Cに示すように多孔質基材100の他の表面38を気密としておらず、熱風により一の表面39側の膜2からの蒸気41と、他の表面38側からの蒸気41が流出する。このため、前駆体溶液からなる膜2が緻密化することなく多孔質基材100内部に浸透してしまう。このため分離膜の分離性能が悪化することを避けられなかった。   In the conventional drying process, as shown in FIG. 1C, the other surface 38 of the porous substrate 100 is not airtight, and the steam 41 from the film 2 on the one surface 39 side and the other surface 38 side by hot air. Steam 41 from the outlet flows out. For this reason, the film | membrane 2 which consists of precursor solutions will osmose | permeate the inside of the porous base material 100, without densifying. For this reason, it was inevitable that the separation performance of the separation membrane deteriorated.

本発明の乾燥工程においては、こうして成膜された前駆体溶液からなる膜2の乾燥を、多孔質基材100の他の表面38を気密とした状態での通風乾燥により行う。例えば、図1Bに示すように、他の表面38はシール材36で覆うことにより気密状態とする。この状態で一の表面39に熱風をあてることにより通風乾燥を行う。一の表面39の膜2側からは蒸気41が発生して乾燥が進むが、他の表面38側からは蒸気42がほとんど発生しない。このように、前駆体溶液からなる膜2の乾燥を、多孔質基材100の他の表面を気密とした状態で通風乾燥にて行えば、多孔質基材100の他の表面38からの蒸発を抑制することにより、通風気体(熱風)と接触する膜2の表面からの溶媒の蒸発を促進し、乾燥させることができるので、形成される膜全体をムラ無く均一に緻密化させることができる。そのため、分離膜の分離性能を向上させることができる。   In the drying step of the present invention, the membrane 2 made of the precursor solution thus formed is dried by ventilation drying in a state where the other surface 38 of the porous substrate 100 is airtight. For example, as shown in FIG. 1B, the other surface 38 is covered with a sealing material 36 to be in an airtight state. In this state, ventilation drying is performed by applying hot air to one surface 39. Although vapor 41 is generated from the film 2 side of one surface 39 and drying proceeds, almost no vapor 42 is generated from the other surface 38 side. In this way, if the membrane 2 made of the precursor solution is dried by ventilation drying in a state where the other surface of the porous substrate 100 is airtight, evaporation from the other surface 38 of the porous substrate 100 is performed. Since the evaporation of the solvent from the surface of the film 2 that is in contact with the ventilating gas (hot air) can be promoted and dried, the entire formed film can be uniformly densified without unevenness. . Therefore, the separation performance of the separation membrane can be improved.

また、本発明の分離膜の製造方法の一実施形態においては、長手方向の一方の端縁側の開孔から他方の端縁側の開孔まで貫通する流体の流路となる少なくとも一つの貫通孔が形成された筒状のモノリス基材を上述の多孔質基材とし、少なくとも一つの貫通孔の表面を上述の一の表面とし、モノリス基材外周面を上述の他の表面とし、成膜工程において、貫通孔内に前駆体溶液を通すことにより、貫通孔の表面に、前駆体溶液からなる膜を成膜し、乾燥工程において、モノリス基材の外周面側を気密にした状態で、モノリス基材の外周面からの気体の流出を抑制しつつ、貫通孔内を長手方向の一方の端縁側の開孔から他方の端縁側の開孔へと熱風を通過させながら前駆体溶液からなる膜を通風乾燥することを特徴とするものである。   In one embodiment of the method for producing a separation membrane of the present invention, at least one through-hole serving as a fluid flow path penetrating from an opening on one end side in the longitudinal direction to an opening on the other end side is provided. In the film forming step, the formed cylindrical monolith substrate is the above-described porous substrate, the surface of at least one through-hole is the one surface described above, and the outer peripheral surface of the monolith substrate is the other surface described above. Then, by passing the precursor solution through the through-hole, a film made of the precursor solution is formed on the surface of the through-hole, and in the drying step, the monolith substrate is made airtight on the outer peripheral surface side of the monolith substrate. While suppressing the outflow of gas from the outer peripheral surface of the material, a film made of the precursor solution is passed through the inside of the through hole from the opening on one end side in the longitudinal direction to the opening on the other end side. It is characterized by air drying.

即ち、言い換えれば、本発明の分離膜の製造方法の一実施形態においては、多孔質のモノリス基材に形成された貫通孔内に分離膜の前駆体溶液を通すことにより、前記貫通孔の表面に、前記前駆体溶液からなる膜を成膜する成膜工程と、前記前駆体溶液からなる膜を熱風により通風乾燥を行う乾燥工程とを含む、分離膜の製造方法であって、前記乾燥工程において、前記モノリス基材の外周面側を気密にした状態で、前記モノリス基材の前記外周面からの気体の流出を抑制しつつ、前記貫通孔内を長手方向の一方の端縁側の開孔から他方の端縁側の開孔へと熱風を通過させながら前記前駆体溶液からなる膜の前記通風乾燥を行うことを、特徴とするものである。   In other words, in one embodiment of the method for producing a separation membrane of the present invention, the surface of the through-hole is obtained by passing the precursor solution of the separation membrane through the through-hole formed in the porous monolith substrate. A method for producing a separation membrane, comprising: a film forming step for forming a film made of the precursor solution; and a drying step for performing ventilation drying of the film made of the precursor solution with hot air. In the state where the outer peripheral surface side of the monolith substrate is hermetically sealed, while the outflow of gas from the outer peripheral surface of the monolith substrate is suppressed, the inside of the through hole is opened on one end side in the longitudinal direction The air-drying of the film made of the precursor solution is performed while passing hot air from the opening to the opening on the other edge side.

本明細書における「モノリス基材」とは、上述の「多孔質基材」のうち、長手方向の一方の端縁側の開孔から他方の端縁側の開孔まで貫通する流体の流路となる複数の貫通孔が形成されたレンコン状あるいはハニカム状の基材を言う。例えば、図3に示すような筒状のモノリス基材1が挙げられる。モノリス基材の材質としては、強度や化学的安定性の観点から、アルミナ、シリカ、コージェライト、ムライト、チタニア、ジルコニア、炭化珪素等のセラミックス材料からなるものが好ましい。モノリス基材の気孔率は、当該基材の強度と透過性の観点から25〜55%程度とすることが好ましい。また、モノリス基材の平均細孔径は、0.005〜5μm程度とすることが好ましい。   The “monolith substrate” in the present specification is a fluid flow path that penetrates from the opening on one edge side in the longitudinal direction to the opening on the other edge side in the “porous substrate” described above. It refers to a lotus root or honeycomb substrate having a plurality of through holes. For example, the cylindrical monolith base material 1 as shown in FIG. 3 is mentioned. The material of the monolith substrate is preferably made of a ceramic material such as alumina, silica, cordierite, mullite, titania, zirconia, or silicon carbide from the viewpoint of strength or chemical stability. The porosity of the monolith substrate is preferably about 25 to 55% from the viewpoint of the strength and permeability of the substrate. Moreover, it is preferable that the average pore diameter of a monolith base material shall be about 0.005-5 micrometers.

本明細書における「モノリス基材の外周面」とは、筒状のモノリス基材の長手方向の両端面を除く側面を意味するものとする。   In this specification, the “outer peripheral surface of the monolith substrate” means a side surface excluding both end surfaces in the longitudinal direction of the cylindrical monolith substrate.

本明細書における「モノリス基材の外周面側を気密にする」とは、「モノリス基材外周面側を覆うことにより、モノリス基材外周面を除いて気体が流通しない閉じた空間を形成すること」または「モノリス基材外周面から気体が流通しないようにモノリス基材の外周面を隙間なく覆うこと」を意味する。例えば図3に示すように、モノリス基材1の外周面31は、多孔質のため気体が流通するが、図2Bに示すようにこの外周面31を含む閉じた空間30が形成されている場合、モノリス基材1の外周面31側からの乾燥が抑制される。また、閉じた空間30が形成されている場合、モノリス基材外周面31が直接熱風にさらされることがなく、モノリス基材外周面31からの乾燥が抑制される。   In this specification, “to make the outer peripheral surface of the monolith substrate airtight” means “to cover the outer peripheral surface of the monolith substrate to form a closed space where no gas flows except for the outer peripheral surface of the monolith substrate. Or “covering the outer peripheral surface of the monolith substrate without any gap so that no gas flows from the outer peripheral surface of the monolith substrate”. For example, as shown in FIG. 3, gas flows through the outer peripheral surface 31 of the monolith substrate 1 because it is porous, but a closed space 30 including the outer peripheral surface 31 is formed as shown in FIG. 2B. Further, drying from the outer peripheral surface 31 side of the monolith substrate 1 is suppressed. Moreover, when the closed space 30 is formed, the monolith base material outer peripheral surface 31 is not directly exposed to hot air, and drying from the monolith base material outer peripheral surface 31 is suppressed.

本発明の一実施形態における成膜工程において成膜に使用する分離膜の前駆体溶液としては、ポリイミド溶液を用いることが好ましい。ポリイミド溶液は、ポリイミド樹脂を、N−メチル−2−ピロリドン(NMP)等の適当な有機溶媒に溶解させたものである。ポリイミド溶液中のポリイミドの濃度は、特に制限はないが、溶液を成膜しやすい粘度とする観点から、1〜15質量%とすることが好ましい。   As the precursor solution of the separation membrane used for film formation in the film formation step in one embodiment of the present invention, it is preferable to use a polyimide solution. The polyimide solution is obtained by dissolving a polyimide resin in a suitable organic solvent such as N-methyl-2-pyrrolidone (NMP). The concentration of the polyimide in the polyimide solution is not particularly limited, but is preferably 1 to 15% by mass from the viewpoint of making the solution easy to form a film.

また、本発明の一実施形態における成膜工程において成膜に使用する分離膜の前駆体溶液としては、従来、分離膜(炭素膜)の製造に広く使用されているポリアミド酸溶液を用いるのが好ましい。ポリアミド酸溶液は、ポリイミド樹脂の前駆体であるポリアミド酸を、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド(DMAc)等の適当な有機溶媒に溶解させたものである。ポリアミド酸溶液中のポリアミド酸の濃度は、特に制限はないが、溶液を成膜しやすい粘度とする観点から、1〜20質量%とすることが好ましい。   In addition, as the precursor solution of the separation membrane used for film formation in the film formation step in one embodiment of the present invention, a polyamic acid solution that has been widely used in the production of separation membranes (carbon membranes) is conventionally used. preferable. The polyamic acid solution is obtained by dissolving polyamic acid, which is a precursor of a polyimide resin, in an appropriate organic solvent such as N-methyl-2-pyrrolidone (NMP) or N, N-dimethylacetamide (DMAc). The concentration of the polyamic acid in the polyamic acid solution is not particularly limited, but is preferably 1 to 20% by mass from the viewpoint of making the solution easy to form a film.

本発明の一実施形態において、分離膜の前駆体溶液からなる膜を成膜する成膜工程において、モノリス基材の貫通孔内に前駆体溶液を通す方法としては特に限定するものではないが、ディップ成膜法やかけ流し法等を用いるのが好ましい。例えば、送液ポンプを使用し、前駆体溶液を各貫通孔の一方の開口端から、0.3〜300cm/分程度の速度で各貫通孔内に送入するディップ成膜法を用いるのが好ましい。このような方法により、図4に示すように、貫通孔3の表面に前駆体溶液からなる膜2が成膜されたモノリス基材1が得られる。   In one embodiment of the present invention, in the film forming step of forming a membrane comprising the precursor solution of the separation membrane, the method of passing the precursor solution into the through hole of the monolith substrate is not particularly limited, It is preferable to use a dip film forming method, a pouring method or the like. For example, a dip film forming method is used in which a precursor solution is fed into each through hole at a rate of about 0.3 to 300 cm / min from one open end of each through hole using a liquid feed pump. preferable. By such a method, as shown in FIG. 4, the monolith substrate 1 in which the film 2 made of the precursor solution is formed on the surface of the through hole 3 is obtained.

本発明の一実施形態の乾燥工程においては、こうして成膜された前駆体溶液からなる膜の乾燥を、モノリス基材の外周面を気密とした状態での通風乾燥により行う。このように、前駆体溶液からなる膜の乾燥を、モノリス基材の外周面を気密とした状態で通風乾燥にて行えば、モノリス基材外周面側からの蒸発を抑制することにより、通風気体(熱風)と接触する膜の表面からの溶媒の蒸発を促進し、乾燥させることができるので、形成される膜全体をムラ無く均一に緻密化させることができる。   In the drying process of one embodiment of the present invention, the film formed of the precursor solution thus formed is dried by ventilation drying in a state where the outer peripheral surface of the monolith substrate is airtight. In this way, if the film made of the precursor solution is dried by ventilation drying with the outer peripheral surface of the monolith base material being airtight, the ventilation gas is suppressed by suppressing evaporation from the outer peripheral surface side of the monolith base material. Since evaporation of the solvent from the surface of the film in contact with (hot air) can be promoted and dried, the entire formed film can be uniformly densified without unevenness.

また、本発明における通風乾燥では、前駆体溶液からなる膜を乾燥させるだけでなく、イミド化させることも可能である。例えば、前駆体溶液がポリアミド酸溶液である場合、ポリアミド酸のイミド化反応には200℃以上での加熱が必要となるので、通風乾燥により、ポリアミド酸溶液からなる膜(ポリアミド酸膜)の乾燥とともにイミド化も行う場合には、通風乾燥工程中に、通風気体(熱風)の温度を200〜300℃として通風乾燥を行う時間帯を含ませるようにするのが好ましい。例えば、まず、通風気体の温度を150℃程度とし、1時間程度の時間をかけてポリアミド酸膜を乾燥させた後、通風気体の温度を250℃程度に上昇させて、15分間程度の時間をかけてイミド化させる。   In the ventilation drying according to the present invention, not only the film made of the precursor solution can be dried but also imidized. For example, when the precursor solution is a polyamic acid solution, heating at 200 ° C. or higher is required for the imidization reaction of the polyamic acid. Therefore, drying of the film made of the polyamic acid solution (polyamic acid film) is performed by air drying. In the case where imidization is also performed, it is preferable to include a time zone during which ventilation drying is performed at a temperature of the ventilation gas (hot air) of 200 to 300 ° C. in the ventilation drying step. For example, first, the temperature of the ventilating gas is set to about 150 ° C., and the polyamic acid film is dried for about one hour, and then the temperature of the ventilating gas is increased to about 250 ° C. for about 15 minutes. To imidize.

このような、モノリス基材外周面側を気密とした状態での通風乾燥によるイミド化は、加熱された通風気体(熱風)と接触する膜の表面から、膜全体に均一な熱伝達をもたらしつつイミド化を進行させることができるので、膜全体を均一にイミド化させることができる。ポリアミド酸膜は、このようにイミド化することにより、分離膜(炭素膜)の前駆体であるポリイミド膜となる。   Such imidization by air-drying in a state where the outer peripheral surface side of the monolith substrate is air-tight is brought about uniform heat transfer from the surface of the film in contact with the heated air-flowing gas (hot air) to the entire film. Since imidization can proceed, the entire film can be uniformly imidized. The polyamic acid film is imidized in this manner, thereby becoming a polyimide film that is a precursor of the separation film (carbon film).

図2Aは、本発明の乾燥工程における通風乾燥の方法の一例を示す説明図である。図2Bは、本発明の分離膜の製造方法の一例を示す図2A中の領域Aの模式的一部拡大断面図である。本例においては、モノリス基材1を両端部が開口した管状乾燥容器37の内部に収容し、モノリス基材1の長手方向60の両端縁34、35の外周面31と管状乾燥容器37内面とを耐熱シール材32で気密に固定する。このようにして、モノリス基材1の外周面31側を気密とした状態でモノリス基材1の前記外周面31からの気体(蒸気)の流出を抑制しつつ、貫通孔3内を長手方向60の一方の端縁34の開孔51から他方の端縁35の開孔52へと熱風を通過させながら前駆体溶液からなる膜の通風乾燥を行う。   FIG. 2A is an explanatory diagram showing an example of a ventilation drying method in the drying step of the present invention. FIG. 2B is a schematic partially enlarged cross-sectional view of a region A in FIG. 2A showing an example of the separation membrane manufacturing method of the present invention. In this example, the monolith substrate 1 is accommodated in a tubular drying container 37 that is open at both ends, and the outer peripheral surface 31 of both end edges 34 and 35 in the longitudinal direction 60 of the monolith substrate 1 and the inner surface of the tubular drying container 37. Is hermetically fixed with a heat-resistant sealing material 32. In this way, in the state where the outer peripheral surface 31 side of the monolith base material 1 is airtight, the outflow of gas (vapor) from the outer peripheral surface 31 of the monolith base material 1 is suppressed, and the inside of the through hole 3 in the longitudinal direction 60. The membrane made of the precursor solution is ventilated while passing hot air from the opening 51 in one end edge 34 to the opening 52 in the other end edge 35.

図2Bに示すように、両端部が開口部した管状乾燥容器37にモノリス基材を収容し、管状乾燥容器37内部で一方の端縁34の外周面31及び他方の端縁35(図2B中には図示しない)の外周面31と、管状乾燥容器37内面とを耐熱シール材32で気密に固定することにより、モノリス基材外周面側が覆われる。このため、モノリス基材1の外周面31を除いて乾燥時の気体が流通しない閉じた空間30が形成される。   As shown in FIG. 2B, the monolith substrate is accommodated in a tubular drying container 37 having both ends open, and the outer peripheral surface 31 of one end 34 and the other end 35 (in FIG. 2B) inside the tubular drying container 37. The outer peripheral surface of the monolith substrate is covered with the heat-resistant sealing material 32 in an airtight manner. For this reason, the closed space 30 where the gas at the time of drying does not distribute | circulate except the outer peripheral surface 31 of the monolith base material 1 is formed.

管状乾燥容器37の一端面側にドライヤーを配置し、当該一端面側に開口したモノリス基材1の貫通孔3の開孔51より、ドライヤーから排出される所定温度に加熱された通風気体(熱風)を貫通孔内に送り込み、モノリス基材1の他端面側に開口した貫通孔の開口端より排気する。このようにして、モノリス基材1の外周面31からの気体の流出を抑制することができ、貫通孔1内を長手方向60の一方の端縁34の開孔51から他方の端縁35の開孔52(図2B中には図示しない)へと熱風を通過させながら前駆体溶液からなる膜の前記通風乾燥を行う。   A dryer is arranged on one end surface side of the tubular drying container 37, and a ventilating gas (hot air) heated to a predetermined temperature discharged from the dryer through the opening 51 of the through hole 3 of the monolith substrate 1 opened on the one end surface side. ) Is fed into the through hole, and exhausted from the open end of the through hole opened on the other end surface side of the monolith substrate 1. In this way, the outflow of gas from the outer peripheral surface 31 of the monolith substrate 1 can be suppressed, and the inside of the through-hole 1 from the opening 51 of one end edge 34 in the longitudinal direction 60 to the other end edge 35. The ventilation drying of the film made of the precursor solution is performed while passing hot air through the opening 52 (not shown in FIG. 2B).

このようにしてモノリス基材1の外周面31を気密とした状態で貫通孔3に通風気体を通すことにより、貫通孔3の表面に成膜されたポリアミド酸膜等の前駆体溶液からなる膜2の全体が通風気体にて均一に加熱され、乾燥やイミド化が膜の表面から均一に進行する。なお、本発明において、一度の成膜及び乾燥で所望の膜厚が得られない場合には、所望の膜厚が得られるまで成膜及び乾燥の工程を複数回繰り返すようにしても良い。   In this way, a film made of a precursor solution such as a polyamic acid film formed on the surface of the through hole 3 by passing the ventilation gas through the through hole 3 with the outer peripheral surface 31 of the monolith substrate 1 being airtight. The whole of 2 is heated uniformly by the ventilating gas, and drying and imidization proceed uniformly from the surface of the film. In the present invention, when a desired film thickness cannot be obtained by one film formation and drying, the film formation and drying steps may be repeated a plurality of times until the desired film thickness is obtained.

通風乾燥において、貫通孔3内を通過させる通風気体(熱風)の温度は、50〜300℃とすることが好ましく、100〜200℃とすることがより好ましく、110〜190℃とすることが更に好ましい。通風気体の温度が50℃未満では、乾燥速度が低くなり、300℃を超えると、長時間の乾燥で膜が燃えてしまう場合がある。また、通風気体の風速(貫通孔3内を通過する際の速度)は、0.5〜30m/sとすることが好ましく、1〜15m/sとすることがより好ましく、5〜10m/sとすることが更に好ましい。通風気体の風速が0.5m/s未満では、膜の乾燥やイミド化が不均一となる場合があり、30m/sを超えると、溶液の移動が起こり、成膜が不均一となる場合がある。   In the ventilation drying, the temperature of the ventilation gas (hot air) passing through the through hole 3 is preferably 50 to 300 ° C, more preferably 100 to 200 ° C, and further preferably 110 to 190 ° C. preferable. When the temperature of the ventilating gas is less than 50 ° C., the drying rate is low, and when it exceeds 300 ° C., the film may burn by drying for a long time. Further, the wind speed of the ventilation gas (speed when passing through the through hole 3) is preferably 0.5 to 30 m / s, more preferably 1 to 15 m / s, and 5 to 10 m / s. More preferably. When the air velocity of the ventilation gas is less than 0.5 m / s, the drying or imidization of the film may be non-uniform, and when it exceeds 30 m / s, the solution may move and the film formation may be non-uniform. is there.

本発明においては、モノリス基材全体又は前駆体溶液からなる膜が成膜されるモノリス基材1の貫通孔3表面を50〜350℃に予熱してから成膜を行うようにすると、通風乾燥による乾燥を加速することができるとともに、最終的に得られる分離膜の分離性能等が向上し、好ましい。   In the present invention, when the film is formed after preheating the surface of the through-hole 3 of the monolith substrate 1 on which the film made of the whole monolith substrate or the precursor solution is formed to 50 to 350 ° C., ventilation drying is performed. This is preferable because it can accelerate the drying by, and improve the separation performance of the separation membrane finally obtained.

前駆体溶液がポリアミド酸溶液である場合、それを成膜後、乾燥及びイミド化させて得られたポリイミド膜は、真空、あるいは窒素雰囲気やアルゴン雰囲気等の還元雰囲気下において、400〜1000℃程度の温度範囲で熱分解することにより炭化させることで、分離膜(炭素膜)となる。一般に、400℃未満の温度で炭化を行うと、ポリイミド膜が十分に炭化されず、分子ふるい膜としての選択性や透過速度が低下する。一方、1000℃を超える温度で炭化を行うと、細孔径が収縮することにより透過速度が減少する。   When the precursor solution is a polyamic acid solution, the polyimide film obtained by drying and imidizing after film formation is about 400 to 1000 ° C. in a vacuum or a reducing atmosphere such as a nitrogen atmosphere or an argon atmosphere. By carbonizing by pyrolysis in the temperature range, a separation membrane (carbon membrane) is obtained. In general, when carbonization is performed at a temperature of less than 400 ° C., the polyimide membrane is not sufficiently carbonized, and the selectivity as a molecular sieve membrane and the permeation rate are lowered. On the other hand, when carbonization is performed at a temperature exceeding 1000 ° C., the permeation rate decreases due to shrinkage of the pore diameter.

最終的に得られる分離膜の膜厚は、0.1〜10μmとすることが好ましく、0.1〜3μmとするとより好ましい。分離膜の膜厚が0.1μm未満では膜厚が不十分で十分な選択性を得ることが難しくなる場合があり、10μmを超えると膜厚が厚すぎて、透過流速が小さくなりすぎる場合がある。   The thickness of the finally obtained separation membrane is preferably 0.1 to 10 μm, more preferably 0.1 to 3 μm. If the thickness of the separation membrane is less than 0.1 μm, it may be difficult to obtain sufficient selectivity due to insufficient thickness, and if it exceeds 10 μm, the thickness may be too thick and the permeation flow rate may be too small. is there.

本発明により製造された分離膜の用途については、特に限定されるものではないが、水とエタノールとの分離に使用すると高い分離性能が得られるので、バイオマスから得られる水とエタノールとを含有する液体混合物からエタノールを回収する際の水とエタノールとの分離に好適である。   Although it does not specifically limit about the use of the separation membrane manufactured by this invention, Since high separation performance will be obtained when it uses for the separation of water and ethanol, it contains water and ethanol obtained from biomass It is suitable for separation of water and ethanol when recovering ethanol from the liquid mixture.

本発明の分離膜の製造方法の一実施形態で得られた分離膜は、長手方向60に垂直な断面が円形又は多角形であり、全体外径が10〜300mm、長さが30〜2000mmで、1〜10000個の貫通孔が形成されたモノリス基材1を使用し、前記本発明の製造方法により製造されたものである。この分離膜は、前記本発明の製造方法により製造されたものであるため、膜全体が均質で優れた分離性能を有する。   The separation membrane obtained in one embodiment of the method for producing a separation membrane of the present invention has a circular or polygonal cross section perpendicular to the longitudinal direction 60, an overall outer diameter of 10 to 300 mm, and a length of 30 to 2000 mm. The monolith substrate 1 in which 1 to 10,000 through holes are formed is manufactured by the manufacturing method of the present invention. Since this separation membrane is produced by the production method of the present invention, the whole membrane is homogeneous and has excellent separation performance.

前記のとおり、本発明の分離膜の製造方法の一実施形態において使用されるモノリス基材1は、製造のしやすさを考慮して、その長手方向に垂直な断面の形状を円形又は多角形とした。また、モノリス基材1の全体外径は10〜300mm、好ましくは20〜250mm、更に好ましくは30〜200mmとした。モノリス基材の全体外径が10mm未満では形成できる貫通孔数が少なくなり、300mmを超えると製造が困難となる。また、モノリス基材の長さは20〜2000mm、好ましくは30〜1700mm、更に好ましくは40〜1500mmとした。長さが20mm未満では分離膜の膜面積が小さくなり、2000mmを超えると製造、取り扱いが困難となる。また、体積当たりの膜面積と強度を考慮して、貫通孔数は1〜10000個、好ましくは10〜5000個、更に好ましくは30〜2000個とした。貫通孔数が10000個を超えると製造が困難で強度も低下する。   As described above, the monolith substrate 1 used in the embodiment of the method for producing a separation membrane of the present invention has a circular or polygonal cross-sectional shape perpendicular to the longitudinal direction in consideration of ease of production. It was. The overall outer diameter of the monolith substrate 1 is 10 to 300 mm, preferably 20 to 250 mm, and more preferably 30 to 200 mm. If the entire outer diameter of the monolith substrate is less than 10 mm, the number of through-holes that can be formed decreases, and if it exceeds 300 mm, manufacture becomes difficult. The length of the monolith substrate is 20 to 2000 mm, preferably 30 to 1700 mm, and more preferably 40 to 1500 mm. When the length is less than 20 mm, the membrane area of the separation membrane becomes small, and when it exceeds 2000 mm, manufacture and handling become difficult. In consideration of the membrane area per volume and the strength, the number of through-holes was 1 to 10,000, preferably 10 to 5000, and more preferably 30 to 2000. If the number of through-holes exceeds 10,000, production is difficult and strength is reduced.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実施例1)
モノリス基材として図3に示すような、直径30mm、長手方向60の長さが40mmのアルミナからなる多孔質のモノリス基材1を用いた。また、モノリス基材1は長手方向60の両端側に貫通した37個の貫通孔3を有している。モノリス基材1は長手方向60の両端に一方の端縁34側に開孔51、および他方の端縁35側に開孔52(図示しない)を有している。
Example 1
As the monolith substrate, a porous monolith substrate 1 made of alumina having a diameter of 30 mm and a length in the longitudinal direction 60 of 40 mm as shown in FIG. 3 was used. In addition, the monolith substrate 1 has 37 through holes 3 penetrating at both end sides in the longitudinal direction 60. The monolith substrate 1 has an opening 51 on one end edge 34 side at both ends in the longitudinal direction 60 and an opening 52 (not shown) on the other end edge 35 side.

成膜工程において、モノリス基材1の外周面31にシールテープを巻いてマスキングした後、その貫通孔3の長手方向60が鉛直方向となるように設置し、送液ポンプを使用して、N−メチル−2−ピロリドン(NMP)を溶媒とするポリアミド酸濃度10質量%のポリアミド酸溶液(宇部興産株式会社のU−ワニス−A(商品名))を、各貫通孔3の一方の開孔51から1cm/分の速度で各貫通孔内に送入し、降下させることにより、図4に示すように各貫通孔3の表面にポリアミド酸膜(前駆体溶液からなる膜2)を成膜した。   In the film forming process, after sealing the outer peripheral surface 31 of the monolith substrate 1 by masking it, the longitudinal direction 60 of the through-hole 3 is installed in the vertical direction, and a liquid feed pump is used to -Polyamide acid solution (U-Vanice-A (trade name) of Ube Industries, Ltd.) having a polyamic acid concentration of 10% by mass using methyl-2-pyrrolidone (NMP) as a solvent is opened in one through hole 3 A polyamic acid film (film 2 made of a precursor solution) is formed on the surface of each through hole 3 as shown in FIG. 4 by being fed into each through hole at a speed of 51 cm / min and lowered. did.

その後、乾燥工程において、ポリアミド酸溶液からなる膜を成膜したモノリス基材1を図2Aに示すような両端部が開口した管状乾燥容器37内部に収容し、更に一方の端縁34の外周面31及び他方の端縁35の外周面31と、管状乾燥容器37内面とを耐熱シール材32で気密に固定した。このようにして、モノリス基材1の外周面31側を、管状乾燥容器37の内面と耐熱シール材32とで覆うことにより、モノリス基材1の外周面31を除いて乾燥時の気体が流通しない閉じた空間30を形成した。   Thereafter, in the drying step, the monolith substrate 1 on which a film made of a polyamic acid solution is formed is accommodated in a tubular drying container 37 having both ends opened as shown in FIG. 31 and the outer peripheral surface 31 of the other end edge 35 and the inner surface of the tubular drying container 37 were hermetically fixed by a heat-resistant sealing material 32. In this way, by covering the outer peripheral surface 31 side of the monolith substrate 1 with the inner surface of the tubular drying container 37 and the heat-resistant sealing material 32, the gas at the time of drying flows except for the outer peripheral surface 31 of the monolith substrate 1. A closed space 30 was formed.

管状乾燥容器37に収容したモノリス基材1の一方の端縁34側にドライヤーを配置した。次に図2A、図2Bに示すように、モノリス基材1の貫通孔3の一方の端縁34側の開孔51より、ドライヤーを用いて150℃の熱風を、10m/sの風速で、貫モノリス基材1の他端面側に開口した貫通孔3の他方の端縁35側の開孔52へ70分間に渡って通過させ、更に熱風の温度を250℃に上昇させて15分間に渡って通過させて、ポリアミド酸膜の乾燥とイミド化を行った。以上の工程を3回繰り返した後、モノリス基材1を真空のボックス炉にて、800℃で熱処理し、前記イミド化により得られたポリイミド膜を炭化して、膜厚が約1μmの分離膜(炭素膜)を得た。こうして貫通孔3内表面に分離膜が形成されたモノリス基材1を浸透気化試験を行って、分離膜の分離性能を評価し、その結果を表1に示した。表1中の上段に分離係数αを、下段に透過流速(Flux[kg/m・h])を示す。表1中のn数は試行回数(1回目〜3回目)を示す。 A dryer was disposed on one end 34 side of the monolith substrate 1 accommodated in the tubular drying container 37. Next, as shown in FIGS. 2A and 2B, hot air at 150 ° C. is blown at a wind speed of 10 m / s from the opening 51 on the one end edge 34 side of the through hole 3 of the monolith substrate 1 using a dryer. Pass through the opening 52 on the other end 35 side of the through hole 3 opened on the other end surface side of the through monolith substrate 1 for 70 minutes, and further increase the temperature of the hot air to 250 ° C. for 15 minutes. The polyamic acid film was dried and imidized. After the above process is repeated three times, the monolith substrate 1 is heat-treated at 800 ° C. in a vacuum box furnace, and the polyimide film obtained by the imidization is carbonized to form a separation membrane having a thickness of about 1 μm. (Carbon film) was obtained. The pervaporation test was conducted on the monolith substrate 1 having the separation membrane formed on the inner surface of the through-hole 3 in this way to evaluate the separation performance of the separation membrane. The results are shown in Table 1. In Table 1, the separation factor α is shown in the upper part, and the permeation flow rate (Flux [kg / m 2 · h]) is shown in the lower part. The number n in Table 1 indicates the number of trials (first to third times).

Figure 2010089000
Figure 2010089000

分離膜の分離性能の評価は、図6に示すような浸透気化装置を使用し、次のようにして行った。分離膜が形成されたモノリス基材1を筒状の容器5内に収納し、モノリス基材1の両端外周部において、容器5内周面との隙間をシール材6によりシールした。恒温槽7に収容されたビーカー8内で所定温度に温められ供給液9を、循環ポンプ10により循環ライン11〜13に循環させ、この循環ラインの途中に配された前記容器5内のモノリス基材1の貫通孔3内を通過させた。こうしてモノリス基材1の貫通孔3表面に形成された分離膜に供給液9を接触させながら、透過側であるモノリス基材1の外側を、真空ポンプ14により、浸透気化ライン15、16を通じて0.1torr以下に吸引し、分離膜を透過した透過蒸気を、浸透気化ライン上の液体窒素17に浸された冷却トラップ18により透過液として捕捉した。なお、図6中、温度計19は供給液9の温度を測定用である。撹拌子20は供給液9を撹拌するものである。冷却管21はビーカー8上部に取り付けられている。供給液9には、水/エタノール比(質量比)が10/90である水/エタノール混合液を用い、当該供給液の温度を75℃として、分離膜の水/エタノール分離性能を評価した。この分離性能の評価には、下記数式(I)で表される水/エタノール分離係数α、及び、下記数式(II)で表される透過流速(Flux[kg/m・h])を用いた。なお、分離係数とは、供給側液組成比に対する透過側液組成比の比と定義される。即ち、[分離係数]=[透過側液組成比]/[供給側液組成比]。下記数式(I)中、Perm(水)、Perm(エタノール)は、各々、膜を透過した水、エタノールの体積濃度[vol%]である。また、Feed(水)、Feed(エタノール)は、各々、供給液の水、エタノールの体積濃度[vol%]である。 The separation performance of the separation membrane was evaluated using a pervaporation apparatus as shown in FIG. 6 as follows. The monolith substrate 1 on which the separation membrane was formed was housed in a cylindrical container 5, and the gap between the inner peripheral surface of the container 5 was sealed with a sealing material 6 at both ends of the monolith substrate 1. A supply liquid 9 heated to a predetermined temperature in a beaker 8 accommodated in a thermostat 7 is circulated to circulation lines 11 to 13 by a circulation pump 10, and a monolith group in the container 5 arranged in the middle of the circulation line. The material 1 was passed through the through hole 3. While the supply liquid 9 is brought into contact with the separation membrane formed on the surface of the through-hole 3 of the monolith substrate 1 in this manner, the outside of the monolith substrate 1 on the permeation side is zeroed through the pervaporation lines 15 and 16 by the vacuum pump 14. The permeated vapor that was sucked to below 1 torr and permeated through the separation membrane was captured as a permeated liquid by the cooling trap 18 immersed in the liquid nitrogen 17 on the pervaporation line. In FIG. 6, a thermometer 19 is for measuring the temperature of the supply liquid 9. The stirrer 20 stirs the supply liquid 9. The cooling pipe 21 is attached to the upper part of the beaker 8. A water / ethanol mixture having a water / ethanol ratio (mass ratio) of 10/90 was used as the supply liquid 9, and the water / ethanol separation performance of the separation membrane was evaluated by setting the temperature of the supply liquid to 75 ° C. For the evaluation of the separation performance, a water / ethanol separation coefficient α represented by the following formula (I) and a permeation flow rate (Flux [kg / m 2 · h]) represented by the following formula (II) are used. It was. The separation factor is defined as the ratio of the permeate side liquid composition ratio to the supply side liquid composition ratio. That is, [separation coefficient] = [permeation side liquid composition ratio] / [supply side liquid composition ratio]. In the following mathematical formula (I), Perm (water) and Perm (ethanol) are the volume concentration [vol%] of water and ethanol that permeate the membrane, respectively. Moreover, Feed (water) and Feed (ethanol) are water and ethanol volume concentrations [vol%], respectively.

α=(Perm(水)/Perm(エタノール))/(Feed(水)/Feed(エタノール)) ・・・(I)   α = (Perm (water) / Perm (ethanol)) / (Feed (water) / Feed (ethanol)) (I)

Flux=Q/(A・t) ・・・(II)
(式(II)において、Q:透過液質量[kg]、A:分離膜面積[m]、t:時間[h])
Flux = Q / (A · t) (II)
(In formula (II), Q: mass of permeate [kg], A: separation membrane area [m 2 ], t: time [h])

(比較例1)
図2A中の管状乾燥容器37を用いないこと以外は実施例1と同様の条件で分離膜を製造した。実施例1と同様に浸透気化試験を行って、分離膜の分離性能を評価し、その結果を表1に示した。表1中の上段に分離係数αを、下段に透過流速(Flux[kg/m・h])を示す。
(Comparative Example 1)
A separation membrane was produced under the same conditions as in Example 1 except that the tubular drying container 37 in FIG. 2A was not used. The pervaporation test was conducted in the same manner as in Example 1 to evaluate the separation performance of the separation membrane. The results are shown in Table 1. In Table 1, the separation factor α is shown in the upper part, and the permeation flow rate (Flux [kg / m 2 · h]) is shown in the lower part.

(比較例2)
図2A中の管状乾燥容器37を用いないで代替手段としてモノリス基材外周面をシールテープで被覆したこと以外は実施例1と同様の条件で分離膜を製造した。実施例1と同様に浸透気化試験を行って、分離膜の分離性能を評価し、その結果を表1に示した。表1中の上段に分離係数αを、下段に透過流速(Flux[kg/m・h])を示す。
(Comparative Example 2)
A separation membrane was produced under the same conditions as in Example 1 except that the outer peripheral surface of the monolith substrate was covered with a sealing tape as an alternative without using the tubular drying container 37 in FIG. 2A. The pervaporation test was conducted in the same manner as in Example 1 to evaluate the separation performance of the separation membrane. The results are shown in Table 1. In Table 1, the separation factor α is shown in the upper part, and the permeation flow rate (Flux [kg / m 2 · h]) is shown in the lower part.

表1に示すように、比較例2においては比較例1より膜性能向上について一定の効果は認められる。しかし実施例1においては比較例1および比較例2と比して分離膜の性能が著しく向上した。   As shown in Table 1, in Comparative Example 2, a certain effect for improving the film performance is recognized as compared with Comparative Example 1. However, in Example 1, the performance of the separation membrane was remarkably improved as compared with Comparative Example 1 and Comparative Example 2.

一般に、乾燥させるにはモノリス基材1はその外周面31が開放されているほうが好ましいと考えられるが、実際には管状乾燥容器37と耐熱シール材32等で密閉することにより膜性能が向上することがわかった。これは、乾燥工程において、膜側からの蒸発と、基材側からの蒸発に分けて考えると、膜側からの蒸発を大きくすると膜が緻密化するためと推察できる。   In general, it is considered that the outer peripheral surface 31 of the monolith substrate 1 is preferably opened for drying, but actually, the membrane performance is improved by sealing with the tubular drying container 37 and the heat-resistant sealing material 32 or the like. I understood it. This can be inferred that in the drying process, when the evaporation from the film side and the evaporation from the substrate side are considered separately, the film becomes denser when the evaporation from the film side is increased.

比較例1、比較例2においては乾燥工程で蒸気がモノリス基材1の外周面31に到達するため、ポリアミド酸溶液からなる膜がモノリス基材側からも乾燥することにより、膜の緻密化を阻害していると推定される。管状乾燥容器37を用いた実施例1にて得られた分離膜は、比較例1及び比較例2にて得られた分離膜に比して、高い分離性能を示した。これは、モノリス基材外周面を管状乾燥容器37と耐熱シール材32で気密とした状態で通風乾燥を行うため、モノリス基材1側からの蒸発を抑制して膜が緻密化したものと推定される。   In Comparative Example 1 and Comparative Example 2, since the vapor reaches the outer peripheral surface 31 of the monolith substrate 1 in the drying step, the membrane made of the polyamic acid solution is also dried from the monolith substrate side, thereby densifying the membrane. Presumed to be inhibiting. The separation membrane obtained in Example 1 using the tubular drying container 37 showed higher separation performance than the separation membranes obtained in Comparative Example 1 and Comparative Example 2. This is presumed that the membrane is densified by suppressing evaporation from the monolith substrate 1 side because the drying is performed with the outer peripheral surface of the monolith substrate being airtight with the tubular drying container 37 and the heat-resistant sealing material 32. Is done.

(実施例2)
実施例2においては、モノリス基材1の長手方向60の長さについて検討した。実施例1とは、モノリス基材1の長手方向60の長さを1000mmとした以外は同じ条件とした。実施例1と同様に浸透気化試験を行って、分離膜の分離性能を評価し、その結果を表2に示した。表2中の上段に分離係数αを、下段に透過流速(Flux[kg/m・h])を示す。表2中のn数は試行回数(1回目〜3回目)を示す。
(Example 2)
In Example 2, the length in the longitudinal direction 60 of the monolith substrate 1 was examined. The same conditions as in Example 1 were used except that the length of the monolith substrate 1 in the longitudinal direction 60 was 1000 mm. The pervaporation test was performed in the same manner as in Example 1 to evaluate the separation performance of the separation membrane. The results are shown in Table 2. The separation factor α is shown in the upper part of Table 2, and the permeation flow rate (Flux [kg / m 2 · h]) is shown in the lower part. The number n in Table 2 indicates the number of trials (first to third times).

Figure 2010089000
Figure 2010089000

(比較例3)
比較例1とは、モノリス基材1の長手方向60の長さを1000mmとした以外は同じ条件とした。比較例1と同様に浸透気化試験を行って、分離膜の分離性能を評価し、その結果を表2に示した。表2中の上段に分離係数αを、下段に透過流速(Flux[kg/m・h])を示す。
(Comparative Example 3)
The conditions were the same as those in Comparative Example 1 except that the length of the monolith substrate 1 in the longitudinal direction 60 was 1000 mm. The pervaporation test was conducted in the same manner as in Comparative Example 1 to evaluate the separation performance of the separation membrane. The results are shown in Table 2. The separation factor α is shown in the upper part of Table 2, and the permeation flow rate (Flux [kg / m 2 · h]) is shown in the lower part.

(比較例4)
比較例2とは、モノリス基材1の長手方向60の長さを1000mmとした以外は同じ条件とした。比較例2と同様に浸透気化試験を行って、分離膜の分離性能を評価し、その結果を表2に示した。表2中の上段に分離係数αを、下段に透過流速(Flux[kg/m・h])を示す。
(Comparative Example 4)
The conditions were the same as those in Comparative Example 2 except that the length of the monolith substrate 1 in the longitudinal direction 60 was 1000 mm. The permeation vaporization test was conducted in the same manner as in Comparative Example 2 to evaluate the separation performance of the separation membrane, and the results are shown in Table 2. The separation factor α is shown in the upper part of Table 2, and the permeation flow rate (Flux [kg / m 2 · h]) is shown in the lower part.

表2に示すように、比較例4においては比較例3より一定の効果は認められる。管状乾燥容器37を用いた実施例2にて得られた分離膜は、比較例3及び比較例4にて得られた分離膜に比して、高い分離性能を示した。一般に、モノリス基材の長手方向の長さを長くすると、分離膜にムラが生じやすいため、実施例2の分離膜性能は実施例1よりも低下している。ところが、実施例2と比較例3との対比で見ると、分離性能の向上が顕著であった。これらの結果から、モノリス基材外周面を、管状乾燥容器37と耐熱シール材32とで気密な状態とした実施例2の分離性能の向上が著しいことが示された。   As shown in Table 2, in Comparative Example 4, a certain effect is recognized as compared with Comparative Example 3. The separation membrane obtained in Example 2 using the tubular drying container 37 showed higher separation performance than the separation membranes obtained in Comparative Example 3 and Comparative Example 4. In general, when the length of the monolith substrate in the longitudinal direction is increased, unevenness of the separation membrane is likely to occur. However, when compared with Example 2 and Comparative Example 3, the improvement in separation performance was remarkable. From these results, it was shown that the improvement in the separation performance of Example 2 in which the outer peripheral surface of the monolith substrate was hermetically sealed with the tubular drying container 37 and the heat-resistant sealing material 32 was remarkable.

本発明は、バイオマス分野における水とエタノールとの分離のような各種混合物の分離に用いられる分離膜を、大規模な設備や複雑な工程を必要とすることなく分離性能の向上を実現したものであり、分離膜の製造に好適に利用することができる。   The present invention realizes an improvement in separation performance of a separation membrane used for separation of various mixtures such as separation of water and ethanol in the biomass field without requiring large-scale equipment and complicated processes. Yes, it can be suitably used for the production of a separation membrane.

本発明の分離膜の製造方法で用いられる多孔質基材の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the porous base material used with the manufacturing method of the separation membrane of this invention. 本発明の分離膜の製造方法の乾燥工程における通風乾燥の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the ventilation drying in the drying process of the manufacturing method of the separation membrane of this invention. 従来の分離膜の製造方法の乾燥工程における通風乾燥の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the ventilation drying in the drying process of the manufacturing method of the conventional separation membrane. 本発明の分離膜の製造方法の乾燥工程における通風乾燥の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the ventilation drying in the drying process of the manufacturing method of the separation membrane of this invention. 本発明の分離膜の製造方法の乾燥工程における通風乾燥の一例を示す、図2A中の領域Aの模式的一部拡大断面図である。It is a typical partial expanded sectional view of the area | region A in FIG. 2A which shows an example of the ventilation drying in the drying process of the manufacturing method of the separation membrane of this invention. モノリス基材の模式的斜視図である。It is a typical perspective view of a monolith substrate. 貫通孔の表面に前駆体溶液からなる膜が成膜されたモノリス基材の断面図である。It is sectional drawing of the monolith base material with which the film | membrane which consists of precursor solutions was formed into the surface of the through-hole. 従来の分離膜の製造方法における通風乾燥の方法の一例を示す説明図である。It is explanatory drawing which shows an example of the method of ventilation drying in the manufacturing method of the conventional separation membrane. 実施例において、水/エタノール分離性能の評価に使用した浸透気化装置の概略図である。In an Example, it is the schematic of the pervaporation apparatus used for evaluation of water / ethanol separation performance.

符号の説明Explanation of symbols

1:モノリス基材、2:前駆体溶液からなる膜、3:貫通孔、4:ドライヤー、5:容器、6:シール材、7:恒温槽、8:ビーカー、9:供給液、10:循環ポンプ、11、循環ライン、12:循環ライン、13:循環ライン、14:真空ポンプ、15:浸透気化ライン、16:浸透気化ライン、17:液体窒素、18:冷却トラップ、19:温度計、20:撹拌子、21:冷却管、30:空間、31:モノリス基材外周面、32:耐熱シール材、34:一方の端縁、35:他方の端縁、36:シール材、37:乾燥容器、38:他の表面、39:一の表面、41:蒸気、42:蒸気、51:一方の端縁の開孔、52:他方の端縁の開孔、60:長手方向、100:多孔質基材。 1: monolith substrate, 2: membrane made of precursor solution, 3: through-hole, 4: dryer, 5: container, 6: sealing material, 7: thermostatic bath, 8: beaker, 9: feed solution, 10: circulation Pump, 11, circulation line, 12: circulation line, 13: circulation line, 14: vacuum pump, 15: pervaporation line, 16: pervaporation line, 17: liquid nitrogen, 18: cooling trap, 19: thermometer, 20 : Stirrer, 21: Cooling tube, 30: Space, 31: Monolith substrate outer peripheral surface, 32: Heat-resistant sealing material, 34: One edge, 35: The other edge, 36: Sealing material, 37: Drying container 38: Other surface, 39: One surface, 41: Steam, 42: Steam, 51: Opening at one edge, 52: Opening at the other edge, 60: Longitudinal direction, 100: Porous Base material.

Claims (6)

多孔質基材の一の表面に分離膜とするための前駆体溶液を付着させることにより、前記一の表面に、前記前駆体溶液からなる膜を成膜する成膜工程と、前記前駆体溶液からなる膜を熱風により通風乾燥する乾燥工程とを含む、分離膜の製造方法であって、
前記乾燥工程において、少なくとも前記分離膜の使用時に透過性表面とされる他の表面を気密にした状態で、前記多孔質基材の前記他の表面からの気体の流出を抑制しつつ、前記一の表面上で熱風を通過させながら前記前駆体溶液からなる膜を通風乾燥する分離膜の製造方法。
A film forming step of forming a film made of the precursor solution on the one surface by attaching a precursor solution for forming a separation film on one surface of the porous substrate, and the precursor solution A method for producing a separation membrane, comprising a drying step in which a membrane comprising
In the drying step, at least the other surface, which is a permeable surface when using the separation membrane, is airtight, while suppressing the outflow of gas from the other surface of the porous substrate. A method for producing a separation membrane, wherein a membrane comprising the precursor solution is blown and dried while passing hot air over the surface.
長手方向の一方の端縁側の開孔から前記長手方向の他方の端縁側の開孔まで貫通する流体の流路となる少なくとも一つの貫通孔が形成された筒状のモノリス基材を前記多孔質基材とし、
前記貫通孔の表面を前記一の表面とし、
前記モノリス基材の外周面を前記他の表面とし、
前記成膜工程において、前記貫通孔内に前記前駆体溶液を通すことにより、前記貫通孔の表面に、前記前駆体溶液からなる膜を成膜し、
前記乾燥工程において、前記モノリス基材の外周面側を気密にした状態で、前記モノリス基材の前記外周面からの気体の流出を抑制しつつ、前記貫通孔内を長手方向の前記一方の端縁の開孔から前記他方の端縁の開孔へと熱風を通過させながら前記前駆体溶液からなる膜を通風乾燥する請求項1に記載の分離膜の製造方法。
A cylindrical monolith substrate having at least one through-hole formed as a flow path for a fluid penetrating from an opening on one end side in the longitudinal direction to an opening on the other end side in the longitudinal direction. As a base material,
The surface of the through hole is the one surface,
The outer peripheral surface of the monolith substrate is the other surface,
In the film formation step, by passing the precursor solution through the through hole, a film made of the precursor solution is formed on the surface of the through hole,
In the drying step, in the state where the outer peripheral surface side of the monolith substrate is hermetically sealed, the one end in the longitudinal direction in the through hole is suppressed while suppressing the outflow of gas from the outer peripheral surface of the monolith substrate. The method for producing a separation membrane according to claim 1, wherein the membrane made of the precursor solution is blown and dried while passing hot air from the opening at the edge to the opening at the other edge.
前記乾燥工程において、前記モノリス基材を両端部が開口した管状乾燥容器の内部に収容し、前記モノリス基材の前記長手方向の両端縁の前記外周面と前記管状乾燥容器内面とを耐熱シール材で気密に固定し、前記モノリス基材の外周面側を気密とした状態で前記前駆体溶液からなる膜を通風乾燥する請求項2に記載の分離膜の製造方法。   In the drying step, the monolith substrate is accommodated in a tubular drying container having both ends open, and the outer peripheral surface of the both ends in the longitudinal direction of the monolith substrate and the inner surface of the tubular drying container are heat-resistant sealing material. 3. The method for producing a separation membrane according to claim 2, wherein the membrane comprising the precursor solution is air-dried in a state where the membrane is made airtight and the outer peripheral surface side of the monolith substrate is airtight. 前記乾燥工程において前記前駆体溶液からなる膜を通風乾燥させた後、乾燥させた前記前駆体溶液からなる膜を最終的に熱分解して炭化させることにより分離膜とする請求項1〜3のいずれか1項に記載の分離膜の製造方法。   The membrane of the precursor solution is blown and dried in the drying step, and the dried membrane of the precursor solution is finally pyrolyzed and carbonized to form a separation membrane. The manufacturing method of the separation membrane of any one of Claims 1. 前記前駆体溶液としてポリイミド溶液を使用した請求項1〜4のいずれか一項に記載の分離膜の製造方法。   The method for producing a separation membrane according to any one of claims 1 to 4, wherein a polyimide solution is used as the precursor solution. 前記前駆体溶液としてポリアミド酸溶液を使用し、
前記乾燥工程において、前記膜を通風乾燥させるとともにイミド化させる請求項1〜4のいずれか一項に記載の分離膜の製造方法。
Using a polyamic acid solution as the precursor solution,
The method for producing a separation membrane according to any one of claims 1 to 4, wherein in the drying step, the membrane is air-dried and imidized.
JP2008260770A 2008-10-07 2008-10-07 Method of manufacturing separation membrane Pending JP2010089000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008260770A JP2010089000A (en) 2008-10-07 2008-10-07 Method of manufacturing separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008260770A JP2010089000A (en) 2008-10-07 2008-10-07 Method of manufacturing separation membrane

Publications (1)

Publication Number Publication Date
JP2010089000A true JP2010089000A (en) 2010-04-22

Family

ID=42252247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008260770A Pending JP2010089000A (en) 2008-10-07 2008-10-07 Method of manufacturing separation membrane

Country Status (1)

Country Link
JP (1) JP2010089000A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148713A1 (en) * 2010-05-27 2011-12-01 京セラ株式会社 Carbon film composite, method for producing same, and separation membrane module
WO2013136869A1 (en) 2012-03-16 2013-09-19 日本碍子株式会社 Process for producing separation membrane, process for producing separation membrane composite, and separation membrane composite
WO2013145857A1 (en) 2012-03-29 2013-10-03 日本碍子株式会社 Separation membrane manufacturing method
JP2018021720A (en) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 Hot blast circulation type heating device and process of manufacture of separation film structure using the hot blast circulation type heating device
WO2018088064A1 (en) * 2016-11-08 2018-05-17 日本碍子株式会社 Method for drying separation membrane and method for producing separation membrane structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050814A1 (en) * 2006-10-18 2008-05-02 Ngk Insulators, Ltd. Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
WO2008078442A1 (en) * 2006-12-25 2008-07-03 Ngk Insulators, Ltd. Separation membrane and method for production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050814A1 (en) * 2006-10-18 2008-05-02 Ngk Insulators, Ltd. Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
WO2008078442A1 (en) * 2006-12-25 2008-07-03 Ngk Insulators, Ltd. Separation membrane and method for production thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130081991A1 (en) * 2010-05-27 2013-04-04 Kyocera Corporation Carbon film composite, method for producing same, and separation membrane module
WO2011148713A1 (en) * 2010-05-27 2011-12-01 京セラ株式会社 Carbon film composite, method for producing same, and separation membrane module
JP5523560B2 (en) * 2010-05-27 2014-06-18 京セラ株式会社 Carbon membrane composite, method for producing the same, and separation membrane module
JPWO2013136869A1 (en) * 2012-03-16 2015-08-03 日本碍子株式会社 Separation membrane production method, separation membrane complex production method, and separation membrane complex
WO2013136869A1 (en) 2012-03-16 2013-09-19 日本碍子株式会社 Process for producing separation membrane, process for producing separation membrane composite, and separation membrane composite
JPWO2013145857A1 (en) * 2012-03-29 2015-12-10 日本碍子株式会社 Manufacturing method of separation membrane
WO2013145857A1 (en) 2012-03-29 2013-10-03 日本碍子株式会社 Separation membrane manufacturing method
US9486744B2 (en) 2012-03-29 2016-11-08 Ngk Insulators, Ltd. Separation membrane manufacturing method
JP2018021720A (en) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 Hot blast circulation type heating device and process of manufacture of separation film structure using the hot blast circulation type heating device
WO2018088064A1 (en) * 2016-11-08 2018-05-17 日本碍子株式会社 Method for drying separation membrane and method for producing separation membrane structure
CN109890489A (en) * 2016-11-08 2019-06-14 日本碍子株式会社 The drying means of seperation film and the manufacturing method for separating film structure
JPWO2018088064A1 (en) * 2016-11-08 2019-09-26 日本碍子株式会社 Method for drying separation membrane and method for producing separation membrane structure
JP7096163B2 (en) 2016-11-08 2022-07-05 日本碍子株式会社 Method for drying the separation membrane and method for manufacturing the separation membrane structure
US11534724B2 (en) 2016-11-08 2022-12-27 Ngk Insulators, Ltd. Method for drying separation membrane and method for producing separation membrane structure

Similar Documents

Publication Publication Date Title
JP5829787B2 (en) Manufacturing method of separation membrane
JP5469453B2 (en) Ceramic filter and method for regenerating the same
JP3361655B2 (en) Porous ceramics composite hollow fiber membrane and method for producing the same
JP5624542B2 (en) Carbon membrane manufacturing method, carbon membrane, and separation apparatus
JP2010110704A (en) Manufacturing method for separation membrane
JP2010089000A (en) Method of manufacturing separation membrane
WO2008069030A1 (en) Carbon membrane laminated body and method for manufacturing the same
JP6074410B2 (en) Method for producing separation membrane and method for producing separation membrane composite
WO2010125898A1 (en) Separation membrane for concentration of hydrochloric acid, method for concentration of hydrochloric acid, and apparatus for concentration of hydrochloric acid
JP5289790B2 (en) Method for producing separation membrane element comprising carbon membrane
JP2010099559A (en) Method for manufacturing separation membrane
JP6009541B2 (en) Manufacturing method of separation membrane
JP2013031830A (en) Porous body with separation membrane
JP6702884B2 (en) Gas separation method
WO2010125897A1 (en) Separation membrane for concentration of sulfuric acid, method for concentration of sulfuric acid, and apparatus for concentration of sulfuric acid
JP5853529B2 (en) Hollow fiber carbon membrane and method for producing the same
JP2009255031A (en) Treatment method of ceramic porous film
CN115025639A (en) Method for preparing asymmetric composite membrane for separating VOCs (volatile organic compounds)/non-condensable gas by blending one-step method
JP2018083135A (en) Hollow fiber carbon membrane manufacturing method, hollow fiber carbon membrane, and module thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807