JP2010087283A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element Download PDF

Info

Publication number
JP2010087283A
JP2010087283A JP2008255435A JP2008255435A JP2010087283A JP 2010087283 A JP2010087283 A JP 2010087283A JP 2008255435 A JP2008255435 A JP 2008255435A JP 2008255435 A JP2008255435 A JP 2008255435A JP 2010087283 A JP2010087283 A JP 2010087283A
Authority
JP
Japan
Prior art keywords
conductive film
layer
semiconductor layer
nitride semiconductor
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008255435A
Other languages
Japanese (ja)
Other versions
JP5161720B2 (en
Inventor
Akihiko Murai
章彦 村井
Kazuyuki Yamae
和幸 山江
Tomoya Iwahashi
友也 岩橋
Hiroshi Fukushima
博司 福島
Masaharu Yasuda
正治 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008255435A priority Critical patent/JP5161720B2/en
Publication of JP2010087283A publication Critical patent/JP2010087283A/en
Application granted granted Critical
Publication of JP5161720B2 publication Critical patent/JP5161720B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting element improving reliability while improving light extraction efficiency. <P>SOLUTION: This semiconductor light emitting element includes: a transparent conductive film 9 laminated between a p-type nitride semiconductor layer 6 and an anode electrode 7 and on the side of the p-type nitride semiconductor layer 6 opposite to a nitride light emitting layer 5 side, and formed of GZO (ZnO doped with Ga) film small in a refractive index relative to the p-type nitride semiconductor layer 6; and a reflecting conductive film 11 formed on the side of the conductive film 9 opposite to the p-type nitride semiconductor layer 6 side, having conductivity, and formed of a Ag film reflecting light emitted from the nitride light emitting layer 5; wherein an adhesive conductive film 10 transparent for light emitted from the nitride light emitting layer 5, having conductivity, enhancing adhesion force of the reflecting conductive film 11 to the transparent conductive film 9 side, and formed of a Pt film is interposed between the transparent conductive film 9 and the reflecting conductive film 11. In this case, the film thickness of the Pt film constituting the adhesive conductive film 10 is set ≤0.5 nm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発光層が窒化物半導体材料により形成された半導体発光素子に関するものである。   The present invention relates to a semiconductor light emitting device in which a light emitting layer is formed of a nitride semiconductor material.

従来から、発光層がGaN、InGaN、AlGaN、InAlGaNなどの窒化物半導体材料により形成されるとともに厚み方向の一表面側にアノード電極およびカソード電極が形成され、実装基板に対してフリップチップ実装して用いることが可能な半導体発光素子において、光取り出し効率を向上するためにアノード電極およびカソード電極での光吸収を抑制するようにした構造が各所で研究開発されている(例えば、特許文献1)。   Conventionally, a light emitting layer is formed of a nitride semiconductor material such as GaN, InGaN, AlGaN, InAlGaN, and an anode electrode and a cathode electrode are formed on one surface side in the thickness direction. In a semiconductor light emitting device that can be used, a structure in which light absorption at an anode electrode and a cathode electrode is suppressed in order to improve light extraction efficiency has been researched and developed in various places (for example, Patent Document 1).

ここにおいて、上記特許文献1に開示された半導体発光素子は、図5に示すように、サファイア基板からなる透光性基板1’の一表面側に形成されたGaN層からなるバッファ層2’と、バッファ層2’上に形成されたノンドープGaN層からなるノンドープ窒化物半導体層3’と、ノンドープ窒化物半導体層3’上に形成されたn形GaN層からなるn形窒化物半導体層4’と、n形窒化物半導体層4’上に形成され量子井戸構造を有する窒化物発光層5’と、窒化物発光層5’上に形成されたp形GaN層からなるp形窒化物半導体層6’と、p形窒化物半導体層6’の表面側に形成されたアノード電極7’と、n形窒化物半導体層4’における透光性基板1’側とは反対の表面側に形成されたカソード電極8’とを備え、p形窒化物半導体層6’とアノード電極7’との間に、p形窒化物半導体層6’における窒化物発光層5’側とは反対側に積層されp形窒化物半導体層よりも屈折率が小さなZnO膜からなる透明導電膜9’と、透明導電膜9’におけるp形窒化物半導体層6’側とは反対側に形成され導電性を有するとともに窒化物発光層5’から放射された光を反射するAg膜からなる反射導電膜11’とを備えている。   Here, as shown in FIG. 5, the semiconductor light emitting device disclosed in Patent Document 1 includes a buffer layer 2 ′ made of a GaN layer formed on one surface side of a translucent substrate 1 ′ made of a sapphire substrate, and The non-doped nitride semiconductor layer 3 ′ composed of a non-doped GaN layer formed on the buffer layer 2 ′ and the n-type nitride semiconductor layer 4 ′ composed of an n-type GaN layer formed on the non-doped nitride semiconductor layer 3 ′. A p-type nitride semiconductor layer comprising a nitride light-emitting layer 5 ′ having a quantum well structure formed on the n-type nitride semiconductor layer 4 ′ and a p-type GaN layer formed on the nitride light-emitting layer 5 ′. 6 ′, an anode electrode 7 ′ formed on the surface side of the p-type nitride semiconductor layer 6 ′, and a surface side opposite to the translucent substrate 1 ′ side in the n-type nitride semiconductor layer 4 ′. Cathode electrode 8 'and p-type nitride half ZnO is laminated between the body layer 6 'and the anode electrode 7' on the opposite side of the p-type nitride semiconductor layer 6 'from the nitride light-emitting layer 5' side and has a smaller refractive index than the p-type nitride semiconductor layer. A transparent conductive film 9 ′ made of a film, and formed on the opposite side of the transparent conductive film 9 ′ to the p-type nitride semiconductor layer 6 ′ side, has conductivity and reflects light emitted from the nitride light emitting layer 5 ′ And a reflective conductive film 11 ′ made of an Ag film.

図5に示した構成の半導体発光素子では、アノード電極7’とカソード電極8’との間に順方向バイアス電圧を印加することにより窒化物発光層5’に注入された電子とホールとが再結合することで発光する。ここで、図5に示した構成の半導体発光素子は、実装基板にフリップチップ実装し透光性基板1’の他表面を光取り出し面として用いられるものであり、窒化物発光層5’からn形窒化物半導体層4’側へ放射された光が透光性基板1’を通して光取り出し面から出射されるとともに、p形窒化物半導体層6’側へ放射された光の一部がp形窒化物半導体層6’と透明導電膜9’との界面で両者の屈折率差に起因してフレネル反射されて光取り出し面から出射され、透明導電膜9’を透過した光が反射導電膜11’で反射されて光取り出し面から出射されることとなるので、光取り出し効率を高めることができる。
特開2005−45038号公報
In the semiconductor light emitting device having the configuration shown in FIG. 5, by applying a forward bias voltage between the anode electrode 7 ′ and the cathode electrode 8 ′, electrons and holes injected into the nitride light emitting layer 5 ′ are regenerated. Emits light when combined. Here, the semiconductor light emitting device having the configuration shown in FIG. 5 is flip-chip mounted on a mounting substrate and the other surface of the translucent substrate 1 ′ is used as a light extraction surface. Light emitted to the side of the nitride semiconductor layer 4 ′ is emitted from the light extraction surface through the translucent substrate 1 ′, and part of the light emitted to the side of the p-type nitride semiconductor layer 6 ′ is p-type. The light reflected by the Fresnel reflection at the interface between the nitride semiconductor layer 6 ′ and the transparent conductive film 9 ′ due to the difference in refractive index between them and emitted from the light extraction surface and transmitted through the transparent conductive film 9 ′. Since it is reflected by 'and emitted from the light extraction surface, the light extraction efficiency can be increased.
JP-A-2005-45038

しかしながら、図5に示した構成の半導体発光素子では、透明導電膜9’と反射導電膜11’との密着性が低いので、実装基板にフリップチップ実装する際や当該フリップチップ実装後に透明導電膜9’から反射導電膜11’が剥離してしまい、光出力特性が低下してしまうという問題があった。   However, in the semiconductor light emitting device having the configuration shown in FIG. 5, since the adhesion between the transparent conductive film 9 ′ and the reflective conductive film 11 ′ is low, the transparent conductive film is used when flip chip mounting is performed on the mounting substrate or after the flip chip mounting. There was a problem that the reflective conductive film 11 ′ peeled off from 9 ′ and the light output characteristics deteriorated.

本発明は上記事由に鑑みて為されたものであり、その目的は、光取り出し効率の向上を図りつつ信頼性の向上を図れる半導体発光素子を提供することにある。   The present invention has been made in view of the above reasons, and an object of the present invention is to provide a semiconductor light emitting device capable of improving reliability while improving light extraction efficiency.

請求項1の発明は、n形窒化物半導体層と窒化物発光層とp形窒化物半導体層との積層構造を有し、p形窒化物半導体層における窒化物発光層側とは反対側にアノード電極が形成されるとともに、n形窒化物半導体層における窒化物発光層の積層側にカソード電極が形成された半導体発光素子であって、p形窒化物半導体層とアノード電極との間に、p形窒化物半導体層における窒化物発光層側とは反対側に積層されp形窒化物半導体層よりも屈折率が小さな透明導電膜と、透明導電膜におけるp形窒化物半導体層側とは反対側に形成され導電性を有するとともに窒化物発光層から放射された光を反射する反射導電膜とを備え、透明導電膜と反射導電膜との間に、窒化物発光層から放射される光に対して透明であるとともに導電性を有し且つ透明導電膜側への反射導電膜の接着力を高める接着導電膜を介在させてなることを特徴とする。   The invention of claim 1 has a laminated structure of an n-type nitride semiconductor layer, a nitride light-emitting layer, and a p-type nitride semiconductor layer, on the opposite side of the p-type nitride semiconductor layer from the nitride light-emitting layer side. A semiconductor light emitting device in which an anode electrode is formed and a cathode electrode is formed on the nitride light emitting layer stack side of the n type nitride semiconductor layer, and between the p type nitride semiconductor layer and the anode electrode, A transparent conductive film laminated on the opposite side of the p-type nitride semiconductor layer to the nitride light emitting layer side and having a refractive index smaller than that of the p-type nitride semiconductor layer, and opposite to the p-type nitride semiconductor layer side of the transparent conductive film A reflective conductive film that is electrically conductive and reflects light emitted from the nitride light-emitting layer, and between the transparent conductive film and the reflective conductive film, the light emitted from the nitride light-emitting layer. Transparent and conductive, and By interposing adhesive conductive film to enhance the adhesion of the reflective conductive film to transparent conductive film side, characterized by comprising.

この発明によれば、p形窒化物半導体層における窒化物発光層側とは反対側に積層されp形窒化物半導体層よりも屈折率が小さな透明導電膜と、透明導電膜におけるp形窒化物半導体層側とは反対側に形成され導電性を有するとともに窒化物発光層から放射された光を反射する反射導電膜とを備えているので、光取り出し効率の向上を図れ、しかも、透明導電膜と反射導電膜との間に、窒化物発光層から放射される光に対して透明であるとともに導電性を有し且つ透明導電膜側への反射導電膜の接着力を高める接着導電膜を介在させてあるので、光取り出し効率の低下を抑制しつつ透明導電膜側への反射導電膜の接着力を高めることができ、信頼性を向上できる。   According to this invention, the p-type nitride semiconductor layer is laminated on the side opposite to the nitride light emitting layer side and has a refractive index smaller than that of the p-type nitride semiconductor layer, and the p-type nitride in the transparent conductive film A reflective conductive film which is formed on the side opposite to the semiconductor layer side and has conductivity and reflects light emitted from the nitride light emitting layer is provided, so that the light extraction efficiency can be improved, and the transparent conductive film An adhesive conductive film that is transparent to the light emitted from the nitride light emitting layer and has conductivity and increases the adhesion of the reflective conductive film to the transparent conductive film side is interposed between the conductive film and the reflective conductive film Therefore, the adhesive force of the reflective conductive film to the transparent conductive film side can be increased while suppressing a decrease in light extraction efficiency, and the reliability can be improved.

請求項2の発明は、請求項1の発明において、前記透明導電膜の材料は、GZO、AZO、ITOの群から選択されることを特徴とする。   According to a second aspect of the invention, in the first aspect of the invention, the material of the transparent conductive film is selected from the group of GZO, AZO, and ITO.

この発明によれば、前記p形窒化物半導体層と前記透明導電膜とのオーミック接触を得ることができる。   According to this invention, ohmic contact between the p-type nitride semiconductor layer and the transparent conductive film can be obtained.

請求項3の発明は、請求項1又は2の発明において、前記反射導電膜の材料は、Agであることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the material of the reflective conductive film is Ag.

この発明によれば、前記反射導電膜の材料がAlである場合に比べて、前記窒化物発光層から放射される光に対する前記反射導電膜の反射率を高めることができる。   According to this invention, compared with the case where the material of the said reflective conductive film is Al, the reflectance of the said reflective conductive film with respect to the light radiated | emitted from the said nitride light emitting layer can be raised.

請求項4の発明は、請求項1乃至3の発明において、前記接着導電膜の材料は、Pt、Ti、Al、Ni、Rh、Ga、Inの群から選択されることを特徴とする。 According to a fourth aspect of the present invention, in the first to third aspects of the invention, the material of the adhesive conductive film is selected from the group of Pt, Ti, Al, Ni, Rh, Ga 2 O 3 , and In 2 O 3. It is characterized by.

この発明によれば、前記接着導電膜の膜厚を適宜設定することにより、光取り出し効率の低下を抑制しつつ前記透明導電膜側への前記反射導電膜の接着力を高めることができる。   According to this invention, by appropriately setting the film thickness of the adhesive conductive film, it is possible to increase the adhesive force of the reflective conductive film to the transparent conductive film side while suppressing a decrease in light extraction efficiency.

請求項5の発明は、請求項1乃至4の発明において、前記n形窒化物半導体層と前記カソード電極との間に、前記n形窒化物半導体層における前記窒化物発光層の積層側に形成され前記n形窒化物半導体層よりも屈折率が小さな透明導電膜と、透明導電膜における前記n形窒化物半導体層側とは反対側に形成され導電性を有するとともに前記窒化物発光層から放射された光を反射する反射導電膜とを備え、透明導電膜と反射導電膜との間に、窒化物発光層から放射される光に対して透明であるとともに導電性を有し且つ透明導電膜側への反射導電膜の接着力を高める接着導電膜を介在させてなることを特徴とする。   According to a fifth aspect of the present invention, in the first to fourth aspects of the present invention, the n-type nitride semiconductor layer is formed between the n-type nitride semiconductor layer and the nitride light-emitting layer between the n-type nitride semiconductor layer and the cathode electrode. A transparent conductive film having a refractive index smaller than that of the n-type nitride semiconductor layer, and formed on the opposite side of the transparent conductive film from the n-type nitride semiconductor layer side, having conductivity and emitting from the nitride light-emitting layer. A transparent conductive film that is transparent to the light emitted from the nitride light-emitting layer and has conductivity between the transparent conductive film and the reflective conductive film. It is characterized by interposing an adhesive conductive film that enhances the adhesive strength of the reflective conductive film to the side.

この発明によれば、前記n形窒化物半導体層における前記窒化物発光層の積層側に形成され前記n形窒化物半導体層よりも屈折率が小さな透明導電膜と、透明導電膜における前記n形窒化物半導体層側とは反対側に形成され導電性を有するとともに前記窒化物発光層から放射された光を反射する反射導電膜とを備えているので、光取り出し効率の向上を図れ、しかも、透明導電膜と反射導電膜との間に、窒化物発光層から放射される光に対して透明であるとともに導電性を有し且つ透明導電膜側への反射導電膜の接着力を高める接着導電膜を介在させてあるので、光取り出し効率の低下を抑制しつつ透明導電膜側への反射導電膜の接着力を高めることができ、信頼性を向上できる。   According to this invention, the transparent conductive film formed on the laminated side of the nitride light emitting layer in the n-type nitride semiconductor layer and having a refractive index smaller than that of the n-type nitride semiconductor layer, and the n-type in the transparent conductive film Since it is provided on the opposite side to the nitride semiconductor layer side and has conductivity and a reflective conductive film that reflects the light emitted from the nitride light emitting layer, the light extraction efficiency can be improved, Adhesive conductivity between the transparent conductive film and the reflective conductive film, which is transparent to the light emitted from the nitride light emitting layer, has conductivity, and increases the adhesion of the reflective conductive film to the transparent conductive film side Since the film is interposed, the adhesive force of the reflective conductive film to the transparent conductive film side can be increased while suppressing a decrease in light extraction efficiency, and the reliability can be improved.

請求項1の発明では、光取り出し効率の向上を図りつつ信頼性を向上できるという効果がある。   In the invention of claim 1, there is an effect that the reliability can be improved while improving the light extraction efficiency.

(実施形態1)
本実施形態の半導体発光素子は、図1に示すように、GaN基板からなる透光性基板1の一表面側(図1における下面側)にn形GaN層からなるn形窒化物半導体層4が形成され、n形窒化物半導体層4上に量子井戸構造を有する窒化物発光層5が形成され、窒化物発光層5上にp形GaN層からなるp形窒化物半導体層6が形成されている。要するに、本実施形態の半導体発光素子は、透光性基板1の上記一表面側にn形窒化物半導体層4と窒化物発光層5とp形窒化物半導体層6との積層構造を有している。なお、n形窒化物半導体層4、窒化物発光層5、およびp形窒化物半導体層6は、透光性基板1の上記一表面側にMOVPE法のようなエピタキシャル成長技術を利用して成膜するので、透光性基板1とn形窒化物半導体層4との間にバッファ層を適宜設けてもよい。また、n形窒化物半導体層4、窒化物発光層5、およびp形窒化物半導体層6の結晶成長方法は、MOVPE法に限定するものではなく、例えば、ハライド気相成長法(HVPE法)や、分子線エピタキシー法(MBE法)などを採用してもよい。また、透光性基板1は、窒化物発光層5から放射される光に対して透明であればよく、例えば、サファイア基板、SiC基板、ZnO基板などを採用してもよい。
(Embodiment 1)
As shown in FIG. 1, the semiconductor light emitting device of this embodiment includes an n-type nitride semiconductor layer 4 made of an n-type GaN layer on one surface side (the lower surface side in FIG. 1) of a light-transmitting substrate 1 made of a GaN substrate. The nitride light-emitting layer 5 having a quantum well structure is formed on the n-type nitride semiconductor layer 4, and the p-type nitride semiconductor layer 6 made of a p-type GaN layer is formed on the nitride light-emitting layer 5. ing. In short, the semiconductor light-emitting device of this embodiment has a laminated structure of the n-type nitride semiconductor layer 4, the nitride light-emitting layer 5, and the p-type nitride semiconductor layer 6 on the one surface side of the translucent substrate 1. ing. The n-type nitride semiconductor layer 4, the nitride light emitting layer 5, and the p-type nitride semiconductor layer 6 are formed on the one surface side of the translucent substrate 1 using an epitaxial growth technique such as MOVPE. Therefore, a buffer layer may be appropriately provided between the translucent substrate 1 and the n-type nitride semiconductor layer 4. Further, the crystal growth method of the n-type nitride semiconductor layer 4, the nitride light emitting layer 5, and the p-type nitride semiconductor layer 6 is not limited to the MOVPE method. For example, the halide vapor phase growth method (HVPE method) Alternatively, a molecular beam epitaxy method (MBE method) or the like may be employed. Moreover, the translucent substrate 1 should just be transparent with respect to the light radiated | emitted from the nitride light emitting layer 5, For example, a sapphire substrate, a SiC substrate, a ZnO substrate etc. may be employ | adopted.

また、本実施形態の半導体発光素子は、p形窒化物半導体層6における窒化物発光層5側とは反対側にアノード電極7が形成されるとともに、n形窒化物半導体層4における窒化物発光層5の積層側にカソード電極8が形成されている。ここで、カソード電極8は、透光性基板1の上記一表面側へn形窒化物半導体層4、窒化物発光層5、p形窒化物半導体層6を順次成長させた後で、n形窒化物半導体層4と窒化物発光層5とp形窒化物半導体層5との積層膜の所定領域をp形窒化物半導体層6の表面側からn形窒化物半導体層4の途中までエッチングすることにより露出させたn形窒化物半導体層4の表面に形成されている。   In the semiconductor light emitting device of this embodiment, the anode electrode 7 is formed on the opposite side of the p-type nitride semiconductor layer 6 to the nitride light emitting layer 5 side, and the nitride light emission in the n-type nitride semiconductor layer 4 is performed. A cathode electrode 8 is formed on the layer 5 stacking side. Here, the cathode electrode 8 is formed by sequentially growing the n-type nitride semiconductor layer 4, the nitride light-emitting layer 5, and the p-type nitride semiconductor layer 6 on the one surface side of the translucent substrate 1, and then forming the n-type A predetermined region of the laminated film of nitride semiconductor layer 4, nitride light emitting layer 5, and p-type nitride semiconductor layer 5 is etched from the surface side of p-type nitride semiconductor layer 6 to the middle of n-type nitride semiconductor layer 4. The n-type nitride semiconductor layer 4 is exposed on the surface.

ここにおいて、本実施形態の半導体発光素子では、アノード電極7とカソード電極8との間に順方向バイアス電圧を印加することにより、アノード電極7からp形窒化物半導体層6へホールが注入されるとともに、カソード電極8からn形窒化物半導体層4へ電子が注入され、窒化物発光層5に注入された電子とホールとが再結合することで発光する。   Here, in the semiconductor light emitting device of this embodiment, holes are injected from the anode electrode 7 into the p-type nitride semiconductor layer 6 by applying a forward bias voltage between the anode electrode 7 and the cathode electrode 8. At the same time, electrons are injected from the cathode electrode 8 into the n-type nitride semiconductor layer 4, and light is emitted by recombination of the electrons and holes injected into the nitride light emitting layer 5.

上述のn形窒化物半導体層4は、透光性基板1上に形成されたn形GaN層で構成してあるが、単層構造に限らず、多層構造でもよく、例えば、透光性基板1がサファイア基板の場合には、透光性基板1の上記一表面側にAlN層やAlGaN層などからなるバッファ層を介して形成されたn形AlGaN層と、当該n形AlGaN層上のn形GaN層とで構成してもよい。   The n-type nitride semiconductor layer 4 described above is composed of an n-type GaN layer formed on the translucent substrate 1, but is not limited to a single layer structure, and may be a multi-layer structure. For example, the translucent substrate When 1 is a sapphire substrate, an n-type AlGaN layer formed on the one surface side of the translucent substrate 1 via a buffer layer made of an AlN layer, an AlGaN layer, or the like, and an n-type on the n-type AlGaN layer You may comprise with a shape GaN layer.

また、窒化物発光層5は、GaN層からなる障壁層によりInGaN層からなる井戸層が挟まれた量子井戸構造を有しており、当該窒化物発光層5の発光ピーク波長が450nmとなるようにInGaN層の組成を設定してあるが、発光ピーク波長は特に限定するものではない。なお、窒化物発光層5の量子井戸構造は単一量子井戸構造に限らず、多重量子井戸構造でもよい。また、窒化物発光層5は、必ずしも量子井戸構造を有している必要はなく、単層構造でもよい。また、窒化物発光層5の材料も窒化物半導体材料であればよく、所望の発光ピーク波長に応じて、例えば、AlInGaN、AlInN、AlGaNなどを適宜採用してもよい。   The nitride light-emitting layer 5 has a quantum well structure in which a well layer made of an InGaN layer is sandwiched by a barrier layer made of a GaN layer so that the emission peak wavelength of the nitride light-emitting layer 5 becomes 450 nm. However, the emission peak wavelength is not particularly limited. The quantum well structure of the nitride light emitting layer 5 is not limited to a single quantum well structure, and may be a multiple quantum well structure. The nitride light emitting layer 5 does not necessarily have a quantum well structure, and may have a single layer structure. Further, the material of the nitride light emitting layer 5 may be a nitride semiconductor material, and for example, AlInGaN, AlInN, AlGaN or the like may be appropriately employed according to a desired emission peak wavelength.

また、p形窒化物半導体層6は、窒化物発光層5上に形成されたp形GaN層で構成してあるが、単層構造に限らず、多層構造でもよく、例えば、p形AlGaN層からなる第1のp形半導体層と、第1のp形半導体層上に形成されたp形GaN層からなる第2のp形半導体層とで構成してもよい。   The p-type nitride semiconductor layer 6 is composed of a p-type GaN layer formed on the nitride light-emitting layer 5, but is not limited to a single layer structure, and may have a multilayer structure, for example, a p-type AlGaN layer. You may comprise by the 1st p-type semiconductor layer which consists of, and the 2nd p-type semiconductor layer which consists of a p-type GaN layer formed on the 1st p-type semiconductor layer.

また、アノード電極7は、後述の反射導電膜11上のAu層と当該Au層上のTi層と当該Ti層上のAu層との積層構造を有しており、最表面側のAu層がpパッド層を構成している。   The anode electrode 7 has a laminated structure of an Au layer on a reflective conductive film 11 described later, a Ti layer on the Au layer, and an Au layer on the Ti layer. A p-pad layer is formed.

また、カソード電極8は、n形窒化物半導体層4上のTi層と当該Ti層上のAu層との積層構造を有しており、Au層がnパッド層を構成している。ここで、n形窒化物半導体層4上のTi層は、n形窒化物半導体層4に対するオーミックコンタクト層として設けてあるが、オーミックコンタクト層の材料は、例えば、Ti、V、Alやこれらのいずれか一種類の金属を含む合金などを採用すればよい。   The cathode electrode 8 has a laminated structure of a Ti layer on the n-type nitride semiconductor layer 4 and an Au layer on the Ti layer, and the Au layer forms an n pad layer. Here, the Ti layer on the n-type nitride semiconductor layer 4 is provided as an ohmic contact layer with respect to the n-type nitride semiconductor layer 4, but the material of the ohmic contact layer is, for example, Ti, V, Al, or these An alloy containing any one kind of metal may be employed.

ところで、本実施形態の半導体発光素子は、p形窒化物半導体層6とアノード電極7との間に、p形窒化物半導体層6における窒化物発光層5側とは反対側に積層されp形窒化物半導体層6よりも屈折率が小さなGZO(GaをドープしたZnO)膜からなる透明導電膜9と、透明導電膜9におけるp形窒化物半導体層6側とは反対側に形成され導電性を有するとともに窒化物発光層5から放射された光を反射するAg膜からなる反射導電膜11とを備え、透明導電膜9と反射導電膜11との間に、窒化物発光層5から放射される光に対して透明であるとともに導電性を有し且つ透明導電膜9側への反射導電膜11の接着力を高めるPt膜からなる接着導電膜10を介在させてある。   By the way, the semiconductor light emitting device of this embodiment is laminated between the p-type nitride semiconductor layer 6 and the anode electrode 7 on the opposite side of the p-type nitride semiconductor layer 6 from the nitride light-emitting layer 5 side. A transparent conductive film 9 made of a GZO (Ga-doped ZnO) film having a refractive index smaller than that of the nitride semiconductor layer 6 and a conductive film formed on the opposite side of the transparent conductive film 9 from the p-type nitride semiconductor layer 6 side. And a reflective conductive film 11 made of an Ag film that reflects light emitted from the nitride light emitting layer 5, and is emitted from the nitride light emitting layer 5 between the transparent conductive film 9 and the reflective conductive film 11. An adhesive conductive film 10 made of a Pt film is interposed, which is transparent to the light to be transmitted and has conductivity and enhances the adhesive force of the reflective conductive film 11 to the transparent conductive film 9 side.

本実施形態では、透明導電膜9の材料としてGZOを採用しているが、透明導電膜9の材料は、GZO、AZO(AlをドーピングしたZnO)、ITOの群から選択される材料であればよく、当該群から選択される材料を採用することにより、当該透明導電膜9とp形窒化物半導体層6との接触をオーミック接触とすることができる。ここにおいて、透明導電膜9をGZO膜、AZO膜、ITO膜などにより構成する場合、当該透明導電膜9の形成にあたっては、Oガスアシストの電子ビーム蒸着法により成膜した後、NガスとOガスとの混合ガス中でアニールするようにすればよく、このような形成方法を採用することにより、透明導電膜9の消衰係数を0.001以下とすることができる。ここで、透明導電膜9をGZO膜により構成する場合のアニール条件の一例として、例えば、NガスとOガスとの体積比を95:5、アニール温度を500℃、アニール時間を5分とすればよい。なお、透明導電膜9の形成方法および形成条件は上述の例に限らないが、消衰係数kが0.003以下となるように形成方法および形成条件を設定することが好ましい。 In the present embodiment, GZO is adopted as the material of the transparent conductive film 9, but the material of the transparent conductive film 9 is a material selected from the group of GZO, AZO (Al-doped ZnO), and ITO. Well, by adopting a material selected from the group, the contact between the transparent conductive film 9 and the p-type nitride semiconductor layer 6 can be made ohmic contact. Here, when the transparent conductive film 9 is composed of a GZO film, an AZO film, an ITO film, or the like, the transparent conductive film 9 is formed by forming an O 2 gas assisted electron beam evaporation method, and then N 2 gas. It is sufficient to anneal in a mixed gas of O 2 and O 2 gas. By adopting such a forming method, the extinction coefficient of the transparent conductive film 9 can be made 0.001 or less. Here, as an example of the annealing conditions when the transparent conductive film 9 is composed of a GZO film, for example, the volume ratio of N 2 gas to O 2 gas is 95: 5, the annealing temperature is 500 ° C., and the annealing time is 5 minutes. And it is sufficient. In addition, although the formation method and formation conditions of the transparent conductive film 9 are not restricted to the above-mentioned example, it is preferable to set a formation method and formation conditions so that the extinction coefficient k may be 0.003 or less.

また、反射導電膜10の材料としてAgを採用しているが、Agに限らず、例えば、Alなどを採用してもよい。ただし、Agを採用した方がAlを採用する場合に比べて、窒化物発光層5から放射される光(紫外光〜可視光)に対する反射導電膜11の反射率を高めることができる。   Moreover, although Ag is adopted as the material of the reflective conductive film 10, it is not limited to Ag, and for example, Al may be adopted. However, the reflectance of the reflective conductive film 11 with respect to light (ultraviolet light to visible light) emitted from the nitride light emitting layer 5 can be increased when Ag is employed, compared to when Al is employed.

また、本実施形態では、接着導電膜10を構成するPt膜の膜厚を0.1nmに設定してあるが、この膜厚に限定するものではない。ここで、Pt膜からなる接着導電膜10の膜厚と当該接着導電膜10の波長450nmの光に対する光透過率との関係についてシミュレーションした結果を図2に示す。図2から分かるように、接着導電膜10の膜厚が小さいほど当該接着導電膜10の光透過率が高くなり、接着導電膜10をPt膜により構成する場合、接着導電膜10の膜厚が0.6nmになると、光透過率が95%程度まで低下してしまい、Ag膜からなる反射導電膜11の光反射率と同程度の値となってしまうので、接着導電膜10の膜厚は0.5nm以下に設定することが好ましい。また、接着導電膜10の材料は、Pt、Ti、Al、Ni、Rh、Ga、Inの群から選択される材料であればよい。 In the present embodiment, the film thickness of the Pt film constituting the adhesive conductive film 10 is set to 0.1 nm, but is not limited to this film thickness. Here, the result of simulating the relationship between the film thickness of the adhesive conductive film 10 made of a Pt film and the light transmittance of the adhesive conductive film 10 with respect to light having a wavelength of 450 nm is shown in FIG. As can be seen from FIG. 2, the smaller the film thickness of the adhesive conductive film 10, the higher the light transmittance of the adhesive conductive film 10, and when the adhesive conductive film 10 is composed of a Pt film, the film thickness of the adhesive conductive film 10 is When the thickness is 0.6 nm, the light transmittance is reduced to about 95%, which is the same value as the light reflectance of the reflective conductive film 11 made of an Ag film. It is preferable to set it to 0.5 nm or less. The material of the adhesive conductive film 10 may be a material selected from the group of Pt, Ti, Al, Ni, Rh, Ga 2 O 3 , and In 2 O 3 .

また、本実施形態では、透明導電膜9を構成するGZO膜の膜厚を10nmに設定してあるが、この膜厚に限定するものではない。ここで、Pt膜からなる接着導電膜10の膜厚を0.1nm、Ag膜からなる反射導電膜11の膜厚を150nmとして、GZO膜からなる透明導電膜9の消衰係数kを種々変化させて、透明導電膜9の膜厚と450nmの光に対する光反射率との関係についてシミュレーションした結果を図3に示す。ここで、図3において、「イ」は消衰係数k=0の場合、「ロ」は消衰係数k=0.001の場合、「ハ」は消衰係数k=0.003の場合、をそれぞれ示している。   Moreover, in this embodiment, although the film thickness of the GZO film which comprises the transparent conductive film 9 is set to 10 nm, it is not limited to this film thickness. Here, the thickness of the adhesive conductive film 10 made of Pt film is 0.1 nm, the thickness of the reflective conductive film 11 made of Ag film is 150 nm, and the extinction coefficient k of the transparent conductive film 9 made of GZO film is variously changed. FIG. 3 shows a simulation result of the relationship between the film thickness of the transparent conductive film 9 and the light reflectance with respect to 450 nm light. Here, in FIG. 3, “I” is the extinction coefficient k = 0, “B” is the extinction coefficient k = 0.001, “C” is the extinction coefficient k = 0.003, Respectively.

図3から分かるように、透明導電膜9の消衰係数kが0の場合や0.001の場合には、透明導電膜9の膜厚を10nm〜200nmの範囲で変化させても、透明導電膜9を設けずにp形GaN層からなるp形窒化物半導体層6とAg膜からなる反射導電膜との間にオーミックコンタクト層としてPt膜(オーミック接触を得るために膜厚を0.3nmとしてある)を設けた場合のシミュレーション結果(図3中には実線で示してある)に比べて反射率を高めることができることが分かり、消衰係数kが0.003の場合でも透明導電膜9の膜厚を200nm以下にすれば反射率を高めることができることが分かる。また、透明導電膜9の消衰係数kが0ないし0.001の場合には、透明導電膜9の膜厚を10nm以上とすることにより光反射率を向上できることが分かる。一方、透明導電膜9の消衰係数kが0.003の場合には透明導電膜9の膜厚が大きくなるにつれて光反射率が低下することが分かる。したがって、透明導電膜9をGZO膜により構成する場合の膜厚は、GZO膜の消衰係数kの再現性やばらつきなどを考慮すれば10nm程度に設定することが好ましい。   As can be seen from FIG. 3, when the extinction coefficient k of the transparent conductive film 9 is 0 or 0.001, the transparent conductive film 9 can be made transparent even if the film thickness of the transparent conductive film 9 is changed in the range of 10 nm to 200 nm. A Pt film (with a film thickness of 0.3 nm for obtaining ohmic contact) between the p-type nitride semiconductor layer 6 made of p-type GaN layer and the reflective conductive film made of Ag film without providing the film 9. It can be seen that the reflectance can be increased as compared with the simulation result (shown by a solid line in FIG. 3) in the case of providing the transparent conductive film 9 even when the extinction coefficient k is 0.003. It can be seen that the reflectance can be increased if the film thickness is 200 nm or less. Further, it is understood that when the extinction coefficient k of the transparent conductive film 9 is 0 to 0.001, the light reflectance can be improved by setting the film thickness of the transparent conductive film 9 to 10 nm or more. On the other hand, when the extinction coefficient k of the transparent conductive film 9 is 0.003, it can be seen that the light reflectance decreases as the film thickness of the transparent conductive film 9 increases. Therefore, the film thickness when the transparent conductive film 9 is formed of a GZO film is preferably set to about 10 nm in consideration of reproducibility and variation of the extinction coefficient k of the GZO film.

また、本実施形態では、反射導電膜11を構成するAg膜の膜厚を100nmに設定してあるが、この膜厚は特に限定するものではなく、例えば、50nm〜200nm程度の範囲で適宜設定すればよい。   In the present embodiment, the thickness of the Ag film constituting the reflective conductive film 11 is set to 100 nm. However, the thickness is not particularly limited, and is appropriately set, for example, in the range of about 50 nm to 200 nm. do it.

ところで、上述のn形窒化物半導体層4をn形GaN層、窒化物発光層5をGaN層からなる障壁層とInGaN層からなる井戸層とを有する量子井戸構造、p形窒化物半導体層6をp形GaN層、透明導電膜9を膜厚が10nmのGZO膜、反射導電膜11を膜厚が100nmのAg膜、接着導電膜10を膜厚が0.1nmのPt膜とした一実施例、透明導電膜9と反射導電膜11との間に接着導電膜10を介在させていない比較例、それぞれについて、反射導電膜11の透明導電膜9側への接着力を評価するために引張接着強度を測定したところ、比較例では0.25kN/cm程度であったのに対して、実施例では2.6kN/cm程度であり、接着力が大幅に向上していることが確認され、シェア強度も向上していることが確認された。 By the way, the above-described n-type nitride semiconductor layer 4 is an n-type GaN layer, and the nitride light-emitting layer 5 is a quantum well structure having a barrier layer made of a GaN layer and a well layer made of an InGaN layer, and a p-type nitride semiconductor layer 6. An implementation of a p-type GaN layer, a transparent conductive film 9 as a 10 nm thick GZO film, a reflective conductive film 11 as a 100 nm thick Ag film, and an adhesive conductive film 10 as a 0.1 nm thick Pt film For example, a comparative example in which the adhesive conductive film 10 is not interposed between the transparent conductive film 9 and the reflective conductive film 11, and tension was applied to evaluate the adhesive force of the reflective conductive film 11 to the transparent conductive film 9 side. was the adhesion strength was measured, in the comparative example whereas was about 0.25kN / cm 2, in the embodiment is about 2.6 kN / cm 2, confirming that the bond strength is significantly improved It is certain that the share strength has also improved. It has been.

以上説明した本実施形態の半導体発光素子では、p形窒化物半導体層6における窒化物発光層5側とは反対側に積層されp形窒化物半導体層6よりも屈折率が小さな透明導電膜9と、透明導電膜9におけるp形窒化物半導体層6側とは反対側に形成され導電性を有するとともに窒化物発光層5から放射された光を反射する反射導電膜11とを備えているので、光取り出し効率の向上を図れ、しかも、透明導電膜9と反射導電膜11との間に、窒化物発光層5から放射される光に対して透明であるとともに導電性を有し且つ透明導電膜9側への反射導電膜11の接着力を高める接着導電膜10を介在させてあるので、光取り出し効率の低下を抑制しつつ透明導電膜9側への反射導電膜11の接着力を高めることができ、信頼性を向上できる。   In the semiconductor light emitting device of the present embodiment described above, the transparent conductive film 9 that is stacked on the opposite side of the p-type nitride semiconductor layer 6 from the nitride light-emitting layer 5 side and has a smaller refractive index than the p-type nitride semiconductor layer 6. And a reflective conductive film 11 which is formed on the opposite side of the transparent conductive film 9 from the p-type nitride semiconductor layer 6 side and has conductivity and reflects light emitted from the nitride light emitting layer 5. The light extraction efficiency can be improved, and the transparent conductive film 9 and the reflective conductive film 11 are transparent to the light radiated from the nitride light emitting layer 5 and have conductivity and are transparent. Since the adhesive conductive film 10 that increases the adhesive strength of the reflective conductive film 11 to the film 9 side is interposed, the adhesive strength of the reflective conductive film 11 to the transparent conductive film 9 side is increased while suppressing a decrease in light extraction efficiency. Can improve reliability.

しかして、本実施形態の半導体発光素子を実装基板にフリップチップ実装する際や当該フリップチップ実装後に透明導電膜9と反射導電膜11との間で剥離が生じるのを防止することができ、光出力特性が低下するのを防止することができる。   Therefore, when the semiconductor light emitting device of this embodiment is flip-chip mounted on the mounting substrate or after the flip-chip mounting, it is possible to prevent peeling between the transparent conductive film 9 and the reflective conductive film 11. It is possible to prevent the output characteristics from deteriorating.

(実施形態2)
本実施形態の半導体発光素子の基本構成は、実施形態1と略同じであり、図4に示すように、n形窒化物半導体層4とカソード電極8との間に、n形窒化物半導体層4における窒化物発光層5の積層側に形成されn形窒化物半導体層4よりも屈折率が小さな透明導電膜19と、透明導電膜19におけるn形窒化物半導体層4側とは反対側に形成され導電性を有するとともに窒化物発光層5から放射された光を反射する反射導電膜21とを備え、透明導電膜19と反射導電膜21との間に、窒化物発光層5から放射される光に対して透明であるとともに導電性を有し且つ透明導電膜19側への反射導電膜21の接着力を高める接着導電膜20を介在させてある点、カソード電極8が、反射導電膜21上のAu層と当該Au層上のTi層と当該Ti層上のAu層との積層構造を有しており、最表面側のAu層がnパッド層を構成している点が相違するだけである。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
The basic configuration of the semiconductor light emitting device of the present embodiment is substantially the same as that of the first embodiment, and an n-type nitride semiconductor layer is interposed between the n-type nitride semiconductor layer 4 and the cathode electrode 8 as shown in FIG. 4 is formed on the side where the nitride light emitting layer 5 is laminated and has a refractive index smaller than that of the n-type nitride semiconductor layer 4, and on the opposite side of the transparent conductive film 19 from the n-type nitride semiconductor layer 4 side. A reflective conductive film 21 that is formed and has conductivity and reflects light emitted from the nitride light emitting layer 5, and is emitted from the nitride light emitting layer 5 between the transparent conductive film 19 and the reflective conductive film 21. The cathode electrode 8 is made of a reflective conductive film in that an adhesive conductive film 20 is interposed that is transparent to the light to be transmitted and has conductivity and increases the adhesion of the reflective conductive film 21 to the transparent conductive film 19 side. Au layer on 21, Ti layer on the Au layer and T It has a stacked structure of the Au layer on the layer, but only that the Au layer on the outermost surface side constitutes the n pad layer is different. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

ところで、本実施形態では、透明導電膜19、反射導電膜21、接着導電膜20の材料および膜厚を、実施形態1に説明した透明導電膜9、反射導電膜11、接着導電膜10それぞれと同じに設定してあり、カソード電極8の材料および膜厚をアノード電極7と同じに設定してあるので、n形窒化物半導体層4とカソード電極8との間の層構造をp形窒化物半導体層6とアノード電極7との間の層構造を同じにすることができ、製造プロセスを増加させることなく製造することが可能となる。   By the way, in this embodiment, the materials and film thicknesses of the transparent conductive film 19, the reflective conductive film 21, and the adhesive conductive film 20 are the same as those of the transparent conductive film 9, the reflective conductive film 11, and the adhesive conductive film 10 described in the first embodiment. Since the material and film thickness of the cathode electrode 8 are set to be the same as those of the anode electrode 7, the layer structure between the n-type nitride semiconductor layer 4 and the cathode electrode 8 is p-type nitride. The layer structure between the semiconductor layer 6 and the anode electrode 7 can be made the same, and it becomes possible to manufacture without increasing the manufacturing process.

また、本実施形態の半導体発光素子では、n形窒化物半導体層4とカソード電極8との間に、上述の透明導電膜19と反射導電膜21とを備えていることにより、光取り出し効率の向上を図れ、透明導電膜19と反射導電膜21との間に接着導電膜20を介在させてあることにより、光取り出し効率の低下を抑制しつつ透明導電膜19側への反射導電膜21の接着力を高めることができ、信頼性が向上する。   Further, in the semiconductor light emitting device of this embodiment, the above-described transparent conductive film 19 and reflective conductive film 21 are provided between the n-type nitride semiconductor layer 4 and the cathode electrode 8, so that the light extraction efficiency can be improved. Since the adhesive conductive film 20 is interposed between the transparent conductive film 19 and the reflective conductive film 21, the reflective conductive film 21 on the transparent conductive film 19 side can be suppressed while suppressing a decrease in light extraction efficiency. Adhesion can be increased and reliability is improved.

なお、上記各実施形態では、透光性基板1の上記一表面側にn形窒化物半導体層4を形成しているが、透光性基板1の導電形がn形の場合(例えば、透光性基板1がn形GaN基板の場合)には、透光性基板1がn形窒化物半導体層4を兼ねる構成を採用してもよい。   In each of the above embodiments, the n-type nitride semiconductor layer 4 is formed on the one surface side of the translucent substrate 1. However, when the conductivity type of the translucent substrate 1 is n-type (for example, transparent substrate 1). In the case where the optical substrate 1 is an n-type GaN substrate), a configuration in which the translucent substrate 1 also serves as the n-type nitride semiconductor layer 4 may be employed.

実施形態1の半導体発光素子を示す概略断面図である。1 is a schematic cross-sectional view showing a semiconductor light emitting element of Embodiment 1. FIG. 同上の半導体発光素子の特性説明図である。It is characteristic explanatory drawing of a semiconductor light emitting element same as the above. 同上の半導体発光素子の特性説明図である。It is characteristic explanatory drawing of a semiconductor light emitting element same as the above. 実施形態2の半導体発光素子の概略断面図である。6 is a schematic cross-sectional view of a semiconductor light-emitting element according to Embodiment 2. FIG. 従来例を示す半導体発光素子の概略断面図である。It is a schematic sectional drawing of the semiconductor light-emitting device which shows a prior art example.

符号の説明Explanation of symbols

1 透光性基板
4 n形窒化物半導体層
5 発光層
6 p形窒化物半導体層
7 アノード電極
8 カソード電極
9 透明導電膜
10 接着導電膜
11 反射導電膜
DESCRIPTION OF SYMBOLS 1 Translucent substrate 4 N-type nitride semiconductor layer 5 Light emitting layer 6 P-type nitride semiconductor layer 7 Anode electrode 8 Cathode electrode 9 Transparent conductive film 10 Adhesive conductive film 11 Reflective conductive film

Claims (5)

n形窒化物半導体層と窒化物発光層とp形窒化物半導体層との積層構造を有し、p形窒化物半導体層における窒化物発光層側とは反対側にアノード電極が形成されるとともに、n形窒化物半導体層における窒化物発光層の積層側にカソード電極が形成された半導体発光素子であって、p形窒化物半導体層とアノード電極との間に、p形窒化物半導体層における窒化物発光層側とは反対側に積層されp形窒化物半導体層よりも屈折率が小さな透明導電膜と、透明導電膜におけるp形窒化物半導体層側とは反対側に形成され導電性を有するとともに窒化物発光層から放射された光を反射する反射導電膜とを備え、透明導電膜と反射導電膜との間に、窒化物発光層から放射される光に対して透明であるとともに導電性を有し且つ透明導電膜側への反射導電膜の接着力を高める接着導電膜を介在させてなることを特徴とする半導体発光素子。   It has a laminated structure of an n-type nitride semiconductor layer, a nitride light emitting layer, and a p-type nitride semiconductor layer, and an anode electrode is formed on the opposite side of the p-type nitride semiconductor layer to the nitride light emitting layer side. , A semiconductor light emitting device in which a cathode electrode is formed on the nitride light emitting layer stack side of the n type nitride semiconductor layer, and the p type nitride semiconductor layer is interposed between the p type nitride semiconductor layer and the anode electrode. A transparent conductive film laminated on the opposite side to the nitride light emitting layer side and having a refractive index smaller than that of the p-type nitride semiconductor layer, and formed on the opposite side of the transparent conductive film from the p-type nitride semiconductor layer side to have conductivity. And a reflective conductive film that reflects light emitted from the nitride light-emitting layer, and is transparent and conductive to light emitted from the nitride light-emitting layer between the transparent conductive film and the reflective conductive film To the transparent conductive film side The semiconductor light emitting element characterized by comprising by interposing an adhesive conductive film to enhance the adhesion of the conductive film. 前記透明導電膜の材料は、GZO、AZO、ITOの群から選択されることを特徴とする請求項1記載の半導体発光素子。   2. The semiconductor light emitting element according to claim 1, wherein the material of the transparent conductive film is selected from the group of GZO, AZO, and ITO. 前記反射導電膜の材料は、Agであることを特徴とする請求項1又は2記載の半導体発光素子。   The semiconductor light-emitting element according to claim 1, wherein the material of the reflective conductive film is Ag. 前記接着導電膜の材料は、Pt、Ti、Al、Ni、Rh、Ga、Inの群から選択されることを特徴とする請求項1乃至3のいずれか1項に記載の半導体発光素子。 4. The material according to claim 1, wherein a material of the adhesive conductive film is selected from the group of Pt, Ti, Al, Ni, Rh, Ga 2 O 3 , and In 2 O 3. Semiconductor light emitting device. 前記n形窒化物半導体層と前記カソード電極との間に、前記n形窒化物半導体層における前記窒化物発光層の積層側に形成され前記n形窒化物半導体層よりも屈折率が小さな透明導電膜と、透明導電膜における前記n形窒化物半導体層側とは反対側に形成され導電性を有するとともに前記窒化物発光層から放射された光を反射する反射導電膜とを備え、透明導電膜と反射導電膜との間に、窒化物発光層から放射される光に対して透明であるとともに導電性を有し且つ透明導電膜側への反射導電膜の接着力を高める接着導電膜を介在させてなることを特徴とする請求項1乃至4のいずれか1項に記載の半導体発光素子。   A transparent conductive film formed between the n-type nitride semiconductor layer and the cathode electrode on the side of the nitride light-emitting layer of the n-type nitride semiconductor layer having a lower refractive index than the n-type nitride semiconductor layer. A transparent conductive film comprising a film and a reflective conductive film formed on the opposite side of the transparent conductive film from the n-type nitride semiconductor layer side and having conductivity and reflecting light emitted from the nitride light emitting layer An adhesive conductive film that is transparent to the light emitted from the nitride light emitting layer and has conductivity and increases the adhesion of the reflective conductive film to the transparent conductive film side is interposed between the conductive film and the reflective conductive film The semiconductor light-emitting element according to claim 1, wherein the semiconductor light-emitting element is formed.
JP2008255435A 2008-09-30 2008-09-30 Semiconductor light emitting device and manufacturing method thereof Expired - Fee Related JP5161720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008255435A JP5161720B2 (en) 2008-09-30 2008-09-30 Semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008255435A JP5161720B2 (en) 2008-09-30 2008-09-30 Semiconductor light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010087283A true JP2010087283A (en) 2010-04-15
JP5161720B2 JP5161720B2 (en) 2013-03-13

Family

ID=42250941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008255435A Expired - Fee Related JP5161720B2 (en) 2008-09-30 2008-09-30 Semiconductor light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5161720B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258675A (en) * 2010-06-07 2011-12-22 Toshiba Corp Optical semiconductor device
JP2014515555A (en) * 2011-05-25 2014-06-30 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor chip
JP2014150245A (en) * 2013-01-08 2014-08-21 Rohm Co Ltd Light-emitting element and light-emitting element package
JP2018148243A (en) * 2013-01-08 2018-09-20 ローム株式会社 Light-emitting element and light-emitting element package
JP2021145149A (en) * 2019-03-19 2021-09-24 晶元光電股▲ふん▼有限公司Epistar Corporation Light-emitting element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045038A (en) * 2003-07-23 2005-02-17 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP2005191326A (en) * 2003-12-26 2005-07-14 Nichia Chem Ind Ltd Semiconductor light emitting device
WO2006006555A1 (en) * 2004-07-12 2006-01-19 Rohm Co., Ltd. Semiconductor light-emitting device
JP2007258276A (en) * 2006-03-20 2007-10-04 Matsushita Electric Works Ltd Semiconductor light emitting device
JP2007258323A (en) * 2006-03-22 2007-10-04 Matsushita Electric Ind Co Ltd Semiconductor light emitting element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045038A (en) * 2003-07-23 2005-02-17 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP2005191326A (en) * 2003-12-26 2005-07-14 Nichia Chem Ind Ltd Semiconductor light emitting device
WO2006006555A1 (en) * 2004-07-12 2006-01-19 Rohm Co., Ltd. Semiconductor light-emitting device
JP2007258276A (en) * 2006-03-20 2007-10-04 Matsushita Electric Works Ltd Semiconductor light emitting device
JP2007258323A (en) * 2006-03-22 2007-10-04 Matsushita Electric Ind Co Ltd Semiconductor light emitting element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258675A (en) * 2010-06-07 2011-12-22 Toshiba Corp Optical semiconductor device
US8754429B2 (en) 2010-06-07 2014-06-17 Kabushiki Kaisha Toshiba Optical semiconductor device and method for manufacturing same
US8981412B2 (en) 2010-06-07 2015-03-17 Kabushiki Kaisha Toshiba Optical semiconductor device and method for manufacturing same
JP2014515555A (en) * 2011-05-25 2014-06-30 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor chip
US9373765B2 (en) 2011-05-25 2016-06-21 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
US9741902B2 (en) 2011-05-25 2017-08-22 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
US10115867B2 (en) 2011-05-25 2018-10-30 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP2014150245A (en) * 2013-01-08 2014-08-21 Rohm Co Ltd Light-emitting element and light-emitting element package
US9947834B2 (en) 2013-01-08 2018-04-17 Rohm Co., Ltd. Light emitting element and light emitting element package
JP2018148243A (en) * 2013-01-08 2018-09-20 ローム株式会社 Light-emitting element and light-emitting element package
JP2021145149A (en) * 2019-03-19 2021-09-24 晶元光電股▲ふん▼有限公司Epistar Corporation Light-emitting element
JP7312789B2 (en) 2019-03-19 2023-07-21 晶元光電股▲ふん▼有限公司 light emitting element

Also Published As

Publication number Publication date
JP5161720B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5091823B2 (en) Semiconductor light emitting device
EP2763192B1 (en) Nitride semiconductor element and method for producing same
JP4766966B2 (en) Light emitting element
JP4951937B2 (en) Light emitting device
JP5346443B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4875361B2 (en) Group 3 nitride light emitting device
TWI354381B (en) Opto-electronic semiconductor component
US8835938B2 (en) Nitride semiconductor light-emitting element and method of manufacturing the same
JP6780083B1 (en) Semiconductor light emitting device
JP7049186B2 (en) Manufacturing method of semiconductor light emitting device and semiconductor light emitting device
US11387386B2 (en) Semiconductor light emitting element and method of manufacturing semiconductor light emitting element
TW200924239A (en) Light emitting diodes with a p-type surface bonded to a transparent submount to increase light extraction efficiency
JP2008311352A (en) Semiconductor light emitting element, and its manufacturing method
WO2006006556A1 (en) Semiconductor light emitting element
JP2007258276A (en) Semiconductor light emitting device
JP2011505699A (en) Gallium nitride thin LED with enhanced light output
JP2011040739A (en) Vertical light emitting diode and manufacturing method of the same
JP2011176093A (en) Substrate for light-emitting element, and light-emitting element
JP2011060966A (en) Light-emitting device
JP5161720B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2005175462A (en) Semiconductor luminous element and manufacturing method of the same
JP2007258277A (en) Semiconductor light emitting device
JP2018049959A (en) Light emitting element and manufacturing method of the same
JP2020064967A (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
US20060180819A1 (en) Reflective electrode and compound semiconductor light emitting device including the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees