JP2007258276A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2007258276A
JP2007258276A JP2006077721A JP2006077721A JP2007258276A JP 2007258276 A JP2007258276 A JP 2007258276A JP 2006077721 A JP2006077721 A JP 2006077721A JP 2006077721 A JP2006077721 A JP 2006077721A JP 2007258276 A JP2007258276 A JP 2007258276A
Authority
JP
Japan
Prior art keywords
light emitting
layer
light
film
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006077721A
Other languages
Japanese (ja)
Other versions
JP5048960B2 (en
Inventor
Masaharu Yasuda
正治 安田
Nobuyuki Takakura
信之 高倉
Shigehide Chichibu
重英 秩父
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC, Matsushita Electric Works Ltd filed Critical University of Tsukuba NUC
Priority to JP2006077721A priority Critical patent/JP5048960B2/en
Publication of JP2007258276A publication Critical patent/JP2007258276A/en
Application granted granted Critical
Publication of JP5048960B2 publication Critical patent/JP5048960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device which can improve light extraction efficiency from a desired light extraction surface. <P>SOLUTION: An anode electrode 5 located on the opposite side to a desired light extraction surface against a light emitting layer 3 is comprised of a first transparent conductive film 51 formed on a p-type semiconductor layer 4; a second transparent conductive film 52 formed on the first transparent conductive film 51; a plurality of multilayer reflection film layers 53 which are formed on the second transparent conductive film 52, and reflect a light radiated from the light emitting layer 3; a metal reflecting film 54 made of a metallic material which is formed in a manner that it may cover a region nor covered by the multilayer reflecting film layers 53 and the multilayer reflecting film layers 53 in the second transparent conductive film 52, and which has a high reflection factor to a light from the light emitting layer 3; a barrier metal film 55 formed on the metal reflecting film 54; and an external connection metal film 56 made of a metallic material which is formed on the barrier metal film 55. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、赤色よりも短波長側に発光ピーク波長を有する半導体発光素子に関するものである。   The present invention relates to a semiconductor light emitting device having an emission peak wavelength on the shorter wavelength side than red.

従来から、酸化物系化合物半導体発光素子や窒化物系化合物半導体発光素子などの半導体発光素子において、発光層から略等方的に放射される光のうち光取り出し面以外の方向に向かう光の一部が電極に吸収されて光取り出し効率が低下するという問題があった。   Conventionally, in a semiconductor light emitting device such as an oxide-based compound semiconductor light-emitting device or a nitride-based compound semiconductor light-emitting device, a portion of light emitted from a light emitting layer in a direction other than the light extraction surface is emitted approximately isotropically. There is a problem that the light extraction efficiency is lowered due to the absorption of the portion by the electrode.

そこで、この種の問題を解決するために、光取り出し面側とは反対側に位置する電極を反射率の高い金属材料により形成することで光取り出し効率を向上させた半導体発光素子が提案されている(例えば、特許文献1,2)。   Therefore, in order to solve this type of problem, a semiconductor light-emitting element has been proposed in which light extraction efficiency is improved by forming an electrode located on the side opposite to the light extraction surface side from a highly reflective metal material. (For example, Patent Documents 1 and 2).

ここにおいて、この種の半導体発光素子としては、例えば、図5に示す構成のものが提案されている。図5に示した構成の半導体発光素子は、発光層(活性層)3などの材料としてGaN系化合物半導体材料を採用した青色発光ダイオードであって、サファイア基板からなるベース基板1の一表面側にバッファ層10を介して形成されたn形半導体層2と、n形半導体層2上に形成された上述の発光層3と、発光層3上に形成されたp形半導体層4と、p形半導体層4の表面側に形成されたアノード電極5と、n形半導体層2におけるベース基板1側とは反対の表面側に形成されたカソード電極6とを備え、カソード電極6を、n形半導体層2に対してオーミック接触が可能な金属材料(例えば、Tiなど)からなるオーミックコンタクト層61と、オーミックコンタクト層61に積層されたAuなどの金属材料からなる外部接続用金属層62とで構成し、アノード電極5を発光層3から放射される光に対する反射率の高い金属材料(例えば、Ag、銀白色系金属材料、Alなど)からなり反射層を兼ねる反射用金属層58と、反射用金属層58に積層されたAuなどの金属材料からなる外部接続用金属層59で構成してある。ここで、上記特許文献1には、反射用金属層58の材料としてAgを採用した場合、反射用金属層58の膜厚を20nmよりも大きな値に設定することが記載されている。   Here, as this type of semiconductor light-emitting element, for example, one having the configuration shown in FIG. 5 has been proposed. The semiconductor light emitting device having the configuration shown in FIG. 5 is a blue light emitting diode that employs a GaN-based compound semiconductor material as a material for the light emitting layer (active layer) 3 and the like, on one surface side of the base substrate 1 made of a sapphire substrate. N-type semiconductor layer 2 formed through buffer layer 10, the above-described light-emitting layer 3 formed on n-type semiconductor layer 2, p-type semiconductor layer 4 formed on light-emitting layer 3, and p-type An anode electrode 5 formed on the surface side of the semiconductor layer 4 and a cathode electrode 6 formed on the surface side opposite to the base substrate 1 side in the n-type semiconductor layer 2 are provided. An ohmic contact layer 61 made of a metal material capable of making ohmic contact with the layer 2 (for example, Ti), and an external connection metal layer 62 made of a metal material such as Au laminated on the ohmic contact layer 61. A reflective metal layer 58 made of a metal material (for example, Ag, silver white metal material, Al, etc.) having a high reflectivity with respect to the light emitted from the light emitting layer 3, and the anode electrode 5 also serving as a reflective layer; The external connection metal layer 59 made of a metal material such as Au laminated on the reflection metal layer 58 is formed. Here, Patent Document 1 describes that when Ag is used as the material of the reflective metal layer 58, the thickness of the reflective metal layer 58 is set to a value larger than 20 nm.

図5に示した構成の半導体発光素子では、アノード電極5とカソード電極6との間に順方向バイアス電圧を印加することによってアノード電極5からカソード電極6に向かって電流が流れ、発光層3に注入された電子とホールとが再結合することで発光する。ここで、図5に示した構成の半導体発光素子は、実装基板にフリップチップ実装しベース基板1の他表面を光取り出し面として用いられるものであり、発光層3からn形半導体層2側へ放射された光がベース基板1を通して光取り出し面から出射されるとともに、p形半導体層4側へ放射された光が反射用金属層58で反射されて光取り出し面から出射されることとなる(図5中の矢印Cは発光層3から放射され反射用金属層58で反射された光の伝搬経路の一例を示している)ので、光取り出し効率を高めることができる。   In the semiconductor light emitting device having the configuration shown in FIG. 5, when a forward bias voltage is applied between the anode electrode 5 and the cathode electrode 6, a current flows from the anode electrode 5 toward the cathode electrode 6, and Light is emitted when the injected electrons and holes recombine. Here, the semiconductor light emitting device having the configuration shown in FIG. 5 is flip-chip mounted on a mounting substrate and the other surface of the base substrate 1 is used as a light extraction surface, from the light emitting layer 3 to the n-type semiconductor layer 2 side. The emitted light is emitted from the light extraction surface through the base substrate 1, and the light emitted to the p-type semiconductor layer 4 side is reflected by the reflective metal layer 58 and emitted from the light extraction surface ( The arrow C in FIG. 5 shows an example of a propagation path of light emitted from the light emitting layer 3 and reflected by the reflective metal layer 58), so that the light extraction efficiency can be increased.

上述の図5に示した構成の半導体発光素子は、ベース基板1として絶縁性を有する結晶成長用基板であるサファイア基板を用いており、ベース基板1の上記一表面側にアノード電極5およびカソード電極6が配置されているが、ベース基板1として導電性を有する結晶成長用基板(例えば、導電性を有する単結晶基板、導電性を有する化合物半導体基板など)を用いて当該結晶成長用基板の他表面側にカソード電極を設けたり、結晶成長後にサファイア基板を除去しカソード電極を兼ねる金属基板を貼り付けたりすることで、n型半導体層2と発光層3とp形半導体層4とからなる発光部の厚み方向の両側に電極を設けた構成とし、両電極のうちの一方の電極を透光性材料により形成するとともに他方の電極を発光層3からの光を反射する金属材料により形成した半導体発光素子も提案されており、この種の半導体発光素子は、少なくとも一方の電極がボンディングワイヤを介してパッケージの導体パターンと電気的に接続される。
特開平11−186598号公報 特開平11−191641号公報
In the semiconductor light emitting device having the configuration shown in FIG. 5 described above, a sapphire substrate, which is an insulating crystal growth substrate, is used as the base substrate 1, and the anode electrode 5 and the cathode electrode are formed on the one surface side of the base substrate 1. 6 is used as the base substrate 1, using a conductive crystal growth substrate (for example, a conductive single crystal substrate, a conductive compound semiconductor substrate, or the like) and the crystal growth substrate. Light emission comprising the n-type semiconductor layer 2, the light-emitting layer 3, and the p-type semiconductor layer 4 by providing a cathode electrode on the surface side, or removing a sapphire substrate after crystal growth and attaching a metal substrate that also serves as the cathode electrode. The electrode is provided with electrodes on both sides in the thickness direction, and one of the two electrodes is formed of a translucent material and the other electrode is a gold that reflects light from the light emitting layer 3 Even the semiconductor light emitting element formed of a material have been proposed, the semiconductor light-emitting device of this type, at least one electrode is connected packages and electrically conductive patterns through the bonding wires.
Japanese Patent Laid-Open No. 11-186598 JP 11-191641 A

ところで、図5に示した構成の半導体発光素子では、反射用金属層58の金属材料としてAg、銀白色系金属材料、Alなどを採用することで発光層3にて発生した光の一部が反射用金属層58にて反射され光取り出し面から出射されることとなるので、光取り出し効率を高めることができるが、上記金属材料の反射率は95%以下であり、発光層3からアノード電極5に向かって伝搬する光のうち少なくとも5%はアノード電極5で吸収されて光吸収損失となってしまう。   By the way, in the semiconductor light emitting device having the configuration shown in FIG. 5, a part of the light generated in the light emitting layer 3 is obtained by adopting Ag, silver white metal material, Al or the like as the metal material of the reflective metal layer 58. Since the light is reflected by the reflective metal layer 58 and emitted from the light extraction surface, the light extraction efficiency can be increased. However, the reflectance of the metal material is 95% or less, and the light emitting layer 3 is connected to the anode electrode. At least 5% of the light propagating toward 5 is absorbed by the anode electrode 5 and becomes a light absorption loss.

また、上述のようにn型半導体層2と発光層3とp形半導体層4とからなる発光部の厚み方向の両側に電極を設けた構成とし、両電極のうちの一方の電極を透光性材料により形成するとともに他方の電極を発光層3からの光を反射する金属材料により形成した半導体発光素子においても上記金属材料により形成した電極において同様の光損失が発生してしまう。   Further, as described above, electrodes are provided on both sides in the thickness direction of the light-emitting portion composed of the n-type semiconductor layer 2, the light-emitting layer 3, and the p-type semiconductor layer 4, and one of the two electrodes is made transparent. Even in a semiconductor light emitting device that is formed of a conductive material and the other electrode is formed of a metal material that reflects light from the light emitting layer 3, the same light loss occurs in the electrode formed of the metal material.

本発明は上記事由に鑑みて為されたものであり、その目的は、所望の光取り出し面からの光取り出し効率の向上を図れる半導体発光素子を提供することにある。   The present invention has been made in view of the above reasons, and an object of the present invention is to provide a semiconductor light emitting device capable of improving the light extraction efficiency from a desired light extraction surface.

請求項1の発明は、n形半導体層と発光層とp形半導体層との積層構造を有し、p形半導体層における発光層側とは反対側にアノード電極が形成されるとともに、n形半導体層における発光層の積層側にカソード電極が形成され、発光層の厚み方向において所望の光取り出し面側とは反対側に、複数種類の誘電体膜が周期的に積層されたものであって発光層から放射された光を反射する多層反射膜層を備えてなることを特徴とする。   The invention of claim 1 has a laminated structure of an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer, and an anode electrode is formed on the opposite side of the p-type semiconductor layer from the light-emitting layer side. A cathode electrode is formed on the side of the semiconductor layer where the light emitting layer is laminated, and a plurality of types of dielectric films are periodically laminated on the side opposite to the desired light extraction surface side in the thickness direction of the light emitting layer. A multilayer reflection film layer that reflects light emitted from the light emitting layer is provided.

この発明によれば、発光層の厚み方向において所望の光取り出し面側とは反対側に、複数種類の誘電体膜が周期的に積層されたものであって発光層から放射された光を反射する多層反射膜層を備えているので、発光層から所望の光取り出し面側とは反対側へ放射された光を、従来の金属材料からなる反射用金属層に比べて効率良く反射することができ、所望の光取り出し面からの光取り出し効率の向上を図れ、発光効率を高めることが可能となる。   According to the present invention, a plurality of types of dielectric films are periodically stacked on the side opposite to the desired light extraction surface side in the thickness direction of the light emitting layer and reflect light emitted from the light emitting layer. Since the multi-layer reflective film layer is provided, the light radiated from the light emitting layer to the side opposite to the desired light extraction surface side can be efficiently reflected as compared with a reflective metal layer made of a conventional metal material. Therefore, the light extraction efficiency from the desired light extraction surface can be improved, and the light emission efficiency can be increased.

請求項2の発明は、請求項1の発明において、前記多層反射膜層は、屈折率が異なる2種類の前記誘電体膜が交互に積層されたものであり、各誘電体膜は、それぞれ酸化膜もしくは窒化膜からなることを特徴とする。なお、ここにおいて、屈折率の異なる2種類の前記誘電体膜は、酸化膜と窒化膜との組み合わせでもよいし、材料の異なる2種類の酸化膜の組み合わせでもよいし、材料の異なる2種類の窒化膜の組み合わせでもよい。   According to a second aspect of the present invention, in the first aspect of the invention, the multilayer reflective film layer is formed by alternately laminating two types of the dielectric films having different refractive indexes, and each dielectric film is oxidized. It consists of a film or a nitride film. Here, the two types of dielectric films having different refractive indexes may be a combination of an oxide film and a nitride film, a combination of two kinds of oxide films having different materials, or two kinds of materials having different materials. A combination of nitride films may be used.

この発明によれば、2種類の前記誘電体膜それぞれの膜厚を適宜設定することにより、光の干渉効果により反射光を強めることができるとともに反射率を高めることができて、所望の光取り出し面からの光取り出し効率を高めることができ、しかも、前記各誘電体膜を、イオンビーム蒸着法や抵抗加熱蒸着法などの一般的な薄膜形成技術によって容易に形成することが可能となる。   According to the present invention, by appropriately setting the film thickness of each of the two types of dielectric films, the reflected light can be strengthened and the reflectance can be increased due to the light interference effect, and the desired light extraction can be achieved. The light extraction efficiency from the surface can be increased, and the dielectric films can be easily formed by a general thin film forming technique such as ion beam evaporation or resistance heating evaporation.

請求項3の発明は、請求項1または請求項2の発明において、前記多層反射膜層は、複数種類の前記誘電体膜が前記発光層に近い側から離れるにつれて屈折率が大きくなる順に積層されてなることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the multilayer reflective film layer is laminated in the order in which the refractive index increases as the plurality of types of dielectric films move away from the side closer to the light emitting layer. It is characterized by.

この発明によれば、複数種類の前記誘電体膜は発光層に近い誘電体膜ほど屈折率が小さいので、前記多層反射膜層における反射率を高めることができ、光取り出し効率の向上を図れる。   According to this invention, since the plurality of types of dielectric films have a smaller refractive index as the dielectric film is closer to the light emitting layer, the reflectance in the multilayer reflective film layer can be increased, and the light extraction efficiency can be improved.

請求項4の発明は、請求項1ないし請求項3の発明において、前記多層反射膜層は、前記発光層の発光ピーク波長±30nmの波長域の光に対して反射率が95%よりも高くなるように形成されてなることを特徴とする。   According to a fourth aspect of the present invention, in the first to third aspects of the invention, the multilayer reflective film layer has a reflectance higher than 95% with respect to light in a wavelength region of an emission peak wavelength ± 30 nm of the light emitting layer. It is formed so that it may become.

この発明によれば、前記発光層にて発生する光の発光スペクトルの波長域の光を前記多層反射膜層において効率良く反射することができ(つまり、発光ピーク波長の光だけでなく発光ピーク波長付近の光も効率良く反射することができ)、光取り出し効率の向上を図れる。   According to this invention, light in the wavelength region of the emission spectrum of light generated in the light emitting layer can be efficiently reflected by the multilayer reflective film layer (that is, not only light having a light emission peak wavelength but also light emission peak wavelength). Nearby light can also be reflected efficiently), and the light extraction efficiency can be improved.

請求項5の発明は、請求項1ないし請求項4の発明において、前記多層反射膜層は、前記アノード電極と前記カソード電極との2つの電極のうち前記発光層の前記厚み方向において所望の光取り出し面側とは反対側に位置する一方の電極に設けられ、前記発光層に平行な平面上で独立した島状に形成されて複数設けられてなることを特徴とする。   According to a fifth aspect of the present invention, in the first to fourth aspects of the invention, the multilayer reflective film layer has a desired light in the thickness direction of the light emitting layer of the two electrodes of the anode electrode and the cathode electrode. It is provided on one electrode located on the side opposite to the extraction surface side, and is formed in a plurality of independent islands on a plane parallel to the light emitting layer.

この発明によれば、前記多層反射膜層に起因した一方の電極の導電性の低下を抑制することができて、前記多層反射膜層に起因した動作電圧の上昇を抑制することができる。すなわち、この発明によれば、動作電圧の上昇を抑制しつつ光取り出し効率の向上を図れる。   According to this invention, it is possible to suppress a decrease in conductivity of one electrode due to the multilayer reflective film layer, and it is possible to suppress an increase in operating voltage due to the multilayer reflective film layer. That is, according to the present invention, it is possible to improve the light extraction efficiency while suppressing an increase in operating voltage.

請求項6の発明は、請求項1ないし請求項5の発明において、前記多層反射膜層は、前記アノード電極と前記カソード電極との2つの電極のうち前記発光層の前記厚み方向において所望の光取り出し面側とは反対側に位置する一方の電極に設けられ、前記発光層に平行な複数の平面上それぞれにおいて独立した島状に形成されて前記各平面上に複数設けられてなり、前記一方の電極は、前記各平面ごとに前記多層反射膜層の位置をずらしてあることを特徴とする。   According to a sixth aspect of the present invention, in the first to fifth aspects of the invention, the multilayer reflective film layer has a desired light in the thickness direction of the light emitting layer of the two electrodes of the anode electrode and the cathode electrode. Provided on one electrode located on the opposite side to the take-out surface side, formed in an independent island shape on each of a plurality of planes parallel to the light emitting layer, and provided on the respective planes. The electrode is characterized in that the position of the multilayer reflective film layer is shifted for each plane.

この発明によれば、前記多層反射膜層を設ける一方の電極の導電性の低下を抑制しつつ、前記発光層の投影領域内における前記多層反射膜層の占有面積を大きくすることができ、前記一方の電極に入射した光をより効率良く反射することができる。   According to the present invention, it is possible to increase the area occupied by the multilayer reflective film layer in the projection region of the light emitting layer while suppressing a decrease in conductivity of one electrode on which the multilayer reflective film layer is provided, Light incident on one electrode can be reflected more efficiently.

請求項1の発明では、所望の光取り出し面からの光取り出し効率の向上を図れるという効果がある。   In the invention of claim 1, there is an effect that the light extraction efficiency from a desired light extraction surface can be improved.

(実施形態1)
以下、本実施形態の半導体発光素子について図1および図2を参照しながら説明する。
(Embodiment 1)
Hereinafter, the semiconductor light emitting device of this embodiment will be described with reference to FIGS. 1 and 2.

本実施形態の半導体発光素子は、赤色よりも短波長の可視光を放射する可視光発光ダイオードであって、図1に示すように、サファイア基板からなるベース基板1の一表面側(図1(b)における上面側)に窒化ガリウム系化合物半導体層からなるn形半導体層2が形成され、n形半導体層2上に3族窒化物半導体層からなる発光層3が形成され、発光層3上に窒化ガリウム系化合物半導体層からなるp形半導体層4が形成されている。要するに、本実施形態の半導体発光素子は、ベース基板1の上記一表面側にn形半導体層2と発光層3とp形半導体層4との積層構造を有している。なお、n形半導体層2、発光層3、およびp形半導体層4は、ベース基板1の上記一表面側にMOVPE法のようなエピタキシャル成長技術を利用して成膜するので、n形半導体層2の貫通転位を低減するとともにn形半導体層2の残留歪みを低減するために、ベース基板1とn形半導体層2との間にバッファ層を設けることが望ましいのは勿論である。また、図1に示した例では、ベース基板1の上記一表面側の最表面側が露出しているが、最表面側にSiO膜やSi膜などの保護膜を形成してもよい。 The semiconductor light emitting device of this embodiment is a visible light emitting diode that emits visible light having a shorter wavelength than red, and as shown in FIG. 1, is one surface side of a base substrate 1 made of a sapphire substrate (FIG. 1 ( An n-type semiconductor layer 2 made of a gallium nitride-based compound semiconductor layer is formed on the upper surface side in b), and a light-emitting layer 3 made of a group III nitride semiconductor layer is formed on the n-type semiconductor layer 2. A p-type semiconductor layer 4 made of a gallium nitride compound semiconductor layer is formed. In short, the semiconductor light emitting device of this embodiment has a stacked structure of the n-type semiconductor layer 2, the light emitting layer 3, and the p-type semiconductor layer 4 on the one surface side of the base substrate 1. Note that the n-type semiconductor layer 2, the light emitting layer 3, and the p-type semiconductor layer 4 are formed on the one surface side of the base substrate 1 by using an epitaxial growth technique such as the MOVPE method. Needless to say, it is desirable to provide a buffer layer between the base substrate 1 and the n-type semiconductor layer 2 in order to reduce the threading dislocation of the n-type semiconductor layer 2 and the residual strain of the n-type semiconductor layer 2. In the example shown in FIG. 1, the outermost surface side of the one surface side of the base substrate 1 is exposed, but a protective film such as a SiO 2 film or a Si 3 N 4 film may be formed on the outermost surface side. Good.

また、本実施形態の半導体発光素子は、p形半導体層4における発光層3側とは反対側にアノード電極5が形成されるとともに、n形半導体層2における発光層3の積層側にカソード電極6が形成されている。さらに説明すれば、アノード電極5は、p形半導体層4上に形成され、カソード電極6は、ベース基板1の上記一表面側へn形半導体層2、発光層3、p形半導体層4を順次成長させた後で、n形半導体層2と発光層3とp形半導体層4との積層膜の所定領域をp形半導体層4の表面側からn形半導体層2の途中までエッチングすることにより露出させたn形半導体層2の表面に形成されている。   In the semiconductor light emitting device of this embodiment, the anode electrode 5 is formed on the opposite side of the p-type semiconductor layer 4 to the light emitting layer 3 side, and the cathode electrode is formed on the stacked side of the light emitting layer 3 in the n-type semiconductor layer 2. 6 is formed. More specifically, the anode electrode 5 is formed on the p-type semiconductor layer 4, and the cathode electrode 6 has the n-type semiconductor layer 2, the light emitting layer 3, and the p-type semiconductor layer 4 on the one surface side of the base substrate 1. After sequentially growing, a predetermined region of the laminated film of the n-type semiconductor layer 2, the light emitting layer 3, and the p-type semiconductor layer 4 is etched from the surface side of the p-type semiconductor layer 4 to the middle of the n-type semiconductor layer 2. The n-type semiconductor layer 2 is exposed on the surface.

ここにおいて、本実施形態の半導体発光素子は、ベース基板1の平面視形状が矩形状であって、図1(a)に示すように、カソード電極6およびアノード電極5の平面視形状が櫛形状の形状に形成されており、平面視においてカソード電極6とアノード電極5とが互いに入り組んでいる。   Here, in the semiconductor light emitting device of this embodiment, the planar view shape of the base substrate 1 is rectangular, and the planar view shapes of the cathode electrode 6 and the anode electrode 5 are comb shapes as shown in FIG. The cathode electrode 6 and the anode electrode 5 are intertwined with each other in plan view.

発光層3の結晶材料としては、例えば、InGaN,AlInGaN,AlInN,AlGaNなどを採用すればよく、3族元素の組成比を適宜設定したり、あるいは、Si,Ge,S,Seなどのn形不純物やZn,Mgなどのp形不純物を適宜ドーピングすることによって、発光色を赤色よりも短波長の可視光域内の所望の色に設定することが可能である。ここにおいて、本実施形態の半導体発光素子では、アノード電極5とカソード電極6との間に順方向バイアス電圧を印加することにより、アノード電極5からカソード電極6に向かって電流が流れ、発光層3に注入された電子とホールとが再結合することで発光する。   As the crystal material of the light emitting layer 3, for example, InGaN, AlInGaN, AlInN, AlGaN or the like may be adopted, or the composition ratio of the group 3 elements may be set as appropriate, or n-type such as Si, Ge, S, Se, or the like. By appropriately doping impurities and p-type impurities such as Zn and Mg, it is possible to set the emission color to a desired color in the visible light range shorter than red. Here, in the semiconductor light emitting device of this embodiment, by applying a forward bias voltage between the anode electrode 5 and the cathode electrode 6, a current flows from the anode electrode 5 toward the cathode electrode 6, and the light emitting layer 3. Light is emitted by recombination of electrons and holes injected into.

n形半導体層2に電気的に接続されるカソード電極6は、n形半導体層2に対してオーミック接触が可能な金属材料からなるオーミックコンタクト膜61と、オーミックコンタクト膜61に積層された金属材料からなる外部接続用金属膜62とで構成されている。ここにおいて、オーミックコンタクト膜61の金属材料としては、例えば、Ti,V,Alやこれらのいずれか一種類の金属を含む合金などを採用すればよく、外部接続用金属膜62の金属材料としては、化学的に安定でボンディングが容易なAuなどを採用すればよい。   The cathode electrode 6 electrically connected to the n-type semiconductor layer 2 includes an ohmic contact film 61 made of a metal material capable of making ohmic contact with the n-type semiconductor layer 2 and a metal material laminated on the ohmic contact film 61. It is comprised with the metal film 62 for external connection which consists of. Here, as the metal material of the ohmic contact film 61, for example, Ti, V, Al, or an alloy containing any one of these metals may be employed, and the metal material of the external connection metal film 62 may be used. Alternatively, Au that is chemically stable and easy to bond may be used.

ところで、本実施形態の半導体発光素子は、発光層3にて発光する光に対して透明な材料(本実施形態では、サファイア)により形成されたベース基板1の他表面(図1(b)の下面)を所望の光取り出し面とするものであり、アノード電極5は、p形半導体層4上に形成された第1の透明導電膜51と、第1の透明導電膜51上に形成された第2の透明導電膜52と、第2の透明導電膜52上に形成され発光層3から放射された光を反射する複数の多層反射膜層53と、第2の透明導電膜52において多層反射膜層53により覆われていない部位および多層反射膜層53を覆うように形成され発光層3からの光に対して高い反射率を有する金属材料からなる金属反射膜54と、金属反射膜54上に形成されたバリアメタル膜55と、バリアメタル膜55上に形成された金属材料からなる外部接続用金属膜56とで構成されている。要するに、本実施形態の半導体発光素子は、発光層3の厚み方向において所望の光取り出し面側とは反対側に、発光層3から放射された光を反射する多層反射膜層53を備えており、発光層3から所望の光取り出し面側とは反対側に放射されてアノード電極5に入射した光は多層反射膜層53もしくは金属反射膜54により光取り出し面側へ反射されることとなる(なお、図1(b)中の矢印Cは発光層3から放射され多層反射膜層53で反射された光の伝搬経路の一例を示している)。なお、本実施形態の半導体発光素子では、複数の多層反射膜層53と金属反射膜54とで発光層3からの光を所望の光取り出し面側へ反射する反射部を構成している。   By the way, the semiconductor light emitting device of the present embodiment has the other surface of the base substrate 1 (of FIG. 1B) formed of a material transparent to light emitted from the light emitting layer 3 (sapphire in the present embodiment). The lower surface is a desired light extraction surface, and the anode electrode 5 is formed on the first transparent conductive film 51 and the first transparent conductive film 51 formed on the p-type semiconductor layer 4. The second transparent conductive film 52, the plurality of multilayer reflective film layers 53 that are formed on the second transparent conductive film 52 and reflect the light emitted from the light emitting layer 3, and the second transparent conductive film 52 has the multilayer reflection A metal reflective film 54 made of a metal material that is formed so as to cover a portion not covered with the film layer 53 and the multilayer reflective film layer 53 and has a high reflectance with respect to the light from the light emitting layer 3, and the metal reflective film 54 Barrier metal film 55 formed on the And an external connection metal layer 56 made of a metal material and formed on barrel film 55. In short, the semiconductor light emitting device of this embodiment includes the multilayer reflective film layer 53 that reflects the light emitted from the light emitting layer 3 on the side opposite to the desired light extraction surface side in the thickness direction of the light emitting layer 3. The light emitted from the light emitting layer 3 to the side opposite to the desired light extraction surface side and incident on the anode electrode 5 is reflected to the light extraction surface side by the multilayer reflection film layer 53 or the metal reflection film 54 ( In addition, the arrow C in FIG.1 (b) has shown an example of the propagation path of the light radiated | emitted from the light emitting layer 3, and reflected by the multilayer reflective film layer 53). In the semiconductor light emitting device of this embodiment, the plurality of multilayer reflective film layers 53 and the metal reflective film 54 constitute a reflective part that reflects light from the light emitting layer 3 toward the desired light extraction surface.

上述の第1の透明導電膜51は、膜厚を2〜10nmの範囲に設定してあるので、当該第1の透明導電膜51の材料としては、例えば、Ni,Pd,Pt,Cr,Mn,Ta,Cu,Feの単体、あるいは、これらのいずれか一種を含む合金などを採用することができる。また、第2の透明導電膜52の材料としては、発光層3からの光に対して透明な材料を採用すればよく、例えば、ITO,IZO,ZnO,In,SnO,MgZn1−xO(x≦0.5),アモルファスAlGaN,GaN,SiONの群から選択される1つの材料を採用すればよい。また、金属反射膜54の材料としては、Agを採用しているが、Agに限らず、Al,Rhなどを採用してもよい。また、外部接続用金属膜56の金属材料としては、化学的に安定でボンディングが容易なAuなどを採用しており、バリアメタル膜55の材料としては、Tiを採用している。 Since the film thickness of the first transparent conductive film 51 is set in the range of 2 to 10 nm, examples of the material of the first transparent conductive film 51 include Ni, Pd, Pt, Cr, and Mn. , Ta, Cu, Fe, or an alloy containing any one of them can be employed. Further, as the material of the second transparent conductive film 52, a material transparent to the light from the light emitting layer 3 may be employed. For example, ITO, IZO, ZnO, In 2 O 3 , SnO 2 , Mg x One material selected from the group consisting of Zn 1-x O (x ≦ 0.5), amorphous AlGaN, GaN, and SiON may be adopted. Further, although Ag is adopted as the material of the metal reflective film 54, it is not limited to Ag, and Al, Rh, or the like may be adopted. Further, as the metal material of the external connection metal film 56, Au or the like that is chemically stable and easy to bond is adopted, and as the material of the barrier metal film 55, Ti is adopted.

上述の各多層反射膜層53は、平面形状が円形状に形成され、第2の透明導電膜52上で分散して配置されている(2次元アレイ状に配列されている)。さらに説明すれば、単位格子が正方形の仮想的な2次元正方格子の各格子点に対応する各部位に多層反射膜層53が配置されている。要するに、本実施形態におけるアノード電極5は、多層反射膜層53が発光層3に平行な平面上で独立した島状に形成されて複数設けられている。   Each of the multilayer reflective film layers 53 described above has a planar shape formed in a circular shape, and is distributed on the second transparent conductive film 52 (arranged in a two-dimensional array). More specifically, the multilayer reflective film layer 53 is disposed at each portion corresponding to each lattice point of a virtual two-dimensional square lattice having a square unit lattice. In short, the anode electrode 5 in the present embodiment is provided with a plurality of multilayer reflective film layers 53 formed in an independent island shape on a plane parallel to the light emitting layer 3.

ここにおいて、多層反射膜層53は、図2に示すように、絶縁性を有し屈折率の異なる2種類の誘電体膜53a,53bが周期的に積層されている。各誘電体膜53a,53bは、それぞれ酸化膜もしくは窒化膜により構成すればよく、酸化膜や窒化膜により構成することにより、各誘電体膜53a,53bを、イオンビーム蒸着法や抵抗加熱蒸着法などの一般的な薄膜形成技術によって容易に形成することが可能となる。この種の酸化膜の材料としては、例えば、SiO,ZrO,TiO,Alなどを採用し、この種の窒化膜の材料としては、例えば、Si,AlNなどを採用すればよい。 Here, as shown in FIG. 2, the multilayer reflective film layer 53 is formed by periodically laminating two kinds of dielectric films 53a and 53b having insulating properties and different refractive indexes. Each of the dielectric films 53a and 53b may be formed of an oxide film or a nitride film. By forming the dielectric films 53a and 53b with an oxide film or a nitride film, each of the dielectric films 53a and 53b is formed by an ion beam evaporation method or a resistance heating evaporation method. It can be easily formed by a general thin film forming technique such as. For example, SiO 2 , ZrO 2 , TiO 2 , Al 2 O 3 or the like is adopted as a material for this type of oxide film, and for example, Si 3 N 4 , AlN or the like is used as a material for this type of nitride film. Adopt it.

上述の多層反射膜層53は、発光層3の発光波長λ(nm)に応じて各誘電体膜53a,53bの膜厚、屈折率、および層数を適宜設定することにより、反射率(%)とストップバンド幅(nm)とを調整することができる。ここで、各誘電体膜53a,53bそれぞれの単層膜の膜厚について、単層膜の膜厚をD(nm)、単層膜の屈折率をnとすれば、膜厚Dは、
(D×n)/(2m−1)=λ/4 (ただし、m=1,2,・・・)
の関係式から求められる。この関係式は、屈折率nの媒質X1の入射面へ入射した光のうち媒質X1中へ屈折し上記入射面に平行な面であって媒質X1と当該媒質X1に接する媒質X2との界面で反射された後に媒質X1から出た光と、媒質X1の上記入射面へ入射した光のうち上記入射面で反射された光との位相が一致し、同位相の光どうしの干渉により反射光の強度が強くなることを意味している。ただし、ここでは、上記媒質X1を上述の2つの単層膜を1ペア(誘電体膜53aと誘電体膜53bとを1ペア)として考えているので、単層膜だけに着目すると、上記関係式のように光の位相が反転するように設計することになる。
The multilayer reflective film layer 53 described above has a reflectivity (%) by appropriately setting the film thickness, refractive index, and number of layers of the dielectric films 53a and 53b in accordance with the light emission wavelength λ (nm) of the light emitting layer 3. ) And the stop bandwidth (nm) can be adjusted. Here, regarding the film thickness of each of the dielectric films 53a and 53b, if the film thickness of the single film is D (nm) and the refractive index of the single film is n, the film thickness D is
(D × n) / (2m−1) = λ / 4 (where m = 1, 2,...)
It is obtained from the relational expression. This relational expression is a surface parallel to the incident surface of light incident on the incident surface of the medium X1 having a refractive index n and parallel to the incident surface, and is an interface between the medium X1 and the medium X2 in contact with the medium X1. The phase of the light emitted from the medium X1 after being reflected and the light reflected on the incident surface out of the light incident on the incident surface of the medium X1 is the same, and the reflected light is reflected by the interference between the lights having the same phase. It means that the strength becomes stronger. However, here, the medium X1 is considered as one pair of the above-mentioned two single layer films (a pair of the dielectric film 53a and the dielectric film 53b). The design is such that the phase of the light is inverted as in the equation.

例えば、発光層3の発光ピーク波長が470nmの場合、上述の関係式において、m=1として、一方の誘電体膜53aの材料をSiOとすると、上記一方の誘電体膜53aの膜厚は、SiOの屈折率を1.43として略82nmに設計すればよく、他方の誘電体膜53bの材料をZrOとすると、上記他方の誘電体膜53bの膜厚は、ZrOの屈折率を1.89として略62nmとなる。ここで、多層反射膜層53の設計にあたって、SiOからなる誘電体膜53aとZrOからなる誘電体膜53bとの積層膜を1ペアとして、当該積層膜のペア数と反射率との関係をシミュレーションしたところ、ペア数を少なくとも8とすることにより、波長λが470nmの光に対して95%よりも高い反射率となることが確認され、ペア数を8としたときの反射率の波長依存性をシミュレーションしたところ、発光層3の発光ピーク波長を基準として±30nmの波長域において反射率が95%よりも高くなることが確認された(ストップバンド幅が60nmとなることが確認された)。なお、上述のシミュレーション結果は多層反射膜層53に発光層3からの光が垂直入射した場合の値であるが、半導体発光素子の光取り出し面と空気もしくは封止材との界面の凹凸や、屈折率差によって生じるエスケープコーンの影響などにより、多層反射膜層53に垂直に入射する光強度に比べて、入射面とのなす角度が90度からある角度傾いた方向から多層反射膜層53に入射する光強度のほうが強くなるという状況が起こり得る。このような場合には、誘電体膜53a,53bそれぞれの膜厚を、光強度が最大になる入射角に応じて設計すればよいことは勿論である。要するに、上記媒質X1の入射面で反射される光と、上記媒質X1に入射してから上記媒質X1と上記媒質X2との界面で反射された後に上記媒質X1から出た光との光路差の計算を、多層反射膜層53に入射する光強度が最大になる入射角にて行えばよい。 For example, if the emission peak wavelength of the emission layer 3 is 470 nm, in the above equation, as m = 1, when the material of one of the dielectric film 53a and SiO 2, the thickness of one of the dielectric film 53a above may be designed to substantially 82nm refractive index of SiO 2 as 1.43, when the material of the other of the dielectric film 53b and ZrO 2, the thickness of the other dielectric film 53b, the refractive index of the ZrO 2 Is 1.89 and is approximately 62 nm. Here, in designing the multilayer reflective film layer 53, the laminated film of the dielectric film 53 a made of SiO 2 and the dielectric film 53 b made of ZrO 2 is regarded as one pair, and the relationship between the number of pairs of the laminated film and the reflectance. As a result of simulation, it was confirmed that the reflectance was higher than 95% for light having a wavelength λ of 470 nm by setting the number of pairs to at least 8, and the wavelength of the reflectance when the number of pairs was 8 was confirmed. When the dependence was simulated, it was confirmed that the reflectance was higher than 95% in the wavelength region of ± 30 nm with reference to the emission peak wavelength of the light emitting layer 3 (the stop bandwidth was confirmed to be 60 nm). ). In addition, although the above-mentioned simulation result is a value when the light from the light emitting layer 3 is perpendicularly incident on the multilayer reflective film layer 53, the unevenness of the interface between the light extraction surface of the semiconductor light emitting element and air or the sealing material, Due to the influence of the escape cone caused by the difference in refractive index, the angle formed between the incident surface and the incident surface is inclined from an angle of 90 degrees relative to the light intensity perpendicularly incident on the multilayer reflective film layer 53. A situation can occur where the incident light intensity is stronger. In such a case, it is a matter of course that the thickness of each of the dielectric films 53a and 53b may be designed according to the incident angle at which the light intensity is maximized. In short, the optical path difference between the light reflected by the incident surface of the medium X1 and the light that has entered the medium X1 and then exited from the medium X1 after being reflected at the interface between the medium X1 and the medium X2 The calculation may be performed at an incident angle at which the light intensity incident on the multilayer reflective film layer 53 is maximized.

以上説明した本実施形態の半導体発光素子では、発光層3の厚み方向において所望の光取り出し面側とは反対側に、2種類の誘電体膜53a,53bが周期的に積層されたものであって発光層3から放射された光を反射する複数の多層反射膜層53と金属反射膜54とで反射部を構成しているので、発光層3から所望の光取り出し面側とは反対側へ放射された光を、従来の金属材料からなる反射用金属層58(図5参照)に比べて効率良く反射することができ、所望の光取り出し面からの光取り出し効率の向上を図れ、発光効率を高めることが可能となる。また、本実施形態の半導体発光素子は、上述のように多層反射膜層53が、屈折率が異なる2種類の誘電体膜53a,53bが交互に積層されたものであるから、2種類の誘電体膜53a,53bそれぞれの膜厚を適宜設定することにより、光の干渉効果により反射光を強めることができるとともに反射率を高めることができ、所望の光取り出し面からの光取り出し効率を高めることができる。ここで、各多層反射膜層53が発光層3の発光ピーク波長を基準として±30nmの波長域において95%よりも高い反射率を有するように各多層反射膜層53を設計すれば、多層反射膜層53において、発光スペクトルの半値全幅が40nm程度の発光層3にて発生する光の発光スペクトルの波長域の光を多層反射膜層53において効率良く反射することができ(つまり、発光ピーク波長の光だけでなく発光ピーク波長付近の光も効率良く反射することができ)、光取り出し効率の向上を図れる。   In the semiconductor light emitting device of the present embodiment described above, two types of dielectric films 53a and 53b are periodically stacked on the side opposite to the desired light extraction surface side in the thickness direction of the light emitting layer 3. Since the reflective portion is constituted by the plurality of multilayer reflective film layers 53 that reflect the light emitted from the light emitting layer 3 and the metal reflective film 54, the light emitting layer 3 is directed to the side opposite to the desired light extraction surface side. The emitted light can be reflected more efficiently than the reflective metal layer 58 (see FIG. 5) made of a conventional metal material, the light extraction efficiency from the desired light extraction surface can be improved, and the light emission efficiency Can be increased. In the semiconductor light emitting device of this embodiment, the multilayer reflective film layer 53 is formed by alternately stacking two types of dielectric films 53a and 53b having different refractive indexes as described above. By appropriately setting the film thickness of each of the body films 53a and 53b, the reflected light can be strengthened by the light interference effect and the reflectance can be increased, and the light extraction efficiency from the desired light extraction surface can be increased. Can do. Here, if each multilayer reflective film layer 53 is designed so that each multilayer reflective film layer 53 has a reflectance higher than 95% in a wavelength region of ± 30 nm with reference to the emission peak wavelength of the light emitting layer 3, the multilayer reflective film layer 53 is designed. In the film layer 53, light in the wavelength region of the emission spectrum of light generated in the light emitting layer 3 having a full width at half maximum of the emission spectrum of about 40 nm can be efficiently reflected by the multilayer reflective film layer 53 (that is, the emission peak wavelength). Light in the vicinity of the emission peak wavelength can be efficiently reflected), and the light extraction efficiency can be improved.

また、本実施形態の半導体発光素子では、多層反射膜層53が、アノード電極5とカソード電極6との2つの電極のうち発光層3の厚み方向において所望の光取り出し面側とは反対側に位置する一方の電極であるアノード電極5に設けられ、発光層3に平行な平面上で独立した島状に形成されて複数設けられているので、多層反射膜層53に起因したアノード電極5の導電性の低下を抑制することができて、多層反射膜層53に起因した動作電圧の上昇を抑制することができるから、動作電圧の上昇を抑制しつつ光取り出し効率の向上を図れる。   Further, in the semiconductor light emitting device of this embodiment, the multilayer reflective film layer 53 is on the opposite side to the desired light extraction surface side in the thickness direction of the light emitting layer 3 of the two electrodes of the anode electrode 5 and the cathode electrode 6. Provided in the anode electrode 5 that is one of the electrodes positioned and formed in a plurality of independent islands on a plane parallel to the light emitting layer 3, the anode electrode 5 resulting from the multilayer reflective film layer 53 is provided. Since the decrease in conductivity can be suppressed and the increase in operating voltage due to the multilayer reflective film layer 53 can be suppressed, the light extraction efficiency can be improved while suppressing the increase in operating voltage.

ところで、上述の実施形態では、多層反射膜層53を2種類の誘電体膜53a,53bを周期的に積層した構成を有しているが、2種類に限らず、複数種類(例えば、3種類)の誘電体膜を周期的に積層した構成としてもよい。いずれにしても、多層反射膜層53を、複数種類の誘電体膜が発光層3に近い側から離れるにつれて屈折率が大きくなる順に積層された構造とすることにより、多層反射膜層53と多層反射膜層53の下地層である第2の透明導電膜52との界面での光の散乱を防止でき、多層反射膜層53における反射率を高めることができ、光取り出し効率の向上を図れる。   By the way, in the above-described embodiment, the multilayer reflective film layer 53 has a configuration in which two types of dielectric films 53a and 53b are periodically stacked. However, the configuration is not limited to two types, but a plurality of types (for example, three types). ) Dielectric films may be periodically laminated. In any case, the multilayer reflective film layer 53 has a structure in which a plurality of types of dielectric films are stacked in the order in which the refractive index increases as the distance from the side closer to the light emitting layer 3 increases. Light scattering at the interface with the second transparent conductive film 52 that is the base layer of the reflective film layer 53 can be prevented, the reflectance in the multilayer reflective film layer 53 can be increased, and the light extraction efficiency can be improved.

(実施形態2)
本実施形態の半導体発光素子は、実施形態1と同様に、赤色よりも短波長の可視光を放射する可視光発光ダイオードであって、図3に示すように、n形SiC基板からなるベース基板1の一表面側(図3(b)における上面側)に窒化ガリウム系化合物半導体層からなるn形半導体層2が形成され、n形半導体層2上に3族窒化物半導体層からなる発光層3が形成され、発光層3上に窒化ガリウム系化合物半導体層からなるp形半導体層4が形成されている。要するに、本実施形態の半導体発光素子も、実施形態1と同様に、ベース基板1の上記一表面側にn形半導体層2と発光層3とp形半導体層4との積層構造を有している。ここで、n形半導体層2、発光層3、およびp形半導体層4は、ベース基板1の上記一表面側にMOVPE法のようなエピタキシャル成長技術を利用して成膜するので、n形半導体層2の貫通転位を低減するとともにn形半導体層2の残留歪みを低減するために、ベース基板1とn形半導体層2との間にバッファ層を設けることが望ましいのは勿論である。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 2)
The semiconductor light emitting device of this embodiment is a visible light emitting diode that emits visible light having a wavelength shorter than that of red, as in the first embodiment, and is a base substrate made of an n-type SiC substrate as shown in FIG. 1 is formed with an n-type semiconductor layer 2 made of a gallium nitride-based compound semiconductor layer on one surface side (the upper surface side in FIG. 3B), and a light emitting layer made of a group 3 nitride semiconductor layer on the n-type semiconductor layer 2 3 is formed, and a p-type semiconductor layer 4 made of a gallium nitride-based compound semiconductor layer is formed on the light emitting layer 3. In short, the semiconductor light emitting device of this embodiment also has a stacked structure of the n-type semiconductor layer 2, the light emitting layer 3, and the p-type semiconductor layer 4 on the one surface side of the base substrate 1 as in the first embodiment. Yes. Here, since the n-type semiconductor layer 2, the light emitting layer 3, and the p-type semiconductor layer 4 are formed on the one surface side of the base substrate 1 using an epitaxial growth technique such as the MOVPE method, the n-type semiconductor layer is formed. Of course, it is desirable to provide a buffer layer between the base substrate 1 and the n-type semiconductor layer 2 in order to reduce the threading dislocation of 2 and the residual strain of the n-type semiconductor layer 2. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.

ところで、実施形態1では、ベース基板1として絶縁性を有するサファイア基板を用いていたのに対して、本実施形態では導電性を有するn形SiC基板を用いており、p形半導体層4における発光層3側とは反対側にアノード電極5が形成されるとともに、n形半導体層2における発光層3側とは反対側にカソード電極6が形成されている。ただし、カソード電極6は、ベース基板1の他表面(図3(b)における下面)に形成されている。したがって、実施形態1のようにp形半導体層4の一部をエッチングした構造を採用する必要はない。   In the first embodiment, an insulating sapphire substrate is used as the base substrate 1, whereas in this embodiment, a conductive n-type SiC substrate is used, and light emission in the p-type semiconductor layer 4 occurs. An anode electrode 5 is formed on the side opposite to the layer 3 side, and a cathode electrode 6 is formed on the side of the n-type semiconductor layer 2 opposite to the light emitting layer 3 side. However, the cathode electrode 6 is formed on the other surface of the base substrate 1 (the lower surface in FIG. 3B). Therefore, it is not necessary to employ a structure in which a part of the p-type semiconductor layer 4 is etched as in the first embodiment.

また、本実施形態では、カソード電極6とアノード電極5との2つの電極のうちアノード電極5側を光取り出し面側としており、発光層3に対して所望の光取り出し面側とは反対側に位置するカソード電極6に後述の複数の多層反射膜層64および複数の多層反射膜層66を設けてある。   In the present embodiment, the anode electrode 5 side of the two electrodes of the cathode electrode 6 and the anode electrode 5 is the light extraction surface side, and the light emission layer 3 is on the side opposite to the desired light extraction surface side. A plurality of multilayer reflective film layers 64 and a plurality of multilayer reflective film layers 66 described later are provided on the cathode electrode 6 positioned.

本実施形態におけるアノード電極5は、p形半導体層4上に形成された透明導電膜151と、透明導電膜151上で島状に形成された3つの金属膜154と、各金属膜154上に形成された3つのバリアメタル膜55と、各バリアメタル膜55上に形成された3つの外部接続用金属膜56とで構成されている。要するに、アノード電極5は、ワイヤボンディングが可能な外部接続用金属膜56が3つ設けられ、透明導電膜151と各外部接続用金属膜56との間に金属膜154とバリアメタル膜55との積層膜が介在しており、透明導電膜151の露出表面が所望の光取り出し面となっている。ここにおいて、本実施形態では、透明導電膜151がMgをドープしたZnO薄膜により構成されており、透明導電膜151の膜厚は例えば2〜10nmの範囲で設定すればよい。また、本実施形態では、金属膜154の材料としてNiを採用し当該金属膜154の膜厚を50nmに設定し、バリアメタル膜55の材料としてTiを採用し当該バリアメタル膜55の膜厚を50nmに設定し、外部接続用金属膜56の材料としてAuを採用し当該外部接続用金属膜56の膜厚を500nmに設定してあるが、これらの材料や膜厚は特に限定するものではない。
カソード電極6は、ベース基板1の上記他表面側に積層された第1の透明導電膜63と、第1の透明導電膜63におけるベース基板1側とは反対側に形成された複数の島状の多層反射膜層64と、第1の透明導電膜63におけるベース基板1側とは反対側で第1の透明導電膜63のうち多層反射膜層64が積層されていない部位および各多層反射膜層64を覆う形で形成された第2の透明導電膜65と、第2の透明導電膜65におけるベース基板1側とは反対側に形成された複数の島状の多層反射膜層66と、第2の透明導電膜65におけるベース基板1側とは反対側で第2の透明導電膜65のうち多層反射膜層66が積層されていない部位および各多層反射膜層66を覆う形で形成されたバリアメタル膜67と、バリアメタル膜67に積層された外部接続用金属膜62とで構成されている。ここにおいて、本実施形態では、第1の透明導電膜63および第2の透明導電膜65がITO薄膜により構成されており、透明導電膜63,65の膜厚は例えば2〜10nmの範囲で設定すればよい。また、本実施形態では、バリアメタル膜67の材料としてTiを採用し当該バリアメタル膜67の膜厚を50nmに設定し、外部接続用金属膜62の材料としてAuを採用し当該外部接続用金属膜62の膜厚を500nmに設定してあるが、これらの材料や膜厚は特に限定するものではない。また、各多層反射膜層64,66は、実施形態1の多層反射膜層53と同様に屈折率の異なる複数種類の誘電体膜を交互に積層した構成とすればよい。
The anode electrode 5 in this embodiment includes a transparent conductive film 151 formed on the p-type semiconductor layer 4, three metal films 154 formed in an island shape on the transparent conductive film 151, and the metal films 154. The three barrier metal films 55 are formed, and three external connection metal films 56 are formed on the respective barrier metal films 55. In short, the anode electrode 5 is provided with three external connection metal films 56 capable of wire bonding, and the metal film 154 and the barrier metal film 55 are interposed between the transparent conductive film 151 and each external connection metal film 56. The laminated film is interposed, and the exposed surface of the transparent conductive film 151 is a desired light extraction surface. Here, in this embodiment, the transparent conductive film 151 is composed of a ZnO thin film doped with Mg, and the film thickness of the transparent conductive film 151 may be set in the range of 2 to 10 nm, for example. In the present embodiment, Ni is used as the material of the metal film 154, the film thickness of the metal film 154 is set to 50 nm, Ti is used as the material of the barrier metal film 55, and the film thickness of the barrier metal film 55 is increased. The thickness is set to 50 nm, Au is adopted as the material of the external connection metal film 56, and the thickness of the external connection metal film 56 is set to 500 nm. However, these materials and film thickness are not particularly limited. .
The cathode electrode 6 includes a first transparent conductive film 63 stacked on the other surface side of the base substrate 1 and a plurality of island shapes formed on the opposite side of the first transparent conductive film 63 from the base substrate 1 side. Of the first transparent conductive film 63 on the side opposite to the base substrate 1 side of the first transparent conductive film 63 and the multilayer reflective film. A second transparent conductive film 65 formed so as to cover the layer 64, and a plurality of island-like multilayer reflective film layers 66 formed on the opposite side of the second transparent conductive film 65 from the base substrate 1 side; The second transparent conductive film 65 is formed on the opposite side of the second transparent conductive film 65 from the base substrate 1 side so as to cover the portion of the second transparent conductive film 65 where the multilayer reflective film layer 66 is not laminated and each multilayer reflective film layer 66. Barrier metal film 67 and laminated on barrier metal film 67 And an external connection metal layer 62. Here, in the present embodiment, the first transparent conductive film 63 and the second transparent conductive film 65 are made of an ITO thin film, and the film thickness of the transparent conductive films 63 and 65 is set in a range of 2 to 10 nm, for example. do it. In the present embodiment, Ti is used as the material of the barrier metal film 67, the film thickness of the barrier metal film 67 is set to 50 nm, and Au is used as the material of the metal film 62 for external connection. Although the film thickness of the film 62 is set to 500 nm, these materials and film thicknesses are not particularly limited. Further, each of the multilayer reflective film layers 64 and 66 may have a configuration in which a plurality of types of dielectric films having different refractive indexes are alternately stacked as in the multilayer reflective film layer 53 of the first embodiment.

ところで、上述の説明から分かるように、複数の多層反射膜層64と複数の多層反射膜層66とは発光層3に平行な2つの平面上それぞれにおいて独立した島状に形成されており、一方の平面上の多層反射膜層64と他方の平面上の多層反射膜層66との位置をずらし、複数の多層反射膜層64と複数の多層反射膜層66とでベース基板1の他表面の投影領域の略全域を覆うように各多層反射膜層64,66の平面形状を矩形状としてある。したがって、多層反射膜層64,66を設ける一方の電極であるカソード電極6の導電性の低下を抑制しつつ、発光層3の投影領域内における多層反射膜層64,66の占有面積を大きくすることができ、カソード電極6に入射した光をより効率良く反射することができる。   Incidentally, as can be seen from the above description, the plurality of multilayer reflective film layers 64 and the plurality of multilayer reflective film layers 66 are formed in independent island shapes on two planes parallel to the light emitting layer 3, respectively. The positions of the multilayer reflective film layer 64 on one plane and the multilayer reflective film layer 66 on the other plane are shifted, and the plurality of multilayer reflective film layers 64 and the plurality of multilayer reflective film layers 66 are arranged on the other surface of the base substrate 1. The planar shapes of the multilayer reflective film layers 64 and 66 are rectangular so as to cover substantially the entire projection area. Therefore, the area occupied by the multilayer reflective film layers 64 and 66 in the projection region of the light emitting layer 3 is increased while suppressing a decrease in conductivity of the cathode electrode 6 which is one of the electrodes provided with the multilayer reflective film layers 64 and 66. Therefore, the light incident on the cathode electrode 6 can be reflected more efficiently.

以上説明した本実施形態の半導体発光素子では、発光層3の厚み方向において所望の光取り出し面側とは反対側に、複数種類の誘電体膜が周期的に積層されたものであって発光層3から放射された光を反射する複数の多層反射膜層64および複数の多層反射膜層66が形成されているので、発光層3から所望の光取り出し面側とは反対側へ放射された光を、従来の金属材料からなる反射用金属層に比べて効率良く反射することができ、所望の光取り出し面からの光取り出し効率の向上を図れ、発光効率を高めることが可能となる。なお、図3(b)中の矢印Cは発光層3から放射され多層反射膜層66で反射された光の伝搬経路の一例を示している。   In the semiconductor light emitting device of the present embodiment described above, a plurality of types of dielectric films are periodically stacked on the side opposite to the desired light extraction surface side in the thickness direction of the light emitting layer 3. Since the plurality of multilayer reflective film layers 64 and the plurality of multilayer reflective film layers 66 that reflect the light emitted from the light emitting layer 3 are formed, the light emitted from the light emitting layer 3 to the side opposite to the desired light extraction surface side Can be efficiently reflected as compared with a reflective metal layer made of a conventional metal material, the light extraction efficiency from a desired light extraction surface can be improved, and the light emission efficiency can be increased. Note that an arrow C in FIG. 3B shows an example of a propagation path of light emitted from the light emitting layer 3 and reflected by the multilayer reflective film layer 66.

ところで、上述の実施形態におけるカソード電極6は、発光層3に平行な2つの平面上それぞれに複数の多層反射膜層64,66を設けてあるが、発光層3に平行な3つ以上の平面上それぞれに複数の多層反射膜層を設けて、各平面ごとに多層反射膜層の位置をずらすようにしてもよい。   Incidentally, the cathode electrode 6 in the above-described embodiment is provided with a plurality of multilayer reflective film layers 64 and 66 on two planes parallel to the light emitting layer 3, but three or more planes parallel to the light emitting layer 3 are provided. A plurality of multilayer reflective film layers may be provided on each of them, and the position of the multilayer reflective film layer may be shifted for each plane.

(実施形態3)
本実施形態の半導体発光素子は、実施形態1と同様に、赤色よりも短波長の可視光を放射する可視光発光ダイオードであって、図4に示すように、サファイア基板からなるベース基板1の一表面側(図4(b)における上面側)に窒化ガリウム系化合物半導体層からなるn形半導体層2が形成され、n形半導体層2上に3族窒化物半導体層からなる発光層3が形成され、発光層3上に窒化ガリウム系化合物半導体層からなるp形半導体層4が形成されている。要するに、本実施形態の半導体発光素子も、実施形態1と同様に、ベース基板1の上記一表面側にn形半導体層2と発光層3とp形半導体層4との積層構造を有している。ここで、n形半導体層2、発光層3、およびp形半導体層4は、ベース基板1の上記一表面側にMOVPE法のようなエピタキシャル成長技術を利用して成膜するので、n形半導体層2の貫通転位を低減するとともにn形半導体層2の残留歪みを低減するために、ベース基板1とn形半導体層2との間にバッファ層を設けることが望ましいのは勿論である。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 3)
The semiconductor light emitting device of this embodiment is a visible light emitting diode that emits visible light having a wavelength shorter than that of red, as in the first embodiment. As shown in FIG. An n-type semiconductor layer 2 made of a gallium nitride compound semiconductor layer is formed on one surface side (upper surface side in FIG. 4B), and a light-emitting layer 3 made of a group 3 nitride semiconductor layer is formed on the n-type semiconductor layer 2. A p-type semiconductor layer 4 made of a gallium nitride compound semiconductor layer is formed on the light emitting layer 3. In short, the semiconductor light emitting device of this embodiment also has a stacked structure of the n-type semiconductor layer 2, the light emitting layer 3, and the p-type semiconductor layer 4 on the one surface side of the base substrate 1 as in the first embodiment. Yes. Here, since the n-type semiconductor layer 2, the light emitting layer 3, and the p-type semiconductor layer 4 are formed on the one surface side of the base substrate 1 using an epitaxial growth technique such as the MOVPE method, the n-type semiconductor layer is formed. Of course, it is desirable to provide a buffer layer between the base substrate 1 and the n-type semiconductor layer 2 in order to reduce the threading dislocation of 2 and the residual strain of the n-type semiconductor layer 2. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.

本実施形態の半導体発光素子は、実施形態1と同様に、p形半導体層4における発光層3側とは反対側にアノード電極5が形成されるとともに、n形半導体層2における発光層3の積層側にカソード電極6が形成されているが、実施形態1では、ベース基板1の他表面を光取り出し面としてアノード電極5に多層反射膜層53を設けていたのに対して、本実施形態では、アノード電極5の一部の表面を所望の光取り出し面としている点などが相違する。要するに、実施形態1の半導体発光素子ではパッケージに実装する場合に、フェースダウンで実装する(フリップチップ実装する)のに対して、本実施形態の半導体発光素子ではパッケージに実装する場合、フェースアップで実装してアノード電極5およびカソード電極6それぞれをボンディングワイヤを介してパッケージの各配線パターンと電気的に接続する。   As in the first embodiment, the semiconductor light emitting device of this embodiment has an anode electrode 5 formed on the opposite side of the p-type semiconductor layer 4 to the light emitting layer 3 side, and the light emitting layer 3 of the n-type semiconductor layer 2 The cathode electrode 6 is formed on the laminated side. In the first embodiment, the multilayer reflection film layer 53 is provided on the anode electrode 5 with the other surface of the base substrate 1 as the light extraction surface. The difference lies in that a part of the surface of the anode electrode 5 is a desired light extraction surface. In short, when the semiconductor light emitting device of the first embodiment is mounted on a package, it is mounted face down (flip chip mounting), whereas when the semiconductor light emitting device of this embodiment is mounted on a package, it is face up. After mounting, the anode electrode 5 and the cathode electrode 6 are electrically connected to each wiring pattern of the package through bonding wires.

本実施形態においても実施形態1と同様に、アノード電極5およびカソード電極6の平面視形状が櫛形状の形状に形成され、平面視においてカソード電極6とアノード電極5とが互いに入り組んでいるが、本実施形態におけるアノード電極5は各透明導電膜51,52のみが櫛形状に形成され、バリアメタル膜55と外部接続用金属膜56との積層膜は第2の透明導電膜52上で島状に形成され、櫛形状の第2の透明導電膜52の櫛骨部に相当する部位上で2箇所に設けられている。したがって、本実施形態の半導体発光素子では、アノード電極5における第2の透明導電膜52の露出表面を所望の光取り出し面とすることができる。また、本実施形態におけるカソード電極6は、平面視形状が櫛形状の透明導電膜68と、櫛形状の透明導電膜68の櫛骨部に相当する部位の表面側で島状に形成された複数(図示例では、3つ)の外部接続用金属膜62と、各外部接続用金属膜62と透明導電膜68との間それぞれに介在したバリアメタル膜161とで構成されている。要するに、バリアメタル膜161と外部接続用金属膜62との積層膜は透明導電膜68上で島状に形成され、櫛形状の透明導電膜68の櫛骨部に相当する部位上で3箇所に設けられている。ここにおいて、透明導電膜68の材料としては、ITO,ZnO,In,SnOのいずれかを採用すればよい。また、バリアメタル膜161の材料としては、例えば、Tiを採用すればよい。 Also in the present embodiment, as in the first embodiment, the planar shape of the anode electrode 5 and the cathode electrode 6 is formed in a comb shape, and the cathode electrode 6 and the anode electrode 5 are intertwined in the planar view, In the present embodiment, only the transparent conductive films 51 and 52 are formed in a comb shape in the anode electrode 5, and the laminated film of the barrier metal film 55 and the external connection metal film 56 is island-shaped on the second transparent conductive film 52. And is provided at two locations on the portion corresponding to the comb portion of the comb-shaped second transparent conductive film 52. Therefore, in the semiconductor light emitting device of this embodiment, the exposed surface of the second transparent conductive film 52 in the anode electrode 5 can be a desired light extraction surface. In addition, the cathode electrode 6 in the present embodiment has a plurality of islands formed on the surface side of the portion corresponding to the comb bone portion of the comb-shaped transparent conductive film 68 and the comb-shaped transparent conductive film 68 in a plan view. (In the example shown in the figure, it is composed of three external connection metal films 62 and barrier metal films 161 interposed between the respective external connection metal films 62 and the transparent conductive film 68). In short, the laminated film of the barrier metal film 161 and the external connection metal film 62 is formed in an island shape on the transparent conductive film 68, and is formed at three positions on the portion corresponding to the comb bone portion of the comb-shaped transparent conductive film 68. Is provided. Here, as a material of the transparent conductive film 68, any one of ITO, ZnO, In 2 O 3 , and SnO 2 may be adopted. Further, as the material of the barrier metal film 161, for example, Ti may be adopted.

また、本実施形態の半導体発光素子は、ベース基板1の他表面の全面に、発光層3から放射された光を反射する多層反射膜層7が形成されている(なお、図4(b)中の矢印Cは発光層3から放射され多層反射膜層7で反射された光の伝搬経路の一例を示している)。要するに、本実施形態の半導体発光素子は、発光層3の厚み方向において所望の光取り出し面側とは反対側においてベース基板1の他表面の全面に発光層3から放射された光を反射する多層反射膜層7が形成されている。ここにおいて、多層反射膜層7は、実施形態1の多層反射膜層53と同様に屈折率の異なる複数種類の誘電体膜を交互に積層した構造を有している。   Further, in the semiconductor light emitting device of this embodiment, a multilayer reflective film layer 7 that reflects light emitted from the light emitting layer 3 is formed on the entire other surface of the base substrate 1 (FIG. 4B). The arrow C in the middle shows an example of a propagation path of light emitted from the light emitting layer 3 and reflected by the multilayer reflective film layer 7). In short, the semiconductor light emitting device of the present embodiment is a multilayer that reflects light emitted from the light emitting layer 3 on the entire other surface of the base substrate 1 on the side opposite to the desired light extraction surface side in the thickness direction of the light emitting layer 3. A reflective film layer 7 is formed. Here, the multilayer reflective film layer 7 has a structure in which a plurality of types of dielectric films having different refractive indexes are alternately laminated, like the multilayer reflective film layer 53 of the first embodiment.

しかして、本実施形態の半導体発光素子では、発光層3の厚み方向において所望の光取り出し面側とは反対側に、複数種類の誘電体膜が周期的に積層されたものであって発光層3から放射された光を反射する多層反射膜層7が形成されているので、発光層3から所望の光取り出し面側とは反対側へ放射された光を、従来の金属材料からなる反射用金属層に比べて効率良く反射することができ、所望の光取り出し面からの光取り出し効率の向上を図れ、発光効率を高めることが可能になる。なお、本実施形態の半導体発光素子では、発光層3から所望の光取り出し面側に放射され多層反射膜層7にてカソード電極6に向かって反射された光の一部は、カソード電極6の透明導電膜68を通して外部へ出射される。   Thus, in the semiconductor light emitting device of this embodiment, a plurality of types of dielectric films are periodically stacked on the side opposite to the desired light extraction surface side in the thickness direction of the light emitting layer 3. Since the multilayer reflective film layer 7 that reflects the light emitted from the light emitting layer 3 is formed, the light emitted from the light emitting layer 3 to the side opposite to the desired light extraction surface side is reflected by a conventional metal material. The light can be reflected more efficiently than the metal layer, the light extraction efficiency from the desired light extraction surface can be improved, and the light emission efficiency can be increased. In the semiconductor light emitting device of this embodiment, a part of the light emitted from the light emitting layer 3 toward the desired light extraction surface and reflected by the multilayer reflective film layer 7 toward the cathode electrode 6 The light is emitted to the outside through the transparent conductive film 68.

実施形態1の半導体発光素子を示し、(a)は概略平面図、(b)は(a)のA−A’概略断面図である。1A and 1B show a semiconductor light emitting device of Embodiment 1, in which FIG. 1A is a schematic plan view, and FIG. 同上の半導体発光素子の多層反射膜層の説明図である。It is explanatory drawing of the multilayer reflecting film layer of a semiconductor light emitting element same as the above. 実施形態2の半導体発光素子を示し、(a)は概略平面図、(b)は(a)の概略断面図である。The semiconductor light-emitting device of Embodiment 2 is shown, (a) is a schematic plan view, (b) is a schematic sectional drawing of (a). 実施形態3の半導体発光素子を示し、(a)は概略平面図、(b)は(a)の概略断面図である。The semiconductor light-emitting device of Embodiment 3 is shown, (a) is a schematic plan view, (b) is a schematic sectional drawing of (a). 従来例を示す半導体発光素子の概略断面図である。It is a schematic sectional drawing of the semiconductor light-emitting device which shows a prior art example.

符号の説明Explanation of symbols

1 ベース基板
2 n形半導体層
3 発光層
4 p形半導体層
5 アノード電極
6 カソード電極
51 第1の透明導電膜
52 第2の透明導電膜
53 多層反射膜層
54 金属反射膜
55 バリアメタル膜
56 外部接続用金属膜
DESCRIPTION OF SYMBOLS 1 Base substrate 2 N-type semiconductor layer 3 Light emitting layer 4 P-type semiconductor layer 5 Anode electrode 6 Cathode electrode 51 First transparent conductive film 52 Second transparent conductive film 53 Multilayer reflective film layer 54 Metal reflective film 55 Barrier metal film 56 Metal film for external connection

Claims (6)

n形半導体層と発光層とp形半導体層との積層構造を有し、p形半導体層における発光層側とは反対側にアノード電極が形成されるとともに、n形半導体層における発光層の積層側にカソード電極が形成され、発光層の厚み方向において所望の光取り出し面側とは反対側に、複数種類の誘電体膜が周期的に積層されたものであって発光層から放射された光を反射する多層反射膜層を備えてなることを特徴とする半導体発光素子。   An n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer are stacked, an anode electrode is formed on the opposite side of the p-type semiconductor layer from the light-emitting layer side, and the light-emitting layer is stacked on the n-type semiconductor layer. The cathode electrode is formed on the side, and a plurality of types of dielectric films are periodically stacked on the side opposite to the desired light extraction surface side in the thickness direction of the light emitting layer, and light emitted from the light emitting layer A semiconductor light emitting device comprising a multilayer reflective film layer that reflects light. 前記多層反射膜層は、屈折率が異なる2種類の前記誘電体膜が交互に積層されたものであり、各誘電体膜は、それぞれ酸化膜もしくは窒化膜からなることを特徴とする請求項1記載の半導体発光素子。   2. The multilayer reflective film layer is formed by alternately laminating two types of dielectric films having different refractive indexes, and each dielectric film is made of an oxide film or a nitride film, respectively. The semiconductor light emitting element as described. 前記多層反射膜層は、複数種類の前記誘電体膜が前記発光層に近い側から離れるにつれて屈折率が大きくなる順に積層されてなることを特徴とする請求項1または請求項2記載の半導体発光素子。   3. The semiconductor light emitting device according to claim 1, wherein the multilayer reflective film layer is formed by laminating a plurality of types of dielectric films in order of increasing refractive index as the distance from the side closer to the light emitting layer increases. element. 前記多層反射膜層は、前記発光層の発光ピーク波長±30nmの波長域の光に対して反射率が95%よりも高くなるように形成されてなることを特徴とする請求項1ないし請求項3のいずれかに記載の半導体発光素子。   The multilayer reflective film layer is formed so that a reflectance is higher than 95% with respect to light in a wavelength region of an emission peak wavelength ± 30 nm of the light emitting layer. 4. The semiconductor light emitting device according to any one of 3. 前記多層反射膜層は、前記アノード電極と前記カソード電極との2つの電極のうち前記発光層の前記厚み方向において所望の光取り出し面側とは反対側に位置する一方の電極に設けられ、前記発光層に平行な平面上で独立した島状に形成されて複数設けられてなることを特徴とする請求項1ないし請求項4のいずれかに記載の半導体発光素子。   The multilayer reflective film layer is provided on one electrode located on a side opposite to a desired light extraction surface side in the thickness direction of the light emitting layer among the two electrodes of the anode electrode and the cathode electrode, 5. The semiconductor light emitting device according to claim 1, wherein a plurality of the light emitting layers are formed in an independent island shape on a plane parallel to the light emitting layer. 前記多層反射膜層は、前記アノード電極と前記カソード電極との2つの電極のうち前記発光層の前記厚み方向において所望の光取り出し面側とは反対側に位置する一方の電極に設けられ、前記発光層に平行な複数の平面上それぞれにおいて独立した島状に形成されて前記各平面上に複数設けられてなり、前記一方の電極は、前記各平面ごとに前記多層反射膜層の位置をずらしてあることを特徴とする請求項1ないし請求項4のいずれかに記載の半導体発光素子。   The multilayer reflective film layer is provided on one electrode located on a side opposite to a desired light extraction surface side in the thickness direction of the light emitting layer among the two electrodes of the anode electrode and the cathode electrode, Each of the plurality of planes parallel to the light emitting layer is formed in an independent island shape and provided on each plane, and the one electrode shifts the position of the multilayer reflective film layer for each plane. The semiconductor light-emitting device according to claim 1, wherein the semiconductor light-emitting device is provided.
JP2006077721A 2006-03-20 2006-03-20 Semiconductor light emitting device Active JP5048960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077721A JP5048960B2 (en) 2006-03-20 2006-03-20 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077721A JP5048960B2 (en) 2006-03-20 2006-03-20 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2007258276A true JP2007258276A (en) 2007-10-04
JP5048960B2 JP5048960B2 (en) 2012-10-17

Family

ID=38632235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077721A Active JP5048960B2 (en) 2006-03-20 2006-03-20 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5048960B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238932A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Semiconductor light emitting device and lighting device using the same
JP2009238931A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Semiconductor light-emitting element and manufacturing method therefor, and luminaire using the element
JP2010040761A (en) * 2008-08-05 2010-02-18 Sharp Corp Nitride semiconductor light-emitting element and method of manufacturing the same
JP2010040937A (en) * 2008-08-07 2010-02-18 Seiwa Electric Mfg Co Ltd Semiconductor light emitting element, light emitting device, illuminating apparatus, and display
JP2010087283A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Semiconductor light emitting element
JP2010087282A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Semiconductor light emitting element
WO2010098313A1 (en) 2009-02-24 2010-09-02 パナソニック電工株式会社 Light-emitting device
JP2010272592A (en) * 2009-05-19 2010-12-02 Panasonic Electric Works Co Ltd Semiconductor light emitting element
JP2011071316A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Semiconductor light-emitting element and lighting apparatus
KR20110106347A (en) * 2008-12-08 2011-09-28 크리 인코포레이티드 Composite high reflectivity layer
KR20120030394A (en) * 2009-04-30 2012-03-28 오스람 옵토 세미컨덕터스 게엠베하 Optoelectronic semiconductor bodies having a reflective layer system
JP2012138639A (en) * 2012-04-23 2012-07-19 Sharp Corp Nitride semiconductor light-emitting element and manufacturing method of the same
EP2500627A2 (en) 2011-03-17 2012-09-19 Stanley Electric Co., Ltd. Light-emitting device, light-emitting device module, and vehicle lighting unit
WO2013011674A1 (en) 2011-07-15 2013-01-24 パナソニック株式会社 Semiconductor light emitting element
JP2014017283A (en) * 2012-07-05 2014-01-30 Sharp Corp Method of manufacturing nitride compound semiconductor light-emitting element
JP2014096603A (en) * 2007-11-26 2014-05-22 Lg Innotek Co Ltd Semiconductor light-emitting element
US8860907B2 (en) 2010-09-14 2014-10-14 Panasonic Corporation Backlight unit, liquid crystal display apparatus using the same, and light-emitting diode used therefor
JP5617916B2 (en) * 2010-09-14 2014-11-05 パナソニック株式会社 BACKLIGHT DEVICE, LIQUID CRYSTAL DISPLAY DEVICE USING THE BACKLIGHT DEVICE, AND LIGHT EMITTING DIODE USED FOR THE SAME
JP2017533591A (en) * 2014-10-29 2017-11-09 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor chip
DE102018115041A1 (en) 2017-06-30 2019-01-03 Panasonic Intellectual Property Management Co., Ltd. Light emitter and light emitting device
US10957830B2 (en) 2011-06-24 2021-03-23 Cree, Inc. High voltage monolithic LED chip with improved reliability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268252A (en) * 1993-03-12 1994-09-22 Sharp Corp Semiconductor light-emitting device
JPH11251631A (en) * 1998-03-03 1999-09-17 Nichia Chem Ind Ltd Nitride semiconductor element and its manufacture
JP2005197289A (en) * 2003-12-26 2005-07-21 Nichia Chem Ind Ltd Nitride semiconductor light emitting element and its manufacturing method
JP2006054420A (en) * 2004-08-11 2006-02-23 Samsung Electro Mech Co Ltd Nitride semiconductor light emitting element and its manufacturing method, and light emitting device formed in flip chip structure equipped therewith

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268252A (en) * 1993-03-12 1994-09-22 Sharp Corp Semiconductor light-emitting device
JPH11251631A (en) * 1998-03-03 1999-09-17 Nichia Chem Ind Ltd Nitride semiconductor element and its manufacture
JP2005197289A (en) * 2003-12-26 2005-07-21 Nichia Chem Ind Ltd Nitride semiconductor light emitting element and its manufacturing method
JP2006054420A (en) * 2004-08-11 2006-02-23 Samsung Electro Mech Co Ltd Nitride semiconductor light emitting element and its manufacturing method, and light emitting device formed in flip chip structure equipped therewith

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472739B2 (en) 2007-11-26 2016-10-18 Lg Innotek Co., Ltd. Semiconductor light emitting device
JP2014096603A (en) * 2007-11-26 2014-05-22 Lg Innotek Co Ltd Semiconductor light-emitting element
JP2009238932A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Semiconductor light emitting device and lighting device using the same
JP2009238931A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Semiconductor light-emitting element and manufacturing method therefor, and luminaire using the element
JP2010040761A (en) * 2008-08-05 2010-02-18 Sharp Corp Nitride semiconductor light-emitting element and method of manufacturing the same
US8319243B2 (en) 2008-08-05 2012-11-27 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and method of manufacturing the same
JP2010040937A (en) * 2008-08-07 2010-02-18 Seiwa Electric Mfg Co Ltd Semiconductor light emitting element, light emitting device, illuminating apparatus, and display
JP2010087283A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Semiconductor light emitting element
JP2010087282A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Semiconductor light emitting element
KR101677520B1 (en) 2008-12-08 2016-11-18 크리 인코포레이티드 Composite high reflectivity layer
KR20110106347A (en) * 2008-12-08 2011-09-28 크리 인코포레이티드 Composite high reflectivity layer
US8598609B2 (en) 2008-12-08 2013-12-03 Cree, Inc. Composite high reflectivity layer
JP2012511252A (en) * 2008-12-08 2012-05-17 クリー インコーポレイテッド Composite highly reflective layer
EP2403025A1 (en) * 2009-02-24 2012-01-04 Panasonic Electric Works Co., Ltd. Light-emitting device
US9018656B2 (en) 2009-02-24 2015-04-28 Panasonic Corporation Light emitting device
WO2010098313A1 (en) 2009-02-24 2010-09-02 パナソニック電工株式会社 Light-emitting device
EP2403025A4 (en) * 2009-02-24 2013-12-04 Panasonic Corp Light-emitting device
US9012940B2 (en) 2009-04-30 2015-04-21 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor bodies having a reflective layer system
DE102009019524B4 (en) 2009-04-30 2023-07-06 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor body with a reflective layer system
KR20120030394A (en) * 2009-04-30 2012-03-28 오스람 옵토 세미컨덕터스 게엠베하 Optoelectronic semiconductor bodies having a reflective layer system
JP2012525693A (en) * 2009-04-30 2012-10-22 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor with a reflective layer system
KR101689413B1 (en) 2009-04-30 2016-12-23 오스람 옵토 세미컨덕터스 게엠베하 Optoelectronic semiconductor bodies having a reflective layer system
JP2010272592A (en) * 2009-05-19 2010-12-02 Panasonic Electric Works Co Ltd Semiconductor light emitting element
JP2011071316A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Semiconductor light-emitting element and lighting apparatus
JP5877347B2 (en) * 2010-09-14 2016-03-08 パナソニックIpマネジメント株式会社 BACKLIGHT DEVICE, LIQUID CRYSTAL DISPLAY DEVICE USING THE BACKLIGHT DEVICE, AND LIGHT EMITTING DIODE USED FOR THE SAME
US8860907B2 (en) 2010-09-14 2014-10-14 Panasonic Corporation Backlight unit, liquid crystal display apparatus using the same, and light-emitting diode used therefor
JP5617916B2 (en) * 2010-09-14 2014-11-05 パナソニック株式会社 BACKLIGHT DEVICE, LIQUID CRYSTAL DISPLAY DEVICE USING THE BACKLIGHT DEVICE, AND LIGHT EMITTING DIODE USED FOR THE SAME
EP2500627A2 (en) 2011-03-17 2012-09-19 Stanley Electric Co., Ltd. Light-emitting device, light-emitting device module, and vehicle lighting unit
US9461206B2 (en) 2011-03-17 2016-10-04 Stanley Electric Co., Ltd. Light-emitting device, light-emitting device module, and vehicle lighting unit
KR20120106648A (en) 2011-03-17 2012-09-26 스탄레 덴끼 가부시키가이샤 Light-emitting device, light-emitting device module, and vehicle lighting unit
US10957830B2 (en) 2011-06-24 2021-03-23 Cree, Inc. High voltage monolithic LED chip with improved reliability
US11843083B2 (en) 2011-06-24 2023-12-12 Creeled, Inc. High voltage monolithic LED chip with improved reliability
US11588083B2 (en) 2011-06-24 2023-02-21 Creeled, Inc. High voltage monolithic LED chip with improved reliability
WO2013011674A1 (en) 2011-07-15 2013-01-24 パナソニック株式会社 Semiconductor light emitting element
JP2012138639A (en) * 2012-04-23 2012-07-19 Sharp Corp Nitride semiconductor light-emitting element and manufacturing method of the same
JP2014017283A (en) * 2012-07-05 2014-01-30 Sharp Corp Method of manufacturing nitride compound semiconductor light-emitting element
US10079329B2 (en) 2014-10-29 2018-09-18 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP2017533591A (en) * 2014-10-29 2017-11-09 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor chip
US10344947B2 (en) 2017-06-30 2019-07-09 Panasonic Intellectual Property Management Co., Ltd. Light emitter and light emitting device
DE102018115041A1 (en) 2017-06-30 2019-01-03 Panasonic Intellectual Property Management Co., Ltd. Light emitter and light emitting device

Also Published As

Publication number Publication date
JP5048960B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5048960B2 (en) Semiconductor light emitting device
KR101627010B1 (en) Semiconductor light emitting device including metal reflecting layer
JP5637210B2 (en) Semiconductor light emitting device
JP4882792B2 (en) Semiconductor light emitting device
KR101127314B1 (en) Semiconductor device
EP2339654B1 (en) Light emitting diode
JP5237854B2 (en) Light emitting device
JP5176334B2 (en) Semiconductor light emitting device
JP4453515B2 (en) Semiconductor light emitting device
JP5494005B2 (en) Semiconductor light emitting device
JP5929714B2 (en) Semiconductor light emitting device
JP5091823B2 (en) Semiconductor light emitting device
KR100862516B1 (en) Light emitting diode
JP2011192960A (en) Semiconductor light-emitting element
US9269862B2 (en) Light-emitting device
KR20080017180A (en) Semiconductor light emitting device
JP2012043893A (en) Semiconductor light-emitting element and manufacturing method of the same
JP2007258277A (en) Semiconductor light emitting device
JP2012204373A (en) Semiconductor light-emitting element
WO2014192226A1 (en) Light-emitting element
JP5378131B2 (en) Nitride semiconductor light emitting diode device
JP2011071444A (en) Light-emitting element
US20140138731A1 (en) Semiconductor light emitting element
JP5543164B2 (en) Light emitting element
JP2008004729A (en) Semiconductor light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5048960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250