JP2010086934A - Distribution-induction heating system - Google Patents

Distribution-induction heating system Download PDF

Info

Publication number
JP2010086934A
JP2010086934A JP2008274550A JP2008274550A JP2010086934A JP 2010086934 A JP2010086934 A JP 2010086934A JP 2008274550 A JP2008274550 A JP 2008274550A JP 2008274550 A JP2008274550 A JP 2008274550A JP 2010086934 A JP2010086934 A JP 2010086934A
Authority
JP
Japan
Prior art keywords
induction heating
heating coil
distributed
temperature
molding die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008274550A
Other languages
Japanese (ja)
Inventor
Junying Guo
郭俊映
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitac Precision Technology Kunshan Ltd
Original Assignee
Mitac Precision Technology Kunshan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitac Precision Technology Kunshan Ltd filed Critical Mitac Precision Technology Kunshan Ltd
Publication of JP2010086934A publication Critical patent/JP2010086934A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distribution-induction heating system in which a heating process can be accelerated and energy consumption can be reduced. <P>SOLUTION: In a system which carries out a heating method to rapidly heat a molding die until its temperature reaches the working temperature, the molding die is heated by generating the total working current by a power supply device and by making a plurality of induction heating coils averagely receive the total working current to generate eddy currents on the molding die. Each induction heating coil is switched by an interruption controller to allow its connection to the power supply device to be cut off or put into a conductive state individually. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は成形金型の誘導加熱システムに関し、特に加熱過程を加速し、且つエネルギーの消耗を低下させることができる、分散式誘導加熱システムに関する。   The present invention relates to an induction heating system for a molding die, and more particularly to a distributed induction heating system that can accelerate a heating process and reduce energy consumption.

射出成形工程は主に2つの手順を含む。第一に高温で溶融した成形原料を成形金型内に注入する。第二に成形金型の温度を型開き温度まで冷却する。成形原料を成形金型に注入する過程において、成形原料を成形金型のキャビティ中で十分に流動させ、成形原料の流動を加速し、かつ成形原料がキャビティ全体を満たすよう確保する必要がある。このため、成形原料の温度は相対的に高い温度を維持し、効果的に液態成形原料の粘度を低くして成形原料の流動性を改善する必要がある。しかしながら、成形金型も吸熱するため、成形原料が成形金型に接触すると温度が迅速に低下して流速が遅くなり、さらには早くに固化してしまい、流動経路を塞ぎ、キャビティの充填が不完全になってしまうことさえある。このため、成形原料を成形金型に注入する前に、成形金型を相対的高温に加熱し、成形原料が相対的に低温の成形金型に接触した後迅速に降温し固化してしまうのを回避しなければならない。   The injection molding process mainly includes two procedures. First, a molding material melted at a high temperature is poured into a molding die. Second, the temperature of the molding die is cooled to the mold opening temperature. In the process of injecting the molding raw material into the molding die, it is necessary to sufficiently flow the molding raw material in the cavity of the molding die, accelerate the flow of the molding raw material, and ensure that the molding raw material fills the entire cavity. For this reason, it is necessary to maintain the relatively high temperature of the forming raw material and effectively lower the viscosity of the liquid forming raw material to improve the fluidity of the forming raw material. However, since the molding die also absorbs heat, when the molding raw material comes into contact with the molding die, the temperature rapidly decreases and the flow rate is slowed down, and further solidifies quickly, blocking the flow path and filling the cavity. It can even become complete. For this reason, before the molding raw material is injected into the molding die, the molding die is heated to a relatively high temperature, and after the molding raw material comes into contact with the molding die having a relatively low temperature, the temperature is quickly lowered and solidified. Must be avoided.

図1と図2に示すように、従来の技術における成形金型の高速加熱システムは、誘導加熱コイル3で金型を加熱する。このシステムはオス型1、メス型2、及び誘導加熱コイル3を含む。そのうち、オス型1とメス型2は相互に結合されて成形金型を成し、キャビティ4を形成して成形原料がその中に注入される。誘導加熱コイルは支持アームによって支持され、成形金型を加熱する必要があるとき、オス型1とメス型2の間に移動され、キャビティ4に対応し、或いは絶縁治具を介してオス型1とメス型2のいずれかに嵌設される。誘導加熱コイルは作業電流が導通されて磁場の変化を発生するために用いられ、これにより金属製の成形金型表面に渦電流を発生し、成形金型を発熱させる。誘導加熱コイルに通電することで成形金型内部に発熱させ、相対的に高い作業温度に加熱することができる。   As shown in FIG. 1 and FIG. 2, the high-speed heating system for a molding die in the prior art heats the die with an induction heating coil 3. The system includes a male type 1, a female type 2, and an induction heating coil 3. Among them, the male mold 1 and the female mold 2 are combined with each other to form a molding die, and a cavity 4 is formed and a molding raw material is injected therein. The induction heating coil is supported by a support arm, and when it is necessary to heat the molding die, it is moved between the male die 1 and the female die 2 and corresponds to the cavity 4 or via the insulating jig. And a female mold 2. The induction heating coil is used to generate a change in the magnetic field when the working current is conducted, thereby generating an eddy current on the surface of the metal molding die and causing the molding die to generate heat. By energizing the induction heating coil, heat can be generated inside the molding die and heated to a relatively high working temperature.

成形金型のキャビティの形態変化は成形金型の各部分区域の肉厚の違いを形成し、このため各部分区域の熱容量も異なる。成形金型を加熱するとき、熱容量が相対的に低い(肉厚が比較的小さい)部分区域は、比較的迅速に必要な作業温度まで昇温するが、熱容量が比較的高い(肉厚が比較的大きい)部分区域は、必要な作業温度まで昇温するのに比較的時間がかかる。昇温が遅い区域は、成形金型が完全に作業温度まで加熱されるのにかかる時間の増加を招く。電力供給システムが提供できる最大電流は固定値であるため、電流の大きさを上げる方式で加熱過程を加速するには、電力がより大きい、コストがより高い電力供給システムに交換しなければならない。同時に、昇温が遅い部分区域が加熱される過程において、すでに作業温度に達した部分区域の加熱も継続され、別途加熱電気エネルギーが消耗される。このため、従来の技術における誘導加熱コイルで成形金型を加熱する方式は、過多なエネルギーを消耗して加熱が行われ、且つ仕事率を増加する方式で加熱時間を短縮しなければならず、エネルギー消費量を低くして製造コストを減少するというニーズを満たすことができない。   Variations in the shape of the mold cavity cause differences in the thickness of each partial area of the mold, and thus the heat capacity of each partial area is also different. When heating the mold, partial areas with relatively low heat capacity (relatively small wall thickness) will heat up to the required working temperature relatively quickly, but with relatively high heat capacity (compared wall thickness) The (large) partial area takes a relatively long time to reach the required working temperature. The zone where the temperature rise is slow causes an increase in the time required for the molding die to be completely heated to the working temperature. Since the maximum current that the power supply system can provide is a fixed value, to accelerate the heating process in a manner that increases the magnitude of the current, the power supply system must be replaced with a power supply system with higher power and higher cost. At the same time, in the process of heating the partial area where the temperature rises slowly, the heating of the partial area that has already reached the working temperature is continued and the heating electric energy is consumed separately. For this reason, the method of heating the molding die with the induction heating coil in the prior art is performed by consuming excessive energy and heating, and shortening the heating time by increasing the power, The need to reduce energy consumption and reduce manufacturing costs cannot be met.

本発明の目的は、加熱過程を加速し、且つエネルギーの消耗を低下させることができる、分散式誘導加熱システムを提供することにある。   An object of the present invention is to provide a distributed induction heating system capable of accelerating a heating process and reducing energy consumption.

本発明の分散式誘導加熱システムは、成形金型の温度を作業温度に達するまで迅速に加熱するために用いられ、このシステムは電力供給装置、複数の誘導加熱コイル、及び遮断制御装置を含む。電力供給装置は外部電源により総作業電流を発生し、電力供給装置に接続された誘導加熱コイルに平均的に総作業電流を送り、成形金型を加熱させる。成形金型は複数の部分区域が定義され、各誘導加熱コイルは異なる部分区域をそれぞれ加熱する。遮断制御装置は電力供給装置及び各誘導加熱コイルに接続され、各誘導加熱コイルと電力供給装置の接続を個別に切断または導通する。成形金型の部分区域の温度が作業温度に達した後、対応する誘導加熱コイルの電力を先に切断することができ、且つその消耗する電流を平均的にその他誘導加熱コイルに分配し、さらに成形金型を完全に作業温度まで加熱するのに必要な時間を短縮することができる。   The distributed induction heating system of the present invention is used to quickly heat the mold temperature until it reaches the working temperature, which system includes a power supply, a plurality of induction heating coils, and a shut-off controller. The power supply device generates a total work current from an external power source, and sends the total work current to an induction heating coil connected to the power supply device on average to heat the molding die. The molding die is defined with a plurality of partial areas, and each induction heating coil heats a different partial area. The cutoff control device is connected to the power supply device and each induction heating coil, and disconnects or conducts the connection between each induction heating coil and the power supply device individually. After the temperature of the partial area of the mold reaches the working temperature, the power of the corresponding induction heating coil can be cut first, and the consumed current is distributed to the other induction heating coils on average, It is possible to reduce the time required to completely heat the mold to the working temperature.

本発明はまた、分散式誘導加熱方法を提供する。まず、成形金型上に複数の部分区域を定義し、各部分区域にそれぞれ対応する複数の誘導加熱コイルを提供する。続いて総作業電流を提供し、平均的に各誘導加熱コイルに分配し、各誘導加熱コイルによりその対応する部分区域をそれぞれ加熱する。各部分区域のうちの1つが作業温度に達すると、対応する誘導加熱コイルの作業電流の通電を切断し、作業電流をその他誘導加熱コイルに分配して、さらにその他部分区域の加温速度を加速し、成形金型を作業温度まで完全に加熱するために必要な時間を短縮する。   The present invention also provides a distributed induction heating method. First, a plurality of partial areas are defined on the molding die, and a plurality of induction heating coils respectively corresponding to the partial areas are provided. Subsequently, the total working current is provided and distributed to each induction heating coil on average, and each induction heating coil heats its corresponding partial area. When one of the sub-regions reaches the working temperature, the working current of the corresponding induction heating coil is cut off, the working current is distributed to the other induction heating coils, and the heating rate of the other sub-regions is further accelerated. And reducing the time required to fully heat the mold to the working temperature.

本発明はさらに別の分散式誘導加熱方法を提供する。まず、成形金型上に複数の部分区域を定義し、各部分区域に加熱時間を与え、その温度を作業温度まで加熱する。続いて複数の誘導加熱コイルを提供し、各部分区域にそれぞれ対応させる。総作業電流を提供し、各誘導加熱コイルに平均的に分配し、各誘導加熱コイルによりその対応する部分区域をそれぞれ加熱する。総作業電流の提供が各加熱時間を経過した後、対応する誘導加熱コイルの作業電流の通電を切断する。各誘導加熱コイルの通電を順次切断した後、成形金型を作業温度まで完全に加熱することができる。   The present invention provides yet another distributed induction heating method. First, a plurality of partial areas are defined on the molding die, heating time is given to each partial area, and the temperature is heated to the working temperature. Subsequently, a plurality of induction heating coils are provided, each corresponding to each partial area. A total working current is provided and distributed on average to each induction heating coil, and each induction heating coil heats its corresponding sub-area, respectively. After the provision of the total working current has passed each heating time, the working current of the corresponding induction heating coil is turned off. After the energization of each induction heating coil is sequentially cut, the molding die can be completely heated to the working temperature.

本発明は複数の誘導加熱コイルを採用し、昇温特性の異なる成形金型の部分区域に対してそれぞれ加熱を行い、かつ各誘導加熱コイルのオンとオフを個別に制御することで、不必要な加熱電気エネルギーの消耗を減少することができる。同時に、総仕事率/総作業電流を上昇しない前提下で、部分区域の加熱仕事率/コイルの電流を上昇し、さらに加熱に必要な時間を短縮することができる。加熱に必要な時間が短縮され、且つ総仕事率/総作業電流は増加する必要がないため、成形金型の加熱に必要な電気エネルギーも減少される。   The present invention employs a plurality of induction heating coils, heats each of the partial areas of the mold having different temperature rising characteristics, and individually controls on / off of each induction heating coil, which is unnecessary. The consumption of heating electric energy can be reduced. At the same time, on the premise that the total power / total working current is not increased, the heating power / coil current in the partial area can be increased, and the time required for heating can be further shortened. Since the time required for heating is reduced and the total power / total working current need not be increased, the electrical energy required to heat the mold is also reduced.

[実施例1]
図3、図4、図5に示すように、本発明の実施例が提供する分散式誘導加熱システムは、成形金型90を迅速に加熱するために用いられる。分散式誘導加熱システムは電力供給装置10、遮断制御装置20、及び複数の誘導加熱コイル30、制御装置40、及び冷却装置50を含む。分散式誘導加熱システムは成形原料が成形金型90に注入される前に、あらかじめ成形金型90に対して加熱を行い、成形金型90の温度を作業温度まで上昇させる。作業温度まで加熱された成形金型90は溶融された液態の成形原料が成形金型90に接触して迅速に温度が下がるのを回避し、これにより成形原料が早く固化してしまい、キャビティの充填が不完全になるのを防ぐため、成形されるプラスチック成形品における成形原料の充填が不完全なことに起因する孔隙等の欠陥を効果的に排除することができる。このほか、高温の成形金型90が成形原料の流動性を保持し、成形原料が完全にキャビティを満たす時間を短縮することができる。
[Example 1]
As shown in FIGS. 3, 4, and 5, the distributed induction heating system provided by the embodiment of the present invention is used to rapidly heat the mold 90. The distributed induction heating system includes a power supply device 10, a cutoff control device 20, and a plurality of induction heating coils 30, a control device 40, and a cooling device 50. The distributed induction heating system heats the molding die 90 in advance before the molding raw material is injected into the molding die 90, and raises the temperature of the molding die 90 to the working temperature. The molding die 90 heated to the working temperature avoids the temperature of the molten liquid molding raw material coming into contact with the molding die 90 and rapidly decreasing, thereby causing the molding raw material to solidify quickly, In order to prevent incomplete filling, defects such as pores due to incomplete filling of the forming raw material in the plastic molded product to be molded can be effectively eliminated. In addition, the high-temperature molding die 90 maintains the fluidity of the molding raw material, and the time for the molding raw material to completely fill the cavity can be shortened.

図3と図4に示すように、成形金型90はオス型91とメス型92を含み、相互に閉じ合わせキャビティ93を形成するために用いられる。キャビティ93は成形原料がその中に注入される。成形金型90は複数の部分区域が定義され、各部分区域が誘導加熱コイル30にそれぞれ対応する。誘導加熱コイル30は固定して、または移動可能に設置することができる。図3には固定して設置された誘導加熱コイル30を示す。そのうち各誘導加熱コイル30は絶縁治具32により被覆され、かつ成形金型90上(オス型91またはメス型92のいずれかの上)に固定され、各誘導加熱コイル30を成形金型90の1つの部分区域に対応させる。図4には移動可能に設置された誘導加熱コイル30を示す。そのうち各誘導加熱コイル30は機械アーム94により成形金型30の上に支持される。オス型91及びメス型92が開かれてプラスチック成形品が取り出された後、誘導加熱コイル30は機械アーム94によりオス型91とメス型92の間に移動され、キャビティ94表面に対して直接加熱を行う。誘導加熱コイルが誤ってオス型91またはメス型92に接触するのを防ぐため、誘導加熱コイル30上にも絶縁治具32を設置する必要があり、図4を例とすると、絶縁治具32は誘導加熱コイル30に被せて設置された絶縁体であるが、絶縁治具32の形態はこれに限らないものとする。   As shown in FIGS. 3 and 4, the molding die 90 includes a male die 91 and a female die 92, and is used to form a closed cavity 93. The cavity 93 is filled with molding material. A plurality of partial areas are defined in the molding die 90, and each partial area corresponds to the induction heating coil 30. The induction heating coil 30 can be fixed or movable. FIG. 3 shows the induction heating coil 30 fixedly installed. Among them, each induction heating coil 30 is covered with an insulating jig 32 and fixed on the molding die 90 (on either the male die 91 or the female die 92), and each induction heating coil 30 is fixed to the molding die 90. Correspond to one partial area. FIG. 4 shows the induction heating coil 30 movably installed. Among them, each induction heating coil 30 is supported on the molding die 30 by a mechanical arm 94. After the male mold 91 and the female mold 92 are opened and the plastic molded product is taken out, the induction heating coil 30 is moved between the male mold 91 and the female mold 92 by the mechanical arm 94 to directly heat the surface of the cavity 94. I do. In order to prevent the induction heating coil from accidentally coming into contact with the male die 91 or the female die 92, it is necessary to install an insulation jig 32 on the induction heating coil 30. In FIG. Is an insulator placed over the induction heating coil 30, but the form of the insulation jig 32 is not limited to this.

図6に示すように、移動可能に設置された誘導加熱コイル30を例として、誘導加熱コイル30の細部構造を説明する。誘導加熱コイル30は主に螺旋状の硬質の中空銅管であり、機械アーム94の末端に設置され、機械アーム94により駆動されて二次元方向の移動を行い、成形金型90の表面に接近するが、接触はしない。誘導加熱コイル30が成形金型90に接触しないよう確保するため、機械アーム94の移動はリミットスイッチ等の装置により制御することができ、誘導加熱コイル30が適当な距離に到達した後、機械アーム94または誘導加熱コイル30がリミットスイッチに接触し、機械アーム94に誘導加熱コイル30の駆動を停止させることができる。誘導加熱コイル30は硬質の中空銅管であるため、誘導加熱コイル30の内部に水等の冷却液を通すことができ、その本体は導電性で磁場を構成でき、成形金型90の表面を磁場で誘導し渦電流を発生させることができる。誘導加熱コイル30は軟質銅導線33により冷却循環機35及び電力供給装置10に連結される。そのうち、軟質銅導線33は同様に中空管とし、且つ内部が絶縁層で被覆され、冷却循環機35から冷却液を導引し、誘導加熱コイル30内に進入させるために用いられ、軟質銅導線33の本体は導電性であり、電力供給装置10から電流を導引し、誘導加熱コイル30に通電する。誘導加熱コイル30は大電流を導通し、成形金型90を迅速に加熱する必要があるため、誘導加熱コイル30及び軟質銅導線33の有効断面積は十分に大きくし、抵抗を低くする必要がある。冷却循環機35により冷却液を引き込み、誘導加熱コイル30及び軟質銅導線33そのものが大電流のために発熱し、電気特性に影響したり、焼き付きを起こしたりするのを回避する。   As shown in FIG. 6, the detailed structure of the induction heating coil 30 will be described by taking the induction heating coil 30 movably installed as an example. The induction heating coil 30 is mainly a spiral hard hollow copper tube, and is installed at the end of the mechanical arm 94. The induction heating coil 30 is driven by the mechanical arm 94 to move in a two-dimensional direction and approaches the surface of the molding die 90. Yes, but no contact. In order to ensure that the induction heating coil 30 does not come into contact with the molding die 90, the movement of the mechanical arm 94 can be controlled by a device such as a limit switch, and after the induction heating coil 30 reaches an appropriate distance, 94 or the induction heating coil 30 contacts the limit switch, and the mechanical arm 94 can stop driving the induction heating coil 30. Since the induction heating coil 30 is a hard hollow copper tube, a cooling liquid such as water can be passed through the induction heating coil 30, its body is conductive and can form a magnetic field, and the surface of the molding die 90 can be formed. An eddy current can be generated by induction with a magnetic field. The induction heating coil 30 is connected to the cooling circulator 35 and the power supply device 10 by a soft copper conductor 33. Among them, the soft copper conducting wire 33 is similarly formed as a hollow tube, and the inside is covered with an insulating layer. The soft copper conducting wire 33 is used to guide the coolant from the cooling circulator 35 and enter the induction heating coil 30. The main body of the conducting wire 33 is conductive, draws current from the power supply device 10, and energizes the induction heating coil 30. Since the induction heating coil 30 conducts a large current and the molding die 90 needs to be heated quickly, the effective sectional areas of the induction heating coil 30 and the soft copper conductor 33 need to be sufficiently large and the resistance needs to be low. is there. Cooling fluid is drawn in by the cooling circulator 35, and the induction heating coil 30 and the soft copper conducting wire 33 themselves generate heat due to a large current to avoid affecting the electrical characteristics and causing seizure.

図5及び図6に示すように、電力供給装置10は工業用交流電流等の外部電源に接続され、外部電力を取得する。電力供給装置10は外部電力に対し変圧と変換を行った後、総作業電流を生成し、複数の出力端11を介して外部に平均的に作業電流を出力する。誘導加熱コイル30は電力供給装置10に接続され、総作業電流を平均的に受け取り、総作業電流は複数の作業電流に分配され、各誘導加熱コイル30にそれぞれ導通される。作業電流が導通された誘導加熱コイル30は磁場を発生し、対応する部分区域表面に渦電流を発生させ、成形金型90の各部分区域を加熱する。   As shown in FIGS. 5 and 6, the power supply apparatus 10 is connected to an external power source such as an industrial alternating current and acquires external power. The power supply device 10 transforms and converts external power, generates a total working current, and outputs the working current on the average to the outside through the plurality of output terminals 11. The induction heating coil 30 is connected to the power supply device 10 and receives the total work current on average, and the total work current is distributed to a plurality of work currents and is conducted to each induction heating coil 30. The induction heating coil 30 through which the working current is conducted generates a magnetic field, generates an eddy current on the surface of the corresponding partial area, and heats each partial area of the molding die 90.

遮断制御装置20は複数の遮断スイッチ21を含み、各遮断スイッチ21の二端が電力供給装置10の出力端11及び各誘導加熱コイル30の1つにそれぞれ接続され、電流回路を構成する。各遮断スイッチ21の二端は閉路または開路を独立切り換えすることができ、各誘導加熱コイル30と電力供給装置10の接続を個別に切断または導通させ、作業電流を各誘導加熱コイル30に導通させるか否か、そして各誘導加熱コイル30をオンまたはオフにするかを決定する。このほか、各遮断スイッチ21は制御装置40にそれぞれ接続され、制御装置40は各遮断スイッチ21の切り換えを制御し、遮断スイッチ21の二端を閉路または開路に切り換える。同時に、電力供給装置10も制御装置40に接続され、且つ電力供給装置10が総作業電流を生成するか否かが切り換えられる。   The cutoff control device 20 includes a plurality of cutoff switches 21, and two ends of each cutoff switch 21 are connected to the output end 11 of the power supply device 10 and one of the induction heating coils 30 to form a current circuit. The two ends of each cut-off switch 21 can be switched between closed and open independently, and each induction heating coil 30 and the power supply device 10 are individually disconnected or conducted, and the working current is conducted to each induction heating coil 30. And whether to turn each induction heating coil 30 on or off. In addition, each cutoff switch 21 is connected to the control device 40, and the control device 40 controls switching of each cutoff switch 21, and switches the two ends of the cutoff switch 21 to closed or open. At the same time, the power supply device 10 is also connected to the control device 40, and whether or not the power supply device 10 generates a total working current is switched.

図5と図6に示すように、キャビティ93の形態変化の影響により、成形金型90の各部分区域の肉厚も異なり、各部分区域の平均熱容量の差異が生まれる。肉厚が相対的に小さい部分区域は相対的に小さい熱容量を有するため、成形金型90に均一な熱流束が提供されるとき、肉厚が相対的に小さい部分区域90は相対的に高い昇温速度を有し、早くに成形金型90の必要な作業温度に到達する。同様に、肉厚が相対的に高い部分区域95は相対的に大きい熱容量を有するため、成形金型90に均一な熱流束が提供されるとき、肉厚が相対的に大きい部分区域90は相対的に低い昇温速度を有し、成形金型90の必要な作業温度まで昇温するのに時間がかかる。   As shown in FIGS. 5 and 6, due to the influence of the shape change of the cavity 93, the thickness of each partial area of the molding die 90 is also different, resulting in a difference in the average heat capacity of each partial area. Since the partial area with a relatively small thickness has a relatively small heat capacity, when the uniform heat flux is provided to the molding die 90, the partial area 90 with a relatively small thickness has a relatively high rise. It has a temperature rate and quickly reaches the required working temperature of the mold 90. Similarly, because the relatively thick wall section 95 has a relatively large heat capacity, when the mold 90 is provided with a uniform heat flux, the relatively thick wall section 90 is relative. Therefore, it takes time to raise the temperature to the required working temperature of the molding die 90.

本発明の実施例1において、複数の誘導加熱コイル30は成形金型30の異なる部分区域に対してそれぞれ加熱を行い、同時に各誘導加熱コイル30は異なる遮断スイッチ21を介して電力供給装置10に接続される。各遮断スイッチ21は閉路または開路に独立して切り換えられ、対応する誘導加熱コイル30を個別にオンまたはオフにする。制御装置40は各誘導加熱コイル30が対応する成形金型90の部分区域に基づき、遮断スイッチ21を開路に切り換え、誘導加熱コイル30をオフにするタイミングを決定する。成形時において、型を閉じて成形原料を注入する前に、制御装置40がまずすべての遮断スイッチ21を制御して閉路に切り換え、且つ電力供給装置10のメインスイッチをオンにし、誘導加熱コイル30に成形金型90に対して加熱を開始させる。加熱を開始した後、すでに作業温度に到達した成形金型90の部分区域に対し、制御装置40が対応する遮断スイッチ21を切断して対応する誘導加熱コイル30をオフにし、その他の誘導加熱コイル30には成形金型90のその他部分区域に対する加熱を維持させ、成形金型90のすべての区域がすべて作業温度に到達するまで継続し、すべての遮断スイッチ21を切断すると共に、電力供給装置10のメインスイッチをオフにして作業電流の供給を停止させる。成形金型90を閉じ合わせた後、まずすべての遮断スイッチ21を閉路に切り換え(但し電力供給装置10のメインスイッチはオンにしない)、成形完了後、型を開いてプラスチック成形品を取り出し、再度電力供給装置10のメインスイッチをオンにして、次回の成形作業のため成形金型90に対して予熱を行う。このように、すでに作業温度に到達した部分区域に対しては、加熱に必要な電気エネルギーを継続して消耗する必要がなく、且つ部分区域の温度が高すぎて成形原料が変質する問題を回避することができる。電力供給装置10が提供する総仕事率/最大電流は固定値であり、1つの誘導加熱コイル30を通過する仕事率/作業電流が切断されると、そこで消耗されていた仕事率/作業電流はその他作動中の誘導加熱コイル30に分散され、まだ作業温度に達していない部分区域の熱流束が上昇し、これら部分区域が必要とする加熱時間を短縮することができる。加熱に必要な時間が短縮され、且つ総仕事率/総作業電流は増加する必要がないため、成形金型90の加熱に必要な電気エネルギーの消耗も減少される。   In the first embodiment of the present invention, the plurality of induction heating coils 30 respectively heat different partial areas of the molding die 30, and at the same time, the induction heating coils 30 are connected to the power supply device 10 via different cutoff switches 21. Connected. Each shut-off switch 21 is independently switched between closed and open, and individually turns on or off the corresponding induction heating coil 30. Based on the partial area of the molding die 90 to which each induction heating coil 30 corresponds, the control device 40 switches the cutoff switch 21 to an open circuit and determines the timing for turning off the induction heating coil 30. At the time of molding, before the mold is closed and the molding raw material is injected, the control device 40 first controls all the shut-off switches 21 to switch to the closed circuit, and turns on the main switch of the power supply device 10, and the induction heating coil 30. Then, heating of the molding die 90 is started. After the heating is started, the control device 40 cuts the corresponding cutoff switch 21 to turn off the corresponding induction heating coil 30 for the partial area of the molding die 90 that has already reached the working temperature, and the other induction heating coils. 30 keeps heating to the other partial areas of the mold 90 and continues until all areas of the mold 90 reach the working temperature, disconnects all the shut-off switches 21 and the power supply device 10. The main current switch is turned off to stop the supply of working current. After closing the molding die 90, first, all the shut-off switches 21 are switched to the closed state (however, the main switch of the power supply device 10 is not turned on), and after the molding is completed, the mold is opened and the plastic molded product is taken out. The main switch of the power supply device 10 is turned on, and the molding die 90 is preheated for the next molding operation. In this way, it is not necessary to continuously consume the electrical energy required for heating in the partial area that has already reached the working temperature, and the problem of deterioration of the molding material due to the temperature of the partial area being too high is avoided. can do. The total power / maximum current provided by the power supply apparatus 10 is a fixed value. When the power / working current passing through one induction heating coil 30 is cut, the power / working current consumed there is In addition, the heat flux of the partial areas that are dispersed in the operating induction heating coil 30 and have not yet reached the working temperature is increased, and the heating time required for these partial areas can be shortened. Since the time required for heating is shortened and the total power / total working current does not need to be increased, the consumption of electrical energy required for heating the molding die 90 is also reduced.

制御装置40が遮断スイッチ21を切り換えるタイミングは、時間制御方式を採取することができる。時間制御方式はあらかじめ成形金型90の形態、成形金型90の材質、各誘導加熱コイル30の異なる電流の大きさにおける加熱仕事率、誘導加熱コイル30の数量、及び電力供給装置10が提供する総作業電流の大きさを考慮し、各誘導加熱コイル30が対応する部分区域が作業温度に到達するタイミングを決定する。つまり、各部分区域すべてに加熱時間を定め、制御装置40は総作業電流が各誘導加熱コイル30に導通される時間が加熱時間に到達した後、対応する遮断スイッチ21を切断し、誘導加熱コイル30と電力供給装置10の接続を切断する。前述の加熱時間は一部の誘導加熱コイル30がオフにされた後、残りのまだオンの状態にある誘導加熱コイル30の作業電流の変化について、すべての遮断スイッチ21が開路に切り換えられるまで考慮しなければならない。   The timing at which the control device 40 switches the cutoff switch 21 can be a time control method. The time control method is provided in advance by the form of the molding die 90, the material of the molding die 90, the heating power at different current magnitudes of the induction heating coils 30, the quantity of the induction heating coils 30, and the power supply device 10. Considering the magnitude of the total working current, the timing at which the partial area corresponding to each induction heating coil 30 reaches the working temperature is determined. That is, the heating time is determined for all the partial areas, and the control device 40 disconnects the corresponding cutoff switch 21 after the time during which the total working current is conducted to each induction heating coil 30 reaches the heating time, and the induction heating coil 30 and the power supply device 10 are disconnected. The above-mentioned heating time is taken into account until all the cut-off switches 21 are switched to the open circuit after the induction heating coils 30 are turned off and the remaining working currents of the induction heating coils 30 that are still on are changed. Must.

迅速な成形を達するため、金型90を迅速に加熱するほか、成形原料が完全に成形金型90に注入された後、型を開くことができる温度まで成形金型90を迅速に冷却する必要がある。そこで、本発明の実施例1では、成形金型90の内部に複数の独立した管路を設置し、各誘導加熱コイル30に対応させ、冷却水等の冷却液を通過させるために用い、成形金型90の異なる部分区域を冷却する。同様に、成形金型90が成形するプラスチック成形品の各部分区域の冷却速度は異なり、且つ冷却装置50が提供する冷却総仕事率は一定(冷却水の最低温度及び総流量が一定)であるため、各管路は個別にオンとオフにすることができる。成形金型90の冷却を行うとき、部分区域の温度が型開き温度に到達すると、対応する管路をオフにし、冷却水のその部分区域への供給を停止する。このとき、オフにされた管路が消耗する冷却水の流量は、平均的にその他管路に分配され、その他区域の冷却が加速される。成形金型90が型開き温度まで完全に降温した後、冷却水の供給を停止する。管路をオフにするタイミングは、時間制御方式を採取することができる。時間制御方式は、あらかじめ成形金型90の形態、成形金型90の材質、管路の数量、及び冷却水の温度及び総流量を考慮し、各部分区域が型開き温度に到達するタイミングを決定する。つまり、各部分区域すべてに冷却時間を定め、制御装置40は各部分区域が冷却時間に到達した後、対応する管路を切断し、すべての管路が切断されてから、冷却を行うための冷却水の供給を停止する。   In order to achieve rapid molding, it is necessary to quickly heat the mold 90 and to cool the mold 90 rapidly to a temperature at which the mold can be opened after the molding raw material is completely injected into the mold 90. There is. Therefore, in the first embodiment of the present invention, a plurality of independent pipes are installed inside the molding die 90, used to correspond to each induction heating coil 30, and to pass cooling liquid such as cooling water. Cool different partial areas of the mold 90. Similarly, the cooling rate of each partial area of the plastic molded product molded by the molding die 90 is different, and the total cooling power provided by the cooling device 50 is constant (the minimum temperature of the cooling water and the total flow rate are constant). Thus, each conduit can be turned on and off individually. When cooling the molding die 90, when the temperature of the partial area reaches the mold opening temperature, the corresponding pipe is turned off and the supply of cooling water to the partial area is stopped. At this time, the flow rate of the cooling water consumed by the turned-off pipeline is distributed to the other pipelines on average, and the cooling of the other areas is accelerated. After the molding die 90 has completely cooled to the mold opening temperature, the cooling water supply is stopped. A time control method can be taken for the timing of turning off the pipeline. The time control method determines the timing at which each partial area reaches the mold opening temperature in consideration of the form of the mold 90, the material of the mold 90, the number of pipes, the temperature of the cooling water and the total flow rate. To do. That is, the cooling time is set for all the partial areas, and the control device 40 cuts the corresponding pipeline after each partial zone reaches the cooling time, and performs cooling after all the pipelines are cut. Stop supplying cooling water.

[実施例2]
図7に本発明の実施例2の分散式誘導加熱システムを示す。その部材組成はほぼ実施例1と同じであり、電力供給装置10、遮断制御装置20、及び複数の誘導加熱コイル30、制御装置40、及び冷却装置(図示しない)を含む。実施例2は実際の温度を測定する方式で、各部分区域の温度を直接取得し、加熱または冷却を継続するか否かを決定する。このため、実施例2の分散式誘導加熱システムはさらに熱電対等の複数の温度センサ60を含む。各温度センサ60は各誘導加熱コイル30が加熱する部分区域に設置される。温度センサ60は加熱過程において各部分区域の温度を制御装置40に継続して伝送し、温度センサ60から伝送される温度が作業温度に到達した後、制御装置60は制御コマンドを対応する遮断スイッチ21に発し、遮断スイッチ21の二端を開路に切り換え、対応する誘導加熱コイル30と該電力供給装置10の接続を切断する。同様に、冷却過程においては、温度センサ60が各部分区域の温度を制御装置40に継続して伝送し、温度センサ60から伝送される温度が型開き温度に到達した後、制御装置60は制御コマンドを対応する冷却装置50に発し、対応する管路を切断して当該部分区域に対する冷却を停止する。
[Example 2]
FIG. 7 shows a distributed induction heating system according to the second embodiment of the present invention. The member composition is substantially the same as that of the first embodiment, and includes the power supply device 10, the shutoff control device 20, a plurality of induction heating coils 30, the control device 40, and a cooling device (not shown). In the second embodiment, the actual temperature is measured, and the temperature of each partial area is directly acquired to determine whether to continue heating or cooling. For this reason, the distributed induction heating system of Example 2 further includes a plurality of temperature sensors 60 such as thermocouples. Each temperature sensor 60 is installed in a partial area where each induction heating coil 30 is heated. The temperature sensor 60 continuously transmits the temperature of each partial area to the control device 40 during the heating process, and after the temperature transmitted from the temperature sensor 60 reaches the working temperature, the control device 60 sends a control command to the corresponding cutoff switch. 21, the two ends of the cut-off switch 21 are switched to an open circuit, and the corresponding induction heating coil 30 and the power supply device 10 are disconnected. Similarly, in the cooling process, the temperature sensor 60 continuously transmits the temperature of each partial area to the control device 40, and after the temperature transmitted from the temperature sensor 60 reaches the mold opening temperature, the control device 60 performs control. A command is issued to the corresponding cooling device 50, the corresponding pipe line is cut, and the cooling to the partial area is stopped.

本発明が提供する分散式誘導加熱方法は、成形金型90の温度を作業温度まで迅速に加熱するために用いられ、この方法はまず成形金型90上に複数の部分区域を定義し、続いて複数の誘導加熱コイル30を提供し、各部分区域にそれぞれ対応させる。そのうち、誘導加熱コイル30は機械アーム94により対応する部分区域上方まで移動されるか、絶縁治具により直接部分区域30に固定される。   The distributed induction heating method provided by the present invention is used to quickly heat the temperature of the mold 90 to the working temperature, which method first defines a plurality of partial areas on the mold 90, and then continues. A plurality of induction heating coils 30 are provided to correspond to the respective partial areas. Among them, the induction heating coil 30 is moved above the corresponding partial area by the mechanical arm 94 or directly fixed to the partial area 30 by an insulating jig.

電力供給装置10を利用して総作業電流を提供し、各誘導加熱コイル30に平均的に分配し、総作業電流を複数の作業電流に分配して各誘導加熱コイル30に導通する。作業電流が導通された誘導加熱コイル30は対応する部分区域に渦電流を発生させ、部分区域の加熱を開始し、昇温させる。そのうち電力供給装置10と各誘導加熱コイル30の間に遮断スイッチ21を設置し、電力供給装置10と誘導加熱コイル30の間の閉路または開路を切り換えられるようにする。   A total working current is provided using the power supply device 10 and is distributed to each induction heating coil 30 on an average basis. The total working current is distributed to a plurality of working currents and is conducted to each induction heating coil 30. The induction heating coil 30 through which the working current is conducted generates an eddy current in the corresponding partial area, starts heating the partial area, and raises the temperature. Among them, the cutoff switch 21 is installed between the power supply device 10 and each induction heating coil 30 so that the closed circuit or the open circuit between the power supply device 10 and the induction heating coil 30 can be switched.

続いて、成形金型90の型閉じを行い、溶融した成形原料を成形金型90のキャビティ93に注入する。成形原料をキャビティに充填した後、成形金型90に対して冷却を行い、成形金型90の管路中に冷却装置50で冷却水等の冷却液体を提供する。   Subsequently, the mold 90 is closed and the molten molding material is injected into the cavity 93 of the mold 90. After the molding material is filled in the cavity, the molding die 90 is cooled, and a cooling liquid such as cooling water is provided in the pipe line of the molding die 90 by the cooling device 50.

各部分区域の温度を検出し、部分区域のいずれか1つの温度が型開き温度まで冷却されたとき、対応する管路を切断し、冷却水の導入を停止する。いずれかの管路が切断されると、その冷却水流量がオンの状態のその他管路に平均的に分配され、より高い冷却水流量で成形金型90の残りの部分区域の冷却を継続する。   The temperature of each partial area is detected, and when the temperature of any one of the partial areas is cooled to the mold opening temperature, the corresponding pipe line is cut and the introduction of the cooling water is stopped. When one of the pipes is cut, the cooling water flow rate is distributed to the other pipes in the on state on average, and the cooling of the remaining partial area of the mold 90 is continued at a higher cooling water flow rate. .

各部分区域の温度を継続して検出し、検出結果に基づいて各管路を切断し、成形金型90全体がすべて型開き温度まで冷却され、すべての管路が切断されるまで継続する。   The temperature of each partial area is continuously detected, each pipe line is cut based on the detection result, and the entire molding die 90 is all cooled to the mold opening temperature and continued until all the pipe lines are cut.

成形金型90の温度が型開き温度まで低下した後、型を開いて成形したプラスチック成形品を取り出すことができる。   After the temperature of the molding die 90 has dropped to the mold opening temperature, the molded plastic product can be taken out by opening the mold.

本発明が提供する別の分散式誘導加熱方法は、成形金型90の温度を作業温度まで迅速に加熱するために用いられ、この方法はまず成形金型90上に複数の部分区域を定義する。各部分区域のキャビティの形態に基づき、各部分区域に対して加熱時間を定め、かつ各部分区域が加熱時間を経た後、作業温度に到達することができることを確認する。そのうちキャビティにより部分区域の肉厚が相対的に大きい場合、その部分区域には相対的に長い加熱時間を与える。キャビティにより部分区域の肉厚が相対的に小さい場合、その部分区域には相対的に短い加熱時間を与える。   Another distributed induction heating method provided by the present invention is used to quickly heat the mold 90 temperature to the working temperature, which first defines a plurality of partial areas on the mold 90. . Based on the configuration of the cavities in each partial area, a heating time is defined for each partial area and it is confirmed that the working temperature can be reached after each partial area has passed the heating time. If the thickness of the partial area is relatively large due to the cavity, a relatively long heating time is given to the partial area. If the wall thickness of the partial area is relatively small due to the cavity, the partial area is given a relatively short heating time.

続いて、複数の誘導加熱コイルを提供し、各部分区域にそれぞれ対応させる。そのうち、誘導加熱コイル30は機械アーム94により対応する部分区域上方まで移動されるか、絶縁治具32により直接部分区域に固定される。   Subsequently, a plurality of induction heating coils are provided, each corresponding to each partial area. Among them, the induction heating coil 30 is moved above the corresponding partial area by the mechanical arm 94 or directly fixed to the partial area by the insulating jig 32.

電力供給装置10を利用して総作業電流を提供し、総作業電流を各誘導加熱コイル30に導通して、総作業電流を複数の作業電流に分配して各誘導加熱コイル30に導通する。作業電流が導通された誘導加熱コイル30は対応する部分区域に渦電流を発生させ、部分区域の加熱を開始し、昇温させる。そのうち電力供給装置10と各誘導加熱コイル30の間に遮断スイッチ21を設置し、電力供給装置10と誘導加熱コイル30の間の閉路または開路を切り換えられるようにする。   A total working current is provided using the power supply device 10, the total working current is conducted to each induction heating coil 30, and the total working current is distributed to a plurality of working currents and conducted to each induction heating coil 30. The induction heating coil 30 through which the working current is conducted generates an eddy current in the corresponding partial area, starts heating the partial area, and raises the temperature. Among them, the cutoff switch 21 is installed between the power supply device 10 and each induction heating coil 30 so that the closed circuit or the open circuit between the power supply device 10 and the induction heating coil 30 can be switched.

電力供給装置10が総作業電流の提供を開始した後、加熱時間の計算を開始し、総作業電源を提供する時間が各部分区域の加熱時間に到達した後、遮断スイッチ21により対応する誘導加熱コイル30に導通される作業電流を切断し、対応する誘導加熱コイル30をオフにする。加熱時間の設定に基づき順次各誘導加熱コイル30をオフにし、すべての誘導加熱コイル30がオフになるまで行う。   After the power supply device 10 starts providing the total work current, the heating time calculation starts, and after the time for providing the total work power reaches the heating time of each partial area, the corresponding induction heating is performed by the cut-off switch 21. The working current conducted to the coil 30 is cut off, and the corresponding induction heating coil 30 is turned off. Each induction heating coil 30 is sequentially turned off based on the setting of the heating time, and this is performed until all the induction heating coils 30 are turned off.

続いて、成形金型90の型閉じを行い、溶融した成形原料を成形金型90のキャビティに注入する。   Subsequently, the mold 90 is closed and the molten molding material is injected into the cavity of the mold 90.

成形原料をキャビティに充填した後、成形金型90に対して冷却を行い、成形金型90の管路中に冷却装置50で冷却水等の冷却液体を提供する。   After the molding material is filled in the cavity, the molding die 90 is cooled, and a cooling liquid such as cooling water is provided in the pipe line of the molding die 90 by the cooling device 50.

成形金型90の形態、成形金型90の材質、管路の数量、及び冷却水の温度及び総流量に基づき、各部分区域すべてに冷却時間を定め、制御装置40は各部分区域の冷却時間が経過した後、対応する管路を切断し、すべての管路が切断された後、冷却を行うための冷却水の供給を停止する。いずれか1つの管路が切断されると、その冷却水の流量がオンの状態のその他管路に平均的に分配され、より高い冷却水流量で成形金型90の残りの部分区域の冷却を継続する。   Based on the form of the molding die 90, the material of the molding die 90, the number of pipes, the temperature and the total flow rate of the cooling water, the cooling time is determined for all the partial areas, and the controller 40 cools the cooling time of each partial area. After the lapse of time, the corresponding pipeline is cut, and after all the pipelines are cut, the supply of cooling water for cooling is stopped. When any one of the pipes is cut, the cooling water flow rate is distributed on average to the other pipes with the cooling water flow on, and cooling of the remaining sub-area of the mold 90 is performed at a higher cooling water flow rate. continue.

各部分区域の温度の検出を継続し、かつ検出結果に基づいて各管路を切断し、成形金型90全体がすべて型開き温度まで冷却され、且つすべての管路が切断されるまで行う。   The detection of the temperature of each partial area is continued, and each pipe line is cut based on the detection result until the entire molding die 90 is cooled to the mold opening temperature and all the pipe lines are cut.

成形金型90の温度が型開き温度まで低下した後、型を開いて成形されたプラスチック成形品を取り出すことができる。   After the temperature of the molding die 90 has dropped to the mold opening temperature, the molded plastic product can be taken out by opening the mold.

従来の技術における誘導加熱コイル及び成形金型の分解立体図である。It is a three-dimensional exploded view of an induction heating coil and a molding die in the prior art. 従来の技術における別の誘導加熱コイル及び成形金型の分解立体図である。It is a three-dimensional exploded view of another induction heating coil and molding die in the prior art. 本発明の実施例1における誘導加熱コイル及び成形金型の分解立体図である。It is a three-dimensional exploded view of the induction heating coil and the molding die in Example 1 of the present invention. 本発明の実施例1における別の形態の誘導加熱コイル及び成形金型の分解立体図である。It is a three-dimensional exploded view of another form of induction heating coil and molding die in Example 1 of the present invention. 本発明の実施例1における分散式誘導加熱システムのシステムブロック図である。It is a system block diagram of the distributed induction heating system in Example 1 of this invention. 本発明の実施例1における金型、誘導加熱コイル、機械アーム、及び冷却循環機のシステムブロック図である。It is a system block diagram of the metal mold | die, the induction heating coil, the mechanical arm, and the cooling circulator in Example 1 of this invention. 本発明の実施例2における分散式誘導加熱方法のシステムブロック図である。It is a system block diagram of the distributed induction heating method in Example 2 of this invention.

符号の説明Explanation of symbols

1・・・・・・オス型
2・・・・・・メス型
3・・・・・・誘導加熱コイル
4・・・・・・キャビティ
10・・・・・電力供給装置
11・・・・・出力端
20・・・・・遮断制御装置
21・・・・・遮断スイッチ
30・・・・・誘導加熱コイル
32・・・・・絶縁治具
33・・・・・軟質銅導線
35・・・・・冷却循環機
40・・・・・制御装置
50・・・・・冷却装置
60・・・・・温度センサ
90・・・・・成形金型
91・・・・・オス型
92・・・・・メス型
93・・・・・キャビティ
94・・・・・機械アーム
DESCRIPTION OF SYMBOLS 1 ... Male type 2 ... Female type 3 ... Induction heating coil 4 ... Cavity 10 ... Power supply device 11 ...・ Output terminal 20... Cutoff control device 21... Cutoff switch 30... Induction heating coil 32 .. Insulation jig 33. ... Cooling circulator 40 ... Control device 50 ... Cooling device 60 ... Temperature sensor 90 ... Molding die 91 ... Male die 92 ... ... Female type 93 ... Cavity 94 ... Machine arm

Claims (16)

分散式誘導加熱システムであって、
成形金型の温度を作業温度まで迅速に加熱するために用いられ、前記システムが、総作業電流を生成する電力供給装置と、
前記電力供給装置に接続され、前記総作業電流を平均的に受け取って前記成形金型を加熱する複数の誘導加熱コイルと、
前記電力供給装置及び各前記誘導加熱コイルに接続され、各前記誘導加熱コイルと前記電力供給装置の接続を個別に切断または導通させる遮断制御装置を含み、
そのうち、前記成形金型に複数の部分区域が定義され、
且つ各前記誘導加熱コイルが前記部分区域のうちの1つをそれぞれ加熱することを特徴とする、
分散式誘導加熱システム。
A distributed induction heating system,
A power supply that is used to quickly heat the mold temperature to the working temperature, the system generates a total working current;
A plurality of induction heating coils connected to the power supply device for receiving the total working current on average to heat the molding die;
Including a shut-off control device connected to the power supply device and each induction heating coil, and individually disconnecting or conducting the connection between each induction heating coil and the power supply device;
Among them, a plurality of partial areas are defined in the mold,
And each of the induction heating coils heats one of the partial areas, respectively.
Distributed induction heating system.
各前記誘導加熱コイルが絶縁治具により被覆され、かつ前記成形金型に固定されたことを特徴とする、請求項1に記載の分散式誘導加熱システム。   2. The distributed induction heating system according to claim 1, wherein each induction heating coil is covered with an insulating jig and fixed to the molding die. 各前記誘導加熱コイルがそれぞれ機械アームにより前記成形金型上に移動されることを特徴とする、請求項1に記載の分散式誘導加熱システム。   2. The distributed induction heating system according to claim 1, wherein each induction heating coil is moved onto the mold by a mechanical arm. 各前記誘導加熱コイルが螺旋状の硬質の中空銅管であることを特徴とする、請求項1に記載の分散式誘導加熱システム。   The distributed induction heating system according to claim 1, wherein each induction heating coil is a spiral hard hollow copper tube. 各前記誘導加熱コイルが軟質銅導線を介して前記電力供給装置に接続されたことを特徴とする、請求項4に記載の分散式誘導加熱システム。   5. The distributed induction heating system according to claim 4, wherein each induction heating coil is connected to the power supply device via a soft copper conductor. 各前記軟質銅導線が中空管であり、且つ内部が絶縁層に被覆され、冷却液を導引し、各前記誘導加熱コイルに進入させることを特徴とする、請求項4に記載の分散式誘導加熱システム。   5. The distributed type according to claim 4, wherein each of the soft copper conductors is a hollow tube, and the inside is covered with an insulating layer, and a cooling liquid is guided and enters each induction heating coil. Induction heating system. 前記遮断制御装置が複数の遮断スイッチを含み、各前記遮断スイッチの二端が前記電力供給装置と前記誘導加熱コイルの1つとそれぞれ接続されたことを特徴とする、請求項1に記載の分散式誘導加熱システム。   The distributed type according to claim 1, wherein the cutoff control device includes a plurality of cutoff switches, and two ends of each of the cutoff switches are respectively connected to the power supply device and one of the induction heating coils. Induction heating system. さらに制御装置を含み、各前記遮断スイッチの切り換えを制御し、各前記遮断スイッチの二端の閉路または開路を制御することを特徴とする、請求項7に記載の分散式誘導加熱システム。   The distributed induction heating system according to claim 7, further comprising a control device that controls switching of each of the shut-off switches and controls closing or opening of two ends of each of the shut-off switches. 各前記部分区域に加熱時間が定められ、前記制御装置は各前記部分区域の加熱が前記加熱時間に達すると、対応する遮断スイッチの二端を開路に切り換え、対応する誘導加熱コイルと前記電力供給装置の接続を切断することを特徴とする、請求項8に記載の分散式誘導加熱システム。   A heating time is defined for each of the partial areas, and when the heating of each of the partial areas reaches the heating time, the two ends of the corresponding cut-off switch are opened to open the corresponding induction heating coil and the power supply. The distributed induction heating system according to claim 8, wherein the device is disconnected. 前記制御装置が、各前記部分区域が前記作業温度に到達した後、対応する遮断スイッチの二端を開路に切り換え、対応する誘導加熱コイルと前記電力供給装置の接続を切断することを特徴とする、請求項8に記載の分散式誘導加熱システム。   The control device switches two ends of a corresponding cutoff switch to an open circuit after each of the partial sections reaches the working temperature, and disconnects the corresponding induction heating coil from the power supply device. The distributed induction heating system according to claim 8. さらに複数の温度センサを含み、各前記誘導加熱コイルが加熱する部分区域にそれぞれ設置され、温度を前記制御装置に伝送することを特徴とする、請求項10に記載の分散式誘導加熱システム。   The distributed induction heating system according to claim 10, further comprising a plurality of temperature sensors, each of which is installed in a partial area where each induction heating coil is heated, and transmits the temperature to the control device. さらに複数の独立した管路を含み、前記成形金型中に設置され、各前記誘導加熱コイルに対応し、冷却液を導入して前記成形金型を冷却するために用いられることを特徴とする、請求項8に記載の分散式誘導加熱システム。   Furthermore, it includes a plurality of independent pipe lines, is installed in the molding die, corresponds to each induction heating coil, and is used for cooling the molding die by introducing a cooling liquid. The distributed induction heating system according to claim 8. 各前記部分区域すべてに冷却時間を定め、前記制御装置が各前記部分区域の冷却時間が経過した後、対応する管路を切断することを特徴とする、請求項12に記載の分散式誘導加熱システム。   The distributed induction heating according to claim 12, wherein a cooling time is set for each of the partial sections, and the controller cuts a corresponding pipe line after the cooling time of each of the partial sections has elapsed. system. 前記制御装置が、各前記部分区域が型開き温度に達した後、対応する管路を切断することを特徴とする、請求項12に記載の分散式誘導加熱システム。   13. A distributed induction heating system according to claim 12, characterized in that the control device cuts the corresponding line after each partial section reaches the mold opening temperature. 成形金型を迅速に加熱するために用いられる分散式誘導加熱方法であって、
前記方法が、
前記成形金型上に複数の部分区域を定義し、且つ各前記部分区域に加熱時間を定め、
複数の誘導加熱コイルを提供し、各前記部分区域にそれぞれ対応させる、
総作業電流を提供し、各前記誘導加熱コイルに平均的に分配し、各前記誘導加熱コイルによりその対応する部分区域をそれぞれ加熱する、
総作業電流の提供が各前記加熱時間に達した後、対応する誘導加熱コイルに導通される作業電流を切断する、
という手順を含むことを特徴とする、
分散式誘導加熱方法。
A distributed induction heating method used to rapidly heat a molding die,
Said method comprises
Defining a plurality of partial areas on the mold and determining a heating time for each of the partial areas;
Providing a plurality of induction heating coils, each corresponding to each of said partial areas;
Providing a total working current, distributing it to each induction heating coil on average, and heating each corresponding partial area by each induction heating coil;
Disconnecting the working current conducted to the corresponding induction heating coil after providing the total working current reaches each said heating time;
Including the procedure
Distributed induction heating method.
成形金型の温度を作業温度まで迅速に加熱するために用いられる分散式誘導加熱方法であって、
前記方法が、
前記成形金型上に複数の部分区域を定義し、且つ複数の誘導加熱コイルを提供し、各前記部分区域にそれぞれ対応させる、
総作業電流を提供し、各前記誘導加熱コイルに平均的に分配し、各前記誘導加熱コイルによりその対応する部分区域をそれぞれ加熱する、
各前記部分区域の温度を検出し、各前記部分区域のうちの1つが作業温度に達したとき、対応する誘導加熱コイルに導通された作業電流を切断する、
という手順を含むことを特徴とする、分散式誘導加熱方法。
A distributed induction heating method used to quickly heat the mold temperature to the working temperature,
Said method comprises
Defining a plurality of partial areas on the mold and providing a plurality of induction heating coils, each corresponding to each of the partial areas;
Providing a total working current, distributing it to each induction heating coil on average, and heating each corresponding partial area by each induction heating coil;
Detecting the temperature of each said partial area and, when one of each said partial area reaches the working temperature, disconnecting the working current conducted to the corresponding induction heating coil;
The dispersion type induction heating method characterized by including the procedure.
JP2008274550A 2008-09-30 2008-10-24 Distribution-induction heating system Pending JP2010086934A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97137633A TW201014472A (en) 2008-09-30 2008-09-30 Decentralized eddy current heating system and method

Publications (1)

Publication Number Publication Date
JP2010086934A true JP2010086934A (en) 2010-04-15

Family

ID=42250676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008274550A Pending JP2010086934A (en) 2008-09-30 2008-10-24 Distribution-induction heating system

Country Status (2)

Country Link
JP (1) JP2010086934A (en)
TW (1) TW201014472A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497686A (en) * 2011-11-28 2012-06-13 合肥人和节能环保设备制造有限公司 Energy-saving electromagnetic heating controller
CN104369293A (en) * 2013-08-16 2015-02-25 镒生电线塑料(昆山)有限公司 Die electromagnetic induction heating apparatus and heating method thereof
KR101732385B1 (en) 2015-03-13 2017-05-04 이효길 Apparatus and Method for controlling Power and Electric Range with the Apparatus
CN108790085A (en) * 2018-05-24 2018-11-13 常州星宇车灯股份有限公司 A kind of outer sensing heating of mould improves the device and method of injection-molded item welded side seam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947464A (en) * 1972-06-08 1974-05-08
JPH0297946A (en) * 1988-10-05 1990-04-10 Dainippon Printing Co Ltd Original plate inspecting device
JPH02220825A (en) * 1989-02-22 1990-09-04 Sekisui Chem Co Ltd Method and equipment for molding
JP2001300999A (en) * 2000-04-20 2001-10-30 Canon Inc Method and apparatus for molding injection-molded article, and molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947464A (en) * 1972-06-08 1974-05-08
JPH0297946A (en) * 1988-10-05 1990-04-10 Dainippon Printing Co Ltd Original plate inspecting device
JPH02220825A (en) * 1989-02-22 1990-09-04 Sekisui Chem Co Ltd Method and equipment for molding
JP2001300999A (en) * 2000-04-20 2001-10-30 Canon Inc Method and apparatus for molding injection-molded article, and molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497686A (en) * 2011-11-28 2012-06-13 合肥人和节能环保设备制造有限公司 Energy-saving electromagnetic heating controller
CN104369293A (en) * 2013-08-16 2015-02-25 镒生电线塑料(昆山)有限公司 Die electromagnetic induction heating apparatus and heating method thereof
KR101732385B1 (en) 2015-03-13 2017-05-04 이효길 Apparatus and Method for controlling Power and Electric Range with the Apparatus
CN108790085A (en) * 2018-05-24 2018-11-13 常州星宇车灯股份有限公司 A kind of outer sensing heating of mould improves the device and method of injection-molded item welded side seam

Also Published As

Publication number Publication date
TW201014472A (en) 2010-04-01

Similar Documents

Publication Publication Date Title
TWI389600B (en) Coaxial cooling and rapid conductive coil construction and molds with cobalt cooling and rapid conductive coil construction
KR100734948B1 (en) Non-contact high-frequency induction heating apparatus for plastic mold and method using the same
JPH0433253B1 (en)
JP2010086934A (en) Distribution-induction heating system
EP2431151A3 (en) Molding apparatus and method
CN101742747B (en) Distributed induction heating system
CN101229676A (en) Equipment of induction type heating mould
JP5996579B2 (en) Heater disconnection / deterioration judgment method and injection molding machine
JP2010149173A (en) Centrifugal casting apparatus and centrifugal casting method
KR20110009424A (en) Injection molding apparatus having heat shunting reinforcement plate and method of using the same
KR102326379B1 (en) Method and apparatus for mold heating
JP2003340896A (en) Method and apparatus for heating molten material in injection molding machine
JP2008012895A (en) Mold temperature conditioning system of molding machine
FI74168C (en) FOERFARANDE OCH ANORDNING FOER GJUTNING AV ELEKTRODGALLER FOER ELEKTRISKA ACKUMULATORER.
JP2010188412A (en) Casting apparatus
TW201006656A (en) Mold clamping device
CN201677460U (en) Rapidly-heating injection-machine hot nozzle device
JP2010083122A (en) High-speed injection molding system
CN216212574U (en) Heating equipment of extruder head and cable extruder
CN213082263U (en) Quick heating device for die
CN107175801A (en) A kind of quick changeable temperature mould
KR101069594B1 (en) The heat exchanger to be eguipped in the Injection mold for fast heating and fast cooling
CN205386631U (en) Alloy cooling device
JP2010080073A (en) Induction heating dissolution device
CN212288594U (en) Feed cylinder heating double protection device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20110816

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120207

Free format text: JAPANESE INTERMEDIATE CODE: A02