JP2003340896A - Method and apparatus for heating molten material in injection molding machine - Google Patents

Method and apparatus for heating molten material in injection molding machine

Info

Publication number
JP2003340896A
JP2003340896A JP2002157443A JP2002157443A JP2003340896A JP 2003340896 A JP2003340896 A JP 2003340896A JP 2002157443 A JP2002157443 A JP 2002157443A JP 2002157443 A JP2002157443 A JP 2002157443A JP 2003340896 A JP2003340896 A JP 2003340896A
Authority
JP
Japan
Prior art keywords
molten material
passage
electrode
injection
molding machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002157443A
Other languages
Japanese (ja)
Inventor
Kazumitsu Omori
和光 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiki Seisakusho KK
Original Assignee
Meiki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiki Seisakusho KK filed Critical Meiki Seisakusho KK
Priority to JP2002157443A priority Critical patent/JP2003340896A/en
Publication of JP2003340896A publication Critical patent/JP2003340896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which does not need an external heater, directly heats a molten material, can injection-molds a conductive thin wall molding at a relatively low injection pressure, and improves the fluidity of the molten material during injection-packing and an apparatus for the method. <P>SOLUTION: When the molten material in an injection molding machine for injection-molding the molten conductive material is heated, in a passage with a channel in a nozzle in which the molten material to be packed in a mold cavity flows expanded and formed, an electrode having a cross-sectional shape resembling that of the passage and an cross-sectional area smaller than that of the passage is suspended by terminals to form a uniform clearance between the passage and the electrode. Power is supplied from a power supply to the electrode and the nozzle through the terminals to heat the molten material by resistance heating. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】導電性添加物を含有する樹脂
材料や金属材料の溶融材料を射出充填時に短時間で加熱
して、溶融材料の流動性を向上させる技術に関する。
TECHNICAL FIELD The present invention relates to a technique for improving the fluidity of a molten material by heating a molten material of a resin material or a metal material containing a conductive additive in a short time during injection filling.

【0002】[0002]

【従来の技術】導電性を要する肉薄成形品である燃料電
池用セパレータの射出成形において、樹脂原料には導電
性を現出させるため炭素紛が80重量%程度混合されて
いる。このような樹脂原料は炭素紛と樹脂は略同じ比重
であるから、その樹脂原料を溶融・混練させた溶融材料
は、樹脂量が炭素紛に対して1/5程度と少ないため極
めて流動性に乏しいものとなる。この溶融材料の流動性
を向上させるには可塑化時の温度を上昇させればよい
が、加熱筒内の溶融材料の温度を高くすると、溶融材料
は加熱筒内に数ショット分滞留するので、溶融材料は劣
化してその特性が低下する。また、セパレータの厚さは
2mm前後であるが、数100枚のセパレータを積層し
て燃料電池を形成するため僅かなセパレータの厚さが燃
料電池の容積に影響するので、セパレータの厚さは極限
まで薄くする必要がある。したがって上記のように、流
動性の不良な溶融材料を2mm以下の肉薄の金型キャビ
ティで射出成形する際には、そのキャビティに完全充填
させることは困難であり、成形品の末端は未充填になる
とともに、高い射出圧力を必要とするので成形品に反り
が発生する。
2. Description of the Related Art In injection molding of a fuel cell separator, which is a thin molded product requiring conductivity, carbon powder is mixed in a resin raw material in an amount of about 80% by weight in order to exhibit conductivity. In such a resin raw material, carbon powder and resin have almost the same specific gravity. Therefore, the molten material obtained by melting and kneading the resin raw material is extremely fluid because the amount of resin is as small as about 1/5 of carbon powder. It will be scarce. To improve the fluidity of this molten material, the temperature at the time of plasticization may be raised, but if the temperature of the molten material in the heating cylinder is increased, the molten material stays in the heating cylinder for several shots, The molten material deteriorates and its properties deteriorate. Further, the thickness of the separator is about 2 mm, but since a few hundred separators are stacked to form a fuel cell, a slight thickness of the separator affects the volume of the fuel cell, so the thickness of the separator is extremely limited. Need to be thin. Therefore, as described above, when a molten material having poor fluidity is injection-molded in a thin mold cavity of 2 mm or less, it is difficult to completely fill the cavity, and the end of the molded product is not filled. In addition, since a high injection pressure is required, the molded product warps.

【0003】また、マグネシウム等の金属材料を射出成
形するとき、金属を溶融するには樹脂材料より高温度が
必要とされ、しかも加熱筒やノズルの外表面からヒータ
で加熱するのでヒータは金属の溶融温度よりもさらに高
く昇温させねばならない。そのような高温に耐えられる
ヒータを製造することは困難であった。
When a metal material such as magnesium is injection-molded, a higher temperature than that of a resin material is required to melt the metal, and since the heater is heated from the outer surface of the heating cylinder or nozzle, the heater is made of metal. The temperature must be raised even higher than the melting temperature. It has been difficult to manufacture a heater that can withstand such high temperatures.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記のような
従来技術における課題を解決するべくなされたものであ
り、外部から加熱するヒータを必要とせず溶融材料その
ものを直接加熱して、導電性を要する肉薄成形品の射出
成形を比較的低い射出圧力で成形可能とし、射出充填時
の溶融材料の流動性を良好にする装置と方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems in the prior art as described above, and does not require a heater for heating from the outside, but directly heats the molten material itself to obtain a conductive material. An object of the present invention is to provide an apparatus and a method capable of performing injection molding of a thin molded product requiring a relatively low injection pressure and improving the fluidity of a molten material during injection filling.

【0005】[0005]

【課題を解決するための手段】すなわち、導電性の溶融
材料を射出成形する射出成形機の溶融材料を加熱するに
おいて、金型キャビティに充填する溶融材料が流動する
ノズル内の流路が拡張形成された通路に、該通路の断面
形状と相似の断面形状を有しその断面積が通路の断面積
より小さい断面積を有する電極を通路と電極間が均一な
間隙となるように端子で吊着し、該端子と前記ノズルに
電源から給電し、溶融材料を抵抗加熱により発熱させる
ようにしたのである。
That is, in heating a molten material of an injection molding machine for injection-molding a conductive molten material, a flow path in a nozzle through which the molten material filled in a mold cavity flows is expanded. An electrode having a cross-sectional shape similar to the cross-sectional shape of the passage and a cross-sectional area smaller than the cross-sectional area of the passage is suspended by a terminal so as to form a uniform gap between the passage and the electrode. Then, power is supplied to the terminal and the nozzle from a power source so that the molten material is heated by resistance heating.

【0006】[0006]

【発明の実施の形態】図面に基づいて本発明の実施の形
態を詳細に説明する。図1は本発明の加熱装置をその制
御ブロックとともに示す断面図であり、図2は制御装置
における射出充填速度設定と加熱装置に供給される熱量
との関係を示すグラフである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing the heating device of the present invention together with its control block, and FIG. 2 is a graph showing the relationship between the injection filling speed setting in the control device and the amount of heat supplied to the heating device.

【0007】加熱装置1は、射出成形機18において樹
脂または金属材料を可塑化する図示しない加熱筒の先端
部に固着され、炭素等の導電性添加物を含有する樹脂材
料またはマグネシウム等の金属材料を可塑化して得た溶
融材料14を、図示しない金型に射出充填する流路9を
備えている。加熱装置1は、加熱筒先端面に固着するノ
ズル2と、ノズル2の反加熱筒側端面に螺着し金型に当
接するノズルチップ3と、ノズル2およびノズルチップ
3の内部流路9を拡張形成した通路8と、通路8の内部
空間に同芯に設け通路8の直径より小さい直径を有する
電極4と、電極4を通路8の内部空間に間隙Gを形成す
べく同芯に吊着し導通する複数の端子5と、端子5をノ
ズル2から絶縁して支持するスリーブ7と、端子5をノ
ズル2に締着するナット6と、ナット6により端子5に
締結した電線10,11と、ノズル2にナット6で固着
したターミナル13と、ターミナル13に締結した電線
12と、電線10,11および電線12に給電する電源
15と、端子5を貫通し先端を間隙Gに露出させ溶融材
料14の温度を検出する温度センサ19とからなる。
The heating device 1 is fixed to the tip of a heating cylinder (not shown) that plasticizes a resin or metal material in the injection molding machine 18, and contains a resin material containing a conductive additive such as carbon or a metal material such as magnesium. The melted material 14 obtained by plasticizing is melted by injection in a mold (not shown). The heating device 1 includes a nozzle 2 fixed to the tip surface of the heating cylinder, a nozzle tip 3 screwed to the end surface of the nozzle 2 on the side opposite to the heating cylinder and abutting on the mold, and the nozzle 2 and the internal flow passage 9 of the nozzle tip 3. The expanded passage 8, the electrode 4 provided concentrically in the internal space of the passage 8 and having a diameter smaller than the diameter of the passage 8, and the electrode 4 suspended concentrically to form a gap G in the internal space of the passage 8. A plurality of terminals 5 that are electrically connected to each other, a sleeve 7 that insulates and supports the terminal 5 from the nozzle 2, a nut 6 that fastens the terminal 5 to the nozzle 2, and electric wires 10 and 11 that are fastened to the terminal 5 by the nut 6. , A terminal 13 fixed to the nozzle 2 with a nut 6, an electric wire 12 fastened to the terminal 13, a power supply 15 for supplying electric power to the electric wires 10, 11 and the electric wire 12, a terminal 5 penetrating and exposing a tip in a gap G, and a molten material. The temperature sensor that detects the temperature of 14 Consisting for 19 Metropolitan.

【0008】通路8と電極4の断面形状はいずれも円で
あるが、通路8と電極4との間隙Gがその全周および全
長にわたり同一であれば他の断面形状であってもよい。
すなわち、通路8の断面形状は電極4の断面形状と相似
であり、電極4の断面積は通路8の断面積より小さいと
いう関係を有する。また、電極4はその両端が尖頭の棒
状であることが溶融材料14の流動を平滑にし溶融材料
14の滞留を防止する点で好ましい。なお、このとき電
極4の尖頭部に対向するノズル2およびノズルチップ3
の通路8は、図1に示すように、間隙Gを保持する角度
で縮径されて流路9に滑らかに接続されている。
The cross-sectional shapes of the passage 8 and the electrode 4 are both circular, but any other cross-sectional shape may be used as long as the gap G between the passage 8 and the electrode 4 is the same over the entire circumference and the entire length.
That is, the cross-sectional shape of the passage 8 is similar to the cross-sectional shape of the electrode 4, and the cross-sectional area of the electrode 4 is smaller than the cross-sectional area of the passage 8. In addition, it is preferable that the electrodes 4 have a sharp rod shape at both ends in order to smooth the flow of the molten material 14 and prevent the molten material 14 from staying. At this time, the nozzle 2 and the nozzle tip 3 facing the tip of the electrode 4
1, the passage 8 is reduced in diameter at an angle that holds the gap G and is smoothly connected to the flow passage 9.

【0009】電極4はその軸方向の中心付近における外
周を3等分した位置に螺子孔を有し、該螺子孔には端子
5が螺入される。螺子孔と端子5は少なくとも電極4の
軸方向の中心付近の円周を等分した個所に複数設ける
が、電極4の軸方向の複数の円周に適宜数設けてもよ
い。スリーブ7は電気絶縁性、耐熱性および良好な機械
的強度を有する材料が適し、セラミックス等が好適に用
いられる。ノズル2、ノズルチップ3、電極4、端子
5、ナット6およびターミナル13は導電性で優れた機
械的強度を有する材料で形成され、鋼材や鋼材に鍍金し
たものが好ましい。
The electrode 4 has a screw hole at a position where the outer circumference is divided into three equal parts in the vicinity of the center in the axial direction, and the terminal 5 is screwed into the screw hole. A plurality of screw holes and terminals 5 are provided at least at positions equidistantly dividing the circumference of the electrode 4 near the center in the axial direction, but a suitable number may be provided in the plurality of circumferences of the electrode 4 in the axial direction. A material having electrical insulation, heat resistance and good mechanical strength is suitable for the sleeve 7, and ceramics or the like is preferably used. The nozzle 2, the nozzle tip 3, the electrode 4, the terminal 5, the nut 6, and the terminal 13 are formed of a material having conductivity and excellent mechanical strength, and a steel material or a steel material plated is preferable.

【0010】ターミナル13は、ノズル2またはノズル
チップ3と電気的に接続された部材であればノズル2以
外の例えば加熱筒や射出装置等に設けてもよい。ただし
通路8からの離隔距離が大きいときや電気抵抗の高い部
材が中間に存在するときは、電力損失が大となるので特
に溶融材料14に金属材料を用いるときには注意を要す
る。また、ノズル2への電気接続はターミナル13によ
らず、締付けバンド等の手段を用いてもよい。
The terminal 13 may be provided in, for example, a heating cylinder or an injection device other than the nozzle 2 as long as it is a member electrically connected to the nozzle 2 or the nozzle tip 3. However, when the distance from the passage 8 is large or when a member having a high electric resistance is present in the middle, power loss becomes large. Therefore, care must be taken especially when a metal material is used as the molten material 14. Further, the electrical connection to the nozzle 2 may be performed by means of a tightening band or the like instead of the terminal 13.

【0011】電源15は、直流または交流の最大定格4
8V,100A程度の容量を有し、制御装置の温度指
令、電流指令または電圧指令である制御信号16に応じ
て0〜100Aの電流を出力し、温度センサ19の温度
信号を取込んで溶融材料14の温度をフィードバック制
御する。制御信号16が温度指令または電流指令である
とき、電源15は定電流回路が構成され、溶融材料14
の状態に拘わらず常に温度指令または電流指令に相当す
る電流が供給されるように自動的に電圧を変化させる。
また制御信号16が電圧指令であれば、電源15は電圧
指令に相当する電圧を一定に出力する。制御信号16を
いずれに選択するかは負荷である溶融材料14の抵抗値
とその変動状況によるので、制御を開始する前に電源1
5を切離し、電線11と電線12間の電気抵抗を測定し
て溶融材料14の抵抗値とその変動状況を監視すること
が望ましい。
The power supply 15 has a maximum rating of DC or AC of 4
It has a capacity of about 8 V and 100 A, outputs a current of 0 to 100 A according to the control signal 16 which is a temperature command, a current command or a voltage command of the control device, and takes in the temperature signal of the temperature sensor 19 to melt the material. The temperature of 14 is feedback-controlled. When the control signal 16 is a temperature command or a current command, the power source 15 has a constant current circuit and the molten material 14
Regardless of the state, the voltage is automatically changed so that the current corresponding to the temperature command or the current command is always supplied.
If the control signal 16 is a voltage command, the power supply 15 constantly outputs a voltage corresponding to the voltage command. The control signal 16 to be selected depends on the resistance value of the molten material 14 which is the load and the fluctuation state thereof, and therefore, the power source 1 is required before starting the control.
It is desirable to disconnect 5 and measure the electric resistance between the electric wire 11 and the electric wire 12 to monitor the resistance value of the molten material 14 and its fluctuation state.

【0012】電源15の出力電流は電線10,11,1
2によって電極4とノズル2に導かれ、間隙Gを通過す
る溶融材料14に通電し、溶融材料14の導電性添加物
による電気抵抗で溶融材料14を発熱させる。導電性添
加物は粉または繊維状の炭素または金属等でなっている
が、いずれにしても溶融材料14において導電性添加物
は樹脂の間に分散しているので、溶融材料14の電気抵
抗は導電性添加物の固体の状態における電気抵抗よりも
高くなる。したがって、電気抵抗の比較的低いノズル
2、ノズルチップ3、電極4、端子5、ナット6、電線
10,11,12、およびターミナル13はほとんど発
熱しないのである。
The output current of the power supply 15 is the electric wires 10, 11, 1
The molten material 14 which is guided to the electrode 4 and the nozzle 2 by 2 and passes through the gap G is energized, and the molten material 14 is heated by the electric resistance of the conductive additive of the molten material 14. The conductive additive is made of powdery or fibrous carbon or metal, etc., but in any case, since the conductive additive is dispersed between the resins in the molten material 14, the electrical resistance of the molten material 14 is It becomes higher than the electric resistance of the conductive additive in the solid state. Therefore, the nozzle 2, the nozzle tip 3, the electrode 4, the terminal 5, the nut 6, the electric wires 10, 11, 12 and the terminal 13, which have a relatively low electric resistance, hardly generate heat.

【0013】制御装置17は、射出成形機18の作動シ
ーケンスやアクチュエータの速度、力、位置および温度
を設定し制御するものであり、公知のマイクロプロセッ
サにより構成されている。制御装置17には図2に破線
で示す射出充填速度がプログラム設定されている。射出
充填速度のプログラムは、加熱筒内で計量された溶融材
料14をプランジャやスクリュ等のアクチュエータによ
り押出してノズル2内の流路9を通過させるため、時間
経過またはアクチュエータの移動距離に対応して射出充
填速度を変化させるものである。その一例として図2に
は、21、22および23の射出充填速度設定からなる
プログラムをグラフ表示する。なお、前記射出充填速度
設定がアクチュエータの移動距離に対応して設定されて
いるときは、設定された速度とその移動距離から予め移
動に要する時間を演算しておき、図2のような横軸が時
間となるグラフを求める。
The control device 17 sets and controls the operation sequence of the injection molding machine 18 and the speed, force, position and temperature of the actuator, and is constituted by a known microprocessor. The controller 17 is programmed with an injection filling speed shown by a broken line in FIG. The injection filling speed program is such that the molten material 14 weighed in the heating cylinder is extruded by an actuator such as a plunger or a screw to pass through the flow passage 9 in the nozzle 2, so that it corresponds to the passage of time or the movement distance of the actuator. The injection filling speed is changed. As an example, FIG. 2 graphically displays a program including injection filling speed settings 21, 22, and 23. When the injection filling speed setting is set corresponding to the movement distance of the actuator, the time required for movement is calculated in advance from the set speed and the movement distance, and the horizontal axis as shown in FIG. Find the graph where is the time.

【0014】25、26および27は前記射出充填速度
設定に応じて制御装置17が演算した熱量設定であり、
この熱量設定に応じた制御信号16が電源15へ出力さ
れる。なお24は射出充填を除いた期間で間隙Gにおけ
る溶融材料14が流動しないときに、溶融材料14をそ
の可塑化したときの温度で保温する小電流のための保温
設定である。熱量設定25、26および27は、射出充
填速度設定21、22および23にそれぞれ対応してお
り、射出充填速度が速いときほど熱量が必要であること
から、両設定は比例関係にある。
Reference numerals 25, 26 and 27 are heat quantity settings calculated by the controller 17 according to the injection filling speed setting,
A control signal 16 according to this heat quantity setting is output to the power supply 15. Note that 24 is a heat retention setting for a small current that keeps the molten material 14 at the temperature at which the molten material 14 was plasticized when the molten material 14 in the gap G did not flow during the period excluding injection filling. The heat quantity settings 25, 26 and 27 correspond to the injection filling speed settings 21, 22 and 23, respectively, and the higher the injection filling speed is, the more the heat quantity is required. Therefore, both settings are in a proportional relationship.

【0015】また、供給熱量が一定のとき溶融材料14
に通電開始してから所定温度に到達するまでの時間は、
昇温温度幅、溶融材料14の種類および溶融材料14の
量(間隙Gの大きさと電極4の長さ)に依存するが、射
出充填速度のプログラムに係わるのは昇温温度幅であ
る。昇温温度幅は、昇温後の温度から昇温する前の温度
を減じたものであり、この値に応じて予め溶融材料14
の流動が増加する所定時間である予行時間T1,T3前に
電流を立上げておくのである。この予行時間T1および
T3は、射出充填速度設定21および23から演算され
た熱量設定25および27それぞれのその前の保温設定
24および熱量設定26との差に基づいて求められる。
すなわち、(熱量設定25−保温設定24)>(熱量設
定27−熱量設定26)であるから、T1>T3となる。
なお、予行時間T1,T3は、射出充填速度設定21,2
3に基づいて流動する溶融材料14が間隙Gを通過する
のに要する時間より大きく設定するのが好ましい。
When the amount of heat supplied is constant, the molten material 14
The time from the start of energization to reaching the predetermined temperature is
Although it depends on the temperature rising temperature range, the type of the molten material 14 and the amount of the molten material 14 (the size of the gap G and the length of the electrode 4), the temperature rising temperature range is related to the program of the injection filling speed. The temperature rise temperature range is obtained by subtracting the temperature before raising the temperature from the temperature after raising the temperature, and the molten material 14 is beforehand set in accordance with this value.
The current is raised before the dry running times T1 and T3, which are the predetermined times during which the current flow increases. The dry running times T1 and T3 are obtained based on the difference between the heat amount setting 25 and the heat amount setting 27 calculated from the injection filling speed settings 21 and 23 and the previous heat retention setting 24 and the heat amount setting 26, respectively.
That is, since (heat amount setting 25-heat retention setting 24)> (heat amount setting 27-heat amount setting 26), T1> T3.
In addition, the dry run times T1 and T3 are the injection filling speed settings 21 and 2.
It is preferable to set the time larger than the time required for the molten material 14 flowing based on No. 3 to pass through the gap G.

【0016】一方、射出充填速度設定22のようにその
前の射出充填速度設定21から減速するような場合は、
その熱量設定26の立ち下がり開始は前記した昇温時と
同様に射出充填速度設定22の立ち下がりの予行時間T
2前に実行する。なお、射出充填速度設定23は最後の
射出充填速度設定であり、その次の射出充填速度設定は
略零でありそれに対応する熱量設定は保温設定24であ
る。したがって、保温設定24は(熱量設定27−保温
設定24)に相当する予行時間T4で先行して立ち下が
る。
On the other hand, in the case of decelerating from the preceding injection filling speed setting 21 such as the injection filling speed setting 22,
The fall of the heat amount setting 26 is started at the fall time T of the fall of the injection filling speed setting 22 as in the case of the above-mentioned temperature rise.
2 Execute before. The injection filling speed setting 23 is the last injection filling speed setting, the next injection filling speed setting is substantially zero, and the heat quantity setting corresponding to it is the heat retention setting 24. Therefore, the heat retention setting 24 precedes and falls at the dry running time T4 corresponding to (heat amount setting 27-heat retention setting 24).

【0017】さらに、熱量設定は射出充填速度設定から
求めるように説明したが、射出充填用アクチュエータの
移動速度または溶融材料14の流動速度の検出値そのも
のかまたは該検出値を記憶装置に記憶した値に基づいて
熱量設定を求めてもよい。
Further, although the heat quantity setting is described as being obtained from the injection filling speed setting, it is the detected value itself of the moving speed of the injection filling actuator or the flowing speed of the molten material 14 or a value stored in the storage device. The heat quantity setting may be obtained based on

【0018】ところで、前記保温設定24は溶融材料1
4が流動しないときの保温の目的であると説明したが、
保温設定24を溶融材料14が固化または半溶融状態と
なるような低温に設定することがある。この場合、間隙
Gが比較的小さければ溶融材料14の流動を強制的に止
めることが可能であり、加熱装置1を溶融材料14の開
閉弁として作用させることができる。このとき、加熱装
置1はノズルチップ3の流路9の先端開口からの溶融材
料14の漏れを防止するので、ノズルチップ3を金型に
当接させずに可塑化を実行することができる。また、加
熱装置1によって加熱した溶融材料14を金型キャビテ
ィに充填した後、わずかに開いた金型を圧締して金型キ
ャビティ内の溶融材料14を展延して成形するいわゆる
射出圧縮成形または射出プレス成形を行うとき、加熱装
置1を閉状態にして、圧縮された溶融材料14が金型キ
ャビティから射出装置側へ逆流するのを防止することが
できる。
By the way, the heat retention setting 24 is the melting material 1
I explained that 4 is the purpose of heat retention when it does not flow,
The heat retention setting 24 may be set to a low temperature such that the molten material 14 is solidified or in a semi-molten state. In this case, if the gap G is relatively small, the flow of the molten material 14 can be forcibly stopped, and the heating device 1 can act as an on-off valve for the molten material 14. At this time, since the heating device 1 prevents the molten material 14 from leaking from the tip opening of the flow path 9 of the nozzle tip 3, it is possible to perform plasticization without bringing the nozzle tip 3 into contact with the mold. Further, so-called injection compression molding in which the molten material 14 heated by the heating device 1 is filled in the mold cavity, and then the slightly opened mold is pressed to spread and mold the molten material 14 in the mold cavity. Alternatively, when performing injection press molding, the heating device 1 can be closed to prevent the compressed molten material 14 from flowing back from the mold cavity to the injection device side.

【0019】このように、図示し説明することにより本
発明の実施の形態を記載したが、本発明は上記の実施の
形態に限定されるものではなく、本発明の趣旨を逸脱し
ない範囲内において種々の変更を付加して実施すること
ができる。
Although the embodiments of the present invention have been described by showing and explaining in this way, the present invention is not limited to the above-mentioned embodiments, and does not depart from the gist of the present invention. Various modifications can be added and implemented.

【0020】[0020]

【発明の効果】請求項1の発明は、金型キャビティに充
填する導電性の溶融材料が流動するノズル内の流路が拡
張形成された通路と、該通路の断面形状と相似の断面形
状を有しその断面積が通路の断面積より小さい断面積を
有する電極と、該電極を通路と電極間が均一な間隙とな
るように吊着しノズルから電気的に絶縁した複数の端子
と、前記電極および前記ノズルに給電する電源とから構
成したので、射出成形機の主要部の変更や改造を要せず
に、溶融材料を金型キャビティへ射出充填する直前に、
溶融材料を直接にかつ均一に短時間で発熱させることが
でき、流動性の悪い溶融材料であっても肉薄の金型キャ
ビティへ比較的低い射出圧力で射出充填することができ
る。
According to the first aspect of the present invention, a passage in which a flow passage in the nozzle through which the conductive molten material filling the mold cavity flows is expanded, and a cross-sectional shape similar to the cross-sectional shape of the passage are formed. An electrode having a cross-sectional area smaller than that of the passage, and a plurality of terminals electrically suspended from the nozzle by suspending the electrode so that the passage and the electrode have a uniform gap. Since it is composed of an electrode and a power supply for supplying power to the nozzle, just before injection filling the molten material into the mold cavity without changing or modifying the main part of the injection molding machine,
The molten material can be directly and uniformly heated in a short time, and even a molten material having poor fluidity can be injected and filled into a thin mold cavity at a relatively low injection pressure.

【0021】請求項2の発明は、前記電極を両端が尖頭
の棒状で構成し、溶融材料の流動を妨げることなく滑ら
かに形成したので、射出圧力の損失がなく高効率に成形
できるとともに、溶融材料の滞留個所が少ないので溶融
材料の劣化による成形不良が防止できる。
According to the second aspect of the present invention, the electrode is formed in the shape of a rod with sharp ends at both ends, and is formed smoothly without impeding the flow of the molten material, so that there is no loss of injection pressure and high efficiency molding is possible. Since there are few places where the molten material stays, it is possible to prevent defective molding due to deterioration of the molten material.

【0022】請求項3の発明は、金型キャビティに充填
する導電性の溶融材料が流動するノズル内の流路が拡張
形成された通路に、該通路の断面形状と相似の断面形状
を有しその断面積が通路の断面積より小さい断面積を有
する電極を通路と電極間が均一な間隙となるように端子
で吊着し、該端子を介して電極と前記ノズルに電源から
給電し、溶融材料を抵抗加熱により発熱させるようにし
たので、溶融材料を金型キャビティへ射出充填する直前
に、溶融材料を直接にかつ均一に短時間で発熱させるこ
とができ、流動性の悪い溶融材料であっても肉薄の金型
キャビティへ比較的低い射出圧力で射出充填することが
できる。
According to a third aspect of the present invention, a passage in which a flow passage in the nozzle through which the conductive molten material filling the mold cavity flows is expanded is formed, and has a cross sectional shape similar to the cross sectional shape of the passage. An electrode having a cross-sectional area smaller than the cross-sectional area of the passage is suspended by a terminal so that a uniform gap is formed between the passage and the electrode, and the electrode and the nozzle are supplied with power from the power source through the terminal and melted. Since the material is made to generate heat by resistance heating, the molten material can be directly and uniformly heated in a short time immediately before the injection and filling of the molten material into the mold cavity. However, it is possible to perform injection filling into a thin mold cavity with a relatively low injection pressure.

【0023】請求項4の発明は、前記電源から給電され
る電流が、射出成形機の制御装置から出力される制御信
号で制御され、制御装置における射出充填速度の設定に
応じて変化するので、加熱装置を通過する溶融材料の流
動速度が変化しても時間当たりに溶融材料に与えられる
熱量は同じになり、溶融材料は均一に加熱される。
According to the invention of claim 4, the current supplied from the power source is controlled by the control signal output from the control device of the injection molding machine and changes according to the setting of the injection filling speed in the control device. Even if the flow rate of the molten material passing through the heating device changes, the amount of heat given to the molten material per time becomes the same, and the molten material is heated uniformly.

【0024】請求項5の発明は、前記電源から給電され
る電流が、射出成形機の制御装置から出力される制御信
号で制御され、制御装置における射出充填速度の設定に
基づいて溶融材料の流動速度が変化する所定時間前に、
立上がりまたは立ち下がるので、昇温に要する時間中に
おける溶融材料の熱量不足に基づく流動不良が解消され
る。
According to a fifth aspect of the present invention, the current supplied from the power source is controlled by a control signal output from the control unit of the injection molding machine, and the molten material flows based on the setting of the injection filling speed in the control unit. A predetermined time before the speed changes,
Since it rises or falls, the flow failure due to insufficient heat quantity of the molten material during the time required for temperature rise is eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加熱装置をその制御ブロックとともに
示す断面図である。
FIG. 1 is a sectional view showing a heating device of the present invention together with its control block.

【図2】制御装置における射出充填速度設定と加熱装置
に供給される熱量との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the injection filling speed setting in the control device and the amount of heat supplied to the heating device.

【符号の説明】[Explanation of symbols]

1 ……… 加熱装置 2 ……… ノズル 3 ……… ノズルチップ 4 ……… 電極 5 ……… 端子 6 ……… ナット 7 ……… スリーブ 8 ……… 通路 9 ……… 流路 10,11,12 …… 電線 13 …… ターミナル 14 …… 溶融材料 15 …… 電源 16 …… 制御信号 17 …… 制御装置 18 …… 射出成形機 19 …… 温度センサ 21,22,23 ……… 射出充填速度設定 24 ……… 保温設定 25,26,27 ……… 熱量設定 T1,T2,T3,T4 ……… 予行時間 G ……… 間隙 1 ……… Heating device 2 ……… Nozzle 3 ... Nozzle tip 4 ……… Electrode 5 ……… Terminal 6 ……… Nut 7 ……… Sleeve 8 ……… passage 9 ……… Flow path 10, 11, 12 ...... Electric wire 13 ...... Terminal 14 ・ ・ ・ Melted material 15 ... Power supply 16 ... Control signal 17 ... Control device 18 …… Injection molding machine 19 ...... Temperature sensor 21,22,23 ………… Injection filling speed setting 24 ……… Keeping warm 25, 26, 27 ……… Heat quantity setting T1, T2, T3, T4 ……… Drying time G ……… Gap

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導電性の溶融材料を射出成形する射出成
形機の溶融材料を加熱する装置において、 金型キャビティに充填する溶融材料が流動するノズル内
の流路が拡張形成された通路と、該通路の断面形状と相
似の断面形状を有しその断面積が通路の断面積より小さ
い断面積を有する電極と、該電極を通路と電極間が均一
な間隙となるように吊着しノズルから電気的に絶縁した
複数の端子と、前記電極および前記ノズルに給電する電
源とからなることを特徴とする射出成形機の溶融材料加
熱装置。
1. In a device for heating a molten material of an injection molding machine for injection-molding a conductive molten material, a passage in which a flow path in a nozzle through which the molten material filled in a mold cavity flows is formed, An electrode having a cross-sectional shape similar to the cross-sectional shape of the passage and having a cross-sectional area smaller than the cross-sectional area of the passage, and the electrode is hung from the nozzle by suspending the passage so that a uniform gap is formed between the passage and the electrode. A molten material heating device for an injection molding machine, comprising: a plurality of electrically insulated terminals and a power source for supplying power to the electrodes and the nozzles.
【請求項2】 前記電極は両端が尖頭の棒状であること
を特徴とする請求項1に記載の射出成形機の溶融材料加
熱装置。
2. The molten material heating apparatus for an injection molding machine according to claim 1, wherein the electrode has a rod shape with both ends being pointed.
【請求項3】 導電性の溶融材料を射出成形する射出成
形機の溶融材料を加熱する方法において、 金型キャビティに充填する溶融材料が流動するノズル内
の流路が拡張形成された通路に、該通路の断面形状と相
似の断面形状を有しその断面積が通路の断面積より小さ
い断面積を有する電極を通路と電極間が均一な間隙とな
るように端子で吊着し、該端子を介して電極と前記ノズ
ルに電源から給電し、溶融材料を抵抗加熱により発熱さ
せることを特徴とする射出成形機の溶融材料を加熱する
方法。
3. In a method of heating a molten material of an injection molding machine for injection-molding a conductive molten material, a flow path in a nozzle through which the molten material filled in a mold cavity flows is expanded, An electrode having a cross-sectional shape similar to the cross-sectional shape of the passage and having a cross-sectional area smaller than the cross-sectional area of the passage is suspended by a terminal so as to form a uniform gap between the passage and the electrode. A method for heating a molten material of an injection molding machine, characterized in that the electrode and the nozzle are supplied with power from a power source to heat the molten material by resistance heating.
【請求項4】 前記電源から給電される電流は、射出成
形機の制御装置から出力される制御信号で制御され、制
御装置における射出充填速度の設定に応じて変化するこ
とを特徴とする請求項3に記載の射出成形機の溶融材料
を加熱する方法。
4. The current supplied from the power source is controlled by a control signal output from a control device of the injection molding machine, and changes according to the setting of the injection filling speed in the control device. A method for heating a molten material of an injection molding machine according to Item 3.
【請求項5】 前記電源から給電される電流は、射出成
形機の制御装置から出力される制御信号で制御され、制
御装置における射出充填速度の設定に基づいて溶融材料
の流動速度が変化する所定時間前に、立上がりまたは立
ち下がることを特徴とする請求項3に記載の射出成形機
の溶融材料を加熱する方法。
5. A current supplied from the power source is controlled by a control signal output from a control device of the injection molding machine, and a predetermined flow rate of the molten material changes based on a setting of an injection filling speed in the control device. The method for heating a molten material in an injection molding machine according to claim 3, wherein the material rises or falls before time.
JP2002157443A 2002-05-30 2002-05-30 Method and apparatus for heating molten material in injection molding machine Pending JP2003340896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002157443A JP2003340896A (en) 2002-05-30 2002-05-30 Method and apparatus for heating molten material in injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002157443A JP2003340896A (en) 2002-05-30 2002-05-30 Method and apparatus for heating molten material in injection molding machine

Publications (1)

Publication Number Publication Date
JP2003340896A true JP2003340896A (en) 2003-12-02

Family

ID=29773304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002157443A Pending JP2003340896A (en) 2002-05-30 2002-05-30 Method and apparatus for heating molten material in injection molding machine

Country Status (1)

Country Link
JP (1) JP2003340896A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2183090A1 (en) * 2007-08-24 2010-05-12 Husky Injection Molding Systems S.A. An apparatus for controlling melt flow in a melt distribution network
WO2015193989A1 (en) * 2014-06-18 2015-12-23 日産自動車株式会社 Injection molding method
JP2016128236A (en) * 2015-01-09 2016-07-14 マツダ株式会社 Injection molding device and injection molding method
JP2016128239A (en) * 2015-01-09 2016-07-14 マツダ株式会社 Injection molding device and injection molding method
JP2016128238A (en) * 2015-01-09 2016-07-14 マツダ株式会社 Injection molding device and injection molding method
JP2016128237A (en) * 2015-01-09 2016-07-14 マツダ株式会社 Injection molding device and injection molding method
JP2016144889A (en) * 2015-02-06 2016-08-12 マツダ株式会社 Injection molding apparatus and method
CN107107427A (en) * 2015-01-09 2017-08-29 马自达汽车株式会社 Coinjection molding apparatus and injection moulding method
JP2017177694A (en) * 2016-03-31 2017-10-05 宇部興産機械株式会社 Injection molding device and injection molding method
JP2017177696A (en) * 2016-03-31 2017-10-05 マツダ株式会社 Apparatus and method for injection molding
JP2017177698A (en) * 2016-03-31 2017-10-05 マツダ株式会社 Apparatus and method for injection molding
JP2017177697A (en) * 2016-03-31 2017-10-05 マツダ株式会社 Apparatus and method for injection molding

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2183090A1 (en) * 2007-08-24 2010-05-12 Husky Injection Molding Systems S.A. An apparatus for controlling melt flow in a melt distribution network
US7950918B2 (en) 2007-08-24 2011-05-31 Husky Injection Molding Systems Ltd. Apparatus for controlling melt flow in a melt distribution network
EP2183090B1 (en) * 2007-08-24 2012-06-06 Husky Injection Molding Systems Ltd. An injection molding system comprising an apparatus for controlling melt flow in a melt distribution network
KR101288686B1 (en) 2007-08-24 2013-07-22 허스키 인젝션 몰딩 시스템즈 리미티드 An apparatus for controlling melt flow in a melt distribution network
KR101288665B1 (en) * 2007-08-24 2013-07-22 허스키 인젝션 몰딩 시스템즈 리미티드 An apparatus for controlling melt flow in a melt distribution network
WO2015193989A1 (en) * 2014-06-18 2015-12-23 日産自動車株式会社 Injection molding method
JPWO2015193989A1 (en) * 2014-06-18 2017-04-20 日産自動車株式会社 Injection molding method
JP2016128236A (en) * 2015-01-09 2016-07-14 マツダ株式会社 Injection molding device and injection molding method
JP2016128238A (en) * 2015-01-09 2016-07-14 マツダ株式会社 Injection molding device and injection molding method
JP2016128237A (en) * 2015-01-09 2016-07-14 マツダ株式会社 Injection molding device and injection molding method
JP2016128239A (en) * 2015-01-09 2016-07-14 マツダ株式会社 Injection molding device and injection molding method
CN107107427B (en) * 2015-01-09 2019-03-01 马自达汽车株式会社 Coinjection molding apparatus and injection moulding method
CN107107427A (en) * 2015-01-09 2017-08-29 马自达汽车株式会社 Coinjection molding apparatus and injection moulding method
DE112016000080B4 (en) 2015-01-09 2019-05-29 Mazda Motor Corporation injection molding machine
US10265898B2 (en) 2015-01-09 2019-04-23 Mazda Motor Corporation Injection molding apparatus and injection molding method
JP2016144889A (en) * 2015-02-06 2016-08-12 マツダ株式会社 Injection molding apparatus and method
JP2017177697A (en) * 2016-03-31 2017-10-05 マツダ株式会社 Apparatus and method for injection molding
JP2017177698A (en) * 2016-03-31 2017-10-05 マツダ株式会社 Apparatus and method for injection molding
JP2017177696A (en) * 2016-03-31 2017-10-05 マツダ株式会社 Apparatus and method for injection molding
JP2017177694A (en) * 2016-03-31 2017-10-05 宇部興産機械株式会社 Injection molding device and injection molding method

Similar Documents

Publication Publication Date Title
JP2003340896A (en) Method and apparatus for heating molten material in injection molding machine
US4370115A (en) Injection molding method and device
CN109070420A (en) Injection molding device and injection molding method
US10265898B2 (en) Injection molding apparatus and injection molding method
US6666675B2 (en) Injection molding nozzle for resin of highly temperature-dependent viscosity
JP2005324483A (en) Injection molding nozzle
CN207256805U (en) Injection molding machine thermofusion device is used in a kind of high molecular material injection molding tube solid right-angle tee production
JP7434890B2 (en) Injection molding machine and injection molding machine control method
JP4611770B2 (en) Screw for molding fuel cell separator molding material and molding method of fuel cell separator molding material
CN210501213U (en) Hot runner heat preservation engineering device
JP6094607B2 (en) Injection molding apparatus and injection molding method
CN106393611A (en) Improved injection molding machine for automobile bumper die
JP2013256062A (en) Injection molding machine
JP2021049661A (en) Injection molding device
CN218660271U (en) Hot runner mechanism capable of conveniently increasing and decreasing nozzle number
JP2009172822A (en) Control method and controller of heating heater of injection molding apparatus
CN216068613U (en) Multifunctional mold for PET foaming and extruder
CN204687289U (en) A kind of injection moulding plasticizing charging barrel
JP3542060B2 (en) Injection molding machine and nozzle temperature control method thereof
JP6727738B1 (en) Nozzle heater dropout detection method
JP6056887B2 (en) Injection molding apparatus and injection molding method
JP6094608B2 (en) Injection molding apparatus and injection molding method
JP2014030906A (en) Injection device
JP2004243337A (en) Molding apparatus
KR830001491B1 (en) Intermittent heating apparatus for plasticizing fluid in injection molding or transfer molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040319

A977 Report on retrieval

Effective date: 20050704

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050719

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050805

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822