JP2010084819A - Sealing device - Google Patents

Sealing device Download PDF

Info

Publication number
JP2010084819A
JP2010084819A JP2008252703A JP2008252703A JP2010084819A JP 2010084819 A JP2010084819 A JP 2010084819A JP 2008252703 A JP2008252703 A JP 2008252703A JP 2008252703 A JP2008252703 A JP 2008252703A JP 2010084819 A JP2010084819 A JP 2010084819A
Authority
JP
Japan
Prior art keywords
fluid side
sealing
recess
intermediate surface
reverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008252703A
Other languages
Japanese (ja)
Inventor
渉 ▲徳▼永
Wataru Tokunaga
Nozomi Suzuki
望 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2008252703A priority Critical patent/JP2010084819A/en
Publication of JP2010084819A publication Critical patent/JP2010084819A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sealing With Elastic Sealing Lips (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce torque based on fluid lubrication by increasing the thickness of a fluid film in a lip sliding part, in a sealing device (bidirectional seal) in which a sliding mate member such as a rotary shaft is rotated in a normal direction and a reverse direction. <P>SOLUTION: A normal screw part 10 and a reverse screw part 11 for pumping are provided in an inclined surface of a seal lip 6 on a side opposite to a sealed fluid side. A recessed part 12 is provided in an intermediate surface 9 of the seal lip 6, and a contact part 15 continued on the circumference is provided in a part of the recessed part 12 of the intermediate surface 9 on a side opposite to the sealed fluid side. When a mate member among the edges of the recessed part 12 is normally rotated, at least one part of a part positioning in front in the rotating direction is set in a direction inclined forward in the rotating direction at this point from a sealed fluid side to the side opposite to the sealed fluid. When the mate member among the edges of the recessed part 12 is rotated reversely, at least one part of the part positioning in front in the rotating direction is set in a direction inclined forward in the rotating direction at this point from the sealed fluid side to the side opposite to the sealed fluid side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、密封装置に係り、更に詳しくは、シールリップを有する密封装置に関するものである。本発明の密封装置は例えば、自動車関連の分野において用いられ、あるいは汎用機械等の分野において用いられる。   The present invention relates to a sealing device, and more particularly to a sealing device having a sealing lip. The sealing device of the present invention is used, for example, in the field of automobiles or in the field of general-purpose machines.

シールリップを有する密封装置においては一般に、シールリップの摺動摩耗を抑制すべく低トルク化が求められている。低トルク化の手法としては、シールリップの小断面化などによる緊迫力の低減、材料の変更や表面の改質(例えばフッ素樹脂コーティング)などの低摩擦係数化が検討されているが、更なる低トルク化を実現するため、摺動部における流体膜(油膜)を厚くすることで流体潤滑にもとづく低トルク化を実現することが考えられる。   Generally, a sealing device having a seal lip is required to have a low torque so as to suppress sliding wear of the seal lip. As methods for reducing torque, reduction of the frictional force, such as reducing the tension by reducing the cross-section of the seal lip, changing the material, and modifying the surface (for example, fluororesin coating) has been studied. In order to realize a reduction in torque, it is conceivable to realize a reduction in torque based on fluid lubrication by increasing the thickness of the fluid film (oil film) in the sliding portion.

また、シールリップを有する密封装置としては従来から、回転軸等の摺動相手部材が一方向のみに回転するもの(一方向回転シール)と、正逆両方向に回転するもの(両方向回転シール)とが知られており、前者の一方向回転シールのみならず後者の両方向回転シールにおいても上記流体潤滑にもとづく低トルク化が求められている。   Moreover, as a sealing device having a seal lip, conventionally, a sliding partner such as a rotating shaft rotates in only one direction (one-way rotating seal), and a device that rotates in both forward and reverse directions (two-way rotating seal) Therefore, not only the former one-way rotating seal but also the latter two-way rotating seal is required to reduce the torque based on the fluid lubrication.

両方向回転シールの従来技術としては図10に示すように、密封性能を向上させるべくシールリップ51の反密封流体側斜面52に、相手部材53が正方向に回転するときにポンピング作用によって密封流体を押し戻す作用を奏する正ネジ部54と、相手部材53が逆方向に回転するときにポンピング作用によって密封流体を押し戻す作用を奏する逆ネジ部55とを設けたものが知られているが、この従来技術においても上記流体潤滑にもとづく低トルク化は実現されていない(特許文献1参照)。
特開平1−312274号公報 特開2003−185028号公報 特開2006−125454号公報
As shown in FIG. 10, as a prior art of the bi-directional rotating seal, the sealing fluid is pumped to the anti-sealing fluid side inclined surface 52 of the seal lip 51 so as to improve the sealing performance by the pumping action when the mating member 53 rotates in the forward direction. There is known one provided with a normal screw portion 54 that exerts an action of pushing back and a reverse screw portion 55 that exerts an action of pushing back the sealing fluid by a pumping action when the counterpart member 53 rotates in the reverse direction. However, torque reduction based on the fluid lubrication is not realized (see Patent Document 1).
Japanese Unexamined Patent Publication No. 1-312274 JP 2003-185028 A JP 2006-125454 A

本発明は以上の点に鑑みて、回転軸等の摺動相手部材が正逆両方向に回転する密封装置(両方向シール)において、上記したようにリップ摺動部における流体膜を厚くすることで流体潤滑にもとづく低トルク化を実現することを目的とする。   In view of the above, the present invention provides a sealing device (bidirectional seal) in which a sliding counterpart member such as a rotating shaft rotates in both forward and reverse directions by increasing the thickness of the fluid film in the lip sliding portion as described above. The purpose is to achieve low torque based on lubrication.

上記目的を達成するため、本発明の請求項1による密封装置は、回転軸等の相手部材が正逆両方向に相対回転する密封装置であって、前記相手部材の周面に摺動自在に密接するシールリップを有し、前記シールリップは、密封流体側斜面および反密封流体側斜面ならびに前記両斜面の間に設けられた中間面を有し、前記相手部材が正方向に回転するときにポンピング作用によって密封流体を押し戻す作用を奏する正ネジ部と、前記相手部材が逆方向に回転するときにポンピング作用によって密封流体を押し戻す作用を奏する逆ネジ部とが前記反密封流体側斜面に設けられ、前記中間面に凹部が設けられ、前記凹部は前記中間面および反密封流体側斜面の境界部に達しないように設けられて前記中間面における前記凹部の反密封流体側の部位に円周上連続する前記相手部材に対する接触部が設けられ、前記凹部の縁辺のうち前記相手部材が正方向に回転するときに回転方向の前方となる部位は少なくともその一部が密封流体側から反密封流体側へかけてこのときの回転方向の前方へ傾斜する向きに設定され、前記凹部の縁辺のうち前記相手部材が逆方向に回転するときに回転方向の前方となる部位は少なくともその一部が密封流体側から反密封流体側へかけてこのときの回転方向の前方へ傾斜する向きに設定されていることを特徴とするものである。   In order to achieve the above object, a sealing device according to claim 1 of the present invention is a sealing device in which a mating member such as a rotating shaft rotates relative to both forward and reverse directions, and is slidably in close contact with the peripheral surface of the mating member. The sealing lip has a sealing fluid side slope and an anti-sealing fluid side slope and an intermediate surface provided between the both slopes, and is pumped when the mating member rotates in the forward direction. A positive screw portion that exerts an action of pushing back the sealing fluid by an action, and a reverse screw portion that exerts an action of pushing back the sealing fluid by a pumping action when the counterpart member rotates in the reverse direction, are provided on the anti-sealing fluid side inclined surface, A concave portion is provided on the intermediate surface, and the concave portion is provided so as not to reach a boundary portion between the intermediate surface and the anti-sealing fluid side slope, and is provided at a portion of the intermediate surface on the anti-sealing fluid side. A contact portion for the circumferentially continuous member is provided, and at least a part of the edge of the recess that is forward in the rotational direction when the partner member rotates in the forward direction is anti-sealed from the sealed fluid side. It is set to the direction which inclines forward of the rotation direction at this time toward the fluid side, and at least a part of the portion which is the front of the rotation direction when the counterpart member rotates in the reverse direction among the edges of the recesses It is characterized in that it is set to be inclined in the forward direction of the rotation direction from the sealing fluid side to the anti-sealing fluid side.

また、本発明の請求項2による密封装置は、回転軸等の相手部材が正逆両方向に相対回転する密封装置であって、前記相手部材の周面に摺動自在に密接するシールリップを有し、前記シールリップは、密封流体側斜面および反密封流体側斜面ならびに前記両斜面の間に設けられた中間面を有し、前記相手部材が正方向に回転するときにポンピング作用によって密封流体を押し戻す作用を奏する正ネジ部と、前記相手部材が逆方向に回転するときにポンピング作用によって密封流体を押し戻す作用を奏する逆ネジ部とが前記反密封流体側斜面に設けられ、前記中間面に凹部が設けられ、前記凹部は前記中間面および反密封流体側斜面の境界部に達しないように設けられて前記中間面における前記凹部の反密封流体側の部位に円周上連続する前記相手部材に対する接触部が設けられ、前記凹部の底面のうち前記相手部材が正方向に回転するときに回転方向の前方となる部位は少なくともその一部がこのときの回転方向の前方へ向けて深さが徐々に浅くなる傾斜面状に設定され、前記凹部の縁辺のうち前記相手部材が逆方向に回転するときに回転方向の前方となる部位は少なくともその一部がこのときの回転方向の前方へ向けて深さが徐々に浅くなる傾斜面状に設定されていることを特徴とするものである。   The sealing device according to claim 2 of the present invention is a sealing device in which a mating member such as a rotating shaft relatively rotates in both forward and reverse directions, and has a seal lip that is slidably in contact with the peripheral surface of the mating member. The sealing lip has a sealing fluid side inclined surface and an anti-sealing fluid side inclined surface and an intermediate surface provided between the both inclined surfaces, and when the counterpart member rotates in the forward direction, the sealing fluid is pumped by a pumping action. A forward screw portion that exerts an action of pushing back and a reverse screw portion that acts to push back the sealing fluid by a pumping action when the counterpart member rotates in the reverse direction are provided on the inclined surface on the anti-sealing fluid side, and a recess is formed in the intermediate surface The concave portion is provided so as not to reach a boundary portion between the intermediate surface and the anti-sealing fluid side inclined surface, and is continuous on the circumference to a portion of the intermediate surface on the anti-sealing fluid side of the concave portion. A contact portion for the hand member is provided, and at least a part of the bottom surface of the recess that is forward in the rotation direction when the counterpart member rotates in the forward direction is deeper toward the front in the rotation direction at this time. The portion of the edge of the recess that is forward in the rotational direction when the mating member rotates in the reverse direction is at least part of the front in the rotational direction at this time. It is characterized by being set to an inclined surface shape in which the depth gradually decreases toward.

上記構成を有する本発明の請求項1による密封装置においては、シールリップの密封流体側斜面および反密封流体側斜面の間に中間面が設けられ、中間面に凹部が設けられ、凹部は中間面および反密封流体側斜面の境界部に達しないように設けられて中間面における凹部の反密封流体側の部位に円周上連続する相手部材に対する接触部が設けられている。   In the sealing device according to claim 1 of the present invention having the above-described configuration, an intermediate surface is provided between the sealing fluid-side inclined surface and the anti-sealing fluid-side inclined surface of the seal lip, a concave portion is provided in the intermediate surface, and the concave portion is the intermediate surface. In addition, a contact portion is provided so as not to reach the boundary portion of the anti-sealing fluid-side inclined surface, and a contact portion with respect to the opposite member that is circumferentially continuous at a portion of the intermediate surface on the anti-sealing fluid side of the recess.

また、凹部の縁辺のうち相手部材が正方向に回転するときに回転方向の前方となる部位は少なくともその一部が密封流体側から反密封流体側へかけてこのときの回転方向の前方へ傾斜する向きに設定されている。したがって相手部材が正方向に回転するとき、シールリップの摺動部に導入される密封流体すなわちシールリップの中間面に導入される密封流体はその一部が凹部に取り込まれ、取り込まれた密封流体は相手部材の回転に引き摺られ、凹部縁辺の傾斜に沿って流れて集束し、このように集束した状態で凹部から中間面へ溢出し、中間面で厚い流体膜を形成する。圧力としては中間面を相手部材から浮かす動圧が発生する。   Further, at least a part of the edge of the recess that is forward in the rotational direction when the counterpart member rotates in the forward direction is inclined forward in the rotational direction from the sealed fluid side to the anti-sealed fluid side. The orientation is set. Accordingly, when the mating member rotates in the forward direction, a part of the sealing fluid introduced into the sliding portion of the seal lip, that is, the sealing fluid introduced into the intermediate surface of the seal lip, is taken into the recess, and the taken-in sealing fluid Is dragged by the rotation of the mating member, flows and converges along the inclination of the edge of the recess, overflows from the recess to the intermediate surface in such a focused state, and forms a thick fluid film on the intermediate surface. As the pressure, a dynamic pressure that floats the intermediate surface from the counterpart member is generated.

また、凹部の縁辺のうち相手部材が逆方向に回転するときに回転方向の前方となる部位は少なくともその一部が密封流体側から反密封流体側へかけてこのときの回転方向の前方へ傾斜する向きに設定されている。したがって相手部材が逆方向に回転するとき、シールリップの摺動部に導入される密封流体すなわちシールリップの中間面に導入される密封流体はその一部が凹部に取り込まれ、取り込まれた密封流体は相手部材の回転に引き摺られ、凹部縁辺の傾斜に沿って流れて集束し、このように集束した状態で凹部から中間面へ溢出し、中間面で厚い流体膜を形成する。圧力としては中間面を相手部材から浮かす動圧が発生する。   Further, at least a part of the edge of the recess that is forward in the rotational direction when the counterpart member rotates in the reverse direction is inclined forward from the sealed fluid side to the anti-sealed fluid side. The orientation is set. Therefore, when the mating member rotates in the reverse direction, a part of the sealing fluid introduced into the sliding portion of the seal lip, that is, the sealing fluid introduced into the intermediate surface of the seal lip, is taken into the recess, and the taken-in sealing fluid Is dragged by the rotation of the mating member, flows and converges along the inclination of the edge of the recess, overflows from the recess to the intermediate surface in such a focused state, and forms a thick fluid film on the intermediate surface. As the pressure, a dynamic pressure that floats the intermediate surface from the counterpart member is generated.

したがって、以上のように相手部材が正方向に回転するときも逆方向に回転するときも中間面に厚い流体膜が形成され動圧が発生するので、何れの場合も流体潤滑にもとづく低トルク化が実現される。   Therefore, as described above, even when the mating member rotates in the forward direction or in the reverse direction, a thick fluid film is formed on the intermediate surface and dynamic pressure is generated. Therefore, in any case, the torque can be reduced based on fluid lubrication. Is realized.

中間面に設けられる接触部は円周上連続したものであるので、いわゆる静止漏れを抑制する作用もある。   Since the contact portion provided on the intermediate surface is continuous on the circumference, there is also an action of suppressing so-called stationary leakage.

上記構成を有する本発明の請求項2による密封装置においては、シールリップの密封流体側斜面および反密封流体側斜面の間に中間面が設けられ、中間面に凹部が設けられ、凹部は中間面および反密封流体側斜面の境界部に達しないように設けられて中間面における凹部の反密封流体側の部位に円周上連続する相手部材に対する接触部が設けられている。   In the sealing device according to claim 2 of the present invention having the above-described configuration, an intermediate surface is provided between the sealing fluid side inclined surface and the anti-sealing fluid side inclined surface of the seal lip, a concave portion is provided in the intermediate surface, and the concave portion is the intermediate surface. In addition, a contact portion is provided so as not to reach the boundary portion of the anti-sealing fluid-side inclined surface, and a contact portion with respect to the opposite member that is circumferentially continuous at a portion of the intermediate surface on the anti-sealing fluid side of the concave portion.

また、凹部の底面のうち相手部材が正方向に回転するときに回転方向の前方となる部位は少なくともその一部がこのときの回転方向の前方へ向けて深さが徐々に浅くなる傾斜面状に設定されている。したがって相手部材が正方向に回転するとき、シールリップの摺動部に導入される密封流体すなわちシールリップの中間面に導入される密封流体はその一部が凹部に取り込まれ、取り込まれた密封流体は相手部材の回転に引き摺られ、凹部底面の傾斜に沿って流れて集束し、このように集束した状態で凹部から中間面へ溢出し、中間面で厚い流体膜を形成する。圧力としては中間面を相手部材から浮かす動圧が発生する。   Further, at least a part of the bottom surface of the concave portion that is forward in the rotational direction when the counterpart member rotates in the forward direction is an inclined surface whose depth gradually decreases toward the forward in the rotational direction at this time. Is set to Accordingly, when the mating member rotates in the forward direction, a part of the sealing fluid introduced into the sliding portion of the seal lip, that is, the sealing fluid introduced into the intermediate surface of the seal lip, is taken into the recess, and the taken-in sealing fluid Is dragged by the rotation of the mating member, flows and converges along the slope of the bottom surface of the recess, overflows from the recess to the intermediate surface in such a focused state, and forms a thick fluid film on the intermediate surface. As the pressure, a dynamic pressure that floats the intermediate surface from the counterpart member is generated.

また、凹部の底面のうち相手部材が逆方向に回転するときに回転方向の前方となる部位は少なくともその一部がこのときの回転方向の前方へ向けて深さが徐々に浅くなる傾斜面状に設定されている。したがって相手部材が逆方向に回転するとき、シールリップの摺動部に導入される密封流体すなわちシールリップの中間面に導入される密封流体はその一部が凹部に取り込まれ、取り込まれた密封流体は相手部材の回転に引き摺られ、凹部底面の傾斜に沿って流れて集束し、このように集束した状態で凹部から中間面へ溢出し、中間面で厚い流体膜を形成する。圧力としては中間面を相手部材から浮かす動圧が発生する。   Further, at least a part of the bottom surface of the concave portion that is forward in the rotation direction when the counterpart member rotates in the reverse direction is inclined so that the depth gradually decreases toward the front in the rotation direction at this time. Is set to Therefore, when the mating member rotates in the reverse direction, a part of the sealing fluid introduced into the sliding portion of the seal lip, that is, the sealing fluid introduced into the intermediate surface of the seal lip, is taken into the recess, and the taken-in sealing fluid Is dragged by the rotation of the mating member, flows and converges along the slope of the bottom surface of the recess, overflows from the recess to the intermediate surface in such a focused state, and forms a thick fluid film on the intermediate surface. As the pressure, a dynamic pressure that floats the intermediate surface from the counterpart member is generated.

したがって、以上のように相手部材が正方向に回転するときも逆方向に回転するときも中間面に厚い流体膜が形成され動圧が発生するので、何れの場合も流体潤滑にもとづく低トルク化が実現される。   Therefore, as described above, even when the mating member rotates in the forward direction or in the reverse direction, a thick fluid film is formed on the intermediate surface and dynamic pressure is generated. Therefore, in any case, the torque can be reduced based on fluid lubrication. Is realized.

また、中間面に設けられる接触部は円周上連続したものであるので、いわゆる静止漏れを抑制する作用もある。   Further, since the contact portion provided on the intermediate surface is continuous on the circumference, there is also an action of suppressing so-called stationary leakage.

本発明は、以下の効果を奏する。   The present invention has the following effects.

すなわち、本発明の請求項1による密封装置においては上記したように、凹部の縁辺のうち相手部材が正方向に回転するときに回転方向の前方となる部位が密封流体側から反密封流体側へかけてこのときの回転方向の前方へ傾斜する向きに設定されているため、相手部材が正方向に回転するとき、凹部に取り込まれ集束する密封流体によって中間面に厚い流体膜が形成され動圧が発生する。また凹部の縁辺のうち相手部材が逆方向に回転するときに回転方向の前方となる部位が密封流体側から反密封流体側へかけてこのときの回転方向の前方へ傾斜する向きに設定されているため、相手部材が逆方向に回転するとき、凹部に取り込まれ集束する密封流体によって中間面に厚い流体膜が形成され動圧が発生する。したがって相手部材が正方向に回転するときも逆方向に回転するときも中間面に厚い流体膜が形成され動圧が発生するので、何れの場合も流体潤滑にもとづく低トルク化を実現することができる。円周上連続する接触部はいわゆる静止漏れを抑制することができる。   That is, in the sealing device according to claim 1 of the present invention, as described above, the portion of the edge of the recess that is forward in the rotational direction when the counterpart member rotates in the forward direction is from the sealed fluid side to the anti-sealed fluid side. Therefore, when the counterpart member rotates in the forward direction, a thick fluid film is formed on the intermediate surface by the sealing fluid that is taken in and converged when the counterpart member rotates in the forward direction. Will occur. In addition, the part of the edge of the recess that is forward in the rotational direction when the counterpart member rotates in the opposite direction is set to be inclined in the forward direction in the rotational direction from the sealed fluid side to the anti-sealed fluid side. Therefore, when the mating member rotates in the reverse direction, a thick fluid film is formed on the intermediate surface by the sealing fluid that is taken in and converged in the recess, and dynamic pressure is generated. Therefore, even when the mating member rotates in the forward direction or in the reverse direction, a thick fluid film is formed on the intermediate surface and dynamic pressure is generated. Therefore, in any case, it is possible to realize a low torque based on fluid lubrication. it can. The circumferentially continuous contact portion can suppress so-called stationary leakage.

また、本発明の請求項2による密封装置においては上記したように、凹部の底面のうち相手部材が正方向に回転するときに回転方向の前方となる部位がこのときの回転方向の前方へ向けて深さが徐々に浅くなる傾斜面状に設定されているため、相手部材が正方向に回転するとき、凹部に取り込まれ集束する密封流体によって中間面に厚い流体膜が形成され動圧が発生する。また凹部の底面のうち相手部材が逆方向に回転するときに回転方向の前方となる部位がこのときの回転方向の前方へ向けて負荷さが徐々に浅くなる傾斜面状に設定されているため、相手部材が逆方向に回転するとき、凹部に取り込まれ集束する密封流体によって中間面に厚い流体膜が形成され動圧が発生する。したがって相手部材が正方向に回転するときも逆方向に回転するときも中間面に厚い流体膜が形成され動圧が発生するので、何れの場合も流体潤滑にもとづく低トルク化を実現することができる。円周上連続する接触部はいわゆる静止漏れを抑制することができる。   Moreover, in the sealing device according to claim 2 of the present invention, as described above, the portion of the bottom surface of the recess that is forward in the rotational direction when the counterpart member rotates in the forward direction is directed forward in the rotational direction at this time. As the mating member rotates in the forward direction, a thick fluid film is formed on the intermediate surface by the sealed fluid that is taken in and converged in the concavity and generates dynamic pressure. To do. Moreover, since the part which becomes the front of a rotation direction when the other member rotates in a reverse direction among the bottom surfaces of a recessed part is set to the inclined surface shape where load becomes shallow gradually toward the front of the rotation direction at this time When the mating member rotates in the reverse direction, a thick fluid film is formed on the intermediate surface by the sealing fluid that is taken in and converged in the recess, and dynamic pressure is generated. Therefore, even when the mating member rotates in the forward direction or in the reverse direction, a thick fluid film is formed on the intermediate surface and dynamic pressure is generated. Therefore, in any case, it is possible to realize a low torque based on fluid lubrication. it can. The circumferentially continuous contact portion can suppress so-called stationary leakage.

本発明には、以下の実施形態が含まれる。   The present invention includes the following embodiments.

請求項1関連・・・
(1)本発明は、油側傾斜のフラット部(中間面)とそこに設けられた油側からの吸込み逆向きネジを有するオイルシールの改良発明であり、両回転シールへの応用を図ったものである。
(2)中間面に、中間面と密封流体側斜面との境界部に達し、中間面と反密封流体側斜面との境界部に達しないように凹部を設け、中間面の反密封流体側には、連続した接触部が確保される。
(3)摺動方向(回転方向)の前方の凹部と中間面の境界線(凹部縁辺)は、摺動方向に直交、または密封流体側から反密封流体側へかけて摺動方向の前方へ傾斜する向きに設定する。
(4)凹部は、両回転に対応するため、軸方向に線対称な形が望ましいが、凹部円周方向両側の傾斜の角度は異なってもよい。
(5)摺動方向の前方の凹部と中間面の境界線は、曲線形状でもよく、密封流体側から反密封流体側へかけて、一部を摺動方向の前方へ傾斜する向きに設定する。
(6)この構成により、凹部に取り込まれた潤滑油は、軸の回転により、軸摺動方向に引き寄せられ、さらに凹部の形状により反密封流体側へと送り込まれる。
(7)反密封流体側斜面にまで到達した潤滑油は、反密封流体側斜面ネジによって密封流体側に戻される。
(8)これにより、中間面を浮かす圧力を発生させ、中間面の油膜厚さを増加させることで、流体潤滑にもとづく低トルク化を実現する。
(9)下記実施例に示すような凹部を設けることで、上記(6)(7)(8)の効果を両回転に対応可能とする。
Claim 1 related ...
(1) The present invention is an improved invention of an oil seal having a flat portion (intermediate surface) inclined on the oil side and a suction reverse screw provided from the oil side, and is applied to both rotary seals. Is.
(2) A concave portion is provided on the intermediate surface so as to reach the boundary between the intermediate surface and the sealed fluid side inclined surface, and not to reach the boundary between the intermediate surface and the anti-sealed fluid side inclined surface. A continuous contact portion is secured.
(3) The boundary between the recess and the intermediate surface in the sliding direction (rotation direction) and the boundary surface (the recess edge) are orthogonal to the sliding direction or forward from the sealing fluid side to the anti-sealing fluid side. Set to tilt direction.
(4) Since the concave portion corresponds to both rotations, a shape that is line-symmetric in the axial direction is desirable, but the inclination angles on both sides in the circumferential direction of the concave portion may be different.
(5) The boundary line between the concave portion in the front of the sliding direction and the intermediate surface may be a curved shape, and is set so that a part thereof is inclined forward in the sliding direction from the sealing fluid side to the anti-sealing fluid side. .
(6) With this configuration, the lubricating oil taken into the recess is drawn in the shaft sliding direction by the rotation of the shaft, and further fed to the anti-sealing fluid side by the shape of the recess.
(7) The lubricating oil that has reached the anti-sealing fluid side inclined surface is returned to the sealing fluid side by the anti-sealing fluid side inclined screw.
(8) Thereby, the pressure which floats an intermediate surface is generated, and the oil film thickness of the intermediate surface is increased, thereby realizing a reduction in torque based on fluid lubrication.
(9) By providing a recess as shown in the following embodiment, the effects (6), (7), and (8) can be applied to both rotations.

請求項2関連・・・
(10)本発明は、油側傾斜のフラット部(中間面)とそこに設けられた油側からの吸込み逆向きネジを有するオイルシールの改良発明であり、両回転シールへの応用を図ったものである。
(11)中間面に、軸の両回転方向に徐々に深さが浅くなる傾斜面を持つ凹部を設ける。
(12)この凹部は、密封流体側斜面まで通じているが、反密封流体側斜面とは通じていない。中間面の反密封流体側には連続した接触部が確保される。
(13)凹部は傾斜面以外に底面を設けてもよい。
(14)また、軸方向に対称な凹部を交互に設けてもよい。
(15)傾斜面と中間面の境界線(凹部縁辺)は、摺動方向(回転方向)に直交する形が望ましいが、反密封流体側から密封流体側へかけて摺動方向の前方へ傾斜する向きに設定してもよい。
(16)反密封流体側斜面ネジを設けてもよい。
(17)この構成により、凹部に取り込まれた潤滑油は軸の摺動により傾斜面に引き摺られていくことで、くさび効果により中間面を浮かす圧力が発生し、中間面の油膜厚さを増加させることで、流体潤滑にもとづく低トルク化を実現する。
(18)中間面の反密封流体側の連続した接触部も油膜により持ち上げられるため、潤滑油は中間面の反密封流体側まで移動するが、反密封流体側斜面にまで到達した油は反密封流体側斜面ネジによって密封流体側に戻される。
(19)下記実施例に示すような凹部を設けることで、上記(17)(18)の効果を両回転に対応可能とする。
(20)また、この構成は、傾斜面はその軸摺動方向の後流部の油膜厚さを増加させるように作用するだけで、積極的に潤滑油を大気側に送り込む作用は生じないので、万が一、大気側のネジのポンピング力が低下することがあっても、潤滑油の漏れは生じない。
Claim 2 related ...
(10) The present invention is an improved invention of an oil seal having a flat part (intermediate surface) inclined on the oil side and a suction reverse screw provided from the oil side, and is applied to both rotary seals. Is.
(11) A concave portion having an inclined surface whose depth gradually decreases in both rotation directions of the shaft is provided on the intermediate surface.
(12) The recess communicates with the sealed fluid side slope, but does not communicate with the anti-sealed fluid side slope. A continuous contact portion is secured on the anti-sealing fluid side of the intermediate surface.
(13) The recess may have a bottom surface other than the inclined surface.
(14) Moreover, you may provide the recessed part symmetrical to an axial direction alternately.
(15) The boundary line (concave edge) between the inclined surface and the intermediate surface is preferably perpendicular to the sliding direction (rotational direction), but inclined forward from the anti-sealing fluid side to the sealing fluid side. You may set to the direction to do.
(16) An anti-sealing fluid side bevel screw may be provided.
(17) With this configuration, the lubricating oil taken into the recess is dragged to the inclined surface by sliding the shaft, generating a pressure to lift the intermediate surface due to the wedge effect, and increasing the oil film thickness of the intermediate surface As a result, low torque is achieved based on fluid lubrication.
(18) Since the continuous contact portion on the anti-sealing fluid side of the intermediate surface is also lifted by the oil film, the lubricating oil moves to the anti-sealing fluid side of the intermediate surface, but the oil that has reached the anti-sealing fluid side slope is anti-sealing It is returned to the sealed fluid side by a fluid side bevel screw.
(19) By providing a recess as shown in the following embodiment, the effects (17) and (18) can be applied to both rotations.
(20) Further, in this configuration, since the inclined surface only acts to increase the oil film thickness of the wake portion in the axial sliding direction, there is no effect of positively feeding the lubricating oil to the atmosphere side. In the unlikely event that the pumping force of the screw on the atmosphere side may be reduced, the lubricating oil does not leak.

つぎに本発明の実施例を図面にしたがって説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

第一実施例・・・
図1は、本発明の第一実施例に係る密封装置(オイルシール)1の要部断面を示している。図2(A)は図1の要部を拡大して示している。当該実施例に係る密封装置1は両回転シールであって、以下のように構成されている。
First embodiment ...
FIG. 1 shows a cross section of a main part of a sealing device (oil seal) 1 according to a first embodiment of the present invention. FIG. 2A shows an enlarged view of the main part of FIG. The sealing device 1 according to the embodiment is a double-rotating seal and is configured as follows.

すなわち先ず図1に示すように、金属環2に被着(加硫接着)されたゴム状弾性体3によって外周シール部4およびダストリップ5などとともに軸(相手部材、図示せず)の周面に摺動自在に密接するシールリップ6が設けられており、このシールリップ6の先端摺動部に密封流体側斜面7および反密封流体側斜面8が設けられ、両斜面7,8の間に中間面(フラット面)9が設けられている。中間面9は円筒面状に形成され、軸挿入時、軸の周面と全面に亙って接触するが、図2(A)に示すようにその初期状態(軸挿入前の自由状態)において密封流体側Cに傾斜角度θをもつ傾斜面状(円錐面状)のものであっても良い。傾斜角度θの大きさとしては、0〜20度が好適であり、0.1〜10度が一層好適である。これにより中間面9はその反密封流体側Dの部位(後記する円周上連続する接触部15)で軸の周面に強く接触する。 That is, first, as shown in FIG. 1, a peripheral surface of a shaft (a mating member, not shown) together with an outer peripheral seal portion 4 and a dust strip 5 by a rubber-like elastic body 3 adhered (vulcanized and bonded) to a metal ring 2. A seal lip 6 that is slidably in contact with the seal lip 6 is provided, and a sealing fluid side inclined surface 7 and an anti-sealing fluid side inclined surface 8 are provided at the tip sliding portion of the seal lip 6. An intermediate surface (flat surface) 9 is provided. The intermediate surface 9 is formed in a cylindrical shape and contacts the entire surface of the shaft when the shaft is inserted, but in its initial state (free state before shaft insertion) as shown in FIG. inclined surface shape at the sealed fluid side C having an inclination angle theta 1 may be of (conical shape). As a magnitude | size of inclination | tilt angle (theta) 1 , 0-20 degree is suitable and 0.1-10 degree is still more suitable. As a result, the intermediate surface 9 strongly contacts the peripheral surface of the shaft at a portion on the anti-sealing fluid side D (a contact portion 15 that continues on the circumference described later).

反密封流体側斜面8に、軸が正方向に回転(正回転、図2(A)における矢印E)するときにポンピング作用によって密封流体を密封流体側Cへ押し戻す作用を奏する正ネジ部10が設けられ、また軸が逆方向に回転(逆回転、図2(A)における矢印F)するときにポンピング作用によって密封流体を密封流体側Cへ押し戻す作用を奏する逆ネジ部11が設けられている。   On the anti-sealing fluid side inclined surface 8, there is a positive screw portion 10 that acts to push the sealing fluid back to the sealing fluid side C by a pumping action when the shaft rotates in the positive direction (forward rotation, arrow E in FIG. 2A). There is also provided a reverse screw portion 11 that acts to push the sealing fluid back to the sealing fluid side C by a pumping action when the shaft rotates in the reverse direction (reverse rotation, arrow F in FIG. 2A). .

正ネジ部10は、円周上多数設けられた螺旋状の突起群よりなり、図では断面三角形状の突起を想定して描いているが、その形状は特に限定されるものではない。螺旋の向きはその反密封流体側端部10aから密封流体側端部10bへかけて軸の正回転方向Eの前方へ向けて傾斜する向きに設定されている。逆ネジ部11はこれも円周上多数設けられた螺旋状の突起群よりなり、図では断面三角形状の突起を想定して描いているが、その形状は特に限定されるものではない。螺旋の向きはその反密封流体側端部11aから密封流体側端部11bへかけて軸の逆回転方向Fの前方へ向けて傾斜する向きに設定されている。正ネジ部10および逆ネジ部11は円周上1本ずつ交互に設けられているが、多条ネジのように複数本ずつ交互に設けられるものであっても良い。この場合、ネジの長さは異なるものであっても良い。   The regular screw portion 10 is composed of a group of spiral projections provided on the circumference, and is drawn assuming projections having a triangular cross section in the figure, but the shape is not particularly limited. The direction of the spiral is set so as to incline forward in the positive rotation direction E of the shaft from the anti-sealing fluid side end 10a to the sealing fluid side end 10b. The reverse screw portion 11 is also composed of a spiral projection group provided in a large number on the circumference, and is drawn assuming projections having a triangular cross section in the figure, but the shape is not particularly limited. The direction of the spiral is set so as to incline toward the front in the reverse rotation direction F of the shaft from the anti-sealing fluid side end portion 11a to the sealing fluid side end portion 11b. Although the normal screw portion 10 and the reverse screw portion 11 are alternately provided one by one on the circumference, a plurality of the normal screw portions 10 and the reverse screw portions 11 may be alternately provided like a multiple thread screw. In this case, the screw length may be different.

中間面9に凹部12が設けられている。この凹部12は中間面9および密封流体側斜面7の境界部13に達し、中間面9および反密封流体側斜面8の境界部14には達しないように設けられ、これにより中間面9における凹部12の反密封流体側Dの部位には、円周上連続する所定の軸方向幅gを有する軸に対する接触部15が設けられている。またこの凹部12はネジ部10,11と同様、同じ形状のものが多数、円周方向に一定の間隔をあけて並んで設けられている。   A recess 12 is provided in the intermediate surface 9. The concave portion 12 is provided so as to reach the boundary portion 13 between the intermediate surface 9 and the sealed fluid side inclined surface 7 and not reach the boundary portion 14 between the intermediate surface 9 and the anti-sealed fluid side inclined surface 8. A contact portion 15 for a shaft having a predetermined axial width g that is continuous on the circumference is provided at a portion of the twelve anti-sealing fluid side D. In addition, like the screw portions 10 and 11, many of the concave portions 12 have the same shape, and are provided side by side with a constant interval in the circumferential direction.

凹部12の縁辺(凹部12および中間面9の境界線)のうち軸が正回転Eするときに回転方向の前方となる部位12aは、密封流体側Cから反密封流体側Dへかけてこのときの回転方向Eの前方へ傾斜する向きに設定されている(以下、「一方の傾斜縁辺12a」とも称する)。すなわち凹部12の縁辺のうち軸が正回転Eするときに回転方向の前方となる部位には、密封流体側Cから反密封流体側Dへかけてこのときの回転方向Eの前方へ傾斜する向きの一方の傾斜縁辺12aが形成されている。また凹部12の縁辺のうち軸が逆回転Fするときに回転方向の前方となる部位12bは、密封流体側Cから反密封流体側Dへかけてこのときの回転方向Fの前方へ傾斜する向きに設定されている(以下、「他方の傾斜縁辺12b」とも称する)。すなわち凹部12の縁辺のうち軸が逆回転Fするときに回転方向の前方となる部位には、密封流体側Cから反密封流体側Dへかけてこのときの回転方向Fの前方へ傾斜する向きの他方の傾斜縁辺12bが形成されている。したがって凹部12は円周方向両端に互いに反対向きの傾斜縁辺12a,12bを有しているので、全体として図示するように平面台形状に形成され、この台形状のうち左右の斜辺(傾斜縁辺12a,12b)および長底辺(反密封流体側縁辺)はそれぞれ底面からの立ち上がり面とされ、短底辺(密封流体側縁辺)は密封流体側Cへ向けての開口部とされている。凹部12の深さは凹部12の全面に亙って一定とされ、立ち上がり面は中間面9に対して直角面をなしているが、流体が流れやすいように傾斜を付けても良い。一方の傾斜縁辺12aの傾斜角度θと他方の傾斜縁辺12bの傾斜角度θとは互いに同じに設定されているが(θ=θ)、図2(B)に示すように互いに異なるように設定されても良い(θ≠θ,すなわちθ>θまたはθ<θ)。 Of the edge of the recess 12 (boundary line between the recess 12 and the intermediate surface 9), the portion 12a that is forward in the rotation direction when the shaft rotates forward E is from the sealed fluid side C to the anti-sealed fluid side D at this time. Is set to be inclined forward in the rotational direction E (hereinafter also referred to as “one inclined edge 12a”). That is, the portion of the edge of the recess 12 that is forward in the rotational direction when the shaft rotates forward E is inclined in the forward direction of the rotational direction E from the sealed fluid side C to the anti-sealed fluid side D. One inclined edge 12a is formed. Further, a portion 12b which is the front in the rotation direction when the shaft rotates in the reverse direction F on the edge of the recess 12 is inclined in the forward direction in the rotation direction F from the sealed fluid side C to the anti-sealed fluid side D. (Hereinafter also referred to as “the other inclined edge 12b”). In other words, the portion of the edge of the recess 12 that is forward in the rotational direction when the shaft rotates in the reverse direction F is inclined forward from the sealed fluid side C to the anti-sealed fluid side D in this rotational direction F. The other inclined edge 12b is formed. Accordingly, since the recess 12 has inclined edges 12a and 12b opposite to each other at both ends in the circumferential direction, it is formed in a flat trapezoidal shape as shown in the figure as a whole. 12b) and the long bottom side (anti-sealing fluid side edge) are rising surfaces from the bottom surface, and the short bottom side (sealing fluid side edge) is an opening toward the sealing fluid side C. The depth of the concave portion 12 is constant over the entire surface of the concave portion 12, and the rising surface is a plane perpendicular to the intermediate surface 9, but may be inclined so that the fluid can easily flow. Although the inclination angle theta 3 inclination angle theta 2 and other inclined edge 12b of the one inclined edge 12a is set to be equal to each other (θ 2 = θ 3), different from each other as shown in FIG. 2 (B) (Θ 2 ≠ θ 3 , that is, θ 2 > θ 3 or θ 23 ).

上記構成の密封装置1は、ハウジングの軸孔内周に装着され、前記軸孔に挿通した回転軸の周面に摺動自在に密接することにより機内の密封流体(油)が機外へ漏洩しないようこれをシールするものであって、両回転シールであり、上記構成により以下の作用効果を発揮する点に特徴を有している。   The sealing device 1 having the above-described configuration is mounted on the inner periphery of the shaft hole of the housing, and the sealing fluid (oil) in the machine leaks out of the machine by being slidably in close contact with the peripheral surface of the rotating shaft inserted through the shaft hole. This is a double-rotating seal, and is characterized in that the following effects are exhibited by the above configuration.

すなわち上記密封装置1が装着されると一部の密封流体が境界部13に開口する開口部から凹部12に取り込まれ、図3に示すように軸が正回転Eすると凹部12に取り込まれた密封流体はその粘性によって軸の正回転Eに引き摺られ、凹部12縁辺に設けた一方の傾斜縁辺12aに沿って流れて集束し(凹部12の断面積が徐々に小さくなるため)、集束しつつ凹部12から中間面9ないし接触部15へ溢出し(矢印H)、中間面9とくに円周上連続する接触部15上で厚い流体膜を形成する。圧力としては中間面9ないし接触部15を軸から浮かす動圧が発生する。また軸が逆回転F(図2)すると凹部12に取り込まれた密封流体はその粘性によって軸の逆回転Fに引き摺られ、凹部12縁辺に設けた他方の傾斜縁辺12bに沿って流れて集束し(凹部12の断面積が徐々に小さくなるため)、集束しつつ凹部12から中間面9ないし接触部15へ溢出し、中間面9とくに円周上連続する接触部15上で厚い流体膜を形成する。圧力としては中間面9ないし接触部15を軸から浮かす動圧が発生する。したがって軸が正回転Eするときも逆回転Fするときも中間面9ないし接触部15上に厚い流体膜が形成され動圧が発生するので、何れの場合も流体潤滑にもとづく低トルク化を実現し、シールリップ6が早期に摺動摩耗するのを抑制することができる。中間面9に設けられた接触部15は円周上連続したものであって軸の周面に全周に亙って密接するので、軸回転静止時の漏洩(いわゆる静止漏れ)を抑制することもできる。   That is, when the sealing device 1 is mounted, a part of the sealing fluid is taken into the concave portion 12 from the opening portion that opens to the boundary portion 13, and the sealing portion taken into the concave portion 12 when the shaft rotates forward E as shown in FIG. The fluid is dragged by the positive rotation E of the shaft due to its viscosity, flows and converges along one inclined edge 12a provided on the edge of the recess 12 (because the cross-sectional area of the recess 12 gradually decreases). 12 overflows from the intermediate surface 9 to the contact portion 15 (arrow H), and a thick fluid film is formed on the intermediate surface 9, particularly on the contact portion 15 continuous on the circumference. As the pressure, a dynamic pressure for floating the intermediate surface 9 or the contact portion 15 from the shaft is generated. When the shaft rotates in the reverse direction F (FIG. 2), the sealing fluid taken into the recess 12 is dragged by the reverse rotation F of the shaft due to its viscosity, and flows along the other inclined edge 12b provided on the edge of the recess 12 and converges. (Because the cross-sectional area of the concave portion 12 gradually decreases), the condensing portion 12 overflows from the concave portion 12 to the intermediate surface 9 or the contact portion 15, and forms a thick fluid film on the intermediate surface 9, particularly on the contact portion 15 continuous on the circumference. To do. As the pressure, a dynamic pressure for floating the intermediate surface 9 or the contact portion 15 from the shaft is generated. Therefore, a thick fluid film is formed on the intermediate surface 9 or the contact portion 15 when the shaft rotates in the forward direction E or in the reverse direction F, so that dynamic pressure is generated. In any case, a reduction in torque based on fluid lubrication is realized. In addition, it is possible to suppress the sliding lip 6 from sliding and wearing at an early stage. The contact portion 15 provided on the intermediate surface 9 is continuous on the circumference and is in close contact with the circumferential surface of the shaft over the entire circumference, so that leakage at the time of stationary shaft rotation (so-called stationary leakage) is suppressed. You can also.

尚、中間面9ないし接触部15から反密封流体側斜面8のほうへ流出する密封流体は正ネジ部10(正回転時)または逆ネジ部11(逆回転時)のポンピング作用によって密封流体側Cへ押し戻されるが、正回転時、一方の傾斜縁辺12aから接触部15を介して反密封流体側斜面8へ流出する密封流体を正ネジ部10が押し戻しやすいように凹部12および正ネジ部10の円周方向位置関係を規定すると、正ネジ部10による押し戻し量の増加が期待されるので、ポンピング効率が向上する。また同様に逆回転時、他方の傾斜縁辺12bから接触部15を介して反密封流体側斜面8へ流出する密封流体を逆ネジ部11が押し戻しやすいように凹部12および逆ネジ部11の円周方向位置関係を規定すると、逆ネジ部11による押し戻し量の増加が期待されるので、ポンピング効率が向上する。これらを実現するには具体的には、凹部12および両ネジ部10,11の円周方向位置関係として、正ネジ部10(例えば図2(A)における2つの正ネジ部10のうち左側の正ネジ部10)とその正回転方向Eの後方側に配置された逆ネジ部11(例えば図2(A)における2つの逆ネジ部11のうち右側の逆ネジ部11)との間に凹部12を配置するのが好適である。   In addition, the sealing fluid that flows out from the intermediate surface 9 or the contact portion 15 toward the anti-sealing fluid side inclined surface 8 is the sealing fluid side by the pumping action of the forward screw portion 10 (forward rotation) or the reverse screw portion 11 (reverse rotation). The concave portion 12 and the positive screw portion 10 are pushed back to C so that the positive screw portion 10 can easily push back the sealing fluid flowing out from the one inclined edge 12a to the anti-sealing fluid side inclined surface 8 through the contact portion 15 during forward rotation. If the positional relationship in the circumferential direction is defined, an increase in the amount of pushing back by the positive screw portion 10 is expected, so that the pumping efficiency is improved. Similarly, during reverse rotation, the circumference of the concave portion 12 and the reverse screw portion 11 is such that the reverse screw portion 11 can easily push back the sealing fluid flowing out from the other inclined edge 12b to the anti-sealing fluid side inclined surface 8 through the contact portion 15. If the directional position relationship is defined, an increase in the amount of pushback by the reverse screw portion 11 is expected, so that the pumping efficiency is improved. Specifically, in order to realize these, as the circumferential positional relationship between the concave portion 12 and the both screw portions 10 and 11, the positive screw portion 10 (for example, the left of the two positive screw portions 10 in FIG. A concave portion between the normal screw portion 10) and the reverse screw portion 11 (for example, the right reverse screw portion 11 of the two reverse screw portions 11 in FIG. 2A) disposed on the rear side in the normal rotation direction E. 12 is preferably arranged.

また、凹部12の形状については、その機能(正回転および逆回転の双方につきそれぞれ流体を集束して動圧を発生させること)を果たすかぎり、様々なものが考えられる。   Various shapes of the concave portion 12 are conceivable as long as the function (concentrates fluids for both forward rotation and reverse rotation to generate dynamic pressure) is achieved.

すなわち、上記第一実施例では凹部12の平面形状を台形状としたが、その機能を発揮するのは円周方向両端の傾斜縁辺12a,12bであるので、このような傾斜縁辺12a,12bを有するかぎり凹部12の形状は限定されない。例えば図4の例では、台形状が円周方向に2分割されたような形状とされ、すなわち一方の傾斜縁辺12aを有する一定幅の溝状凹部12Aと他方の傾斜縁辺12bを有する一定幅の溝状凹部12Bとが円周方向に並んで設けられている。尚、図4(A)はθ=θの場合、図4(B)はθ≠θの場合をそれぞれ示している。 That is, in the first embodiment, the planar shape of the recess 12 is a trapezoidal shape. However, since it is the inclined edges 12a and 12b at both ends in the circumferential direction that perform the function, such inclined edges 12a and 12b are provided. As long as it has, the shape of the recess 12 is not limited. For example, in the example of FIG. 4, the trapezoidal shape is divided into two in the circumferential direction, that is, the groove-shaped recess 12A having a certain width having one inclined edge 12a and the width having a certain width having the other inclined edge 12b. A groove-like recess 12B is provided side by side in the circumferential direction. 4A shows the case where θ 2 = θ 3 , and FIG. 4B shows the case where θ 2 ≠ θ 3 .

また、凹部12の縁辺のうち軸が正回転するときに回転方向の前方となる部位12aおよび凹部12の縁辺のうち軸が逆回転するときに回転方向の前方となる部位12bはそれぞれ、その一部が密封流体側Cから反密封流体側Dへかけてこのときの回転方向の前方へ傾斜する向きに設定されていれば(一部に傾斜縁辺12a,12bが設けられていれば)、流体を集束して動圧を発生させると考えられる。したがって傾斜する向きに設定されるのは各部位の少なくとも一部であれば良い。例えば図5の例では、凹部12は平面円弧形状(楕円の一部が切り欠かれて切欠部が開口部とされたもの)とされ、中間面9および密封流体側斜面7の境界部13から楕円の中心線0に至る部位が上記条件に合致する傾斜縁辺12a,12bとされている。尚、このように傾斜縁辺12a,12bは曲線状であっても良い。   Further, a portion 12a that is forward in the rotational direction when the shaft rotates forward in the edge of the concave portion 12 and a portion 12b that is forward in the rotational direction when the shaft is reversely rotated in the edge of the concave portion 12 are respectively one of them. If the portion is set to be inclined in the forward direction of the rotation direction from the sealed fluid side C to the anti-sealed fluid side D (if the inclined edges 12a and 12b are provided in part), the fluid It is thought that the dynamic pressure is generated by converging. Therefore, it is only necessary that at least a part of each part is set to the inclined direction. For example, in the example of FIG. 5, the concave portion 12 has a planar arc shape (a part of the ellipse is cut out and the cutout portion is an opening), and from the boundary portion 13 of the intermediate surface 9 and the sealed fluid side inclined surface 7. The parts reaching the center line 0 of the ellipse are inclined edges 12a and 12b that meet the above conditions. In this way, the inclined edges 12a and 12b may be curved.

また、凹部12の形状は、凹部12縁辺の少なくとも一部に傾斜を付けることにより、正回転方向Eについてはその前方へ向けて凹部12の断面積(密封装置1の中心軸線を含む各平面で裁断したときの断面積)が徐々に縮小する形状であれば良く、逆回転方向Fについてもその前方へ向けて凹部12の断面積(密封装置1の中心軸線を含む各平面で裁断したときの断面積)が徐々に縮小する形状であれば良い。   In addition, the shape of the recess 12 is formed by inclining at least a part of the edge of the recess 12, so that the forward rotation direction E is directed forward in the cross-sectional area of the recess 12 (on each plane including the central axis of the sealing device 1). The cross-sectional area at the time of cutting may be a shape that gradually decreases, and the cross-sectional area of the concave portion 12 (when cutting in each plane including the central axis of the sealing device 1) is also directed forward in the reverse rotation direction F. Any shape that gradually reduces the cross-sectional area) may be used.

第二実施例・・・
図6は、本発明の第二実施例に係る密封装置(オイルシール)1の要部断面を示している。図7(A)は図6の要部を拡大して示している。図7(B)は図7(A)のI方向矢視図であってかつ環状の中間面9を平面状に展開して示している。当該実施例に係る密封装置1は両回転シールであって、以下のように構成されている。
Second embodiment ...
FIG. 6 shows a cross section of the main part of a sealing device (oil seal) 1 according to the second embodiment of the present invention. FIG. 7A shows an enlarged view of the main part of FIG. FIG. 7 (B) is a view in the direction of the arrow I in FIG. 7 (A), and shows an annular intermediate surface 9 developed in a planar shape. The sealing device 1 according to the embodiment is a double-rotating seal and is configured as follows.

すなわち先ず図6に示すように、金属環2に被着(加硫接着)されたゴム状弾性体3によって外周シール部4およびダストリップ5などとともに軸(相手部材、図示せず)の周面に摺動自在に密接するシールリップ6が設けられており、このシールリップ6の先端摺動部に密封流体側斜面7および反密封流体側斜面8が設けられ、両斜面7,8の間に中間面(フラット面)9が設けられている。中間面9は円筒面状に形成され、軸挿入時、軸の周面と全面に亙って接触するが、図7(A)に示すようにその初期状態(軸挿入前の自由状態)において密封流体側Cに傾斜角度θをもつ傾斜面状(円錐面状)のものであっても良い。傾斜角度θの大きさとしては、0〜20度が好適であり、0.1〜10度が一層好適である。これにより中間面9はその反密封流体側Dの部位(後記する円周上連続する接触部15)で軸の周面に強く接触する。 That is, first, as shown in FIG. 6, a peripheral surface of a shaft (a mating member, not shown) together with an outer peripheral seal portion 4 and a dust lip 5 by a rubber-like elastic body 3 adhered (vulcanized and bonded) to a metal ring 2. A seal lip 6 that is slidably in contact with the seal lip 6 is provided, and a sealing fluid side inclined surface 7 and an anti-sealing fluid side inclined surface 8 are provided at the tip sliding portion of the seal lip 6. An intermediate surface (flat surface) 9 is provided. The intermediate surface 9 is formed in a cylindrical surface shape and contacts the entire surface of the shaft when the shaft is inserted, but in its initial state (free state before shaft insertion) as shown in FIG. inclined surface shape at the sealed fluid side C having an inclination angle theta 1 may be of (conical shape). As a magnitude | size of inclination | tilt angle (theta) 1 , 0-20 degree is suitable and 0.1-10 degree is still more suitable. As a result, the intermediate surface 9 strongly contacts the peripheral surface of the shaft at a portion on the anti-sealing fluid side D (a contact portion 15 that continues on the circumference described later).

反密封流体側斜面8に、軸が正方向に回転(正回転、図7(A)における矢印E)するときにポンピング作用によって密封流体を密封流体側Cへ押し戻す作用を奏する正ネジ部10が設けられ、また軸が逆方向に回転(逆回転、図7(A)における矢印F)するときにポンピング作用によって密封流体を密封流体側Cへ押し戻す作用を奏する逆ネジ部11が設けられている。   On the anti-sealing fluid side inclined surface 8, there is a positive screw portion 10 that acts to push the sealing fluid back to the sealing fluid side C by a pumping action when the shaft rotates in the positive direction (forward rotation, arrow E in FIG. 7A). Also provided is a reverse screw portion 11 that acts to push the sealing fluid back to the sealing fluid side C by a pumping action when the shaft rotates in the reverse direction (reverse rotation, arrow F in FIG. 7A). .

正ネジ部10は、円周上多数設けられた螺旋状の突起群よりなり、図では断面三角形状の突起を想定して描いているが、その形状は特に限定されるものではない。螺旋の向きはその反密封流体側端部10aから密封流体側端部10bへかけて軸の正回転方向Eの前方へ向けて傾斜する向きに設定されている。逆ネジ部11はこれも円周上多数設けられた螺旋状の突起群よりなり、図では断面三角形状の突起を想定して描いているが、その形状は特に限定されるものではない。螺旋の向きはその反密封流体側端部11aから密封流体側端部11bへかけて軸の逆回転方向Fの前方へ向けて傾斜する向きに設定されている。正ネジ部10および逆ネジ部11は円周上1本ずつ交互に設けられているが、多条ネジのように複数本ずつ交互に設けられるものであっても良い。この場合、ネジの長さは異なるものであっても良い。   The regular screw portion 10 is composed of a group of spiral projections provided on the circumference, and is drawn assuming projections having a triangular cross section in the figure, but the shape is not particularly limited. The direction of the spiral is set so as to incline forward in the positive rotation direction E of the shaft from the anti-sealing fluid side end 10a to the sealing fluid side end 10b. The reverse screw portion 11 is also composed of a spiral projection group provided in a large number on the circumference, and is drawn assuming projections having a triangular cross section in the figure, but the shape is not particularly limited. The direction of the spiral is set so as to incline toward the front in the reverse rotation direction F of the shaft from the anti-sealing fluid side end portion 11a to the sealing fluid side end portion 11b. Although the normal screw portion 10 and the reverse screw portion 11 are alternately provided one by one on the circumference, a plurality of the normal screw portions 10 and the reverse screw portions 11 may be alternately provided like a multiple thread screw. In this case, the screw length may be different.

中間面9に凹部12が設けられている。この凹部12は中間面9および密封流体側斜面7の境界部13に達し、中間面9および反密封流体側斜面8の境界部14には達しないように設けられ、これにより中間面9における凹部12の反密封流体側Dの部位には、円周上連続する所定の軸方向幅gを有する軸に対する接触部15が設けられている。またこの凹部12はネジ部10,11と同様、同じ形状のものが多数、円周方向に一定の間隔をあけて並んで設けられている。   A recess 12 is provided in the intermediate surface 9. The concave portion 12 is provided so as to reach the boundary portion 13 between the intermediate surface 9 and the sealed fluid side inclined surface 7 and not reach the boundary portion 14 between the intermediate surface 9 and the anti-sealed fluid side inclined surface 8. A contact portion 15 for a shaft having a predetermined axial width g that is continuous on the circumference is provided at a portion of the twelve anti-sealing fluid side D. In addition, like the screw portions 10 and 11, many of the concave portions 12 have the same shape, and are provided side by side with a constant interval in the circumferential direction.

凹部12の底面のうち軸が正回転Eするときに回転方向の前方となる部位12cは、このときの回転方向Eの前方へ向けて深さが徐々に浅くなる傾斜面状に設定されている(以下、「一方の傾斜底面12c」とも称する)。すなわち凹部12の底面のうち軸が正回転Eするときに回転方向の前方となる部位には、このときの回転方向Eの前方へ向けて深さが徐々に浅くなる傾斜面状の一方の傾斜底面12cが形成されている。また凹部12の底面のうち軸が逆回転Fするときに回転方向の前方となる部位12dは、このときの回転方向Fの前方へ向けて深さが徐々に浅くなる傾斜面状に設定されている(以下、「他方の傾斜底面12d」とも称する)。すなわち凹部12の底面のうち軸が逆回転Fするときに回転方向の前方となる部位には、このときの回転方向Fの前方へ向けて深さが徐々に浅くなる傾斜面状の他方の傾斜底面12dが形成されている。したがって凹部12は円周方向両端に互いに反対向きの傾斜底面12c,12dを有しているので、全体として図7(B)に示すように断面三角形状に形成され、この三角形状の左右の斜辺(傾斜底面12c,12d)がそれぞれ端部で中間面9に連なっている。また凹部12の平面形状は長方形状とされ、その反密封流体側縁辺は底面からの立ち上がり面とされ、密封流体側縁辺は密封流体側Cへ向けての開口部とされている。凹部12の底面は両傾斜底面12c,12d二面の組み合わせよりなるが、図7(C)に示すように中間面9と平行な平行面12eが両傾斜底面12c,12dの間に第三面として設けられても良い。また一方の傾斜底面12cの傾斜角度θと他方の傾斜底面12dの傾斜角度θとは互いに同じに設定されているが(θ=θ)、図7(D)に示すように互いに異なるように設定されても良い(θ≠θ,すなわちθ>θまたはθ<θ)。この図7(D)の例では、θ>θに設定された凹部12Cと、θ<θに設定された凹部12Dとが円周上交互に設けられている。 Of the bottom surface of the recess 12, the portion 12 c that is forward in the rotational direction when the shaft rotates forward E is set to have an inclined surface that gradually decreases in depth toward the front in the rotational direction E at this time. (Hereinafter also referred to as “one inclined bottom surface 12c”). That is, in the bottom surface of the recess 12, one of the inclined surface-shaped slopes whose depth gradually decreases toward the front in the rotational direction E at the front portion in the rotational direction when the shaft rotates forward E. A bottom surface 12c is formed. Further, a portion 12d which is the front in the rotation direction when the shaft rotates in the reverse direction F on the bottom surface of the recess 12 is set to have an inclined surface shape whose depth gradually decreases toward the front in the rotation direction F at this time. (Hereinafter also referred to as “the other inclined bottom surface 12d”). That is, in the bottom surface of the concave portion 12, the portion that becomes the front in the rotation direction when the shaft rotates in the reverse direction F, the other inclination of the inclined surface shape whose depth gradually decreases toward the front in the rotation direction F at this time. A bottom surface 12d is formed. Accordingly, since the recess 12 has inclined bottom surfaces 12c and 12d opposite to each other at both ends in the circumferential direction, the recess 12 is formed in a triangular shape as shown in FIG. 7B as a whole. (Inclined bottom surfaces 12c and 12d) are connected to the intermediate surface 9 at their respective ends. The planar shape of the recess 12 is a rectangular shape, its anti-sealing fluid side edge is a rising surface from the bottom surface, and the sealing fluid side edge is an opening toward the sealing fluid side C. The bottom surface of the recess 12 is a combination of two inclined bottom surfaces 12c and 12d. As shown in FIG. 7C, a parallel surface 12e parallel to the intermediate surface 9 is a third surface between the inclined bottom surfaces 12c and 12d. It may be provided as. Although the inclination angle theta 5 of the inclination angle theta 4 and the other inclined bottom surface 12d of one of the inclined bottom surface 12c is set to be equal to each other (θ 4 = θ 5), to each other as shown in FIG. 7 (D) They may be set differently (θ 4 ≠ θ 5 , that is, θ 4 > θ 5 or θ 45 ). In the example of FIG. 7D, the recesses 12C set to θ 4 > θ 5 and the recesses 12D set to θ 45 are alternately provided on the circumference.

上記構成の密封装置1は、ハウジングの軸孔内周に装着され、前記軸孔に挿通した回転軸の周面に摺動自在に密接することにより機内の密封流体(油)が機外へ漏洩しないようこれをシールするものであって、両回転シールであり、上記構成により以下の作用効果を発揮する点に特徴を有している。   The sealing device 1 having the above-described configuration is mounted on the inner periphery of the shaft hole of the housing, and the sealing fluid (oil) in the machine leaks out of the machine by being slidably in close contact with the peripheral surface of the rotating shaft inserted through the shaft hole. This is a double-rotating seal, and is characterized in that the following effects are exhibited by the above configuration.

すなわち上記密封装置1が装着されると一部の密封流体が境界部13に開口する開口部から凹部12に取り込まれ、軸が正回転Eすると凹部12に取り込まれた密封流体はその粘性によって軸の正回転Eに引き摺られ、凹部12底面に設けた一方の傾斜底面12cに沿って流れて集束し(凹部12の断面積が徐々に小さくなるため)、集束しつつ凹部12から中間面9ないし接触部15へ溢出し、中間面9ないし接触部15上で厚い流体膜を形成する。圧力としては中間面9ないし接触部15を軸から浮かす動圧が発生する。また、図8に示すように軸が逆回転Fすると凹部12に取り込まれた密封流体はその粘性によって軸の逆回転Fに引き摺られ、凹部12底面に設けた他方の傾斜底面12dに沿って流れて集束し(凹部12の断面積が徐々に小さくなるため、矢印K)、集束しつつ凹部12から中間面9ないし接触部15へ溢出し、中間面9ないし接触部15上で厚い流体膜を形成する。圧力としては中間面9ないし接触部15を軸から浮かす動圧が発生する。したがって軸が正回転Eするときも逆回転Fするときも中間面9ないし接触部15上に厚い流体膜が形成され動圧が発生するので、何れの場合も流体潤滑にもとづく低トルク化を実現し、シールリップ6が早期に摺動摩耗するのを抑制することができる。中間面9に設けられた接触部15は円周上連続したものであって軸の周面に全周に亙って密接するので、軸回転静止時の漏洩(いわゆる静止漏れ)を抑制することもできる。   That is, when the sealing device 1 is mounted, a part of the sealing fluid is taken into the concave portion 12 from the opening portion that opens to the boundary portion 13, and when the shaft rotates in the forward direction E, the sealing fluid taken into the concave portion 12 has a shaft due to its viscosity. Of the recess 12 and flows along one inclined bottom surface 12c provided on the bottom surface of the recess 12 (because the cross-sectional area of the recess 12 is gradually reduced). Overflowing to the contact portion 15, a thick fluid film is formed on the intermediate surface 9 or the contact portion 15. As the pressure, a dynamic pressure for floating the intermediate surface 9 or the contact portion 15 from the shaft is generated. Further, as shown in FIG. 8, when the shaft rotates in the reverse direction F, the sealing fluid taken into the recess 12 is dragged by the viscosity of the shaft in the reverse rotation F and flows along the other inclined bottom surface 12d provided on the bottom surface of the recess 12. (The arrow K) because the cross-sectional area of the concave portion 12 gradually decreases, overflows from the concave portion 12 to the intermediate surface 9 through the contact portion 15 while converging, and a thick fluid film is formed on the intermediate surface 9 through the contact portion 15. Form. As the pressure, a dynamic pressure for floating the intermediate surface 9 or the contact portion 15 from the shaft is generated. Therefore, a thick fluid film is formed on the intermediate surface 9 or the contact portion 15 when the shaft rotates in the forward direction E or in the reverse direction F, so that dynamic pressure is generated. In any case, a reduction in torque based on fluid lubrication is realized. In addition, it is possible to suppress the sliding lip 6 from sliding and wearing at an early stage. The contact portion 15 provided on the intermediate surface 9 is continuous on the circumference and is in close contact with the circumferential surface of the shaft over the entire circumference, so that leakage at the time of stationary shaft rotation (so-called stationary leakage) is suppressed. You can also.

尚、凹部12の形状については、その機能(正回転および逆回転の双方につきそれぞれ流体を集束して動圧を発生させること)を果たすかぎり、様々なものが考えられる。   Various shapes of the concave portion 12 are conceivable as long as they fulfill their functions (concentrate fluids for both forward rotation and reverse rotation to generate dynamic pressure).

すなわち、上記第二実施例では凹部12の平面形状を長方形状としたが、その機能を発揮するのは一対の傾斜底面12c,12dであるので、このような傾斜底面12c,12dを有するかぎり凹部12の形状は限定されない。例えば図9の例では、凹部12の平面形状は長方形状に代えて台形状とされ、この台形状において、凹部12の縁辺(凹部12および中間面9の境界線)のうち軸が正回転Eするときに回転方向の前方となる部位12aは、反密封流体側Dから密封流体側Cへかけてこのときの回転方向Eの前方へ傾斜する向きに設定されている。また凹部12の縁辺のうち軸が逆回転Fするときに回転方向の前方となる部位12bは、反密封流体側Dから密封流体側Cへかけてこのときの回転方向Fの前方へ傾斜する向きに設定されている。   That is, in the second embodiment, the concave portion 12 has a rectangular planar shape. However, since the function is performed by the pair of inclined bottom surfaces 12c and 12d, the concave portion 12 has the inclined bottom surfaces 12c and 12d. The shape of 12 is not limited. For example, in the example of FIG. 9, the planar shape of the recess 12 is a trapezoid instead of a rectangle, and in this trapezoidal shape, the axis of the edge of the recess 12 (the boundary line between the recess 12 and the intermediate surface 9) is rotated forward E. In this case, the portion 12a that is forward in the rotational direction is set to be inclined in the forward direction in the rotational direction E from the anti-sealing fluid side D to the sealing fluid side C. Further, a portion 12b which is the front in the rotational direction when the shaft rotates in the reverse direction F on the edge of the recess 12 is inclined in the forward direction in the rotational direction F from the anti-sealing fluid side D to the sealing fluid side C. Is set to

凹部12の形状としては、凹部12底面の少なくとも一部に傾斜を付けることにより、正回転方向Eについてはその前方へ向けて凹部12の断面積(密封装置1の中心軸線を含む各平面で裁断したときの断面積)が徐々に縮小する形状であれば良く、逆回転方向Fについてもその前方へ向けて凹部12の断面積(密封装置1の中心軸線を含む各平面で裁断したときの断面積)が徐々に縮小する形状であれば良い。また凹部12および両ネジ部10,11の円周方向位置関係としては上記したように、正ネジ部10(例えば図7(A)における3つの正ネジ部10のうち左側の正ネジ部10)とその正回転方向Eの後方側に配置された逆ネジ部11(例えば図7(A)における3つの逆ネジ部11のうち右側の逆ネジ部11)との間に凹部12(例えば図7(A)における3つの凹部12のうち中央の凹部12)を配置するのが好適である。   As the shape of the recess 12, at least a part of the bottom surface of the recess 12 is inclined so that the forward rotation direction E is cut forward in the cross-sectional area of the recess 12 (each plane including the central axis of the sealing device 1). The cross-sectional area at the time of cutting may be a shape that gradually decreases, and the cross-sectional area of the recess 12 in the reverse rotation direction F (cutting when cut in each plane including the central axis of the sealing device 1) Any shape can be used as long as the area is gradually reduced. Further, as described above, the circumferential positional relationship between the concave portion 12 and the screw portions 10 and 11 is the positive screw portion 10 (for example, the left positive screw portion 10 of the three positive screw portions 10 in FIG. 7A). And a concave portion 12 (for example, FIG. 7) between the reverse screw portion 11 (for example, the right reverse screw portion 11 of the three reverse screw portions 11 in FIG. 7A) arranged on the rear side in the forward rotation direction E. It is preferable to arrange the central recess 12) among the three recesses 12 in (A).

本発明の第一実施例に係る密封装置の要部断面図Sectional drawing of the principal part of the sealing device which concerns on 1st Example of this invention. (A)は図1の要部拡大図、(B)は凹部の他の形状例を示す図(A) is an enlarged view of the main part of FIG. 1, (B) is a diagram showing another example of the concave shape 同密封装置の作動説明図Operation explanatory diagram of the sealing device (A)および(B)とも凹部の他の形状例を示す図The figure which shows the other example of a shape of a recessed part with (A) and (B) 凹部の他の形状例を示す図The figure which shows the other example of a recessed part shape 本発明の第二実施例に係る密封装置の要部断面図Sectional drawing of the principal part of the sealing device which concerns on 2nd Example of this invention. (A)は図6の要部拡大図、(B)は図7(A)におけるI方向矢視図、(C)および(D)はそれぞれ凹部の他の形状例を示す図6A is an enlarged view of the main part of FIG. 6, FIG. 7B is a view taken in the direction of the arrow I in FIG. 7A, and FIGS. (A)は同密封装置の作動説明図、(B)は図8(A)におけるJ方向矢視図(A) is an operation explanatory view of the sealing device, (B) is a view in the direction of arrow J in FIG. 8 (A). 凹部の他の形状例を示す図The figure which shows the other example of a recessed part shape 従来例に係る密封装置の要部断面図Sectional drawing of the principal part of the sealing device which concerns on a prior art example

符号の説明Explanation of symbols

1 密封装置
2 金属環
3 ゴム状弾性体
4 外周シール部
5 ダストリップ
6 シールリップ
7 密封流体側斜面
8 反密封流体側斜面
9 中間面
10 正ネジ部
10a,11a 反密封流体側端部
10b,11b 密封流体側端部
11 逆ネジ部
12 凹部
12a,12b 傾斜縁辺
12c,12d 傾斜底面
12e 平行面
13,14 境界部
15 接触部
DESCRIPTION OF SYMBOLS 1 Sealing device 2 Metal ring 3 Rubber-like elastic body 4 Peripheral seal part 5 Dustrip 6 Seal lip 7 Sealed fluid side inclined surface 8 Anti-sealed fluid side inclined surface 9 Middle surface 10 Positive thread part 10a, 11a Anti-sealed fluid side end part 10b, 11b Sealed fluid side end portion 11 Reverse screw portion 12 Recessed portion 12a, 12b Inclined edge 12c, 12d Inclined bottom surface 12e Parallel surface 13, 14 Boundary portion 15 Contact portion

Claims (2)

回転軸等の相手部材が正逆両方向に相対回転する密封装置であって、
前記相手部材の周面に摺動自在に密接するシールリップを有し、
前記シールリップは、密封流体側斜面および反密封流体側斜面ならびに前記両斜面の間に設けられた中間面を有し、
前記相手部材が正方向に回転するときにポンピング作用によって密封流体を押し戻す作用を奏する正ネジ部と、前記相手部材が逆方向に回転するときにポンピング作用によって密封流体を押し戻す作用を奏する逆ネジ部とが前記反密封流体側斜面に設けられ、
前記中間面に凹部が設けられ、前記凹部は前記中間面および反密封流体側斜面の境界部に達しないように設けられて前記中間面における前記凹部の反密封流体側の部位に円周上連続する前記相手部材に対する接触部が設けられ、
前記凹部の縁辺のうち前記相手部材が正方向に回転するときに回転方向の前方となる部位は少なくともその一部が密封流体側から反密封流体側へかけてこのときの回転方向の前方へ傾斜する向きに設定され、
前記凹部の縁辺のうち前記相手部材が逆方向に回転するときに回転方向の前方となる部位は少なくともその一部が密封流体側から反密封流体側へかけてこのときの回転方向の前方へ傾斜する向きに設定されていることを特徴とする密封装置。
A sealing device in which a mating member such as a rotating shaft relatively rotates in both forward and reverse directions,
Having a seal lip slidably in contact with the peripheral surface of the mating member;
The sealing lip has a sealing fluid side slope and an anti-sealing fluid side slope and an intermediate surface provided between the slopes,
A normal screw portion that acts to push back the sealing fluid by a pumping action when the counterpart member rotates in the forward direction, and a reverse screw portion that acts to push back the sealing fluid by a pumping action when the counterpart member rotates in the reverse direction Are provided on the anti-seal fluid side slope,
A concave portion is provided on the intermediate surface, and the concave portion is provided so as not to reach a boundary portion between the intermediate surface and the anti-seal fluid side inclined surface, and is continuous on the circumference at a portion of the intermediate surface on the anti-seal fluid side of the recess. A contact portion for the mating member is provided,
Of the edge of the recess, at least a part of the portion that is forward in the rotational direction when the counterpart member rotates in the forward direction is inclined forward in the rotational direction from the sealed fluid side to the anti-sealed fluid side. Is set to the orientation
At least a part of the edge of the recess that is forward in the rotational direction when the counterpart member rotates in the reverse direction is inclined forward from the sealed fluid side to the anti-sealed fluid side. A sealing device characterized in that the sealing device is set in an orientation.
回転軸等の相手部材が正逆両方向に相対回転する密封装置であって、
前記相手部材の周面に摺動自在に密接するシールリップを有し、
前記シールリップは、密封流体側斜面および反密封流体側斜面ならびに前記両斜面の間に設けられた中間面を有し、
前記相手部材が正方向に回転するときにポンピング作用によって密封流体を押し戻す作用を奏する正ネジ部と、前記相手部材が逆方向に回転するときにポンピング作用によって密封流体を押し戻す作用を奏する逆ネジ部とが前記反密封流体側斜面に設けられ、
前記中間面に凹部が設けられ、前記凹部は前記中間面および反密封流体側斜面の境界部に達しないように設けられて前記中間面における前記凹部の反密封流体側の部位に円周上連続する前記相手部材に対する接触部が設けられ、
前記凹部の底面のうち前記相手部材が正方向に回転するときに回転方向の前方となる部位は少なくともその一部がこのときの回転方向の前方へ向けて深さが徐々に浅くなる傾斜面状に設定され、
前記凹部の縁辺のうち前記相手部材が逆方向に回転するときに回転方向の前方となる部位は少なくともその一部がこのときの回転方向の前方へ向けて深さが徐々に浅くなる傾斜面状に設定されていることを特徴とする密封装置。
A sealing device in which a mating member such as a rotating shaft relatively rotates in both forward and reverse directions,
Having a seal lip slidably in contact with the peripheral surface of the mating member;
The sealing lip has a sealing fluid side slope and an anti-sealing fluid side slope and an intermediate surface provided between the slopes,
A normal screw portion that acts to push back the sealing fluid by a pumping action when the counterpart member rotates in the forward direction, and a reverse screw portion that acts to push back the sealing fluid by a pumping action when the counterpart member rotates in the reverse direction Are provided on the anti-seal fluid side slope,
A concave portion is provided on the intermediate surface, and the concave portion is provided so as not to reach a boundary portion between the intermediate surface and the anti-seal fluid side inclined surface, and is continuous on the circumference at a portion of the intermediate surface on the anti-seal fluid side of the recess. A contact portion for the mating member is provided,
Of the bottom surface of the recess, at least a part of the bottom portion of the concave portion that is forward in the rotational direction when the counterpart member rotates in the forward direction is inclined so that the depth gradually decreases toward the front in the rotational direction at this time. Set to
Of the edge of the recess, at least part of the part that is forward in the rotational direction when the counterpart member rotates in the reverse direction is an inclined surface whose depth gradually decreases toward the forward in the rotational direction at this time. The sealing device characterized by being set to.
JP2008252703A 2008-09-30 2008-09-30 Sealing device Withdrawn JP2010084819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252703A JP2010084819A (en) 2008-09-30 2008-09-30 Sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252703A JP2010084819A (en) 2008-09-30 2008-09-30 Sealing device

Publications (1)

Publication Number Publication Date
JP2010084819A true JP2010084819A (en) 2010-04-15

Family

ID=42248986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252703A Withdrawn JP2010084819A (en) 2008-09-30 2008-09-30 Sealing device

Country Status (1)

Country Link
JP (1) JP2010084819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104728449A (en) * 2015-03-26 2015-06-24 山东东都新材料科技有限公司 Chinese-doughnut-shaped oil-back line oil seal
JP2016196928A (en) * 2015-04-03 2016-11-24 Nok株式会社 Sealing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104728449A (en) * 2015-03-26 2015-06-24 山东东都新材料科技有限公司 Chinese-doughnut-shaped oil-back line oil seal
JP2016196928A (en) * 2015-04-03 2016-11-24 Nok株式会社 Sealing device

Similar Documents

Publication Publication Date Title
JP7179430B2 (en) sliding parts
JP5168514B2 (en) Oil seal
CN108138967B (en) Sliding component
JP6245406B2 (en) Seal ring
JP6033996B1 (en) Sealing device
JP6058018B2 (en) Sliding parts
JP2017150674A (en) Seal ring
KR20200102504A (en) Sliding parts
JP2007107547A (en) Seal ring
JP2009185968A (en) Oil seal
JP2010007804A (en) Sealing device
JP6597840B2 (en) Shaft and sealing structure
JPWO2015053170A1 (en) Sealing device
JP2010014191A (en) Sealing device
JP2010084819A (en) Sealing device
JP6809847B2 (en) Sealing device
JP2009216180A (en) Sealing device
JP2010014219A (en) Sealing device
JP2010014192A (en) Sealing device
JP6170271B2 (en) Seal ring
JP4752338B2 (en) Seal ring
JP7520473B2 (en) Sliding parts
JP2009250370A (en) Sealing device
JP5598000B2 (en) Seal ring
US20230184288A1 (en) Sliding component

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206