JP2010080743A - Electret - Google Patents

Electret Download PDF

Info

Publication number
JP2010080743A
JP2010080743A JP2008248548A JP2008248548A JP2010080743A JP 2010080743 A JP2010080743 A JP 2010080743A JP 2008248548 A JP2008248548 A JP 2008248548A JP 2008248548 A JP2008248548 A JP 2008248548A JP 2010080743 A JP2010080743 A JP 2010080743A
Authority
JP
Japan
Prior art keywords
density
hollow particles
electret
organic polymer
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008248548A
Other languages
Japanese (ja)
Inventor
Komei Tahara
孔明 田原
Naruhiro Yasumoto
考広 安本
Shinichi Fukunaga
真一 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008248548A priority Critical patent/JP2010080743A/en
Publication of JP2010080743A publication Critical patent/JP2010080743A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electret being simply produced at low cost and having a piezoelectric performance equal to an inorganic piezoelectric body. <P>SOLUTION: In the electret, charges are injected to a molded form configured by blending hollow particles in organic high molecules. In the electret, a ratio of the theoretical value ρ(calc) of the density of the molded form obtained by the following formula (1) to the observed value ρ(real) of the density of the molded form is 0.95 or greater. ρ(calc)=ρA×ρB(WA+WB)/(ρB×WA+ρA×WB) (1), wherein: ρA represents the density (g/cm<SP>3</SP>) of organic high molecules; ρB represents the density (g/cm<SP>3</SP>) of hollow particles; WA represents the quantity (a weight part) of the organic high molecules blended; and WB represents the quantity (the weight part) of the hollow particles blended. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、無機圧電材料に匹敵する高い圧電性を有し、加工性に優れたエレクトレットに関する。   The present invention relates to an electret having high piezoelectricity comparable to an inorganic piezoelectric material and excellent workability.

電気的なエネルギーを機械的エネルギーに、または機械的なエネルギーを電気的なエネルギーに変換するものとして、圧電体が知られている。圧電体はスピーカーやマイクロフォンなどの音響機器や圧力センサーなどに利用されている。圧電体には無機系、有機系があり、前者の代表的なものはチタン酸ジルコン酸鉛(PZT)、後者の代表的なものとしてフッ素系ポリマーが挙げられる。無機系圧電体は高い圧電性を示すが硬くて、脆く、形状の自由度も低い。   Piezoelectric materials are known as devices that convert electrical energy into mechanical energy or mechanical energy into electrical energy. Piezoelectric materials are used in acoustic devices such as speakers and microphones, pressure sensors, and the like. There are inorganic and organic piezoelectric materials. The typical one of the former is lead zirconate titanate (PZT), and the typical one is the fluorine-based polymer. Inorganic piezoelectric materials exhibit high piezoelectricity but are hard, brittle, and have a low degree of freedom in shape.

一方、有機系圧電体の場合、成形性に優れるが、圧電性が低く、ポリフッ化ビニリデン系フィルムの場合で最大40pC/Nしか示さない。   On the other hand, in the case of an organic piezoelectric body, the moldability is excellent, but the piezoelectricity is low, and in the case of a polyvinylidene fluoride film, only a maximum of 40 pC / N is shown.

こういった、無機系、有機系の圧電体の欠点を補う技術として、有機高分子材料中に無機圧電材料の微粒子を分散させる技術(特許文献1)や有機高分子圧電体中に無機材料、無機圧電材料を分散させる技術など(特許文献2)が提案されている。これらの技術は、有機高分子材料中に無機系圧電材料を配したものであり、圧電性能は、非常に小さい。また、特許文献2では、圧電性有機高分子材料中に無機圧電材料が混合されているため、特許文献1記載の技術よりは、高い圧電性能を示すが、加えられた力に伴う歪が有機高分子側に生じるため、さほど大きな圧電性は得られず、試料作成時に無機圧電材料を電場や磁場で配向させる必要があるなど工程が複雑である。   As a technology for compensating for the disadvantages of such inorganic and organic piezoelectric materials, a technology for dispersing fine particles of an inorganic piezoelectric material in an organic polymer material (Patent Document 1), an inorganic material in an organic polymer piezoelectric material, A technique for dispersing an inorganic piezoelectric material has been proposed (Patent Document 2). In these techniques, an inorganic piezoelectric material is arranged in an organic polymer material, and the piezoelectric performance is very small. In Patent Document 2, since an inorganic piezoelectric material is mixed in a piezoelectric organic polymer material, the piezoelectric performance is higher than that of the technique described in Patent Document 1, but strain due to applied force is organic. Since it occurs on the polymer side, a very large piezoelectricity cannot be obtained, and the process is complicated such that an inorganic piezoelectric material needs to be oriented by an electric field or a magnetic field when preparing a sample.

一方、有機系圧電体については、フィンランドの国立研究所(VTT)がポリオレフィン多孔質体にコロナ放電によって電荷注入すると高い圧電性を示すエレクトレットとなることを発表して以来(非特許文献1)、改善が重ねられ、最近では多孔質体のセル形状を工夫することによって高い圧電性を示すようになることも報告されている。また、VTTの技術を導入したEMfit社がポリプロピレン多孔質体エレクトレットフィルム(圧電性能100pC/N程度)を実用化している。   On the other hand, for organic piezoelectric materials, the Finnish National Laboratory (VTT) has announced that electrets exhibiting high piezoelectricity when injected into polyolefin porous bodies by corona discharge (Non-patent Document 1). It has been reported that improvement has been repeated, and recently, high piezoelectricity is exhibited by devising the cell shape of the porous body. In addition, EMfit, which introduced the VTT technology, has put a polypropylene porous electret film (piezoelectric performance of about 100 pC / N) into practical use.

ポリプロピレン多孔質体エレクトレットフィルムの性能発現には厚み方向のセル径を小さくすることが必要であり、フィルムの繰り返し延伸によるセルの微細化(非特許文献2)や微細発泡化により、高い圧電性能を得る試みが報告されている。   In order to develop the performance of the polypropylene porous electret film, it is necessary to reduce the cell diameter in the thickness direction, and high piezoelectric performance can be achieved by refining the cell by repetitive stretching of the film (Non-patent Document 2) or by micro-foaming. Attempts to gain have been reported.

非特許文献1、特許文献3などでは確かに比較的高い圧電性能が得られるようになっているが無機系圧電体には及ばない。また、非特許文献2では、形状をさらに工夫することによって高い圧電性能を得ることに成功しているが、製法が複雑で実用性に乏しく、中空粒子は配合していない。   In Non-Patent Document 1, Patent Document 3, and the like, relatively high piezoelectric performance can be obtained, but it does not reach inorganic piezoelectric materials. Further, in Non-Patent Document 2, although high piezoelectric performance has been obtained by further devising the shape, the manufacturing method is complicated and poor in practicality, and no hollow particles are blended.

また、多孔質製造時に添加物とし結晶核剤および中空ガラス粒子を配合しておき、発泡後に高倍率で延伸して中空ガラス粒子とマトリックス樹脂との間にボイド(空隙)を作りそこに蓄積される電荷量を増大させることによって圧電性を示すようになったという報告もあるが、延伸というプロセスを必要とする点では他の先行技術と変わらず、圧電性能も従来のものと比して大差がない(非特許文献3)。
特開昭和59−27584号公報 特開2008−47693号公報 特開2007−145960号公報 VTT Publications, 436 Journal of Electrostatics, 65,94−100(2007) IEEE Transactions on Dielectrics Insulation, 13(5), 992−1000(2006)
In addition, a crystal nucleating agent and hollow glass particles are blended as additives during the production of porous materials, and after foaming, they are stretched at a high magnification to create voids (voids) between the hollow glass particles and the matrix resin, and are accumulated there. Although there is a report that the piezoelectricity has been shown by increasing the amount of electric charge, it is the same as other prior art in that it requires a drawing process, and the piezoelectric performance is also greatly different from the conventional one. (Non-Patent Document 3).
JP 59-27584 A JP 2008-47693 A JP 2007-145960 A VTT Publications, 436 Journal of Electrostatics, 65, 94-100 (2007) IEEE Transactions on Dielectrics Insulation, 13 (5), 992-1000 (2006)

本発明の目的は、簡便で安価に生産でき、無機圧電体並みの圧電性能を有するエレクトレットを提供することにある。   An object of the present invention is to provide an electret that can be produced simply and inexpensively and has piezoelectric performance equivalent to that of an inorganic piezoelectric material.

本発明者らは有機高分子中に中空粒子を配合してなる成形体に電荷を注入する簡便な方法によって、無機圧電体並みの圧電性能を有するエレクトレットが得られることを見出し、本発明を完成させるにいたった。   The present inventors have found that an electret having piezoelectric performance equivalent to that of an inorganic piezoelectric material can be obtained by a simple method of injecting a charge into a molded product obtained by mixing hollow particles in an organic polymer. I came to let you.

すなわち、本発明は、有機高分子に中空粒子を配合してなる成形体に電荷を注入してなるエレクトレットであって、下記式(1)によって求められる成形体密度の理論値ρ(calc)に対する成形体密度の実測値ρ(real)の比が0.95以上であるエレクトレットに関する。   That is, the present invention is an electret formed by injecting a charge into a molded product obtained by blending hollow particles into an organic polymer, and is based on the theoretical value ρ (calc) of the molded product density obtained by the following formula (1). The present invention relates to an electret in which the ratio of the measured value ρ (real) of the compact density is 0.95 or more.

ρ(calc)=ρA×ρB(WA+WB)/(ρB×WA+ρA×WB) (1)
(ただし、ρAは有機高分子の密度(g/cm3)、ρBは中空粒子の密度(g/cm3)、WAは有機高分子の配合量(重量部)、WBは中空粒子の配合量(重量部)をあらわす。)
ρ (calc) = ρA × ρB (WA + WB) / (ρB × WA + ρA × WB) (1)
(Where ρA is the density of organic polymer (g / cm 3 ), ρB is the density of hollow particles (g / cm 3 ), WA is the amount of organic polymer (parts by weight), and WB is the amount of hollow particles. (Weight part)

好ましい態様としては、
(1)有機高分子が熱可塑性樹脂であることを特徴とする、
(2)中空粒子が二酸化珪素を主たる成分とする無機物質から構成され、かつ粒子内部が密閉状態であることを特徴とする、
前記記載のエレクトレットに関する。
As a preferred embodiment,
(1) The organic polymer is a thermoplastic resin,
(2) The hollow particles are composed of an inorganic substance containing silicon dioxide as a main component, and the inside of the particles is in a sealed state,
It relates to the electret described above.

本発明のエレクトレットは、簡便で安価に生産でき、かつ、無機圧電体並みの圧電性能を有する。   The electret of the present invention can be produced easily and inexpensively, and has a piezoelectric performance comparable to that of an inorganic piezoelectric material.

本発明のエレクトレットは、有機高分子中に中空粒子を配合してなる成形体に電荷を注入することによって得られるものであって、成形体密度の理論値ρ(calc)に対する成形体密度の実測値ρ(real)の比が0.95以上である。好ましくは、測定精度の範囲内で実質的に1である。ここで、成形体密度の理論値ρ(calc)は下記式(1)によって求められる。
ρ(calc)=ρA×ρB(WA+WB)/(ρB×WA+ρA×WB) (1)
(ただし、ρAは有機高分子の密度(g/cm3)、ρBは中空粒子の密度(g/cm3)、WAは成形体に配合する有機高分子の配合量(重量部)、WBは成形体に配合する中空粒子の配合量(重量部)をあらわす。)
The electret of the present invention is obtained by injecting electric charge into a molded product obtained by blending hollow particles in an organic polymer, and the measured density of the molded product with respect to the theoretical value ρ (calc) of the molded product density. The ratio of the values ρ (real) is 0.95 or more. Preferably, it is substantially 1 within the range of measurement accuracy. Here, the theoretical value ρ (calc) of the density of the compact is obtained by the following formula (1).
ρ (calc) = ρA × ρB (WA + WB) / (ρB × WA + ρA × WB) (1)
(Where ρA is the density of organic polymer (g / cm 3 ), ρB is the density of hollow particles (g / cm 3 ), WA is the blending amount (part by weight) of the organic polymer blended into the molded body, and WB is (Represents the amount (parts by weight) of hollow particles to be blended into the molded body.)

成形体密度の理論値と成形体密度の実測値の比が0.95以上であるということは、成形体内にボイド等の空隙を実質的に含まないことを意味する。   A ratio of the theoretical value of the green body density to the measured value of the green body density of 0.95 or more means that voids such as voids are not substantially contained in the green body.

本発明に用いる有機高分子は特に限定されないが、たとえば、ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂、ポリスチレン、ポリメチルメタクリレート、ポリ(メタ)アクリル酸エステル、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、ポリヒドロキシアルカノエート、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリエチレンサクシネートアジペートなどのポリエステル系重合体、6−ナイロン、6−6ナイロン、11ナイロン、12ナイロンなどのポリアミド類、ポリカーボネート、シクロオレフィン類など多くのエンジニアリングプラスチック類等の熱可塑性樹脂、不飽和ポリエステル、ビニルエステル樹脂、ジアリルフタレート樹脂、エポキシ樹脂、ポリウレタン、ケイ素系樹脂、ポリイミド、アルキド樹脂、フラン樹脂、ジクロペンタジエン樹脂、アクリル樹脂、アリルカーボネート樹脂等の熱硬化性樹脂等が挙げられるが、中空粒子を均一に分散させる作業の容易さという観点から、熱可塑性樹脂を用いることが好ましい。   The organic polymer used in the present invention is not particularly limited, and examples thereof include polyolefin resins such as polypropylene and polyethylene, and vinyl heavy polymers such as polystyrene, polymethyl methacrylate, poly (meth) acrylate, polyvinyl chloride, and polyvinylidene chloride. Polymers, polyester polymers such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polylactic acid, polyhydroxyalkanoate, polybutylene succinate, polyethylene succinate, polyethylene succinate adipate, 6-nylon, 6-6 nylon, Thermoplastic resins such as polyamides such as 11 nylon and 12 nylon, many engineering plastics such as polycarbonate and cycloolefin, unsaturated polyester, vinyl Thermosetting resins such as ruester resin, diallyl phthalate resin, epoxy resin, polyurethane, silicon resin, polyimide, alkyd resin, furan resin, diclopentadiene resin, acrylic resin, allyl carbonate resin, etc. It is preferable to use a thermoplastic resin from the viewpoint of ease of work to disperse the resin.

中でも、ポリオレフィン系樹脂を使用することがより好ましく、電気絶縁性や電荷保持に影響を与える吸湿性の点から、ポリプロピレンを用いることがもっとも好ましい。有機高分子の選択にあたっては、配合する中空粒子が配合条件下で破壊されないことが重要である。   Among them, it is more preferable to use a polyolefin-based resin, and it is most preferable to use polypropylene from the viewpoint of hygroscopicity that affects electric insulation and charge retention. In selecting an organic polymer, it is important that the hollow particles to be blended are not destroyed under blending conditions.

本発明に用いる中空粒子は、マトリックスとして用いる有機高分子の加工条件で破壊されなければ特に限定されない。例えば、シリコーン中空粒子、スチレン−アクリル中空粒子等の有機物質から構成される中空粒子、ガラス中空粒子、セラミックス中空粒子、シリカ中空粒子等の無機物質から構成される中空粒子などが挙げられる。中でも、二酸化珪素を主たる成分とする無機物質から構成される中空粒子であることが好ましく、かつ粒子内部が密閉状態であり、外部から独立した空間有する中空粒子であることが好ましい。このような中空粒子としては、ガラス中空粒子が挙げられ、これを好適に使用することが出来る。   The hollow particles used in the present invention are not particularly limited as long as they are not broken under the processing conditions of the organic polymer used as the matrix. Examples thereof include hollow particles composed of organic substances such as silicone hollow particles and styrene-acrylic hollow particles, hollow particles composed of inorganic substances such as glass hollow particles, ceramic hollow particles, and silica hollow particles. Among these, hollow particles composed of an inorganic substance containing silicon dioxide as a main component are preferable, and hollow particles having a sealed inside and a space independent from the outside are preferable. Examples of such hollow particles include glass hollow particles, which can be suitably used.

本発明で用いる中空粒子の粒子径は特に限定はないが、粒子径の下限値は、成形途中で粒子が破壊されない強度を保持しつつ内部の空隙を保つために0.3μm以上であることが好ましい。二酸化珪素を主たる成分とする無機物質からなる中空粒子を用いる場合は1μm以上であることが好ましい。また、所望のフィルム厚みよりも大きいとフィルムの表面が平滑でなくなったり、成形時に中空粒子が破壊されたりするので、中空粒子の粒子径は、フィルム厚みよりも小さいことが好ましい。具体的には作製しようとするフィルム厚みの95%以下であることが好ましく、より好ましくは80%以下である。   The particle diameter of the hollow particles used in the present invention is not particularly limited, but the lower limit value of the particle diameter is 0.3 μm or more in order to keep the internal voids while maintaining the strength that the particles are not broken during the molding. preferable. When using hollow particles made of an inorganic substance mainly composed of silicon dioxide, it is preferably 1 μm or more. Further, if the thickness is larger than the desired film thickness, the surface of the film becomes unsmoothed or the hollow particles are destroyed at the time of molding. Therefore, the particle diameter of the hollow particles is preferably smaller than the film thickness. Specifically, it is preferably 95% or less of the thickness of the film to be produced, more preferably 80% or less.

本発明の成形体は、単軸・二軸押出機等の成形機により有機高分子と中空粒子を混合し、加圧成形機やTダイ等で例えばシート状に成形することが出来る。   The molded body of the present invention can be formed into a sheet, for example, with a pressure molding machine, a T die, or the like by mixing the organic polymer and the hollow particles with a molding machine such as a single-screw or twin-screw extruder.

以上のようにして得られた成形体に、電荷を注入することによって、本発明のエレクトレットは得られる。電荷を注入する方法としては特に限定はなく、一般的に知られている方法、例えば、直流コロナ放電、交流コロナ放電、電子線照射等が挙げられる。本発明においては直流コロナ放電によって電荷を注入することが好ましい。   The electret of the present invention can be obtained by injecting charges into the molded body obtained as described above. The method for injecting electric charge is not particularly limited, and generally known methods such as direct current corona discharge, alternating current corona discharge, and electron beam irradiation can be mentioned. In the present invention, it is preferable to inject charges by DC corona discharge.

このようにして得られたエレクトレットは好ましくは、800pC/N以上の高い圧電係数を示し、かつ経時安定性が良好である。   The electret thus obtained preferably exhibits a high piezoelectric coefficient of 800 pC / N or more and has good temporal stability.

なお、本発明において圧電係数は、成形体から50mm×50mmの大きさのサンプルを切り出し、これをエレクトレット化したのち同サイズの剛性の高いアルミ板(1mm)で挟みこみ電極部とし、サンプルに錘を乗せて静的応力を与え、そのときにアルミ板間に発生する電位差を計測する。圧電係数(d)は、電位差Q、錘の重さFより
d=Q/F
より算出した。
In the present invention, the piezoelectric coefficient is determined by cutting out a sample of 50 mm × 50 mm from the molded body, electretizing it, and sandwiching it with a highly rigid aluminum plate (1 mm) of the same size, A static stress is applied by placing, and the potential difference generated between the aluminum plates is measured. Piezoelectric coefficient (d) is calculated from potential difference Q and weight weight F: d = Q / F
Calculated from

(成形体密度の実測値)
測定サンプルは、作製した成形体から1cm×1cmのサイズで切り出し、厚みt(cm)とその重量(g)を測定し、下記式に従い計算した。
成形体密度の実測値(g/cm3)=重量(g)/(1(cm)×1(cm)×測定厚みt(cm))
(Measured value of compact density)
The measurement sample was cut out from the produced molded body with a size of 1 cm × 1 cm, the thickness t (cm) and its weight (g) were measured, and the calculation was performed according to the following formula.
Measured value of green body density (g / cm 3 ) = weight (g) / (1 (cm) × 1 (cm) × measured thickness t (cm))

(成形体密度の理論値)
有機高分子の密度ρAは、成形体密度の実測値をマトリックス樹脂の理論値として用い、中空粒子の密度ρBは、データシート記載の値を用いた。
(Theoretical value of compact density)
As the density ρA of the organic polymer, the measured value of the molded body density was used as the theoretical value of the matrix resin, and the value described in the data sheet was used as the density ρB of the hollow particles.

成形体を作製した有機高分子の配合量WA(重量部)、密度ρA(g/cm3)、中空粒子の配合量WB(重量部)、密度ρB(g/cm3)から成形体密度の理論値ρ(calc)を下記式(1)により求め、成形体密度の理論値ρ(calc)に対する成形体密度の実測値ρ(real)の比を求めた。
ρ(calc)=ρA×ρB(WA+WB)/(ρB×WA+ρA×WB) (1)
From the blending amount WA (parts by weight) of the organic polymer that produced the molded body, the density ρA (g / cm 3 ), the blending amount WB (parts by weight) of the hollow particles, and the density ρB (g / cm 3 ) The theoretical value ρ (calc) was determined by the following formula (1), and the ratio of the measured value ρ (real) of the molded body density to the theoretical value ρ (calc) of the molded body density was determined.
ρ (calc) = ρA × ρB (WA + WB) / (ρB × WA + ρA × WB) (1)

(圧電係数の測定方法)
成形体から50mm×50mmの大きさのサンプルを切り出し、これをエレクトレット化したのち同サイズの剛性の高いアルミ板(1mm)で挟みこみ電極部とした。そして、サンプルに錘を乗せて静的応力を与え、そのときにアルミ板間に発生する電位差を計測した。電位差の計測には、電気化学測定装置(ソーラトロン社製)を使用した。
(Measurement method of piezoelectric coefficient)
A sample having a size of 50 mm × 50 mm was cut out from the molded body, converted into an electret, and then sandwiched with a highly rigid aluminum plate (1 mm) of the same size to form an electrode part. A weight was placed on the sample to give a static stress, and the potential difference generated between the aluminum plates at that time was measured. An electrochemical measuring device (manufactured by Solartron) was used for measuring the potential difference.

圧電係数(d)は、
d=Q/F
より算出した。ここで、Qは、電位差から算出される電荷量、Fは錘の重さから算出される荷重である。
The piezoelectric coefficient (d) is
d = Q / F
Calculated from Here, Q is a charge amount calculated from the potential difference, and F is a load calculated from the weight of the weight.

(安定性評価法)
25℃、50%RHの雰囲気下で放置し、圧電性能の経時変化を評価した。
(Stability evaluation method)
The sample was allowed to stand in an atmosphere of 25 ° C. and 50% RH, and the change in piezoelectric performance with time was evaluated.

(実施例1)
日本ポリプロ(株)製のアイソタクチックポリプロピレン(iPP、品番E111G)90重量部に対して住友スリーエム製グラスバブルズS60HSを10重量部配合し、ラボプラストミル(東洋精機(株)製)で220℃で溶融混練した。この溶融混練した物を200℃でプレス成形して急冷し、厚さ200μmのシートを得た。成形体密度の理論値と実測値の比較を行い、理論値が0.841g/cm3に対して、実測値が0.832g/cm3であり、その比は0.989であった。このシートを春日電機(株)製コロナ放電装置を用いて電極間距離12.5mm、電極間電圧8kV、室温下で3分コロナ放電を行い、圧電係数1209pC/Nのエレクトレットを得た。
Example 1
10 parts by weight of Sumitomo 3M Glass Bubbles S60HS is added to 90 parts by weight of isopolypropylene (iPP, product number E111G) manufactured by Nippon Polypro Co., Ltd. Melt kneading was carried out at 0 ° C. This melt-kneaded product was press-molded at 200 ° C. and rapidly cooled to obtain a sheet having a thickness of 200 μm. The theoretical value of the green body density was compared with the actual measurement value. The actual measurement value was 0.832 g / cm 3 against the theoretical value of 0.841 g / cm 3 , and the ratio was 0.989. This sheet was subjected to corona discharge for 3 minutes at a room temperature of 12.5 mm, a voltage between electrodes of 8 kV, and a room temperature using a corona discharge device manufactured by Kasuga Electric Co., Ltd., to obtain an electret having a piezoelectric coefficient of 1209 pC / N.

(比較例1)
日本ポリプロ(株)製のアイソタクチックポリプロピレン(iPP、品番E111G)をラボプラストミルに単軸押出機、Tダイを取り付け(東洋精機(株)製)で200℃で押出、2m/minで引き取り、厚さ200μmのシートを得た。成形体密度の理論値と実測値の比較を行い、理論値が0.88g/cm3に対して、実測値が0.88g/cm3であり、その比は1であった。実施例1と同じ操作を行い、圧電係数1624pC/Nのエレクトレットを得た。
(Comparative Example 1)
Isopolypropylene (IPP, product number E111G) manufactured by Nippon Polypro Co., Ltd. is extruded at 200 ° C with a single screw extruder and T-die (manufactured by Toyo Seiki Co., Ltd.) at 2 m / min. A sheet having a thickness of 200 μm was obtained. The theoretical value of the green body density was compared with the actual measurement value. The actual measurement value was 0.88 g / cm 3 against the theoretical value of 0.88 g / cm 3 , and the ratio was 1. The same operation as in Example 1 was performed to obtain an electret with a piezoelectric coefficient of 1624 pC / N.

(比較例2)
中空粒子グラスバブルズS60HSの代わりにユニチカ製ユニビーズ(UB01MF)を用いた以外は実施例1と同じ操作を行い、圧電係数489pC/Nのエレクトレットを得た。成形体密度の理論値と実測値の比較を行い、理論値が0.942g/cm3に対して、実測値が0.951g/cm3であり、その比は0.991であった。
(Comparative Example 2)
An electret having a piezoelectric coefficient of 489 pC / N was obtained by performing the same operation as in Example 1 except that Unitika unibeads (UB01MF) were used instead of the hollow particle glass bubbles S60HS. The theoretical value of the compact density was compared with the actual measurement value. The actual measurement value was 0.951 g / cm 3 and the ratio was 0.991 against the theoretical value of 0.942 g / cm 3 .

(比較例3)
コロナ放電前にフィルムを150℃に加温して縦横各々3.5倍に延伸した以外は実施例1と同様の方法で圧電係数420pC/Nの圧電体を得た。延伸後のフィルムの密度はρ(real)は0.337g/cm3であり、ρ(calc)は0.841g/cm3であり、その比は0.4であった。
(Comparative Example 3)
A piezoelectric body having a piezoelectric coefficient of 420 pC / N was obtained in the same manner as in Example 1 except that the film was heated to 150 ° C. before corona discharge and stretched 3.5 times in length and width. As for the density of the film after stretching, ρ (real) was 0.337 g / cm 3 , ρ (calc) was 0.841 g / cm 3 , and the ratio was 0.4.

実施例1、比較例1〜3のエレクトレットについて圧電係数の経時変化の確認を行った。   The electrets of Example 1 and Comparative Examples 1 to 3 were confirmed for changes in piezoelectric coefficient over time.

実施例1、比較例1〜3のエレクトレットについて圧電係数の経日変化を絶対値で表したグラフである。It is the graph which represented the daily change of a piezoelectric coefficient by the absolute value about the electret of Example 1 and Comparative Examples 1-3. 実施例1、比較例1〜3のエレクトレットについて圧電係数の経日変化を相対値で表したグラフである。It is the graph which represented the daily change of the piezoelectric coefficient by the relative value about the electret of Example 1 and Comparative Examples 1-3.

Claims (3)

有機高分子に中空粒子を配合してなる成形体に電荷を注入してなるエレクトレットであって、下記式(1)によって求められる成形体密度の理論値ρ(calc)に対する成形体密度の実測値ρ(real)の比が0.95以上であるエレクトレット。
ρ(calc)=ρA×ρB(WA+WB)/(ρB×WA+ρA×WB) (1)
(ただし、ρAは有機高分子の密度(g/cm3)、ρBは中空粒子の密度(g/cm3)、WAは有機高分子の配合量(重量部)、WBは中空粒子の配合量(重量部)をあらわす。)
An electret formed by injecting a charge into a molded body obtained by blending hollow particles with an organic polymer, and an actual measured value of the molded body density with respect to a theoretical value ρ (calc) of the molded body density obtained by the following formula (1). An electret having a ratio of ρ (real) of 0.95 or more.
ρ (calc) = ρA × ρB (WA + WB) / (ρB × WA + ρA × WB) (1)
(Where ρA is the density of organic polymer (g / cm 3 ), ρB is the density of hollow particles (g / cm 3 ), WA is the amount of organic polymer (parts by weight), and WB is the amount of hollow particles. (Weight part)
有機高分子が熱可塑性樹脂であることを特徴とする請求項1記載のエレクトレット。   The electret according to claim 1, wherein the organic polymer is a thermoplastic resin. 中空粒子が二酸化珪素を主たる成分とする無機物質から構成され、かつ粒子内部が密閉状態であることを特徴とする請求項1または2に記載のエレクトレット。   The electret according to claim 1 or 2, wherein the hollow particles are composed of an inorganic substance containing silicon dioxide as a main component, and the inside of the particles is in a sealed state.
JP2008248548A 2008-09-26 2008-09-26 Electret Pending JP2010080743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008248548A JP2010080743A (en) 2008-09-26 2008-09-26 Electret

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008248548A JP2010080743A (en) 2008-09-26 2008-09-26 Electret

Publications (1)

Publication Number Publication Date
JP2010080743A true JP2010080743A (en) 2010-04-08

Family

ID=42210841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008248548A Pending JP2010080743A (en) 2008-09-26 2008-09-26 Electret

Country Status (1)

Country Link
JP (1) JP2010080743A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144411A1 (en) * 2011-04-21 2012-10-26 積水化学工業株式会社 Electret sheet
JP2013040305A (en) * 2011-08-19 2013-02-28 Sekisui Chem Co Ltd Electret sheet
JP2013513230A (en) * 2009-12-04 2013-04-18 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Piezoelectric polymer film element, in particular polymer foil, and method for producing the same
JP2013075945A (en) * 2011-09-29 2013-04-25 Sekisui Chem Co Ltd Electret sheet
WO2013129142A1 (en) * 2012-02-29 2013-09-06 日本バルカー工業株式会社 Cellular resin sheet for piezoelectric element and process for producing same
JP2014034592A (en) * 2012-08-07 2014-02-24 Sekisui Chem Co Ltd Electret sheet
WO2014069477A1 (en) * 2012-10-31 2014-05-08 日本バルカー工業株式会社 Piezoelectric stack
US11225557B2 (en) * 2016-03-09 2022-01-18 Daikin Industries, Ltd. Method for producing molded article

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513230A (en) * 2009-12-04 2013-04-18 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Piezoelectric polymer film element, in particular polymer foil, and method for producing the same
US8790567B2 (en) 2011-04-21 2014-07-29 Sekisui Chemical Co., Ltd. Electret sheet
CN103548103A (en) * 2011-04-21 2014-01-29 积水化学工业株式会社 Electret sheet
WO2012144411A1 (en) * 2011-04-21 2012-10-26 積水化学工業株式会社 Electret sheet
JP2013040305A (en) * 2011-08-19 2013-02-28 Sekisui Chem Co Ltd Electret sheet
JP2013075945A (en) * 2011-09-29 2013-04-25 Sekisui Chem Co Ltd Electret sheet
WO2013129142A1 (en) * 2012-02-29 2013-09-06 日本バルカー工業株式会社 Cellular resin sheet for piezoelectric element and process for producing same
JP2014034592A (en) * 2012-08-07 2014-02-24 Sekisui Chem Co Ltd Electret sheet
WO2014069477A1 (en) * 2012-10-31 2014-05-08 日本バルカー工業株式会社 Piezoelectric stack
JP2015035576A (en) * 2012-10-31 2015-02-19 日本バルカー工業株式会社 Piezoelectric laminate
CN104756213A (en) * 2012-10-31 2015-07-01 日本华尔卡工业株式会社 Piezoelectric stack
US10998488B2 (en) 2012-10-31 2021-05-04 Valqua, Ltd. Piezoelectric stack
US11225557B2 (en) * 2016-03-09 2022-01-18 Daikin Industries, Ltd. Method for producing molded article

Similar Documents

Publication Publication Date Title
JP2010080743A (en) Electret
Zhang et al. Ferroelectret materials and devices for energy harvesting applications
US11171281B2 (en) Piezoelectric nanoparticle-polymer composite structure
Gebrekrstos et al. Journey of electroactive β-polymorph of poly (vinylidenefluoride) from crystal growth to design to applications
Singh et al. Nanoscale strategies to enhance the energy storage capacity of polymeric dielectric capacitors: review of recent advances
Jahan et al. Synergistic improvement of piezoelectric properties of PVDF/CaCO3/montmorillonite hybrid nanocomposites
Yang et al. A high-performance dielectric elastomer consisting of bio-based polyester elastomer and titanium dioxide powder
WO2015147049A1 (en) Polymer composite piezoelectric body
Ponnamma et al. Ceramic-based polymer nanocomposites as piezoelectric materials
CN111954937B (en) With a high d 33 Flexible low cost piezoelectric composite material
Nivedhitha et al. Polyvinylidene fluoride, an advanced futuristic smart polymer material: A comprehensive review
WO2012144411A1 (en) Electret sheet
JP2013121269A (en) Dielectric elastomer transducer with improved conversion efficiency
Ansari et al. Piezoelectric polymeric foams as flexible energy harvesters: a review
Yang et al. Boosted mechanical piezoelectric energy harvesting of polyvinylidene fluoride/barium titanate composite porous foam based on three-dimensional printing and foaming technology
JP2016039275A (en) Electret material and using method thereof, and sensor and using method thereof
TW201437002A (en) Composite vibration-damping material
JP2010267906A (en) Method of manufacturing polymer porous electret
JP2013162051A (en) Piezoelectric element made of fluororesin film and manufacturing method therefor
Jahan et al. Effect of the inflation strategy on the piezoelectric response of cellular poly (vinylidene fluoride) ferroelectret
Wang et al. Unexpected bipolar space-charge polarization across transcrystalline interfaces in polypropylene electret films
JP2010186960A (en) High polymer porous body electret
Paajanen et al. Thermally more durable electromechanical films by POSS nanomodification
Shakun Soft elastomeric material with improved dielectric permittivity
Maiti et al. Morphotropic phase boundary-based BaTi 0.89 Sn 0.11 O 3 filler induced polarization tuned P (VDF-TrFE) composites as efficient piezo-tribo hybrid nanogenerators