JP2010080168A - All-solid lithium secondary battery - Google Patents

All-solid lithium secondary battery Download PDF

Info

Publication number
JP2010080168A
JP2010080168A JP2008245433A JP2008245433A JP2010080168A JP 2010080168 A JP2010080168 A JP 2010080168A JP 2008245433 A JP2008245433 A JP 2008245433A JP 2008245433 A JP2008245433 A JP 2008245433A JP 2010080168 A JP2010080168 A JP 2010080168A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
secondary battery
layer
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008245433A
Other languages
Japanese (ja)
Other versions
JP5157781B2 (en
Inventor
Yasushi Tsuchida
靖 土田
Yukiyoshi Ueno
幸義 上野
Shigeki Hama
重規 濱
Hirobumi Nakamoto
博文 中本
Hiroshi Nagase
浩 長瀬
Masato Kamiya
正人 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008245433A priority Critical patent/JP5157781B2/en
Publication of JP2010080168A publication Critical patent/JP2010080168A/en
Application granted granted Critical
Publication of JP5157781B2 publication Critical patent/JP5157781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an all-solid lithium secondary battery with lower resistance to a lithium ion conductivity and an excellent output, by restraining formation of a high resistive layer in a cathode layer. <P>SOLUTION: The all-solid lithium secondary battery includes a cathode layer, a solid electrolyte layer and an anode layer. The cathode layer contains a lithium-containing sulfate coating oxide system cathode active material with Li-containing sulfate formed on a surface of an oxide system cathode active material and a sulfide system solid electrolyte material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、正極層中の高抵抗層の形成を抑制することにより、リチウムイオン伝導に対する抵抗を小さくして出力を向上させた全固体リチウム二次電池に関する。   The present invention relates to an all-solid lithium secondary battery in which the formation of a high resistance layer in a positive electrode layer is suppressed, thereby reducing the resistance to lithium ion conduction and improving the output.

近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を浴びている。   With the rapid spread of information-related equipment and communication equipment such as personal computers, video cameras, and mobile phones in recent years, development of batteries that are used as power sources has been regarded as important. Also in the automobile industry and the like, development of high-power and high-capacity batteries for electric vehicles or hybrid vehicles is being promoted. Currently, lithium batteries are attracting attention among various batteries from the viewpoint of high energy density.

現在市販されているリチウム電池は、可燃性の有機溶剤を溶媒とする有機電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。   The lithium battery currently on the market uses an organic electrolyte that uses a flammable organic solvent as a solvent. Improvement is required.

これに対し、液体電解質を固体電解質に変えて、電池を全固体化した全固体型リチウム電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。   In contrast, an all-solid-state lithium battery in which the liquid electrolyte is changed to a solid electrolyte to make the battery all solid does not use a flammable organic solvent in the battery. It is considered to be excellent in productivity.

このような全固体リチウム二次電池には、正極層及び負極層と、これらの間に配置される電解質とが備えられ、電解質は、固体によって構成される。従って、正極活物質のみを用いて粉末成形により正極層を構成する場合、電解質が固体であるため、電解質が正極層の内部へ浸透しにくく、正極活物質と電解質との界面が低減し、電池性能が低下してしまう。それゆえ、正極活物質の粉末と固体電解質の粉末とを混合した混合粉末を含有する正極合剤を用いて正極層とすることにより、界面の面積を増大させている。   Such an all-solid lithium secondary battery includes a positive electrode layer and a negative electrode layer, and an electrolyte disposed therebetween, and the electrolyte is made of a solid. Therefore, when the positive electrode layer is formed by powder molding using only the positive electrode active material, since the electrolyte is solid, the electrolyte hardly penetrates into the positive electrode layer, and the interface between the positive electrode active material and the electrolyte is reduced. Performance will be reduced. Therefore, the area of the interface is increased by forming a positive electrode layer using a positive electrode mixture containing a mixed powder obtained by mixing a positive electrode active material powder and a solid electrolyte powder.

しかしながら、正極合剤を用いて粉末成形により正極層を構成した場合、正極活物質と電解質との界面をリチウムイオンが移動する際の界面抵抗(以下、単に、界面抵抗と称する場合がある。)が増大しやすい。これは、正極活物質と固体電解質とが反応することにより、正極活物質の表面に高抵抗層が形成されるためであると言われている(非特許文献1)。従って、界面抵抗を低減することにより全固体リチウム二次電池の性能を向上させることを目的とした技術が、これまでに開示されてきている。例えば、非特許文献1には、コバルト酸リチウムの表面がニオブ酸リチウムによって被覆された形態の正極活物質が開示されている。これは、酸化物系正極活物質と硫化物系固体電解質材料との界面部に生じる高抵抗層の形成を抑制して、界面抵抗を低減することができるものである。   However, when the positive electrode layer is formed by powder molding using the positive electrode mixture, the interface resistance when lithium ions move through the interface between the positive electrode active material and the electrolyte (hereinafter, sometimes simply referred to as interface resistance). Tends to increase. This is said to be because a high resistance layer is formed on the surface of the positive electrode active material by the reaction between the positive electrode active material and the solid electrolyte (Non-Patent Document 1). Therefore, techniques aimed at improving the performance of all-solid lithium secondary batteries by reducing the interface resistance have been disclosed so far. For example, Non-Patent Document 1 discloses a positive electrode active material in which the surface of lithium cobaltate is covered with lithium niobate. This suppresses the formation of a high resistance layer generated at the interface between the oxide-based positive electrode active material and the sulfide-based solid electrolyte material, thereby reducing the interface resistance.

しかしながら、硫化物系固体電解質材料中の硫黄とニオブ酸リチウム中の酸素とが反応して、高抵抗層が形成されてしまうため、界面抵抗を充分に低減することができないという問題が依然としてあった。また、ニオブ酸リチウムは、水に溶けないため、アルコキシドを介した合成が必要であり、材料費が高く、工程が煩雑になるという問題があった。また、ニオブ源のアルコキシドとリチウム源のアルコキシドを用いて合成したような場合に、組成がずれるなどしてニオブ酸リチウム以外の不純物が形成されるという問題もあった。   However, since the sulfur in the sulfide-based solid electrolyte material and oxygen in the lithium niobate react to form a high resistance layer, there still remains a problem that the interface resistance cannot be sufficiently reduced. . In addition, since lithium niobate is insoluble in water, synthesis via alkoxide is necessary, and there is a problem that the material cost is high and the process becomes complicated. In addition, when synthesized using an alkoxide of a niobium source and an alkoxide of a lithium source, there is a problem that impurities other than lithium niobate are formed due to a composition shift.

N.Ohta et al.,「LiNbO3−coated LiCoO2 as cathode material for all solid−state lithium secondary batteries」,Electrochemistry Communications.,(2007),vol9, p1486−1490N. Ohta et al. , “LiNbO3-coated LiCoO2 as cathodic material for all solid-state lithium secondary batteries”, Electrochemistry Communications. , (2007), vol9, p1486-1490 特開2006−73482号公報JP 2006-73482 A 特開2001−52733号公報JP 2001-52733 A 特開2004−348972号公報JP 2004-348972 A

本発明は、上記問題点に鑑みてなされたものであり、正極層中の高抵抗層の形成を抑制することにより、リチウムイオン伝導に対する抵抗が小さく、出力に優れた全固体リチウム二次電池を提供することを主目的とするものである。   The present invention has been made in view of the above problems, and by suppressing the formation of a high-resistance layer in the positive electrode layer, an all-solid lithium secondary battery having low resistance to lithium ion conduction and excellent output is obtained. The main purpose is to provide.

上記目的を達成するために、本発明においては、正極層、固体電解質層、および負極層を有する全固体リチウム二次電池であって、上記正極層が、酸化物系正極活物質表面にLi含有硫酸塩が形成されたLi含有硫酸塩被覆酸化物系正極活物質と、硫化物系固体電解質材料とを含有することを特徴とする全固体リチウム二次電池を提供する。   In order to achieve the above object, the present invention provides an all solid lithium secondary battery having a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, wherein the positive electrode layer contains Li on the surface of the oxide-based positive electrode active material. Provided is an all-solid lithium secondary battery comprising a Li-containing sulfate-coated oxide-based positive electrode active material in which a sulfate is formed and a sulfide-based solid electrolyte material.

本発明によれば、酸化物系正極活物質表面にLi含有硫酸塩が形成されているため、正極層において、硫化物系固体電解質材料中の硫黄と酸化物中の酸素との反応による高抵抗層の形成を抑制することが可能となる。これにより、リチウムイオン伝導に対する抵抗が小さく、出力に優れた全固体リチウム二次電池とすることができる。   According to the present invention, since the Li-containing sulfate is formed on the surface of the oxide-based positive electrode active material, the positive electrode layer has high resistance due to the reaction between sulfur in the sulfide-based solid electrolyte material and oxygen in the oxide. Formation of the layer can be suppressed. Thereby, it can be set as the all-solid-state lithium secondary battery with small resistance with respect to lithium ion conduction, and excellent in an output.

上記発明においては、上記Li含有硫酸塩がLiSOであることが好ましい。Li伝導度が高く、さらに出力に優れた全固体リチウム二次電池とすることができるからである。また、Liのみからなる硫酸塩であるため、酸化物系正極活物質および硫化物系固体電解質材料と副反応を起こさず、副反応による抵抗層の形成等を抑制することが可能となり、より確実にリチウムイオン伝導に対する抵抗が小さく、出力に優れた全固体リチウム二次電池とすることができるからである。 In the above invention, it is preferable that the Li-containing sulfate is Li 2 SO 4. This is because an all-solid lithium secondary battery having high Li conductivity and excellent output can be obtained. In addition, since it is a sulfate composed only of Li, it is possible to suppress the formation of a resistance layer due to a side reaction without causing a side reaction with the oxide-based positive electrode active material and the sulfide-based solid electrolyte material. This is because an all-solid lithium secondary battery having low resistance to lithium ion conduction and excellent output can be obtained.

本発明においては、正極層中の高抵抗層の形成を抑制することにより、リチウムイオン伝導に対する抵抗が小さく、出力に優れた全固体リチウム二次電池を得ることができるという効果を奏する。   In the present invention, by suppressing the formation of the high resistance layer in the positive electrode layer, there is an effect that an all-solid lithium secondary battery having low resistance to lithium ion conduction and excellent in output can be obtained.

本発明の全固体リチウム二次電池について、以下詳細に説明する。
本発明の全固体リチウム二次電池は、正極層、固体電解質層、および負極層を有する全固体リチウム二次電池であって、上記正極層が、酸化物系正極活物質表面にLi含有硫酸塩が形成されたLi含有硫酸塩被覆酸化物系正極活物質と、硫化物系固体電解質材料とを含有することを特徴とするものである。
The all solid lithium secondary battery of the present invention will be described in detail below.
The all-solid lithium secondary battery of the present invention is an all-solid lithium secondary battery having a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, and the positive electrode layer has a Li-containing sulfate on the surface of the oxide-based positive electrode active material. And a Li-containing sulfate-coated oxide-based positive electrode active material and a sulfide-based solid electrolyte material.

上述した、従来の酸化物被覆材料(ニオブ酸リチウム)によって被覆された酸化物系正極活物質と硫化物系固体電解質材料とを含有する正極層においては、硫化物系固体電解質材料中の硫黄と酸化物被覆材料中の酸素とが反応して、高抵抗層が形成されてしまうため、界面抵抗を充分に低減することができない。これに対して、本発明においては、酸化物系正極活物質表面に酸化物被覆材料ではなく、Li含有硫酸塩が形成されている。そのため、従来の酸化物被覆材料によって被覆された酸化物系正極活物質と硫化物系固体電解質材料とを含有する正極層の場合と比較して、硫黄と酸素との反応による高抵抗層の形成が抑制され、リチウムイオン伝導に対する抵抗が小さく、出力に優れたものとなる。   In the positive electrode layer containing the oxide-based positive electrode active material and the sulfide-based solid electrolyte material coated with the conventional oxide-coated material (lithium niobate) described above, sulfur in the sulfide-based solid electrolyte material and Since the high resistance layer is formed by reaction with oxygen in the oxide coating material, the interface resistance cannot be sufficiently reduced. On the other hand, in the present invention, not the oxide coating material but the Li-containing sulfate is formed on the surface of the oxide-based positive electrode active material. Therefore, compared to the case of a positive electrode layer containing an oxide-based positive electrode active material and a sulfide-based solid electrolyte material coated with a conventional oxide coating material, a high resistance layer is formed by reaction of sulfur and oxygen. Is suppressed, the resistance to lithium ion conduction is small, and the output is excellent.

以下、本発明の全固体リチウム二次電池について、図を用いて説明する。
図1は、本発明における全固体リチウム二次電池の一例を模式的に示す概略断面図である。図1に示される全固体リチウム二次電池は、酸化物系正極活物質表面にLi含有硫酸塩が形成されたLi含有硫酸塩被覆酸化物系正極活物質と、硫化物系固体電解質材料とを含有する正極層1、正極層1上に形成された固体電解質層2、固体電解質層2を正極層1と挟持するように設置された負極層3、を有するものである。通常、これらを挟持するように正極層1上に正極集電体4と、負極層3上に負極集電体5とが設けられており、さらに、これら全体を覆うように電池ケース6が配されている。
このような本発明の全固体リチウム二次電池においては、少なくとも、上記正極層、上記固体電解質層、および上記負極層を有するものであれば特に限定されるものではない。通常は、上述したように、正極集電体、負極集電体、電池ケース等を有する。
以下、本発明の全固体リチウム二次電池について、構成ごとに詳細に説明する。
Hereinafter, the all solid lithium secondary battery of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view schematically showing an example of an all-solid lithium secondary battery in the present invention. The all-solid lithium secondary battery shown in FIG. 1 includes a Li-containing sulfate-coated oxide-based positive electrode active material in which a Li-containing sulfate is formed on the surface of an oxide-based positive electrode active material, and a sulfide-based solid electrolyte material. It has a positive electrode layer 1, a solid electrolyte layer 2 formed on the positive electrode layer 1, and a negative electrode layer 3 disposed so as to sandwich the solid electrolyte layer 2 with the positive electrode layer 1. Usually, a positive electrode current collector 4 is provided on the positive electrode layer 1 and a negative electrode current collector 5 is provided on the negative electrode layer 3 so as to sandwich them, and a battery case 6 is disposed so as to cover the whole. Has been.
The all solid lithium secondary battery of the present invention is not particularly limited as long as it has at least the positive electrode layer, the solid electrolyte layer, and the negative electrode layer. Usually, as described above, a positive electrode current collector, a negative electrode current collector, a battery case, and the like are included.
Hereinafter, the all-solid lithium secondary battery of the present invention will be described in detail for each configuration.

1.正極層
まず、本発明における正極層について説明する。上記正極層は、酸化物系正極活物質表面にLi含有硫酸塩が形成されたLi含有硫酸塩被覆酸化物系正極活物質と、硫化物系固体電解質材料とを含有するものである。上記正極層においては、酸化物系正極活物質表面にLi含有硫酸塩が形成されている。これにより、上述したような硫黄と酸素との反応による高抵抗層の形成を抑制することが可能となる。本発明においては、このような正極層を有しているため、リチウムイオン伝導に対する抵抗が小さく、出力に優れた全固体リチウム二次電池とすることができるのである。
以下、本発明に用いられる正極層について、構成ごとに説明する。
1. Positive electrode layer First, the positive electrode layer in the present invention will be described. The positive electrode layer contains a Li-containing sulfate-coated oxide-based positive electrode active material in which a Li-containing sulfate is formed on the surface of the oxide-based positive electrode active material, and a sulfide-based solid electrolyte material. In the positive electrode layer, a Li-containing sulfate is formed on the surface of the oxide-based positive electrode active material. Thereby, it becomes possible to suppress formation of the high resistance layer by the reaction of sulfur and oxygen as described above. In the present invention, since such a positive electrode layer is provided, the resistance to lithium ion conduction is small, and an all-solid lithium secondary battery excellent in output can be obtained.
Hereinafter, the positive electrode layer used in the present invention will be described for each configuration.

(1)Li含有硫酸塩被覆酸化物系正極活物質
上記Li含有硫酸塩被覆酸化物系正極活物質は、酸化物系正極活物質表面にLi含有硫酸塩が形成されたものである。
本発明におけるLi含有硫酸塩としては、少なくともLiを含有する硫酸塩であれば特に限定されるものではなく、必要に応じてLiF、LiCl、LiCO等のその他元素を有していても良い。本発明においては、中でも、LiSOであることが好ましい。Li伝導度が高く、さらに出力に優れた全固体リチウム二次電池とすることができるからである。また、Liのみからなる硫酸塩であるため、その他元素と酸化物系正極活物質や硫化物系固体電解質材料との副反応が抑制され、このような反応による抵抗層の形成等を抑制することが可能となり、より確実にリチウムイオン伝導に対する抵抗が小さく、出力に優れた全固体リチウム二次電池とすることができるからである。
(1) Li-containing sulfate-coated oxide-based positive electrode active material The Li-containing sulfate-coated oxide-based positive electrode active material is obtained by forming a Li-containing sulfate on the surface of an oxide-based positive electrode active material.
The Li-containing sulfate in the present invention is not particularly limited as long as it is a sulfate containing at least Li, and may contain other elements such as LiF, LiCl, Li 2 CO 3 as necessary. good. In the present invention, Li 2 SO 4 is particularly preferable. This is because an all-solid lithium secondary battery having high Li conductivity and excellent output can be obtained. In addition, since it is a sulfate composed only of Li, side reactions between other elements and the oxide-based positive electrode active material or sulfide-based solid electrolyte material are suppressed, and the formation of a resistance layer due to such a reaction is suppressed. This is because an all-solid lithium secondary battery with low resistance to lithium ion conduction and excellent output can be obtained.

上記酸化物系正極活物質表面に形成されるLi含有硫酸塩の被覆の程度としては、上述したように、高抵抗層の形成を抑制して、リチウムイオン伝導に対する抵抗が小さく、出力に優れた全固体リチウム二次電池を得ることができる程度であれば部分的に被覆されたものであっても良いが、本発明においては上記酸化物系正極活物質表面の全面に被覆されていることが好ましい。さらに、上記高抵抗層の形成を抑制することができるからである。   As described above, the degree of coating of the Li-containing sulfate formed on the surface of the oxide-based positive electrode active material is such that the formation of a high resistance layer is suppressed, the resistance to lithium ion conduction is small, and the output is excellent. As long as an all-solid lithium secondary battery can be obtained, it may be partially coated, but in the present invention, the entire surface of the oxide-based positive electrode active material may be coated. preferable. Furthermore, it is because formation of the said high resistance layer can be suppressed.

また、上記酸化物系正極活物質表面に形成されるLi含有硫酸塩の膜厚としては、上記高抵抗層の形成を抑制して、リチウムイオン伝導に対する抵抗が小さく、出力に優れた全固体リチウム二次電池を得ることができる程度であれば特に限定されるものではない。具体的には20nm以下であることが好ましい。Li含有硫酸塩の膜厚をより薄くすることにより、リチウムイオン伝導に対する抵抗をより小さくすることができるからである。   In addition, the film thickness of the Li-containing sulfate formed on the surface of the oxide-based positive electrode active material is all solid lithium that suppresses the formation of the high-resistance layer, has low resistance to lithium ion conduction, and has excellent output. It is not particularly limited as long as a secondary battery can be obtained. Specifically, it is preferably 20 nm or less. This is because the resistance to lithium ion conduction can be further reduced by making the Li-containing sulfate film thinner.

本発明において、上記酸化物系正極活物質表面に形成されるLi含有硫酸塩の被覆の程度、被覆量、および上記Li含有硫酸塩の膜厚については、電子顕微鏡、およびXPS(X線光電子分光)により評価・測定することができる。   In the present invention, the degree of coating of Li-containing sulfate formed on the surface of the oxide-based positive electrode active material, the coating amount, and the film thickness of the Li-containing sulfate are measured with an electron microscope and XPS (X-ray photoelectron spectroscopy). ) Can be evaluated and measured.

次に、本発明に用いられる酸化物系正極活物質について説明する。上記酸化物系正極活物質としては、リチウムイオンを吸蔵放出することができる酸化物であれば特に限定されるものではない。例えば一般式LiMOで表されるものを用いることができる。ここで、式中のMは、主として遷移金属からなり、Co、Mn、Ni、V、Feの少なくとも一種を含む。また、式中のx、yの値の範囲はx=0.02〜2.2、y=1.4〜3である。中でもMは、Co、Ni、Mnの少なくとも一種を含むものが好ましい。 Next, the oxide-based positive electrode active material used in the present invention will be described. The oxide-based positive electrode active material is not particularly limited as long as it is an oxide capable of occluding and releasing lithium ions. For example, what is represented by the general formula Li x MO y can be used. Here, M in the formula is mainly composed of a transition metal and includes at least one of Co, Mn, Ni, V, and Fe. Moreover, the ranges of the values of x and y in the formula are x = 0.02 to 2.2 and y = 1.4 to 3. Among these, M preferably contains at least one of Co, Ni, and Mn.

上記酸化物系正極活物質の形状としては、上記Li含有硫酸塩を被覆することができ、リチウムイオンを吸蔵放出することができるものであれば特に限定されるものではない。具体的には、微粒子状であり、その形状が例えば球状、楕円球等であることが好ましい。上記正極活物質が微粒子である場合の平均粒径としては、例えば0.1μm〜50μmの範囲内であることが好ましい。   The shape of the oxide-based positive electrode active material is not particularly limited as long as it can cover the Li-containing sulfate and can occlude and release lithium ions. Specifically, it is in the form of fine particles, and the shape is preferably, for example, spherical or elliptical. As an average particle diameter in case the said positive electrode active material is microparticles | fine-particles, it is preferable to exist in the range of 0.1 micrometer-50 micrometers, for example.

本実施態様において、上記正極活物質の形状、平均粒径は電子顕微鏡を用いた画像解析に基づいて測定された値を用いることができる。   In the present embodiment, values measured based on image analysis using an electron microscope can be used as the shape and average particle diameter of the positive electrode active material.

上記Li含有硫酸塩被覆酸化物系正極活物質の製造方法としては、上記酸化物系正極活物質表面にLi含有硫酸塩を形成することができる方法であれば、特に限定されるものではない。例えば、Li含有硫酸塩を水に溶解させて水溶液を得る。次に、この水溶液を、転動流動層を用いたコート装置により、酸化物系正極活物質表面に塗布する。次に、温風で乾燥させて粉末を得る。さらに、この粉末を大気中で熱処理することにより、Li含有硫酸塩被覆酸化物系正極活物質を得ることができる。   The method for producing the Li-containing sulfate-coated oxide-based positive electrode active material is not particularly limited as long as it is a method capable of forming a Li-containing sulfate on the surface of the oxide-based positive electrode active material. For example, Li-containing sulfate is dissolved in water to obtain an aqueous solution. Next, this aqueous solution is applied to the surface of the oxide positive electrode active material by a coating apparatus using a rolling fluidized bed. Next, it is dried with warm air to obtain a powder. Furthermore, a Li-containing sulfate-coated oxide-based positive electrode active material can be obtained by heat-treating this powder in the air.

(2)硫化物系固体電解質材料
本発明に用いられる硫化物系固体電解質材料としては、具体的にはLi、A、Sからなる硫化物系固体電解質材料(Li−A−S)を挙げることができる。上記硫化物系固体電解質材料Li−A−S中のAは、P、Ge、B、Si、およびIからなる群より選ばれる少なくとも一種である。このような硫化物系固体電解質材料Li−A−Sとしては、具体的にはLi11、70LiS−30P、LiGe0.250.75、80LiS−20P、LiS−SiS等を挙げることができ、イオン伝導度が高いことから、特にLi11が好ましい。
(2) Sulfide-based solid electrolyte material Specific examples of the sulfide-based solid electrolyte material used in the present invention include a sulfide-based solid electrolyte material (Li-AS) composed of Li, A, and S. Can do. A in the sulfide-based solid electrolyte material Li-AS is at least one selected from the group consisting of P, Ge, B, Si, and I. As such a sulfide-based solid electrolyte material Li-AS, specifically, Li 7 P 3 S 11 , 70Li 2 S-30P 2 S 5 , LiGe 0.25 P 0.75 S 4 , 80Li 2 S-20P 2 S 5, Li 2 S-SiS 2 , etc. can be mentioned, because of its high ionic conductivity, especially Li 7 P 3 S 11 are preferred.

本発明に用いられる硫化物系固体電解質材料の製造方法としては、所望の硫化物系固体電解質材料を得ることができる方法であれば特に限定されるものではないが、例えば、特開2005−228570号公報に記載された方法等を挙げることができる。   The method for producing the sulfide-based solid electrolyte material used in the present invention is not particularly limited as long as it is a method capable of obtaining a desired sulfide-based solid electrolyte material. For example, JP-A-2005-228570 The method etc. which were described in gazette gazette can be mentioned.

(3)その他
本発明に用いられる正極層は、必要に応じて、その他の材料を含有していても良い。例えば、導電性を向上させるために、アセチレンブラック、ケッチェンブラック、カーボンファイバー等の導電助剤を含有していても良い。
上記正極層の膜厚としては、特に限定されるものではなく、通常の全固体リチウム二次電池に用いられる正極層の厚さと同様の厚さとすることができる。
(3) Others The positive electrode layer used in the present invention may contain other materials as necessary. For example, in order to improve electroconductivity, you may contain conductive support agents, such as acetylene black, ketjen black, and carbon fiber.
The thickness of the positive electrode layer is not particularly limited, and may be the same thickness as that of the positive electrode layer used in a normal all-solid lithium secondary battery.

2.固体電解質層
上記固体電解質層に用いられる固体電解質材料としては、一般的な全固体リチウム二次電池に用いられるものと同様のものを用いることができる。例えば硫化物系固体電解質、チオリシコン、酸化物系固体電解質、塩化物系固体電解質、フッ化物系固体電解質等を挙げることができる。
2. Solid Electrolyte Layer As the solid electrolyte material used for the solid electrolyte layer, the same materials as those used for a general all solid lithium secondary battery can be used. For example, a sulfide-based solid electrolyte, thiolithicone, an oxide-based solid electrolyte, a chloride-based solid electrolyte, a fluoride-based solid electrolyte, and the like can be given.

上記固体電解質層の膜厚としては、特に限定されるものではなく、通常の全固体リチウム二次電池に用いられる固体電解質層の厚さと同様の厚さのものを用いることができる。   The film thickness of the solid electrolyte layer is not particularly limited, and a film having the same thickness as that of a solid electrolyte layer used in a normal all-solid lithium secondary battery can be used.

3.負極層
上記負極層に用いられる負極材料としては、一般的な全固体リチウム二次電池に用いられる材料と同様のものを使用することができる。例えば、負極としての機能を有する金属箔等の負極材料のみからなるもの、負極活物質と固体電解質材料とを混合して負極用合剤としたもの等を挙げることができる。また、必要に応じて、導電性を向上させるために、アセチレンブラック、ケッチェンブラック、カーボンファイバー等の導電助剤を含有していても良い。
3. Negative electrode layer As a negative electrode material used for the said negative electrode layer, the material similar to the material used for a general all-solid-state lithium secondary battery can be used. Examples thereof include those made only of a negative electrode material such as a metal foil having a function as a negative electrode, and those obtained by mixing a negative electrode active material and a solid electrolyte material into a mixture for a negative electrode. Moreover, in order to improve electroconductivity as needed, you may contain conductive support agents, such as acetylene black, ketjen black, and carbon fiber.

上記負極層の膜厚としては、特に限定されるものではなく、通常の全固体リチウム二次電池に用いられる負極層の厚さと同様の厚さのものを用いることができる。   The film thickness of the negative electrode layer is not particularly limited, and a film having a thickness similar to that of the negative electrode layer used in a normal all solid lithium secondary battery can be used.

4.その他の構成
上記全固体リチウム二次電池において、上述した正極層、固体電解質層、および負極層以外の構成、例えば正極集電体、負極集電体および電池ケース等その他の構成について、以下詳細に説明する。
4). Other Configurations In the all-solid lithium secondary battery, configurations other than the positive electrode layer, the solid electrolyte layer, and the negative electrode layer described above, for example, other configurations such as a positive electrode current collector, a negative electrode current collector, and a battery case are described in detail below. explain.

(1)正極集電体
本発明に用いられる正極集電体は、上記正極層の集電を行うものである。上記正極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えばSUS、アルミニウム、ニッケル、鉄、チタン、およびカーボン等を挙げることができ、中でもSUSが好ましい。さらに、上記正極集電体は、緻密質集電体であっても良く、多孔質集電体であっても良い。
(1) Positive electrode current collector The positive electrode current collector used in the present invention collects current from the positive electrode layer. The material of the positive electrode current collector is not particularly limited as long as it has conductivity, and examples thereof include SUS, aluminum, nickel, iron, titanium, and carbon. preferable. Furthermore, the positive electrode current collector may be a dense current collector or a porous current collector.

(2)負極集電体
本発明に用いられる負極集電体は、上記負極層の集電を行うものである。上記負極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えばSUS、銅、ニッケル、およびカーボン等を挙げることができ、中でもSUSが好ましい。さらに、上記負極集電体は、緻密質集電体であっても良く、多孔質集電体であっても良い。
(2) Negative electrode current collector The negative electrode current collector used in the present invention collects the current from the negative electrode layer. The material for the negative electrode current collector is not particularly limited as long as it has conductivity, and examples thereof include SUS, copper, nickel, and carbon. Among them, SUS is preferable. Furthermore, the negative electrode current collector may be a dense current collector or a porous current collector.

(3)その他の構成
上述した部材以外のその他の構成、例えば、電池ケース、コイン型電池ケース等の封止に用いられる樹脂等について説明する。
上記電池ケース、上記樹脂等に関しては、特に限定されるものではなく、一般的な全固体リチウム二次電池と同様のものを用いることができる。
具体的には、上記電池ケースとしては、一般的には、金属製のものが用いられ、例えばステンレス製のもの等が挙げられる。また、上記電池ケースの代わりに絶縁リング等を用いても良い。また、上記電池ケースは、集電体の機能を兼ね備えたものであっても良い。具体的には、SUS(ステンレス鋼)製の電池ケースを用意し、その一部を集電体として用いる場合等を挙げることができる。また、上記樹脂としては、吸水率の低い樹脂が好ましく、例えばエポキシ樹脂等が挙げられる。
(3) Other Configurations Other configurations other than the above-described members, for example, a resin used for sealing a battery case, a coin-type battery case, and the like will be described.
The battery case, the resin, and the like are not particularly limited, and the same battery as a general all solid lithium secondary battery can be used.
Specifically, as the battery case, generally, a metal case is used, for example, a stainless steel case. Further, an insulating ring or the like may be used instead of the battery case. Further, the battery case may have a current collector function. Specifically, a case where a battery case made of SUS (stainless steel) is prepared and a part of the battery case is used as a current collector can be exemplified. Moreover, as said resin, resin with a low water absorption rate is preferable, for example, an epoxy resin etc. are mentioned.

5.その他
(1)全固体リチウム二次電池の製造方法
本発明の全固体リチウム二次電池の製造方法としては、上記の全固体リチウム二次電池を得ることができる方法であれば特に限定されるものではない。例えば、まず、固体電解質材料をプレス成形して固体電解質層を形成する固体電解質層形成工程を行う。次に、負極集電体上に負極材料を圧着等して負極層を形成して負極層形成工程を行う。
5). Others (1) Manufacturing method of all-solid lithium secondary battery The manufacturing method of the all-solid lithium secondary battery of the present invention is not particularly limited as long as it is a method capable of obtaining the all-solid lithium secondary battery. is not. For example, first, a solid electrolyte layer forming step is performed in which a solid electrolyte material is press-molded to form a solid electrolyte layer. Next, a negative electrode layer is formed on the negative electrode current collector by pressure bonding, and a negative electrode layer forming step is performed.

次に、上記Li含有硫酸塩被覆酸化物系正極活物質と硫化物系固体電解質材料とを混合して正極形成用材料を得る正極形成用材料形成工程を行う。ここで、上記正極形成用材料形成工程は、少なくとも上記Li含有硫酸塩被覆酸化物系正極活物質と硫化物系固体電解質材料とを均一に混合することができる工程であれば、特に限定されるものではないが、通常、上記Li含有硫酸塩が、上記酸化物系正極活物質表面に被覆された状態を維持可能な程度に混合を行うことが好ましい。
次に、正極集電体上に、上記Li含有硫酸塩被覆酸化物系正極活物質と硫化物系固体電解質材料とを混合して得られた上記正極形成用材料を設置した後プレス成形して正極層を形成する正極層形成工程を行う。次に、上記固体電解質層上に、上記負極層を設置し、さらに、上記固体電解質層を上記負極層と挟持するように上記正極層を設置する。さらに、これを例えばコイン型の電池ケース中に設置した後、樹脂パッキンにより封止することにより電池セルを形成する電池セル形成工程を行うことにより、上述した所望の全固体リチウム二次電池を得る方法等を挙げることができる。
なお、上記固体電解質層形成工程、上記負極層形成工程、上記正極形成用材料形成工程、上記正極層形成工程、上記電池セル形成工程は、上述した所望の全固体リチウム二次電池を得ることができれば、各工程を同時に行ったり、各工程の順番を変更したりするなどしても良い。また、上述した所望の全固体リチウム二次電池を得ることができれば、上述した工程以外のその他工程を有していても良い。
Next, a positive electrode forming material forming step of obtaining the positive electrode forming material by mixing the Li-containing sulfate-coated oxide positive electrode active material and the sulfide solid electrolyte material is performed. Here, the positive electrode-forming material forming step is particularly limited as long as at least the Li-containing sulfate-coated oxide-based positive electrode active material and the sulfide-based solid electrolyte material can be mixed uniformly. Although it is not a thing, normally, it is preferable to mix so that the said Li containing sulfate can maintain the state coat | covered on the said oxide type positive electrode active material surface.
Next, the positive electrode material obtained by mixing the Li-containing sulfate-coated oxide positive electrode active material and the sulfide solid electrolyte material is placed on the positive electrode current collector, and then press-molded. A positive electrode layer forming step for forming a positive electrode layer is performed. Next, the negative electrode layer is disposed on the solid electrolyte layer, and the positive electrode layer is disposed so as to sandwich the solid electrolyte layer with the negative electrode layer. Furthermore, after installing this in, for example, a coin-type battery case, the desired all-solid lithium secondary battery described above is obtained by performing a battery cell forming step of forming a battery cell by sealing with a resin packing. The method etc. can be mentioned.
In addition, the said solid electrolyte layer formation process, the said negative electrode layer formation process, the said positive electrode formation material formation process, the said positive electrode layer formation process, and the said battery cell formation process can obtain the desired all-solid lithium secondary battery mentioned above. If possible, each step may be performed simultaneously or the order of each step may be changed. Moreover, as long as the desired all-solid lithium secondary battery described above can be obtained, other processes other than the processes described above may be included.

(2)用途
本発明の全固体リチウム二次電池の用途としては、特に限定されるものではないが、例えば、自動車用の全固体リチウム二次電池等として、用いることができる。
(2) Use Although it does not specifically limit as a use of the all-solid-state lithium secondary battery of this invention, For example, it can use as an all-solid-state lithium secondary battery for motor vehicles, etc.

(3)形状
本発明の全固体リチウム二次電池の形状は、コイン型、ラミネート型、円筒型、角型等を挙げることができ、中でも角型、ラミネート型が好ましく、特にラミネート型が好ましい。
(3) Shape Examples of the shape of the all solid lithium secondary battery of the present invention include a coin shape, a laminate shape, a cylindrical shape, and a square shape, among which a square shape and a laminate shape are preferable, and a laminate type is particularly preferable.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

以下に実施例を示して本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

[実施例1]
(Li含有硫酸塩被覆酸化物系正極活物質形成)
LiSOを水に溶解させて、LiSO水溶液を調製した。次に、LiSO水溶液を、転動流動層を用いたコート装置により、酸化物系正極活物質(LiCoO)表面に、LiSOの量が酸化物系正極活物質の量の0.29wt%となるように塗布し、給気温度75℃の温風で乾燥させて、粉末を得た。次に、この粉末を大気中、500℃で、10時間熱処理することにより、Li含有硫酸塩被覆酸化物系正極活物質(LiSO被覆LiCoO)を得た。
(電池セル形成)
Li含有硫酸塩被覆酸化物系正極活物質形成で得られたLi含有硫酸塩被覆酸化物系正極活物質と特開2005−228570号公報に記載された方法と同様の方法で形成した硫化物系固体電解質Li11とを、重量比でLi含有硫酸塩被覆酸化物系正極活物質:硫化物系固体電解質Li11=7:3となるように混合し正極用形成用材料とした。
この正極形成用材料を、成形冶具中に挿入して、プレス成形して、正極層を形成した。
次に、硫化物系固体電解質Li11粉末を、成形冶具中に挿入して、プレス成形して、硫化物系固体電解質層を形成した。
次に、硫化物系固体電解質層を正極層と、In箔負極層とで挟持して電池セルとした。
[Example 1]
(Formation of Li-containing sulfate-coated oxide-based positive electrode active material)
Li 2 SO 4 was dissolved in water to prepare a Li 2 SO 4 aqueous solution. Next, the Li 2 SO 4 aqueous solution is applied to the surface of the oxide positive electrode active material (LiCoO 2 ) by a coating apparatus using a rolling fluidized bed, and the amount of Li 2 SO 4 is the amount of the oxide positive electrode active material. It apply | coated so that it might become 0.29 wt%, and it was made to dry with the warm air of 75 degreeC of supply air temperature, and obtained the powder. Next, this powder was heat-treated in the atmosphere at 500 ° C. for 10 hours to obtain a Li-containing sulfate-coated oxide-based positive electrode active material (Li 2 SO 4 -coated LiCoO 2 ).
(Battery cell formation)
Li-containing sulfate-coated oxide-based positive electrode active material obtained by forming a Li-containing sulfate-coated oxide-based positive electrode active material and a sulfide system formed by a method similar to the method described in JP-A-2005-228570 Solid electrolyte Li 7 P 3 S 11 is mixed with Li-containing sulfate-coated oxide-based positive electrode active material: sulfide-based solid electrolyte Li 7 P 3 S 11 = 7: 3 by weight ratio to form a positive electrode The material was used.
This positive electrode forming material was inserted into a forming jig and press-molded to form a positive electrode layer.
Next, the sulfide-based solid electrolyte Li 7 P 3 S 11 powder was inserted into a forming jig and press-molded to form a sulfide-based solid electrolyte layer.
Next, the sulfide-based solid electrolyte layer was sandwiched between the positive electrode layer and the In foil negative electrode layer to form a battery cell.

[実施例2]
LiSOの量を、酸化物系正極活物質の量の1.2wt%とした以外は、実施例1と同様にして電池セルを形成した。
[Example 2]
A battery cell was formed in the same manner as in Example 1 except that the amount of Li 2 SO 4 was 1.2 wt% of the amount of the oxide-based positive electrode active material.

[比較例1]
LiSOによる被覆を行わず、LiCoOを用いて正極層を形成した以外は、実施例1と同様にして電池セルを形成した。
[Comparative Example 1]
A battery cell was formed in the same manner as in Example 1 except that the coating with Li 2 SO 4 was not performed and the positive electrode layer was formed using LiCoO 2 .

[評価]
(SEM写真観察)
実施例1および比較例と同様の方法で形成したLi含有硫酸塩被覆酸化物系正極活物質をSEMにより観察した。得られたSEM写真を図2(実施例1)および図3(比較例)に示す。
[Evaluation]
(SEM photo observation)
The Li-containing sulfate-coated oxide-based positive electrode active material formed by the same method as in Example 1 and Comparative Example was observed by SEM. The obtained SEM photographs are shown in FIG. 2 (Example 1) and FIG. 3 (Comparative example).

(XPS分析)
XPSを用いて、実施例1、実施例2および比較例と同様の方法で形成したLi含有硫酸塩被覆酸化物系正極活物質の表面の元素分析を行った。図4に、実施例2のS(硫黄)元素量を100とした場合のS元素比をLiSOの量に対してプロットしたグラフを示す。
(XPS analysis)
Using XPS, elemental analysis of the surface of the Li-containing sulfate-coated oxide-based positive electrode active material formed by the same method as in Example 1, Example 2, and Comparative Example was performed. FIG. 4 shows a graph plotting the S element ratio with respect to the amount of Li 2 SO 4 when the amount of S (sulfur) element of Example 2 is 100.

(界面抵抗測定)
実施例1、実施例2および比較例で得られた電池セルを用いて、充電し、インピーダンス測定により、正極活物質/硫化物系固体電解質材料間の界面抵抗を求めた。実施例1、実施例2、および比較例の界面抵抗をLi含有硫酸塩のコート厚に対してプロットしたグラフを図5に示す。なお、Li含有硫酸塩のコート厚は、酸化物系正極活物質の比表面積、Li含有硫酸塩の量、およびLi含有硫酸塩の密度から導出した。
(Interface resistance measurement)
The battery cells obtained in Example 1, Example 2, and Comparative Example were charged, and the interfacial resistance between the positive electrode active material / sulfide-based solid electrolyte material was determined by impedance measurement. FIG. 5 shows a graph in which the interfacial resistances of Example 1, Example 2, and Comparative Example are plotted against the Li-containing sulfate coating thickness. The coating thickness of the Li-containing sulfate was derived from the specific surface area of the oxide-based positive electrode active material, the amount of the Li-containing sulfate, and the density of the Li-containing sulfate.

図2のSEM写真に示されるように、実施例1においては、酸化物系正極活物質表面にLiSOが形成されていた。一方、図3のSEM写真に示されるように、比較例においては、酸化物系正極活物質表面に、LiSOが形成されていないことが確認された。また、図4に示すように、LiSOの量を増加させるにつれて、Li含有硫酸塩被覆酸化物系正極活物質の表面のS元素比は増加した。これらのことから、実施例においては、酸化物系正極活物質の表面をLiSOで被覆できていることが確認された。 As shown in the SEM photograph of FIG. 2, in Example 1, Li 2 SO 4 was formed on the surface of the oxide-based positive electrode active material. On the other hand, as shown in the SEM photograph of FIG. 3, in the comparative example, it was confirmed that Li 2 SO 4 was not formed on the surface of the oxide-based positive electrode active material. Moreover, as shown in FIG. 4, the S element ratio on the surface of the Li-containing sulfate-coated oxide-based positive electrode active material increased as the amount of Li 2 SO 4 was increased. From these results, it was confirmed that the surface of the oxide-based positive electrode active material could be covered with Li 2 SO 4 in the examples.

また、図5に示すように、界面抵抗は、比較例において1500Ω程度と最も高く、実施例1および実施例2においては500〜700Ω程度と比較例に比べて低い値となり、LiSOを酸化物系正極活物質表面に被覆することにより、界面抵抗を低減することができた。また、実施例1よりもLiSOのコート厚さを厚くした実施例2の界面抵抗は、実施例1よりも上昇するが、比較例に比べて充分小さい値であった。 Further, as shown in FIG. 5, the interfacial resistance is the highest at about 1500Ω in the comparative example, and is about 500 to 700Ω in Example 1 and Example 2, which is lower than the comparative example, and Li 2 SO 4 is Interfacial resistance could be reduced by covering the surface of the oxide-based positive electrode active material. Further, the interface resistance of Example 2 in which the Li 2 SO 4 coat thickness was made thicker than that of Example 1 was higher than that of Example 1, but was sufficiently smaller than that of Comparative Example.

以上の結果から、実施例においては、酸化物系正極活物質表面にLi含有硫酸塩が形成されているため、正極層において、硫化物系固体電解質材料中の硫黄と酸化物中の酸素との反応による高抵抗層の形成を抑制することが可能となり、リチウムイオン伝導に対する抵抗が小さく、出力に優れた全固体リチウム二次電池とすることができた。   From the above results, in the examples, since the Li-containing sulfate is formed on the surface of the oxide-based positive electrode active material, in the positive electrode layer, sulfur in the sulfide-based solid electrolyte material and oxygen in the oxide are It was possible to suppress the formation of a high resistance layer by reaction, and the resistance to lithium ion conduction was small, and an all-solid lithium secondary battery excellent in output could be obtained.

本発明の全固体リチウム二次電池の一例を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically an example of the all-solid-state lithium secondary battery of this invention. 実施例1と同様の方法で形成したLi含有硫酸塩被覆酸化物系正極活物質のSEM写真である。4 is a SEM photograph of a Li-containing sulfate-coated oxide-based positive electrode active material formed by the same method as in Example 1. 比較例と同様の方法で形成したLi含有硫酸塩被覆酸化物系正極活物質のSEM写真である。It is a SEM photograph of Li containing sulfate covering oxide system cathode active material formed by the same method as a comparative example. Li含有硫酸塩被覆酸化物系正極活物質の表面のS元素比をLiSOの量に対してプロットしたグラフである。The S element ratio of the surface of the Li-containing sulfate-coated oxide-based positive electrode active material is a graph plotting the amount of Li 2 SO 4. 正極活物質/硫化物系固体電解質材料間の界面抵抗をLiSOのコート厚に対してプロットしたグラフである。Is a graph plotting against coating thickness of Li 2 SO 4 the interfacial resistance between the positive electrode active material / the sulfide-based solid electrolyte material.

符号の説明Explanation of symbols

1 … 正極層
2 … 固体電解質層
3 … 負極層
4 … 正極集電体
5 … 負極集電体
6 … 電池ケース
DESCRIPTION OF SYMBOLS 1 ... Positive electrode layer 2 ... Solid electrolyte layer 3 ... Negative electrode layer 4 ... Positive electrode collector 5 ... Negative electrode collector 6 ... Battery case

Claims (2)

正極層、固体電解質層、および負極層を有する全固体リチウム二次電池であって、前記正極層が、酸化物系正極活物質表面にLi含有硫酸塩が形成されたLi含有硫酸塩被覆酸化物系正極活物質と、硫化物系固体電解質材料とを含有することを特徴とする全固体リチウム二次電池。   An all-solid lithium secondary battery having a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, wherein the positive electrode layer is a Li-containing sulfate-coated oxide in which a Li-containing sulfate is formed on the surface of an oxide-based positive electrode active material All-solid-state lithium secondary battery characterized by containing a positive electrode active material and a sulfide type solid electrolyte material. 前記Li含有硫酸塩がLiSOであることを特徴とする請求項1に記載の全固体リチウム二次電池。 The all-solid-state lithium secondary battery according to claim 1, wherein the Li-containing sulfate is Li 2 SO 4 .
JP2008245433A 2008-09-25 2008-09-25 All-solid lithium secondary battery Active JP5157781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008245433A JP5157781B2 (en) 2008-09-25 2008-09-25 All-solid lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245433A JP5157781B2 (en) 2008-09-25 2008-09-25 All-solid lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2010080168A true JP2010080168A (en) 2010-04-08
JP5157781B2 JP5157781B2 (en) 2013-03-06

Family

ID=42210374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245433A Active JP5157781B2 (en) 2008-09-25 2008-09-25 All-solid lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5157781B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142268A (en) * 2010-12-17 2012-07-26 Toyota Motor Corp Secondary battery
JP2013033655A (en) * 2011-08-02 2013-02-14 Ngk Spark Plug Co Ltd All-solid battery, and method for manufacturing all-solid battery
WO2013021955A1 (en) * 2011-08-05 2013-02-14 旭硝子株式会社 Positive electrode active material for lithium-ion secondary battery
WO2013073038A1 (en) * 2011-11-17 2013-05-23 トヨタ自動車株式会社 Electrolyte-coated positive electrode active material particles, all-solid-state battery, and production method for electrolyte-coated positive electrode active material particles
EP2609652A2 (en) 2010-08-26 2013-07-03 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, cathode body and lithium solid state battery
CN103718369A (en) * 2011-08-02 2014-04-09 丰田自动车株式会社 Solid secondary battery and battery system
US8968939B2 (en) 2009-05-01 2015-03-03 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material
JPWO2017169599A1 (en) * 2016-03-31 2019-02-14 公立大学法人大阪府立大学 Amorphous oxide-based positive electrode active material, production method thereof and use thereof
EP3828140A1 (en) * 2019-11-26 2021-06-02 POSCO Chemical Co., Ltd Positive active material for rechargeable lithium ion battery, preparing method of the same, and rechargeable lithium ion battery comprising the same
EP4080606A1 (en) * 2021-04-22 2022-10-26 SK Innovation Co., Ltd. Cathode active material for lithium secondary battery and lithium secondary battery including the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052733A (en) * 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd Entirely solid lithium secondary battery
JP2003338321A (en) * 2002-05-20 2003-11-28 Central Res Inst Of Electric Power Ind Secondary battery
JP2006073482A (en) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and its manufacturing method
JP2006318815A (en) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium ion battery, battery using same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery
WO2007004590A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science All-solid lithium battery
JP2008027581A (en) * 2006-06-23 2008-02-07 Idemitsu Kosan Co Ltd Electrode material, electrode, and all-solid secondary battery
JP2008120666A (en) * 2006-10-17 2008-05-29 Idemitsu Kosan Co Ltd Glass ceramic and method of manufacturing the same
JP2008135287A (en) * 2006-11-28 2008-06-12 Idemitsu Kosan Co Ltd All-solid battery member and manufacturing method of the member, and all-solid battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052733A (en) * 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd Entirely solid lithium secondary battery
JP2003338321A (en) * 2002-05-20 2003-11-28 Central Res Inst Of Electric Power Ind Secondary battery
JP2006073482A (en) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and its manufacturing method
JP2006318815A (en) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium ion battery, battery using same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery
WO2007004590A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science All-solid lithium battery
JP2008027581A (en) * 2006-06-23 2008-02-07 Idemitsu Kosan Co Ltd Electrode material, electrode, and all-solid secondary battery
JP2008120666A (en) * 2006-10-17 2008-05-29 Idemitsu Kosan Co Ltd Glass ceramic and method of manufacturing the same
JP2008135287A (en) * 2006-11-28 2008-06-12 Idemitsu Kosan Co Ltd All-solid battery member and manufacturing method of the member, and all-solid battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968939B2 (en) 2009-05-01 2015-03-03 Toyota Jidosha Kabushiki Kaisha Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material
US9680179B2 (en) 2010-08-26 2017-06-13 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, cathode body and lithium solid state battery
EP2609652B1 (en) * 2010-08-26 2015-06-24 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, cathode body and lithium solid state battery
EP2609652A2 (en) 2010-08-26 2013-07-03 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, cathode body and lithium solid state battery
JP2012142268A (en) * 2010-12-17 2012-07-26 Toyota Motor Corp Secondary battery
CN103718369A (en) * 2011-08-02 2014-04-09 丰田自动车株式会社 Solid secondary battery and battery system
JP2013033655A (en) * 2011-08-02 2013-02-14 Ngk Spark Plug Co Ltd All-solid battery, and method for manufacturing all-solid battery
US20140159675A1 (en) * 2011-08-02 2014-06-12 Toyota Jidosha Kabushiki Kaisha Solid secondary battery and battery system
US10135064B2 (en) 2011-08-05 2018-11-20 Sumitomo Chemical Co., Ltd. Cathode active material for lithium ion secondary battery
EP2741354A4 (en) * 2011-08-05 2015-03-11 Asahi Glass Co Ltd Positive electrode active material for lithium-ion secondary battery
WO2013021955A1 (en) * 2011-08-05 2013-02-14 旭硝子株式会社 Positive electrode active material for lithium-ion secondary battery
JPWO2013021955A1 (en) * 2011-08-05 2015-03-05 旭硝子株式会社 Positive electrode active material for lithium ion secondary battery
WO2013073038A1 (en) * 2011-11-17 2013-05-23 トヨタ自動車株式会社 Electrolyte-coated positive electrode active material particles, all-solid-state battery, and production method for electrolyte-coated positive electrode active material particles
JPWO2017169599A1 (en) * 2016-03-31 2019-02-14 公立大学法人大阪府立大学 Amorphous oxide-based positive electrode active material, production method thereof and use thereof
EP3828140A1 (en) * 2019-11-26 2021-06-02 POSCO Chemical Co., Ltd Positive active material for rechargeable lithium ion battery, preparing method of the same, and rechargeable lithium ion battery comprising the same
JP2021086834A (en) * 2019-11-26 2021-06-03 ポスコ ケミカル カンパニー リミテッド Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
CN112939036A (en) * 2019-11-26 2021-06-11 浦项化学有限公司 Anode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
JP7386148B2 (en) 2019-11-26 2023-11-24 ポスコ ケミカル カンパニー リミテッド Positive electrode active material for lithium secondary batteries, method for producing the same, and lithium secondary batteries containing the same
EP4080606A1 (en) * 2021-04-22 2022-10-26 SK Innovation Co., Ltd. Cathode active material for lithium secondary battery and lithium secondary battery including the same
US11637279B2 (en) 2021-04-22 2023-04-25 Sk On Co., Ltd. Cathode active material for lithium secondary battery and lithium secondary battery including the same

Also Published As

Publication number Publication date
JP5157781B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5157781B2 (en) All-solid lithium secondary battery
CN110797567B (en) All-solid-state battery and method for manufacturing same
JP5737415B2 (en) All-solid battery and method for manufacturing the same
JP4849093B2 (en) Resistive layer formation inhibiting coating layer coated positive electrode active material and all solid lithium secondary battery using the same
JP5691401B2 (en) Sulfide solid electrolyte particles
JP5195975B2 (en) All-solid battery and method for manufacturing the same
JP6323475B2 (en) Composite active material, solid battery, and method for producing composite active material
WO2013022034A1 (en) Composite positive electrode active substance, all-solid-state cell, and method for producing composite positive electrode active substance
JP4518125B2 (en) Positive electrode active material and lithium secondary battery
JP6149657B2 (en) All solid battery
KR20160150118A (en) Composite active material, solid-state battery and method for producing composite active material
JP7269571B2 (en) Method for manufacturing all-solid-state battery
KR101685799B1 (en) Method for manufacturing electrodes for all-solid battery and method for manufacturing all-solid battery
TWI672842B (en) Lithium ion secondary battery and method of producing the same
CN112670563B (en) Solid electrolyte material, preparation method thereof and solid battery
JP2009193803A (en) All-solid lithium secondary battery
JP2008251480A (en) Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous secondary battery using it
JP2015065029A (en) All-solid battery
JP5141805B1 (en) Solid secondary battery and battery system
JP2016058335A (en) All-solid battery, manufacturing method thereof, and method for recovering capacity
JP6295966B2 (en) All solid battery
CN109155435B (en) Solid electrolyte, all-solid-state battery
CN109192933A (en) A kind of preparation method and applications of titanium phosphate lithium cladding ternary material
JP2017098181A (en) All-solid-state battery
JP2020194739A (en) Lithium ion secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R151 Written notification of patent or utility model registration

Ref document number: 5157781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3