JP2010078385A - 放射線画像検出装置 - Google Patents

放射線画像検出装置 Download PDF

Info

Publication number
JP2010078385A
JP2010078385A JP2008245071A JP2008245071A JP2010078385A JP 2010078385 A JP2010078385 A JP 2010078385A JP 2008245071 A JP2008245071 A JP 2008245071A JP 2008245071 A JP2008245071 A JP 2008245071A JP 2010078385 A JP2010078385 A JP 2010078385A
Authority
JP
Japan
Prior art keywords
substrate
radiation
light
state detector
solid state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008245071A
Other languages
English (en)
Inventor
Shoji Nariyuki
書史 成行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008245071A priority Critical patent/JP2010078385A/ja
Publication of JP2010078385A publication Critical patent/JP2010078385A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】放射線画像検出装置の基板および拡散反射板の着色を低減して、良好な感度を得られるものとする。
【解決手段】基板11上に、照射された放射線を画像信号に変換する光導電層13と、光導電層13で変換された画像信号を検出する複数の2次元状に配列された半導体検出素子18とが積層された固体検出器2と、固体検出器2の基板11側に設けられた拡散反射板と、この拡散反射板に光を照射する光照射機構とからなり、拡散反射板は光照射機構から照射された光を拡散反射して固体検出器2に対し基板11側から照射するものであり、光導電層13に対し基板11側から放射線が照射される放射線画像検出装置であって、基板11と拡散反射板がガラスからなり、このガラスのアルミニウム含有量が5質量%以上であって、かつバリウム含有量が0.1質量%以下とする。
【選択図】図2

Description

本発明は、X線などの放射線撮像装置に適用して好適な放射線画像検出装置に関し、詳しくは、光照射機構が設けられてなる放射線画像検出装置に関するものである。
今日、医療診断等を目的とするX線撮影等の放射線撮影において、放射線画像情報記録手段として放射線固体検出器(半導体を主要部とするもの)を用いて、この固体検出器により被写体を透過した放射線を検出して被写体に関する放射線画像を表す画像信号を得る放射線画像検出装置が各種提案、実用化されている。
この装置に使用される固体検出器としても、種々の方式が提案されている。例えば、放射線を電荷に変換する電荷生成プロセスの面からは、放射線が照射されることにより蛍光体から発せられた蛍光を光導電層で検出して得た信号電荷として蓄電部に一旦蓄積し、蓄積電荷を画像信号(電気信号)に変換して出力する間接変換方式の固体検出器、或いは、放射線が照射されることにより光導電層内で発生した信号電荷を電荷収集電極で集めて蓄電部に一旦蓄積し、蓄積電荷を電気信号に変換して出力する直接変換方式の固体検出器等がある。
一方、蓄積された電荷を外部に読み出す電荷読出プロセスの面からは、読取光(読取用の電磁波)を検出器に照射して読み出す光読出方式のものや、蓄電部と接続されたTFT(薄膜トランジスタ:thin film transistor)、CCD(電荷結合素子:charge coupled device)、あるいはCMOS(相補的金属酸化物半導体:comprementary metal oxide semiconductor)センサ等を走査駆動して読み出す電気読出方式のもの等がある。
上記のうち、間接変換方式とTFT読出方式を組み合わせた放射線画像検出装置は、放射線を光に一旦変換するためのシンチレータと、このシンチレータにより変換された可視光を検出して放射線画像を表す電気信号に変換する固体検出器とからなり、放射線画像検出装置をシンチレータが放射線入射側の面を向くように配置し、放射線画像検出装置に被写体を透過した放射線を照射することにより、放射線がシンチレータに直接入射して可視光に変換され、この変換された可視光が固体検出器により検出されて放射線画像情報を担持する画像信号に光電変換されるものである。
TFT読出方式の固体検出器を有する放射線画像検出装置においては、画素毎に分割された電荷収集電極間のスペースには電荷が吐き出される電極などが設けられていないため、放射線の照射によって発生した電荷がそのスペースに溜まりやすい。その結果、バイアス電極の印加によって光導電層内に形成される電界が歪んでしまい、光導電層における有感面積が変化し、感度が変動するという問題が発生する。また、放射線の入射が停止した後、電荷信号の読み出しの際、電荷収集電極間のスペースの領域に溜まった電荷が徐々に掃き出され、残像として出力されて残像(ラグ)特性が劣化するという問題がある。
そこで、固体検出器の基板側から光を照射する光照射機構(バックライトを照射する光源)を設けた放射線画像検出装置が提案されている(たとえば、特許文献1)。これは、放射線画像検出装置への放射線の照射中に上記光照射機構によって放射線画像検出装置に光を照射することにより、予め電荷収集電極間のスペースに電荷を蓄積しておくことができ、これにより光導電層に形成される電界を予め歪ませておくことができるものである。これによって、放射線の照射によって発生した電荷は上記スペースに溜まることなく、予め歪まされた電界に沿って移動し、電荷収集電極に収集される。つまり、上述したような光導電層の有感面積の変動を抑制することができ、感度変動を抑制することができる。また、放射線が停止した後も光照射機構からの光の照射を続けることにより、電荷収集電極間のスペースの領域に溜まった電荷が徐々に掃き出されて残像出力となるのを防止することができる。そして、特許文献1においては、光照射機構からの光照射をさらに効率的に利用するために、光照射機構からの光を固体検出器内で拡散反射させる拡散反射板が設けられている。
一般にTFT基板は、TFTの製造プロセスでNaが溶けだすとTFTの機能が低下することから、無アルカリガラスが用いられる。しかし、この無アルカリガラスは重元素を含有し、その中でも特に含有量の多いバリウムは放射線を吸収するため、ガラス基板が着色する原因となる。光照射機構を設けた放射線画像検出装置においては、ガラス基板が着色すると、光照射機構からの照射光の透過率が低下し、残存電荷の除去効果が低減する。このことは、光照射機構からの光を効率的に利用するために設けられている拡散反射板においても同様である。
ところで、特許文献2には、固体検出器における可視光の検出効率を高め、得られた放射線画像の画質を向上させるために、固体検出器側が放射線入射側の面を向くように配置し、シンチレータと反対側から放射線を照射する放射線画像検出装置が記載されている。
従って、放射線画像検出装置において残像特性を向上させながら、固体検出器における可視光の検出効率を高めるためには、光照射機構や拡散反射板を設けるとともに、固体検出器側から放射線を照射する構成とすることが好ましい。
特表平11−513221号公報 特許3333278号公報
しかし、固体検出器側から放射線を照射する放射線画像検出装置と、上記の光照射機構を組合せた放射線画像検出装置の場合には、固体検出器の基板および拡散反射板への放射線照射量が大きくなるため、前述の着色の問題がより大きくなる。
本発明は上記事情に鑑みなされたものであり、固体検出器の基板および拡散反射板の着色を低減して残像特性を向上させながら、同時に可視光の検出効率を高めることが可能な放射線画像検出装置を提供することを目的とするものである。
第一の態様として、本発明の放射線画像検出装置は、基板上に、照射された放射線を画像信号に変換する光導電層と、該光導電層で変換された前記画像信号を検出する複数の2次元状に配列された半導体検出素子とが積層された固体検出器と、該固体検出器の基板側に設けられた拡散反射板と、該拡散反射板に光を照射する光照射機構とからなり、前記拡散反射板は前記光照射機構から照射された光を拡散反射して前記固体検出器に対し前記基板側から照射するものであり、前記光導電層に対し前記基板側から放射線が照射される放射線画像検出装置であって、前記基板と前記拡散反射板がガラスからなり、該ガラスのアルミニウム含有量が5質量%以上であって、かつバリウム含有量が0.1質量%以下であることを特徴とするものである。
第二の態様として、本発明の放射線画像検出装置は、基板上に、照射された放射線を画像信号に変換する光導電層と、該光導電層で変換された前記画像信号を検出する複数の2次元状に配列された半導体検出素子とが積層された固体検出器と、該固体検出器の基板側に設けられた拡散反射板と、該拡散反射板に光を照射する光照射機構とからなり、前記拡散反射板は前記光照射機構から照射された光を拡散反射して前記固体検出器に対し前記基板側から照射するものであり、前記光導電層に対し前記基板側から放射線が照射される放射線画像検出装置であって、前記基板がガラスからなり、該ガラスのアルミニウム含有量が5質量%以上であって、かつバリウム含有量が0.1質量%以下であり、前記拡散反射板が高分子樹脂からなることを特徴とするものである。
第三の態様として、本発明の放射線画像検出装置は、基板上に、照射された放射線を画像信号に変換する光導電層と、該光導電層で変換された前記画像信号を検出する複数の2次元状に配列された半導体検出素子とが積層された固体検出器と、該固体検出器の基板側に設けられた拡散反射板と、該拡散反射板に光を照射する光照射機構とからなり、前記拡散反射板は前記光照射機構から照射された光を拡散反射して前記固体検出器に対し前記基板側から照射するものであり、前記光導電層に対し前記基板側から放射線が照射される放射線画像検出装置であって、前記基板が高分子樹脂からなり、前記拡散反射板がガラスからなり、該ガラスのアルミニウム含有量が5質量%以上であって、かつバリウム含有量が0.1質量%以下であることを特徴とするものである。
第四の態様として、本発明の放射線画像検出装置は、基板上に、照射された放射線を画像信号に変換する光導電層と、該光導電層で変換された前記画像信号を検出する複数の2次元状に配列された半導体検出素子とが積層された固体検出器と、該固体検出器の基板側に設けられた拡散反射板と、該拡散反射板に光を照射する光照射機構とからなり、前記拡散反射板は前記光照射機構から照射された光を拡散反射して前記固体検出器に対し前記基板側から照射するものであり、前記光導電層に対し前記基板側から放射線が照射される放射線画像検出装置であって、前記基板と前記拡散反射板が高分子樹脂からなることを特徴とするものである。
本発明の放射線画像検出装置は、基板上に、照射された放射線を画像信号に変換する光導電層と、この光導電層で変換された画像信号を検出する複数の2次元状に配列された半導体検出素子とが積層された固体検出器と、この固体検出器の基板側に設けられた拡散反射板と、この拡散反射板に光を照射する光照射機構とからなり、拡散反射板は光照射機構から照射された光を拡散反射して固体検出器に対し基板側から照射するものであり、光導電層に対し基板側から放射線が照射される放射線画像検出装置であって、基板および/または拡散反射板がガラスからなる場合、そのガラスのアルミニウム含有量が5質量%以上であって、かつバリウム含有量が0.1質量%以下とし、基板および/または拡散反射板がガラスでない場合には、高分子樹脂からなることとしたので、基板および拡散反射板の着色を低減して残像特性を向上させながら、同時に可視光の検出効率を高めることが可能である。
以下、図面を参照して本発明の放射線画像検出装置について説明する。図1は本発明の放射線画像検出装置の一実施の態様を示す概略模式図、図2は図1に示す固体検出器部分の拡大断面図である。図1に示すように放射線画像検出装置1は、固体検出器2と放射線を光に一旦変換するためのシンチレータ3とが接合層5によって接合されており、固体検出器2の基板11側に設けられた拡散反射板20と、この拡散反射板20に光を照射する光照射手段(光照射機構)4とからなり、拡散反射板20は、反射板21、導光板22、拡散板23とから構成され、拡散反射板20は光照射手段4から照射された光を拡散反射して固体検出器2に対し基板11側から照射するものである。
固体検出器2は、図2に示すように基板11の上に2次元状にパターン成形された導電膜からなる信号線12A,12Bが設けられており、光導電層13と透明電極14とからなるフォトダイオード15および半導体層16からなる薄膜トランジスタ17により半導体検出素子18が多数形成されてなるものである。
なお、この図2に示す固体検出器の構成は基板11がガラス基板である場合であり、基板が高分子樹脂の場合には固体検出器の構成が若干異なる。基板が高分子樹脂基板からなる場合の固体検出器部分の拡大断面図を図3に示す。図3に示すように、基板11が高分子樹脂基板の場合には、基板11上に酸化物活性層31、ゲート絶縁膜32、ゲート電極33、ドレイン電極34、ソース電極35、層間絶縁膜36を有し、ドレイン電極34とソース電極35はそれぞれドレイン端子41とソース端子42を介して樹脂基板11上に接合されている。層間絶縁膜36の上には平坦化膜37と有機光電変換層38とが設けられ、平坦化膜37の上には下部電極39、有機光電変換層38の上には共通上部電極40が設けられている。そして、ゲート電極33、ゲート絶縁膜32、ソース電極35、ドレイン電極34、酸化物活性層31等でもって薄膜トランジスタが構成される。
光照射手段4は、例えば中心発光波長が525nm程度の発光ダイオードを実装したもので、放射線の検出中に光を照射して、固体検出器2内の半導体検出素子18の残存電荷を除去するもので、これによって電界を安定化させることができ、感度変動や残像を抑制することが可能となる。拡散反射板20は、光照射手段4からの光をシンチレータ3と接合層5との界面で拡散するように反射するものである。
放射線画像検出装置1は固体検出器2の光導電層13に対し基板11側から放射線が照射される放射線画像検出装置であり、放射線源6より発せられた放射線7は被写体8に照射され、被写体8を透過する。被写体8を透過した放射線7は放射線画像検出装置1に照射される。放射線画像検出装置1に照射された放射線7は固体検出器2を透過し、シンチレータ3に到達する。なお、放射線7が固体検出器2を透過する際において、基板11は放射線の吸収率が低いために、放射線7はほとんど減衰されることなくシンチレータ3に到達する。
シンチレータ3は到達した放射線7の強度に応じた強度の可視光を発光し、この可視光は光導電層13により検出される。そしてこの可視光が光電変換され発光強度に応じて光導電層13内に電荷が蓄積される。その後この電荷が読み出され、電気信号としての画像信号が出力される。そして、放射線画像検出装置1への放射線7の照射中に光照射機構4から光を照射することにより、光導電層13の有感面積の変動を抑制することができ、感度変動を抑制することができる。
ここで、固体検出器の基板はアルミニウム含有量が5質量%以上であって、かつバリウム含有量が0.1質量%以下であるガラス基板(以下、所定のガラス基板ともいう)、又は高分子樹脂基板である。基板を所定のガラス基板又は高分子樹脂基板とすることによって、放射線の照射による着色を抑制することが可能となり、基板の放射線の吸収率が高くなってシンチレータに到達する放射線が減衰することによる感度低下を軽減することが可能である。
所定のガラス基板は、アルミニウム含有量が5質量%以上、好ましくは8質量%以上、さらには11質量%以上であることが好ましい。アルミニウム含有量が5質量%未満であると、耐熱性、熱的安定性、耐酸性が低くなるため好ましくない。なお、アルミニウム含有量はガラスとしての加工性の観点から20質量%以下であることが好ましい。所定のガラス基板は、バリウム含有量が0.1質量%以下であり、バリウムは放射線を吸収してガラス基板が着色する原因となるため、より好ましくは含有しないことが望ましい。
また、拡散反射板20(拡散反射板20が図1に示すような反射板21、導光板22、拡散板23とから構成される場合においては導光板22)も所定のガラス基板又は高分子樹脂基板である。拡散反射板5を所定のガラス基板又は高分子樹脂基板とすることによって、放射線の照射による着色を抑制することが可能となり、拡散反射板による光照射機構からの照射光の吸収を抑制することができ、残存電荷の除去効果の低減を防止することが可能である。
なお、基板と拡散反射板は共に所定のガラス基板であってもよいし、基板が所定のガラス基板で拡散反射板が高分子樹脂基板、あるいは基板が高分子樹脂基板で拡散反射板が所定のガラス基板、または基板と拡散反射板が共に高分子樹脂基板であってもよい。
所定のガラス基板は、アルミニウム含有量が5質量%以上であって、かつバリウム含有量が0.1質量%以下であれば特に限定されるものではなく、例えばEagle2000(コーニング社製)等が挙げられる。
高分子樹脂基板としては、化学的、熱的に安定であり、診療用途のX線照射では着色しない材料で、シート状または板状に成形できるものを用いることができる。具体的には、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン等のポリハロゲン化ビニル類、セルロースアセテート、ニトロセルロース、セロハン等のセルロース誘導体、ポリアミド、ポリスチレン、ポリカーボネート、ポリイミド、ポリエステル、アクリル樹脂等である。これらの中で固体検出器の基板として特に好ましいのは、寸法安定性に優れた2軸延伸ポリエチレンテレフタレートであり、拡散反射板の素材として特に好ましいのはアクリル樹脂である。
なお、シンチレータ3は、放射線を可視光に変換する機能を有し、例えば蛍光体材料とバインダ樹脂から成る蛍光体層が用いられる。シンチレータ層2に用いられる蛍光体としては、Gd22S:Tb、Y22S:Tb、(Gd,Y)22S:Tb、La22S:Tb、(Gd,Y)22S:Tb:Tm、GdTaO4:Tb、Gd23・Ta25・B23:Tb、CaWO4、BaSO4:Pb、LaOBr:Tm、LaOBr:Tb、HfO2:Ti、HfP27:Cu、CdWO4、YTaO4、YTaO4:Tm、YTaO4:Nb、ZnS:Ag、BaFCl:Eu、Lu22S:Tb、LuSiO4:Ceのような放射線励起により高効率な瞬時発光を呈する蛍光体であればいずれも使用することができる。
ここでは放射線画像検出装置として、放射線を光に一旦変換するためのシンチレータと、シンチレータにより変換された可視光を検出して放射線画像を表す電気信号に変換する間接変換方式の放射線画像検出装置について説明したが、本発明の放射線画像検出装置はこれに限定されるものではなく、放射線が照射されることにより光導電層内で発生した信号電荷を電荷収集電極で集めて蓄電部に一旦蓄積し、蓄積電荷を電気信号に変換して出力する直接変換方式の放射線画像検出装置にも適用が可能である。
以下に本発明の放射線画像検出装置の実施例を示す。
(実施例1)
所定のガラス基板上に、2次元状にパターン成形されたAl:Nd導電膜からなる信号線、a−Si光導電層とITO(Indium Tin Oxide)透明電極とからなるフォトダイオードおよび半導体層からなる薄膜トランジスタとからなる半導体検出素子を形成して固体検出器を作製した。次に、平均粒径5μmのGd22S:Tb蛍光体粒子をウレタン樹脂バインダーに分散し、この塗布液をドクターブレードを用いて、シリコーン系離型剤が塗布されたPETの表面に塗布し乾燥した後、仮支持体から剥離して、導電性層及び反射層を予め積層してある別のPET支持体上にアクリル系接着剤を介して貼り合わせ、シンチレータシートを得た。上記固体検出器とシンチレータシートをアクリル系接着剤で貼り合わせ、読出回路を接続した。最後にピーク発光波長が940〜950nmのLEDおよびオパールガラス製の拡散反射板を用いてバックライトを設けて放射線画像検出装置を作製した。
(実施例2)
実施例1において、拡散反射板をビーズ入り導光板(製品名:パネビー、株式会社きもと)を用いて作製した以外は、実施例1と同様にして、放射線画像検出装置を作製した。
(実施例3)
実施例1において、固体検出器の基板をPET樹脂とし、この基板上に金膜を30nm積層し、フォトリソグラフィー法とリフトオフ法により、ドレイン端子およびソース端子3を形成した。さらにその上に、スパッタ法で、In:Ga:Zn=1.00:0.94:0.65のアモルファス膜(IGZO)を形成した。最後に、ゲート絶縁膜として用いるY23膜を電子ビーム蒸着法により成膜し、その上に金(Au)を成膜して、フォトリソグラフィー法とリフトオフ法により、ゲート端子を形成した。続いて、有機絶縁材料を塗布により成膜し層間絶縁膜を形成し、さらに、平坦化層を形成し、その際に電極用のコンタクトホールを形成した。さらに、その上にITOをスパッタリング法により300nm形成して下部電極とし、ドレイン電極と下部電極をコンタクトホールを介して接続した。この上に、Alq3(アルミニウムキノリン)を50nm蒸着し、クマリン6をその上に100nm蒸着して有機光電変換層(Alq3〜クマリン6)を形成し、さらにZnSを200nm、Agを10nm蒸着し、再度ZnSを50nm成膜して共通上部電極(ZnS〜Ag〜ZnS)を形成し、有機光電変換素子を作製した。上記固体検出器とシンチレータシートをアクリル系接着剤からなる接合層で貼り合わせ、読出回路を接続した。最後にピーク発光波長が940〜950nmのLEDおよびオパールガラス製の拡散反射板を用いてバックライトを設けて放射線画像検出装置を作製した。
(実施例4)
実施例3において、拡散反射板をビーズ入り導光板(製品名:パネビー、株式会社きもと)を用いて作製した以外は、実施例3と同様にして、放射線画像検出装置を作製した。
(比較例1)
実施例1において固体検出器のガラス基板を表2に記載の組成のガラスに変更した以外は、実施例1と同様にして放射線画像検出装置を作製した。
(比較例2)
実施例3において、固体検出器のPET樹脂基板を表に記載の組成のガラスに変更した以外は、実施例1と同様にして放射線画像検出装置を作製した。
(ガラス組成の測定方法)
ガラスの組成については、ICP−MSおよびICP−AESを用いて質量百分率として測定した。
(評価)
X線照射によるガラス基板の着色は、管電圧80kVのX線を合計60000レントゲン照射する前後における940〜950nmでの吸光度の変化量で評価した。残像(ラグ)は、80kV400mR照射後、60秒後に検出される信号値に基づき以下のように評価した。
6μR未満・・・・・・・・・・・・◎
6μR以上12μR未満・・・・・・○
12μR以上24μR未満・・・・・△
24μR以上・・・・・・・・・・・×
なお、実施例1および比較例1の装置共に60000レントゲン照射前のラグは◎であった。結果を表1に、実施例および比較例で用いたガラスの組成測定結果を表2に示す。
Figure 2010078385
Figure 2010078385
Figure 2010078385
表1、2および3から明らかなように、固体検出器のガラス基板のBa組成が0質量%である実施例1および2は、それぞれ拡散反射板のBa組成が0質量%のガラス、または樹脂基板であるが、この場合には、X線による着色がなく、良好なラグを示した。また、固体検出器の基板が樹脂である実施例3および4は、それぞれ拡散反射板のBa組成が0質量%のガラス、または樹脂基板であるが、この場合には、X線による着色がなく、ラグは若干上がるものの実用的には良好なラグであった。
一方、固体検出器の基板および拡散反射板がともにガラスであって、固体検出器のガラス基板のBa組成が7.3質量%である比較例1、拡散反射板のBa組成が8.0%である比較例2は、ともにX線による着色のために残像が顕著となり実用に耐えるものではなかった。
本発明の放射線画像検出装置の一実施の態様を示す概略模式図 固体検出器部分の拡大断面図 固体検出器の別の実施の態様を示す拡大断面図
符号の説明
1 放射線画像検出装置
2 固体検出器
3 シンチレータ
4 光照射手段
5 接合層
6 放射線源
7 放射線
8 被写体
11 基板
13 光導電層
18 半導体素子
20 拡散反射板

Claims (4)

  1. 基板上に、照射された放射線を画像信号に変換する光導電層と、該光導電層で変換された前記画像信号を検出する複数の2次元状に配列された半導体検出素子とが積層された固体検出器と、
    該固体検出器の基板側に設けられた拡散反射板と、該拡散反射板に光を照射する光照射機構とからなり、前記拡散反射板は前記光照射機構から照射された光を拡散反射して前記固体検出器に対し前記基板側から照射するものであり、前記光導電層に対し前記基板側から放射線が照射される放射線画像検出装置であって、
    前記基板と前記拡散反射板がガラスからなり、該ガラスのアルミニウム含有量が5質量%以上であって、かつバリウム含有量が0.1質量%以下であることを特徴とする放射線画像検出装置。
  2. 基板上に、照射された放射線を画像信号に変換する光導電層と、該光導電層で変換された前記画像信号を検出する複数の2次元状に配列された半導体検出素子とが積層された固体検出器と、
    該固体検出器の基板側に設けられた拡散反射板と、該拡散反射板に光を照射する光照射機構とからなり、前記拡散反射板は前記光照射機構から照射された光を拡散反射して前記固体検出器に対し前記基板側から照射するものであり、前記光導電層に対し前記基板側から放射線が照射される放射線画像検出装置であって、
    前記基板がガラスからなり、該ガラスのアルミニウム含有量が5質量%以上であって、かつバリウム含有量が0.1質量%以下であり、前記拡散反射板が高分子樹脂からなることを特徴とする放射線画像検出装置。
  3. 基板上に、照射された放射線を画像信号に変換する光導電層と、該光導電層で変換された前記画像信号を検出する複数の2次元状に配列された半導体検出素子とが積層された固体検出器と、
    該固体検出器の基板側に設けられた拡散反射板と、該拡散反射板に光を照射する光照射機構とからなり、前記拡散反射板は前記光照射機構から照射された光を拡散反射して前記固体検出器に対し前記基板側から照射するものであり、前記光導電層に対し前記基板側から放射線が照射される放射線画像検出装置であって、
    前記基板が高分子樹脂からなり、前記拡散反射板がガラスからなり、該ガラスのアルミニウム含有量が5質量%以上であって、かつバリウム含有量が0.1質量%以下であることを特徴とする放射線画像検出装置。
  4. 基板上に、照射された放射線を画像信号に変換する光導電層と、該光導電層で変換された前記画像信号を検出する複数の2次元状に配列された半導体検出素子とが積層された固体検出器と、
    該固体検出器の基板側に設けられた拡散反射板と、該拡散反射板に光を照射する光照射機構とからなり、前記拡散反射板は前記光照射機構から照射された光を拡散反射して前記固体検出器に対し前記基板側から照射するものであり、前記光導電層に対し前記基板側から放射線が照射される放射線画像検出装置であって、
    前記基板と前記拡散反射板が高分子樹脂からなることを特徴とする放射線画像検出装置。
JP2008245071A 2008-09-25 2008-09-25 放射線画像検出装置 Withdrawn JP2010078385A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008245071A JP2010078385A (ja) 2008-09-25 2008-09-25 放射線画像検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245071A JP2010078385A (ja) 2008-09-25 2008-09-25 放射線画像検出装置

Publications (1)

Publication Number Publication Date
JP2010078385A true JP2010078385A (ja) 2010-04-08

Family

ID=42209017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245071A Withdrawn JP2010078385A (ja) 2008-09-25 2008-09-25 放射線画像検出装置

Country Status (1)

Country Link
JP (1) JP2010078385A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152419A1 (ja) * 2010-05-31 2011-12-08 富士フイルム株式会社 放射線撮影装置
WO2012014612A1 (ja) * 2010-07-30 2012-02-02 富士フイルム株式会社 放射線撮影装置及び放射線撮影システム
WO2012014874A1 (ja) * 2010-07-26 2012-02-02 富士フイルム株式会社 放射線検出器
JP2012141291A (ja) * 2010-12-16 2012-07-26 Fujifilm Corp 放射線撮影装置
WO2012147813A1 (ja) * 2011-04-26 2012-11-01 富士フイルム株式会社 放射線画像検出装置及び放射線撮影装置
WO2013002087A1 (ja) * 2011-06-30 2013-01-03 富士フイルム株式会社 放射線画像撮影装置及び方法、並びにシステム
JP2014025796A (ja) * 2012-07-26 2014-02-06 Canon Inc 放射線画像撮影装置
WO2015075877A1 (ja) * 2013-11-25 2015-05-28 キヤノン株式会社 放射線検出装置および放射線撮像システム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152419A1 (ja) * 2010-05-31 2011-12-08 富士フイルム株式会社 放射線撮影装置
JP2011252730A (ja) * 2010-05-31 2011-12-15 Fujifilm Corp 放射線撮影装置
CN102918417A (zh) * 2010-05-31 2013-02-06 富士胶片株式会社 放射线拍摄装置
WO2012014874A1 (ja) * 2010-07-26 2012-02-02 富士フイルム株式会社 放射線検出器
JP2012026932A (ja) * 2010-07-26 2012-02-09 Fujifilm Corp 放射線検出器
CN103026262A (zh) * 2010-07-26 2013-04-03 富士胶片株式会社 放射线检测器
WO2012014612A1 (ja) * 2010-07-30 2012-02-02 富士フイルム株式会社 放射線撮影装置及び放射線撮影システム
JP2012141291A (ja) * 2010-12-16 2012-07-26 Fujifilm Corp 放射線撮影装置
WO2012147813A1 (ja) * 2011-04-26 2012-11-01 富士フイルム株式会社 放射線画像検出装置及び放射線撮影装置
WO2013002087A1 (ja) * 2011-06-30 2013-01-03 富士フイルム株式会社 放射線画像撮影装置及び方法、並びにシステム
JP2014025796A (ja) * 2012-07-26 2014-02-06 Canon Inc 放射線画像撮影装置
WO2015075877A1 (ja) * 2013-11-25 2015-05-28 キヤノン株式会社 放射線検出装置および放射線撮像システム

Similar Documents

Publication Publication Date Title
CN102949197B (zh) 放射线检测器和放射线图像摄影装置
US7692152B2 (en) Radiation detecting apparatus, scintillator panel, radiation detecting system, and method for producing scintillator layer
JP5456013B2 (ja) 放射線撮像装置
JP2010078385A (ja) 放射線画像検出装置
TWI470262B (zh) 形成於閃爍器上之放射線偵測器
JP5557769B2 (ja) 放射線画像検出装置及びその製造方法
US11460590B2 (en) Dual-screen digital radiography with asymmetric reflective screens
JP2007163467A (ja) 放射線検出器
JP2007225598A (ja) 放射線検出装置及び放射線撮像システム
JP2013044723A (ja) 放射線検出器、放射線検出器の製造方法、及び放射線画像撮影装置
CN102956659A (zh) 放射线检测器和放射线图像摄影装置
US7675039B2 (en) Phosphor sheet for radiation detector, radiation detector and apparatus for radiographic equipment
WO2013065645A1 (ja) 放射線画像撮影装置、プログラムおよび放射線画像撮影方法
JP4764039B2 (ja) 放射線検出器用蛍光体シートおよびそれを用いた放射線検出器
JP2012177623A (ja) 放射線画像検出装置、及び放射線画像検出装置の製造方法
TW200404368A (en) Photoelectric conversion device, image scanning apparatus, and manufacturing method of the photoelectric conversion device
JP2013044724A (ja) 放射線検出器、放射線検出器の製造方法、及び放射線画像撮影装置
JP2010096616A (ja) 放射線画像検出器
JP4204344B2 (ja) 放射線画像形成材料および放射線画像形成方法
JP2007248283A (ja) シンチレータ、蛍光板及びそれを用いたx線検出器
JP2016109638A (ja) 放射線検出装置、及び放射線検出シート
JP2010025780A (ja) 放射線変換シートおよび放射線画像検出装置
JP2008096344A (ja) 放射線検出装置、及びシンチレータパネル
EP2757389A2 (en) High resolution x-ray imaging with thin, flexible digital sensors
JP2006153707A (ja) 放射線検出装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206