JP2010077015A - Method for recovering molybdenum in strong acid-containing waste liquid - Google Patents

Method for recovering molybdenum in strong acid-containing waste liquid Download PDF

Info

Publication number
JP2010077015A
JP2010077015A JP2009187361A JP2009187361A JP2010077015A JP 2010077015 A JP2010077015 A JP 2010077015A JP 2009187361 A JP2009187361 A JP 2009187361A JP 2009187361 A JP2009187361 A JP 2009187361A JP 2010077015 A JP2010077015 A JP 2010077015A
Authority
JP
Japan
Prior art keywords
molybdenum
waste liquid
acid
strong acid
containing waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009187361A
Other languages
Japanese (ja)
Inventor
Kazumi Yanagisawa
佳寿美 柳澤
Takeshi Owaki
武史 大脇
Kazutaka Kunii
一孝 國井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009187361A priority Critical patent/JP2010077015A/en
Publication of JP2010077015A publication Critical patent/JP2010077015A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To recover molybdenum in strong acid-containing waste liquid by a simple and inexpensive method which does not require any heating unit for evaporating and separating nitric acid, etc., or any cooling unit for precipitating and separating a molybdenum compound and which is suitable for energy saving. <P>SOLUTION: Carbonate of a metal selected from Ca, Sr and Ba is added to strong acid-containing waste liquid containing at least sulfuric acid in which molybdenum is present in a dissolved state, whereby the molybdenum in the strong acid-containing waste liquid is recovered. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は各種工業分野において発生する廃液においてモリブデンを溶存する強酸含有廃液を対象として、この廃液中のモリブデンを固形分として有効に回収する方法に関し、特に自動車の前照灯などに使用する照明用のタングステンフィラメントの製造時に発生する強酸含有廃液(強廃酸)から廃液中のモリブデンを簡便かつ安価に固形分として回収する方法として有用である。   The present invention relates to a method of effectively recovering molybdenum in solid waste as a solid content for waste liquid containing strong acid in which molybdenum is dissolved in waste liquid generated in various industrial fields, and particularly for lighting used for automobile headlamps and the like. It is useful as a method for recovering molybdenum in the waste liquid as a solid easily and inexpensively from a strong acid-containing waste liquid (strong waste acid) generated during the production of the tungsten filament.

上記タングステンフィラメントの製造に際しては一般にモリブデンを芯材としてこの芯材にタングステン線を巻き線加工し、その後硝酸と硫酸の混酸(硝酸:硫酸=1:3〜4)を用いてこの芯材を溶解処理して、コイル状のタングステンフィラメントと成す工程が採用されている。このため本製造時には高濃度のモリブデンを溶存する廃酸廃液が発生し、かかる廃液中に含まれるモリブデンは希少金属であるためこれを工業的に有利に回収する方法の開発が注目されつつある。   In manufacturing the tungsten filament, molybdenum is generally used as a core material, a tungsten wire is wound around the core material, and then the core material is dissolved using a mixed acid of nitric acid and sulfuric acid (nitric acid: sulfuric acid = 1: 3-4). A process of forming a coiled tungsten filament is employed. For this reason, waste acid waste liquor in which high-concentration molybdenum is dissolved is generated during the production, and since molybdenum contained in the waste liquor is a rare metal, development of a method for recovering this industrially advantageously is drawing attention.

従来、該廃液(酸を主成分としているため以下、廃酸ということがある)中のモリブデンを回収する方法として、硝酸及び硫酸を含有する廃酸を加熱蒸発して硝酸を分離し、硝酸分離後の残留濃縮液を冷却してモリブデン化合物を析出させ、その後モリブデン化合物と硫酸をろ過等の固液分離によりモリブデン化合物と硫酸を回収するこの方法(特許文献1)や、硝酸および硫酸を含有する廃酸を加熱蒸発して硝酸を分離し、硝酸を分離後の残留濃縮液からモリブデン化合物を析出させて固液分離し、分離後のモリブデン化合物を300℃以上の温度で加熱処理する方法(特許文献2)などが提案されている。   Conventionally, as a method for recovering molybdenum in the waste liquid (which may be referred to as waste acid hereinafter because it contains an acid as a main component), nitric acid is separated by heating and evaporating waste acid containing nitric acid and sulfuric acid. This method (Patent Document 1) for recovering the molybdenum compound and sulfuric acid by solid-liquid separation such as filtration of the molybdenum compound and sulfuric acid after cooling the remaining concentrated liquid after cooling to precipitate the molybdenum compound and sulfuric acid. A method of heating and evaporating waste acid to separate nitric acid, precipitating molybdenum compound from the residual concentrated liquid after separation of nitric acid, solid-liquid separation, and heat-treating the separated molybdenum compound at a temperature of 300 ° C. or more (patent) Document 2) has been proposed.

しかしながら、これらの方法は何れも廃液中の硝酸を蒸発分離すべく廃液の加熱を行なうため加熱装置が必要であると共に硝酸分離後の濃縮残留液からモリブデン化合物と硫酸とを固液分離するに際し、モリブデン化合物を析出させるべく残留液の冷却を行なうため冷却装置も必要とすることから、その実用化にあたっては設備的にもエネルギー的にも不利であり、簡便かつ安価にモリブデンを回収することができないという問題を有していた。   However, both of these methods require a heating device to heat and separate the nitric acid in the waste liquid and separate the molybdenum compound and sulfuric acid from the concentrated residual liquid after the nitric acid separation. Since a cooling device is required to cool the residual liquid in order to precipitate the molybdenum compound, it is disadvantageous in terms of equipment and energy for practical use, and molybdenum cannot be recovered simply and inexpensively. Had the problem.

特開2003−12325号公報JP 2003-12325 A 特開2006−327870号公報JP 2006-327870 A

本発明は、上記従来の問題を解消し、硝酸などを蒸発分離するための加熱装置やモリブデン化合物の析出分離のための冷却装置などを全く必要とせず、省エネルギーに適した、簡便かつ安価な方法により、強酸含有廃液中のモリブデンを回収することをその解決課題としたものである。   The present invention eliminates the above-mentioned conventional problems, and does not require any heating device for evaporating and separating nitric acid or the like, or a cooling device for precipitation separation of molybdenum compounds, and is a simple and inexpensive method suitable for energy saving. Thus, the problem to be solved is to recover the molybdenum in the strong acid-containing waste liquid.

本発明は、上記課題を解決するための具体的手段として、以下のモリブデン回収方法を提案するものである。   The present invention proposes the following molybdenum recovery method as a specific means for solving the above problems.

(1)モリブデンが溶存する少なくとも硫酸を含む強酸含有廃液に、Ca,Sr及びBaから選ばれる金属の炭酸塩を添加することにより前記強酸含有廃液のモリブデンを回収することを特徴とする強酸含有廃液中のモリブデンの回収方法。   (1) A strong acid-containing waste liquid characterized by recovering molybdenum in the strong acid-containing waste liquid by adding a carbonate of a metal selected from Ca, Sr and Ba to a strong acid-containing waste liquid containing at least sulfuric acid in which molybdenum is dissolved. Of recovering molybdenum.

(2)強酸含有廃液に、前記炭酸カルシウムを100g/l〜1000g/l添加することを特徴とする上記(1)に記載の強酸含有廃液中のモリブデンの回収方法。   (2) The method for recovering molybdenum in the strong acid-containing waste liquid according to (1) above, wherein 100 g / l to 1000 g / l of the calcium carbonate is added to the strong acid-containing waste liquid.

(3)強酸含有廃液に前記炭酸カルシウムを300g/l〜650g/l添加することを特徴とする上記(1)に記載の強酸含有廃液中のモリブデンの回収方法。   (3) The method for recovering molybdenum in a strong acid-containing waste liquid as described in (1) above, wherein 300 g / l to 650 g / l of the calcium carbonate is added to the strong acid-containing waste liquid.

(4)強酸含有廃液が照明用のタングステンフィラメントの製造時に発生したものであることを特徴とする上記(1)〜(3)のいずれかに記載の強酸含有廃液中のモリブデンの回収方法。   (4) The method for recovering molybdenum in a strong acid-containing waste liquid according to any one of the above (1) to (3), wherein the strong acid-containing waste liquid is generated during the production of a tungsten filament for lighting.

本発明によれば、硝酸などを蒸発分離するための加熱装置やモリブデン化合物の固液分離のための冷却装置などを必要とせず、省エネルギーに適した、簡便かつ安価な方法により、強酸含有廃液中のモリブデンを効率よく回収することができる。また、廃液中の硝酸も事前蒸発させることなく、これを回収することができる。   According to the present invention, there is no need for a heating device for evaporating and separating nitric acid or the like, a cooling device for solid-liquid separation of a molybdenum compound, and the like in a strong acid-containing waste liquid by a simple and inexpensive method suitable for energy saving. Can be efficiently recovered. Further, nitric acid in the waste liquid can be recovered without prior evaporation.

本発明の実施例における廃酸への炭酸カルシウム(CaCO)の添加量と、モリブデン回収率の関係を示すグラフ。Graph showing the amount of calcium carbonate to the waste acid in the embodiment of the present invention (CaCO 3), the relationship between the molybdenum recovery. 本発明の実施例における炭酸カルシウム(CaCO)の添加量と、固形分中のモリブデン含有量の関係を示すグラフ。Added amount and a graph showing a relationship between molybdenum content in the solid content of calcium carbonate in the embodiment of the present invention (CaCO 3).

本発明者らは、前記タングステンフィラメントの製造時に発生する硫酸と硝酸の混酸を主成分とする強酸廃液のように、少なくとも硫酸を含む強酸含有廃液中に高濃度に溶存しているモリブデンを、前述した加熱装置や冷却装置などを用いずに固形分として分離できる方法がないかどうか、鋭意、検討を行なった結果、この廃液に特定の物質を添加し、この物質と廃酸との化学反応を利用して前記課題を達成できるではないかとの着想を得た。そして、かかる着想に基づき、種々の物質について、調査、研究を重ねたところ、Ca(カルシウム),Sr(ストロンチウム)及びBa(バリウム)から選ばれる金属の炭酸塩、すなわち炭酸カルシウム、炭酸ストロンチウム及び炭酸バリウムが、これに有効な添加物であることを知見し、また後述する実施例における実験を通じて、これを実証、確認し、本発明を完成するに至った。   The present inventors have previously described molybdenum dissolved in a high concentration in a strong acid-containing waste liquid containing at least sulfuric acid, such as a strong acid waste liquid mainly composed of a mixed acid of sulfuric acid and nitric acid generated during the production of the tungsten filament. As a result of earnestly examining whether there is a method that can be separated as solids without using a heating device or cooling device, a specific substance was added to this waste liquid, and the chemical reaction between this substance and waste acid was carried out. I got the idea that it could be used to achieve the above problem. Based on such an idea, investigations and researches were conducted on various substances. As a result, carbonates of metals selected from Ca (calcium), Sr (strontium), and Ba (barium), that is, calcium carbonate, strontium carbonate, and carbonate. It has been found that barium is an effective additive for this, and has been verified and confirmed through experiments in Examples described later, and the present invention has been completed.

以下、本発明について上記添加物として炭酸カルシウムを例にとり、その原理、作用を含めてより具体的に説明して行くことにする。   In the following, the present invention will be described more specifically by taking calcium carbonate as an example of the additive, including its principle and action.

前述のように、タングステンフィラメントの製造時に発生する廃液の主成分は、硝酸(HNO3)と硫酸(HSO)であり、pH=−1以下の強酸性を示す。 As described above, the main components of the waste liquid generated during the production of the tungsten filament are nitric acid (HNO 3 ) and sulfuric acid (H 2 SO 4 ), and exhibit strong acidity at pH = −1 or less.

また、モリブデンは、モリブデン酸イオン(HMoO など)として溶存している。 Molybdenum is dissolved as molybdate ions (such as HMoO 4 ).

そこで、かかる廃液に炭酸カルシウム(CaCO)を添加すると、この炭酸カルシウムが廃液中の硫酸と化学反応を起こし、次式(1)に示す通り、硫酸カルシウム(CaSO)と二酸化炭素(CO)及び水(HO)を生成する。 Therefore, when calcium carbonate (CaCO 3 ) is added to the waste liquid, this calcium carbonate causes a chemical reaction with sulfuric acid in the waste liquid, and as shown in the following formula (1), calcium sulfate (CaSO 4 ) and carbon dioxide (CO 2 ). ) And water (H 2 O).

SO+CaCO → CaSO+CO+HO ・・・式(1)
そして、生成した硫酸カルシウムは水に不溶性であるため、沈澱して固化する。このとき、廃酸中のモリブデン酸イオンがこの硫酸カルシウム中に捕集されて一緒に沈殿する現象、所謂共沈が起こり、モリブデンは、この硫酸カルシウムとの共沈物として固化する。すなわち、本発明において廃酸に添加された炭酸カルシウムは、モリブデン酸イオンを共沈させるキャリヤー(担体)として作用する。
H 2 SO 4 + CaCO 3 → CaSO 4 + CO 2 + H 2 O Formula (1)
And since the produced | generated calcium sulfate is insoluble in water, it precipitates and solidifies. At this time, a phenomenon in which molybdate ions in the waste acid are collected in the calcium sulfate and precipitated together, so-called coprecipitation occurs, and molybdenum is solidified as a coprecipitate with the calcium sulfate. That is, the calcium carbonate added to the waste acid in the present invention acts as a carrier for coprecipitation of molybdate ions.

しかも、前記(1)式の反応は、標準反応熱が−94KJという大きな発熱を伴う。このために、炭酸カルシウムの添加、反応後の廃液の温度を40〜100℃の高温に上昇させることができ、これによってモリブデン酸イオンの硫酸カルシウムとの共沈が効果的に促進される。   Moreover, the reaction of the above formula (1) is accompanied by a large exotherm with a standard heat of reaction of -94 KJ. For this reason, the temperature of the waste liquid after addition of calcium carbonate and reaction can be raised to a high temperature of 40 to 100 ° C., thereby effectively promoting the coprecipitation of molybdate ions with calcium sulfate.

この他に、炭酸カルシウムは強酸である廃酸に塩基としての作用を示すことから、モリブデン酸イオンの平衡がHMoO生成側に傾き、HMoOが加水分解することで不溶性MoOも一部生成する。ただ、不溶性MoOの生成量はわずかであり、固化した固形物中のほとんどのモリブデンは主として上記共沈によるものである。 In addition, calcium carbonate because they exhibit an action as a base in the spent acid is a strong acid, insoluble MoO 3 by equilibrium molybdate ion gradient in H 2 MoO 4 producer, H 2 MoO 4 is hydrolyzed Also generate some. However, the amount of insoluble MoO 3 produced is small, and most of the molybdenum in the solidified solid is mainly due to the coprecipitation.

従って、廃液に炭酸カルシウムを添加、反応させた後に生成した沈澱、固化物をろ過などの方法により固液分離することにより、モリブデン含有量の高い固形分を得ることができ、廃液中に溶存する高濃度のモリブデンを有効に回収することができる。   Therefore, by adding calcium carbonate to the waste liquid and reacting it, the precipitate and solidified product produced by solid-liquid separation by a method such as filtration can be used to obtain a solid content with a high molybdenum content and dissolved in the waste liquid. High concentration molybdenum can be recovered effectively.

また、廃液の個液分離後の分離液(濾過後のろ液)は硝酸が含まれているためこれそのまま液体で回収することができる。なお、この硝酸は生成した水により希釈されているため、液体回収後に適宜水を蒸発させて濃硝酸とすることもできる。   Moreover, since the separated liquid after the individual liquid separation of the waste liquid (filtrate after filtration) contains nitric acid, it can be recovered as a liquid as it is. In addition, since this nitric acid is diluted with the produced | generated water, after liquid collection | recovery, water can also be evaporated suitably and it can also be made concentrated nitric acid.

このように、本発明では、硫酸を含む強酸含有廃液に炭酸カルシウムを添加して、両者の化学反応を利用して、廃液中のモリブデンを固形物として容易に回収できるため、従来のような特別な加熱装置や冷却装置を用いる必用がなく、設備面、省エネルギー面において有利であり、実用化に優れた方法ということができる。   Thus, in the present invention, calcium carbonate is added to a strong acid-containing waste liquid containing sulfuric acid, and molybdenum in the waste liquid can be easily recovered as a solid using both chemical reactions. It is not necessary to use a simple heating device or cooling device, which is advantageous in terms of equipment and energy saving, and can be said to be a method excellent in practical use.

そして、このようにして得られたMo含有固形分は、周知のモリブデン製錬の際のモリブデン含有原料あるいはその原料の一部として使用され、最終的に鉄鋼用のモリブデン添加剤などとして有用なフェロモリブデン等のモリブデン含有製品とすることができる。   Then, the Mo-containing solid content thus obtained is used as a molybdenum-containing raw material in known molybdenum smelting or a part of the raw material, and finally used as a ferromagnet additive for iron and steel. Molybdenum-containing products such as molybdenum can be obtained.

また、廃酸に添加する炭酸カルシウムは、100g/l〜1000g/l(lはリットルを表す)とすることが好ましい。100g/l未満であると、生成する固形分が少なく、従ってモリブデンの回収率も低くなる。1000g/lより多くしても、添加のためのコストが増えるだけで、モリブデンの回収率の向上は期待できないとともに、共沈化合物中のカルシウム含有量がいたずらに増すだけで、固形分中のモリブデン濃度が低くなるからである。   The calcium carbonate added to the waste acid is preferably 100 g / l to 1000 g / l (l represents liter). If it is less than 100 g / l, the solid content produced is small, and therefore the recovery rate of molybdenum is also low. Even if it exceeds 1000 g / l, the cost for addition only increases, and improvement in molybdenum recovery cannot be expected, and the calcium content in the coprecipitated compound only increases unnecessarily. This is because the concentration is lowered.

さらにより好ましくは、廃酸に添加する炭酸カルシウムは、350g/l〜650g/lとするのが良い。この範囲では、固形分へのモリブデン回収率は70%以上、固形分中のモリブデン濃度は7%以上になり、炭酸カルシウムの添加コストを低くして、廃酸中のモリブデンを極めて有効に回収することができる。   Even more preferably, the calcium carbonate added to the spent acid is 350 g / l to 650 g / l. In this range, the molybdenum recovery rate in the solid content is 70% or more, the molybdenum concentration in the solid content is 7% or more, the calcium carbonate addition cost is reduced, and the molybdenum in the waste acid is recovered very effectively. be able to.

また、以上においては、モリブデン回収するための強酸含有廃液への添加物として炭酸カルシウムについて説明したが、炭酸ストロンチウム、炭酸バリウムについても、下記(2)、(3)式の反応により、炭酸カルシウムと同様な作用を有し、本発明の目的、効果を達成できることが確認できた。   In the above description, calcium carbonate has been described as an additive to a strong acid-containing waste liquid for recovering molybdenum. However, strontium carbonate and barium carbonate are also reacted with calcium carbonate by the reactions of the following formulas (2) and (3). It has been confirmed that the same function can be achieved and the object and effect of the present invention can be achieved.

SO+SrCO → SrSO+CO+HO ・・・式(2)
SO+BaCO → BaSO+CO+HO ・・・式(3)
H 2 SO 4 + SrCO 3 → SrSO 4 + CO 2 + H 2 O Formula (2)
H 2 SO 4 + BaCO 3 → BaSO 4 + CO 2 + H 2 O Formula (3)

フィラメント廃酸は、 硝酸(HNO):160g/l、硫酸(HSO):550g/lの強酸を主成分とし、モリブデン含有量:70g/l、タングステン含有量:0.5g/l、鉄含有量:20g/lを含むフィラメント廃酸(常温)を対象として以下のようなモリブデンの回収実験を行なった。 Filament waste acid is composed mainly of strong acid of nitric acid (HNO 3 ): 160 g / l, sulfuric acid (H 2 SO 4 ): 550 g / l, molybdenum content: 70 g / l, tungsten content: 0.5 g / l The following molybdenum recovery experiment was conducted for filament waste acid (normal temperature) containing iron content: 20 g / l.

これらの実験結果を表1に示す。表1には各実験例の廃酸への添加物の添加量、モリブデンの回収率、固形分中のモリブデン含有量と合わせて、添加物の添加、攪拌後の廃酸温度の測定結果についても掲載した。   Table 1 shows the results of these experiments. Table 1 also shows the amount of additive added to the waste acid of each experimental example, the recovery rate of molybdenum, and the molybdenum content in the solid content. Posted.

Figure 2010077015
Figure 2010077015

実験例1〜5では、廃酸100mlに炭酸カルシウムを20、30、40、50、60g添加後、攪拌し、ろ過にて固液分離を行った。ろ液中のモリブデン濃度をICP発光分析法にて測定し、分析値とろ液の量から、ろ液中に含まれるモリブデン量を算出した。固形分中のモリブデン量は、廃酸100mlに含まれるモリブデン量(7g)から前記で算出したろ液中のモリブデン量を差し引いて求め、固形分としてのモリブデン回収率を算出した。モリブデン回収率は39〜80%であった。また、固形分は、乾燥後、乳鉢で均一にすりつぶした後、EPMA法により成分の含有量を調査した。固形分中のモリブデン含有量は5〜10%であった。固形分を粉末X線回折法により調査した結果、結晶成分としてCaSOと微量のMoOが検出された。固形分中に回収されたモリブデンは、主にCaSO4と共沈していると考えられる。 In Experimental Examples 1 to 5, 20, 30, 40, 50, and 60 g of calcium carbonate was added to 100 ml of waste acid, followed by stirring and solid-liquid separation by filtration. The molybdenum concentration in the filtrate was measured by ICP emission spectrometry, and the amount of molybdenum contained in the filtrate was calculated from the analysis value and the amount of the filtrate. The amount of molybdenum in the solid content was determined by subtracting the amount of molybdenum in the filtrate calculated above from the amount of molybdenum contained in 100 ml of waste acid (7 g), and the molybdenum recovery rate as the solid content was calculated. Molybdenum recovery was 39-80%. In addition, after drying, the solid content was uniformly ground in a mortar, and then the content of the component was investigated by the EPMA method. The molybdenum content in the solid content was 5 to 10%. As a result of examining the solid content by the powder X-ray diffraction method, CaSO 4 and a trace amount of MoO 3 were detected as crystal components. Molybdenum recovered in the solid content is considered to be coprecipitated mainly with CaSO4.

実施例6は炭酸ストロンチウム(含む結晶水)を、実施例7は炭酸バリウム(含む結晶水)を、それぞれ廃酸に添加した場合であり、前記実施例と同じ要領で調査の結果、炭酸ストロンチウムによるモリブデン回収率は26%、同固形分中のモリブデン含有量は5.1%、また炭酸バリウムによるモリブデン回収率は27%、同固形分中のモリブデン含有量は5.1%と、いずれも炭酸カルシウムと比べると低いものの、十分に実用に値する回収が可能であることがわかる。この実施例6及び7で回収された固形分を粉末X線回折法により調査した結果、実施例6の固形分では結晶成分としてSrSOと微量のMoOが、また実施例7の固形分では結晶成分としてBaSOと微量のMoOがそれぞれ検出された。固形分中に回収されたこれらのモリブデンは、主にSrSO4またはBaSO4と共沈していると考えられる。 Example 6 is a case where strontium carbonate (including crystal water) and Example 7 is a case where barium carbonate (including crystal water) is added to the waste acid, respectively. As a result of the investigation in the same manner as in the above example, strontium carbonate Molybdenum recovery rate was 26%, molybdenum content in the same solid content was 5.1%, molybdenum recovery rate by barium carbonate was 27%, molybdenum content in the same solid content was 5.1%, both carbonic acid Although it is low compared with calcium, it can be seen that recovery that is sufficiently practical is possible. As a result of investigating the solid content recovered in Examples 6 and 7 by the powder X-ray diffraction method, the solid content of Example 6 includes SrSO 4 and a small amount of MoO 3 as crystal components, and the solid content of Example 7 BaSO 4 and a trace amount of MoO 3 were respectively detected as crystal components. These molybdenum recovered in the solid content are considered to be coprecipitated mainly with SrSO4 or BaSO4.

実験例8〜10では、炭酸カルシウム以外のカルシウム化合物として塩化カルシウムを用いた例で、廃酸100mlに同塩化カルシウムを20、30、40g添加後、攪拌し、ろ過にて固液分離を行った。前記実施例と同じ要領で調査の結果、モリブデン回収率及び固形分中のモリブデン含有量はともに0%であった。また、固形分を粉末X線回折法により調査した結果、結晶成分としてCaSOが検出された。MoOは全く検出されなかった。 In Experimental Examples 8 to 10, calcium chloride was used as a calcium compound other than calcium carbonate. After adding 20, 30, and 40 g of the same calcium chloride to 100 ml of waste acid, the mixture was stirred and subjected to solid-liquid separation by filtration. . As a result of the investigation in the same manner as in the above Example, the molybdenum recovery rate and the molybdenum content in the solid content were both 0%. As a result of the solid were investigated by powder X-ray diffraction method, CaSO 4 is detected as a crystal component. MoO 3 was not detected at all.

添加した塩化カルシウムは下式(4)の反応で硫酸カルシウムを生成したと考えられるものの、この反応は、前述の式(1)に比べて大きな発熱を伴わないばかりか、標準反応熱が184KJで吸熱反応であるため、廃酸の温度が上昇せず、モリブデン酸イオンは溶存したままで硫酸カルシウムに捕集されず、この結果、共沈しなかったと推察される。   Although the added calcium chloride is considered to have produced calcium sulfate by the reaction of the following formula (4), this reaction is not accompanied by a large exotherm compared to the above formula (1), and the standard reaction heat is 184 KJ. Since it is an endothermic reaction, the temperature of the waste acid does not increase, and the molybdate ions remain dissolved and are not collected by calcium sulfate. As a result, it is presumed that they did not coprecipitate.

SO+ CaCl → CaSO + 2HCl ・・・ 式(4)
また、実施例11は本発明の規定外の金属の炭酸塩である炭酸ナトリウムを添加した例であるが、この場合はモリブデン回収率、固形分中のモリブデン含有量はいずれも0であった。
H 2 SO 4 + CaCl 2 → CaSO 4 + 2HCl (4)
Further, Example 11 is an example in which sodium carbonate, which is a metal carbonate outside the scope of the present invention, was added. In this case, the molybdenum recovery rate and the molybdenum content in the solid content were both 0.

実験例12では、廃酸100mlに炭酸カルシウムを2g添加後、攪拌し、ろ過にて固液分離を行った。同様な調査の結果、モリブデン回収率は4%で、固形分中のモリブデン含有量は2%であった。モリブデンは回収できたが、炭酸カルシウムの添加量が少ないために、モリブデン回収率が低く、固形分中の含有量も低い。   In Experimental Example 12, 2 g of calcium carbonate was added to 100 ml of waste acid, and the mixture was stirred and solid-liquid separated by filtration. As a result of the same investigation, the molybdenum recovery rate was 4%, and the molybdenum content in the solid content was 2%. Molybdenum was recovered, but since the amount of calcium carbonate added was small, the molybdenum recovery rate was low, and the content in the solid content was also low.

実験例13では、廃酸100mlに炭酸カルシウムを100g添加後、攪拌し、ろ過にて固液分離を行った。この場合のモリブデン回収率は80%で固形分中のモリブデン含有量は1%であった。モリブデン回収率は80%と高いが、添加した炭酸カルシウムの量が多いために、固形分中のモリブデン含有量は少ない。   In Experimental Example 13, 100 g of calcium carbonate was added to 100 ml of waste acid, followed by stirring and solid-liquid separation by filtration. In this case, the molybdenum recovery rate was 80% and the molybdenum content in the solid content was 1%. Although the molybdenum recovery rate is as high as 80%, the amount of added calcium carbonate is large, so the molybdenum content in the solid content is small.

図1及び、図2はこれらの実験に基づく表1の結果のうち、本発明の実施例(実験例1〜5、12、13)における廃酸への炭酸カルシウム(CaCO)の添加量(g/100ml廃酸)とモリブデン回収率(%)の関係、及び炭酸カルシウム(CaCO)の添加量(g/100ml廃酸)と固形分中のモリブデン含有量(%)の関係をそれぞれ図示したグラフである。 FIG. 1 and FIG. 2 show the amount of calcium carbonate (CaCO 3 ) added to the waste acid in the examples of the present invention (Experimental Examples 1 to 5, 12, and 13) among the results of Table 1 based on these experiments ( g / 100 ml waste acid) and molybdenum recovery rate (%), and the relationship between calcium carbonate (CaCO 3 ) addition amount (g / 100 ml waste acid) and molybdenum content (%) in solids, respectively. It is a graph.

図1から モリブデン回収率を20%以上確保するためには炭酸カルシウムの添加量を100g/l以上とする必要があることが分かる。また、1000g/lを越えて添加してもモリブデン回収率は80%を上回る傾向はないと見られるため、本発明における炭酸カルシウムの添加量は100g/l〜1000g/lとすることが好ましい。さらに、モリブデン回収率を約60%以上とするためにはその添加量を300g/l以上に、同回収率を約70%以上とするためには350g/l以上とすれば良いことも図1より読み取れる。   As can be seen from FIG. 1, in order to secure a molybdenum recovery rate of 20% or more, the amount of calcium carbonate added must be 100 g / l or more. Moreover, even if it is added over 1000 g / l, the molybdenum recovery rate does not tend to exceed 80%. Therefore, the amount of calcium carbonate added in the present invention is preferably 100 g / l to 1000 g / l. Furthermore, in order to make the molybdenum recovery rate about 60% or more, the addition amount should be 300 g / l or more, and in order to make the recovery rate about 70% or more, it may be 350 g / l or more. More readable.

また、図2から、固形分中のモリブデン含有量を約7%以上とするためには炭酸カルシウムの添加量を100g/l〜650g/lとすれば良いことが分かる。   Further, FIG. 2 shows that the amount of calcium carbonate added should be 100 g / l to 650 g / l in order to make the molybdenum content in the solid content about 7% or more.

従って、モリブデン回収率と固形分中のモリブデン含有量の両者を勘案すれば、廃酸への炭酸カルシウムの添加量は300g/l〜650g/lとすることがより好ましいといえる。   Therefore, considering both the molybdenum recovery rate and the molybdenum content in the solid content, it can be said that the amount of calcium carbonate added to the waste acid is more preferably 300 g / l to 650 g / l.

なお、上記本発明例に係る実施例は、炭酸カルシウム、炭酸ストロンチウム及び炭酸バリウムをそれぞれ単独で廃酸に添加した例であるが、これらの炭酸を二種以上複合添加してもかまわないことは言うまでもない。   In addition, although the Example which concerns on the said invention example is an example which added calcium carbonate, strontium carbonate, and barium carbonate individually to a waste acid, it does not matter that two or more of these carbonic acid may be added in combination. Needless to say.

以上、実施例を含めて、本発明について詳述したが、請求項に挙げた炭酸塩以外の物質であっても、それが廃液中の強酸と化学反応を起こして主沈殿物を生成し、且つモリブデン酸イオンを共沈させるキャリヤーであれば本発明の技術思想の範囲内であるといえるものである。   As described above, the present invention has been described in detail including examples, but even if it is a substance other than the carbonates recited in the claims, it causes a chemical reaction with a strong acid in the waste liquid to produce a main precipitate, Any carrier that coprecipitates molybdate ions can be said to be within the scope of the technical idea of the present invention.

Claims (4)

モリブデンが溶存する少なくとも硫酸を含む強酸含有廃液に、Ca,Sr及びBaから選ばれる金属の炭酸塩を添加することにより前記強酸含有廃液のモリブデンを回収することを特徴とする強酸含有廃液中のモリブデンの回収方法。   Molybdenum in a strong acid-containing waste liquid, wherein molybdenum in the strong acid-containing waste liquid is recovered by adding a carbonate of a metal selected from Ca, Sr and Ba to a strong acid-containing waste liquid containing at least sulfuric acid in which molybdenum is dissolved Recovery method. 前記強酸含有廃液に、炭酸カルシウムを100g/l〜1000g/l添加することを特徴とする請求項1に記載の強酸含有廃液中のモリブデンの回収方法。   The method for recovering molybdenum in a strong acid-containing waste liquid according to claim 1, wherein 100 g / l to 1000 g / l of calcium carbonate is added to the strong acid-containing waste liquid. 前記強酸含有廃液に、炭酸カルシウムを300g/l〜650g/l添加することを特徴とする請求項1に記載の強酸含有廃液中のモリブデンの回収方法。   The method for recovering molybdenum in a strong acid-containing waste liquid according to claim 1, wherein 300 g / l to 650 g / l of calcium carbonate is added to the strong acid-containing waste liquid. 前記強酸含有廃液が照明用のタングステンフィラメントの製造時に発生したものであることを特徴とする請求項1〜4のいずれかに記載の強酸含有廃液中のモリブデンの回収方法。   The method for recovering molybdenum in a strong acid-containing waste liquid according to any one of claims 1 to 4, wherein the strong acid-containing waste liquid is generated during the production of a tungsten filament for lighting.
JP2009187361A 2008-09-01 2009-08-12 Method for recovering molybdenum in strong acid-containing waste liquid Pending JP2010077015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009187361A JP2010077015A (en) 2008-09-01 2009-08-12 Method for recovering molybdenum in strong acid-containing waste liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008223764 2008-09-01
JP2009187361A JP2010077015A (en) 2008-09-01 2009-08-12 Method for recovering molybdenum in strong acid-containing waste liquid

Publications (1)

Publication Number Publication Date
JP2010077015A true JP2010077015A (en) 2010-04-08

Family

ID=42207891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009187361A Pending JP2010077015A (en) 2008-09-01 2009-08-12 Method for recovering molybdenum in strong acid-containing waste liquid

Country Status (1)

Country Link
JP (1) JP2010077015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132501A (en) * 2008-12-05 2010-06-17 Kobe Steel Ltd Method for producing ferromolybdenum, and ferromolybdenum
CN103663561A (en) * 2012-09-10 2014-03-26 中国石油化工股份有限公司 Recycling method of molybdenum in filament-melting waste acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132501A (en) * 2008-12-05 2010-06-17 Kobe Steel Ltd Method for producing ferromolybdenum, and ferromolybdenum
CN103663561A (en) * 2012-09-10 2014-03-26 中国石油化工股份有限公司 Recycling method of molybdenum in filament-melting waste acid

Similar Documents

Publication Publication Date Title
Tran et al. Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate
JP5044925B2 (en) Method for producing high purity calcium carbonate
TWI746818B (en) Process for the recovery of lithium
JP5424562B2 (en) Method for producing cesium hydroxide solution
Song et al. Effect of polyacrylic acid on direct aqueous mineral carbonation of flue gas desulfurization gypsum
EA024977B1 (en) Methods to isolate gold
JP2019099901A (en) Method for recovering lithium from lithium-containing solution
KR20150114383A (en) System and method for rare earths extraction
Deblonde et al. Niobium and tantalum processing in oxalic-nitric media: Nb2O5· nH2O and Ta2O5· nH2O precipitation with oxalates and nitrates recycling
KR20220132578A (en) Manufacturing method of lithium hydroxide
JP6759882B2 (en) Method for producing a solution containing nickel and cobalt
JP2021172536A (en) Method for producing lithium hydroxide
JP2010077015A (en) Method for recovering molybdenum in strong acid-containing waste liquid
JP6337708B2 (en) Method for separating nickel from nickel sludge
CN102328947B (en) Method for recovering strontium slag
JP2011038159A (en) Method for recovering molybdenum from waste water containing strong acid
CN112771185B (en) Process for purifying and concentrating rare earth in phosphogypsum
JP5549648B2 (en) Molybdenum recovery method and molybdenum extraction solvent
Lin et al. Role of phase transformation of barium perborates in the effective removal of boron from aqueous solution via chemical oxo-precipitation
JP7284596B2 (en) Method for producing gypsum dihydrate
McEvoy et al. Iron and Sulphur management options during Ni recovery from (bio) leaching of pyrrhotite tailings Part 2: Strategies for Sulphur fixation during biomass-induced magnetization of goethite and jarosite
JP4583786B2 (en) Treatment method for boron-containing wastewater
AU2010264079B2 (en) Polyhalite IMI process for KNO3 production
JPH0375216A (en) Purification of alkali hydroxide
RU2711068C1 (en) Nickel chloride production method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110414