JP2010074396A - Sealing member for piezoelectric vibration device, and manufacturing method for the same - Google Patents

Sealing member for piezoelectric vibration device, and manufacturing method for the same Download PDF

Info

Publication number
JP2010074396A
JP2010074396A JP2008238168A JP2008238168A JP2010074396A JP 2010074396 A JP2010074396 A JP 2010074396A JP 2008238168 A JP2008238168 A JP 2008238168A JP 2008238168 A JP2008238168 A JP 2008238168A JP 2010074396 A JP2010074396 A JP 2010074396A
Authority
JP
Japan
Prior art keywords
sealing member
main surface
manufacturing
conductive member
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008238168A
Other languages
Japanese (ja)
Other versions
JP5369570B2 (en
Inventor
Naoki Koda
直樹 幸田
Hiroki Yoshioka
宏樹 吉岡
Shunsuke Sato
俊介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2008238168A priority Critical patent/JP5369570B2/en
Publication of JP2010074396A publication Critical patent/JP2010074396A/en
Application granted granted Critical
Publication of JP5369570B2 publication Critical patent/JP5369570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize a conductive state through vias formed in a sealing member. <P>SOLUTION: A manufacturing method for a first sealing member 3 of a crystal vibration device 1 has a forming process for forming each via 36, and a filling process for filling a conductive member 5 into each via 36. The forming process includes: a first forming step in which a base material is etched from a first main face 31 by the etching method so as to form a recess 363 being a part on the side of the first main face 31 of each via 36; and a second forming step in which the base material is etched from the other main face 38 by the etching method after the first forming step so as to form each via 36 by forming a part on the side of the other main face 38 of each via 36. The conductive member 5 is filled into each recess 363, formed by the first forming step, by the filling process. Then, the conductive member 5 is heated and melted so as to form the conductive member 5 in the recess 363. After forming the conductive member 5 in the recess 363, each via 36 is formed by the second forming step so as to expose the conductive member 5 inside each via 36 from both main faces 31, 38. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、圧電振動デバイスの封止部材、及び封止部材の製造方法に関する。   The present invention relates to a sealing member for a piezoelectric vibration device and a method for manufacturing the sealing member.

近年、各種電子機器の動作周波数の高周波化がすすんでおり、この高周波化にともなって、圧電振動デバイス(例えば水晶振動子等)も高周波化への対応が求められている。   In recent years, the operation frequency of various electronic devices has been increased, and with this increase in frequency, piezoelectric vibration devices (for example, crystal resonators and the like) are also required to support higher frequencies.

この種の圧電振動デバイスは、ガラスからなる第1封止部材および第2封止部材と、水晶からなり両主面に励振電極が形成された水晶振動片とから構成され、第1封止部材と第2封止部材とが水晶振動片を介して積層して接合され、その内部に配された水晶振動片の励振電極が気密封止されている(例えば、下記する特許文献1ご参照)。
特許3390348号公報
This type of piezoelectric vibration device includes a first sealing member and a second sealing member made of glass, and a crystal vibrating piece made of crystal and having excitation electrodes formed on both main surfaces thereof. And the second sealing member are laminated and bonded via a quartz crystal vibrating piece, and the excitation electrode of the quartz crystal vibrating piece disposed therein is hermetically sealed (see, for example, Patent Document 1 below). .
Japanese Patent No. 3390348

ところで、この特許文献1に示すように、第1封止部材および第2封止部材にガラスを用いると、例えば第1封止部材に電極を両主面間で引回すための貫通孔を形成する必要がある。   By the way, as shown in Patent Document 1, when glass is used for the first sealing member and the second sealing member, for example, a through hole is formed in the first sealing member for routing the electrode between both main surfaces. There is a need to.

ここでいう貫通孔形成では、第1封止部材の基材主面に対して厚み方向に垂直にエッチングする手法が用いられているが、第1封止部材の基材主面から垂直な柱状の貫通孔を形成した場合、貫通孔にメッキ層を形成する時に高アスペクト比によるボイドの発生や、厚み方向に対する応力によって第1封止部材の基材と貫通孔内の充填材料が剥離し易くなり、貫通孔での導通状態が不安定になる。   In the through hole formation here, a method of etching perpendicular to the thickness direction with respect to the main surface of the base material of the first sealing member is used. When the through hole is formed, the base material of the first sealing member and the filling material in the through hole are easily peeled off due to the generation of voids due to a high aspect ratio when the plated layer is formed in the through hole or the stress in the thickness direction. Thus, the conduction state in the through hole becomes unstable.

そこで、上記課題を解決するために、本発明は、封止部材に形成された貫通孔での導通状態を安定させる圧電振動デバイスの封止部材、及び封止部材の製造方法を提供することを目的とする。   Then, in order to solve the said subject, this invention provides the sealing member of the piezoelectric vibration device which stabilizes the conduction | electrical_connection state in the through-hole formed in the sealing member, and the manufacturing method of a sealing member. Objective.

上記の目的を達成するため、本発明は、圧電振動を行う圧電振動片の励振電極を気密封止する圧電振動デバイスの封止部材の製造方法であり、本発明にかかる圧電振動デバイスの封止部材の製造方法は、当該封止部材の基材の両主面に形成される電極パターンを導通状態とするための貫通孔を形成する形成工程と、前記貫通孔に導通部材を充填するための充填工程と、を有し、前記形成工程は、前記基材の一主面からエッチング法により基材をエッチングして貫通孔の一主面側部分にあたる凹部を形成する第1の形成工程と、第1の形成工程後に前記基材の他主面からエッチング法により基材をエッチングして貫通孔の他主面側部分を形成して貫通孔を形成する第2の形成工程とからなり、前記第1の形成工程により形成した前記凹部に前記充填工程により前記導通部材を充填し、その後に前記導通部材を加熱溶融させて前記導通部材を前記凹部に形成し、前記凹部に前記導通部材を形成した後に前記第2の形成工程により前記貫通孔の前記他主面側部分を形成して前記貫通孔を形成し、前記貫通孔内の前記導通部材を前記基材の両主面から露出させることを特徴とする。なお、本発明でいうエッチングとは、化学的溶解や物理的研磨、化学物理的研磨などのことをいい、具体的にドライエッチングやウエットエッチングやCMP(Chemical Mechanical Polishing)などが挙げられる。   In order to achieve the above object, the present invention is a method for manufacturing a sealing member of a piezoelectric vibrating device that hermetically seals an excitation electrode of a piezoelectric vibrating piece that performs piezoelectric vibration, and sealing the piezoelectric vibrating device according to the present invention. The member manufacturing method includes a forming step of forming a through hole for bringing the electrode pattern formed on both main surfaces of the base material of the sealing member into a conductive state, and a filling member for filling the through hole with the conductive member. Filling step, and the forming step includes etching a base material from one main surface of the base material by an etching method to form a concave portion corresponding to a main surface side portion of the through hole; and The second forming step of forming a through hole by etching the base material from the other main surface of the base material by an etching method after the first forming step to form the other main surface side portion of the through hole, In the recess formed by the first forming step, The conductive member is filled in a filling process, and then the conductive member is heated and melted to form the conductive member in the recess. After the conductive member is formed in the concave, the through-hole is formed in the second forming process. The other main surface side portion is formed to form the through hole, and the conductive member in the through hole is exposed from both main surfaces of the base material. Etching in the present invention refers to chemical dissolution, physical polishing, chemical physical polishing, and the like, and specifically includes dry etching, wet etching, and CMP (Chemical Mechanical Polishing).

本発明によれば、当該封止部材に形成された前記貫通孔での導通状態を安定させることが可能となる。すなわち、本発明によれば、前記第1の形成工程と前記第2の形成工程とからなる前記形成工程と、前記充填工程とを有し、前記第1の形成工程により形成した前記凹部に前記充填工程により前記導通部材を充填し、その後に前記導通部材を加熱溶融させて前記導通部材を前記凹部に形成し、前記凹部に前記導通部材を形成した後に前記第2の形成工程により前記貫通孔の前記他主面側部分を形成して前記貫通孔を形成し、前記貫通孔内の前記導通部材を前記基材の両主面から露出させるので、前記導通部材を前記貫通孔に充填して加熱溶融する際の前記貫通孔のアスペクト比を低くすることが可能となる。その結果、前記貫通孔に前記導通部材を形成する時にボイドが発生するのを抑制することが可能となる。   According to the present invention, it is possible to stabilize the conduction state in the through hole formed in the sealing member. That is, according to the present invention, the concave portion formed by the first forming step includes the forming step including the first forming step and the second forming step, and the filling step. The conductive member is filled by a filling step, and then the conductive member is heated and melted to form the conductive member in the recess. After the conductive member is formed in the concave portion, the through-hole is formed by the second forming step. The other main surface side portion of the through hole is formed to form the through hole, and the conductive member in the through hole is exposed from both main surfaces of the base material. Therefore, the conductive member is filled in the through hole. It becomes possible to reduce the aspect ratio of the through-hole when being heated and melted. As a result, it is possible to suppress the generation of voids when the conductive member is formed in the through hole.

前記方法において、前記充填工程は、前記第1の形成工程により形成した前記凹部に金属膜を形成する第1の充填工程と、前記第1の充填工程後に前記凹部に導通部材を充填する第2の充填工程と、からなってもよい。   In the method, the filling step includes a first filling step of forming a metal film in the concave portion formed in the first forming step, and a second filling of the conductive member into the concave portion after the first filling step. And a filling step.

この場合、前記充填工程が前記第1の充填工程と前記第2の充填工程とからなるので、前記充填工程が前記第2の充填工程のみからなる場合と比較して、前記導通部材の前記凹部への接着強度が良好になる。   In this case, since the filling step includes the first filling step and the second filling step, the concave portion of the conductive member is compared with the case where the filling step includes only the second filling step. Adhesive strength to is improved.

前記方法において、前記基材は、透過性材料であり、前記第2の充填工程では、前記凹部に前記導通部材を配した後に、前記導通部材を前記基材の他主面からレーザによって照射して前記導通部材を加熱溶融させてもよい。   In the method, the base material is a transmissive material, and in the second filling step, after the conductive member is disposed in the recess, the conductive member is irradiated from the other main surface of the base material with a laser. The conductive member may be heated and melted.

この場合、前記基材は透過性材料であり、前記第2の充填工程では、前記凹部に前記導通部材を配した後に、前記導通部材を前記基材の他主面からレーザによって照射して前記導通部材を加熱溶融させるので、前記導通部材が前記基材の前記凹部から飛散するのを防ぐことが可能となる。   In this case, the base material is a permeable material, and in the second filling step, the conductive member is disposed in the concave portion, and then the conductive member is irradiated from the other main surface of the base material with a laser. Since the conductive member is heated and melted, the conductive member can be prevented from scattering from the concave portion of the base material.

上記の目的を達成するため、本発明は、圧電振動を行う圧電振動片の励振電極を気密封止する圧電振動デバイスの封止部材であり、本発明にかかる圧電振動デバイスの封止部材は、上記した本発明にかかる圧電振動デバイスの封止部材の製造方法によって製造され、当該封止部材の基材の両主面に形成される電極パターンを導通状態とするための貫通孔が形成され、前記貫通孔内に導通部材が充填されたことを特徴とする。   In order to achieve the above object, the present invention is a sealing member of a piezoelectric vibrating device that hermetically seals an excitation electrode of a piezoelectric vibrating piece that performs piezoelectric vibration, and the sealing member of the piezoelectric vibrating device according to the present invention includes: The through hole for making the electrode pattern which is manufactured by the manufacturing method of the sealing member of the piezoelectric vibration device concerning the above-mentioned present invention and is formed in both main surfaces of the base material of the sealing member into a conductive state is formed, The through hole is filled with a conductive member.

本発明によれば、当該封止部材に形成された前記貫通孔での導通状態を安定させることが可能となる。すなわち、本発明によれば、上記した本発明にかかる圧電振動デバイスの封止部材の製造方法によって製造され、当該封止部材の基材の両主面に形成される電極パターンを導通状態とするための貫通孔が形成され、前記貫通孔内に導通部材が充填されるので、前記導通部材を前記貫通孔に充填して加熱溶融する際の前記貫通孔のアスペクト比を低くすることが可能となる。その結果、前記貫通孔に前記導通部材を形成する時にボイドが発生するのを抑制することが可能となる。   According to the present invention, it is possible to stabilize the conduction state in the through hole formed in the sealing member. That is, according to the present invention, the electrode patterns manufactured by the above-described method for manufacturing a sealing member of a piezoelectric vibration device according to the present invention and formed on both main surfaces of the base material of the sealing member are brought into a conductive state. A through hole is formed, and the through hole is filled with a conductive member. Therefore, it is possible to reduce the aspect ratio of the through hole when the conductive member is filled in the through hole and heated and melted. Become. As a result, it is possible to suppress the generation of voids when the conductive member is formed in the through hole.

前記構成において、前記導通部材の少なくとも一つの端面が、当該封止部材の主面に対して凹形状となってもよい。   The said structure WHEREIN: At least 1 end surface of the said conduction member may become concave shape with respect to the main surface of the said sealing member.

この場合、前記導通部材の少なくとも一つの端面が、当該封止部材の主面に対して凹形状となるので、圧電振動片などの他の部材との接触による短絡を避けることが可能となる。   In this case, since at least one end surface of the conducting member has a concave shape with respect to the main surface of the sealing member, a short circuit due to contact with another member such as a piezoelectric vibrating piece can be avoided.

前記構成において、前記導通部材は、少なくともAuとSnとから構成され、これらAuとSnとが均一に混在した化合物であってもよい。   In the above configuration, the conducting member may be composed of at least Au and Sn, and may be a compound in which these Au and Sn are mixed uniformly.

この場合、前記導通部材は、少なくともAuとSnとから構成され、これらAuとSnとが均一に混在した斑状の化合物であるので、ボイドやクラックの発生を抑えることが可能となる。これは、AuとSnの熱膨張係数が異なることに起因し、前記導通部材の加熱冷却を繰り返すことでこれらAuとSnの境界が破壊モードとなるため、これらAuとSnとが均一に混在した斑状の化合物がボイドやクラックの発生を抑えるのに好適である。   In this case, since the conducting member is composed of at least Au and Sn, and is a patchy compound in which these Au and Sn are mixed uniformly, generation of voids and cracks can be suppressed. This is because Au and Sn have different thermal expansion coefficients, and by repeating heating and cooling of the conducting member, the boundary between these Au and Sn becomes a failure mode, so that these Au and Sn are mixed uniformly. The patchy compound is suitable for suppressing the occurrence of voids and cracks.

特に、これらAuとSnの共晶点以上の温度により加熱溶融することが好ましい。この場合、前記導通部材の充填工程によって前記導通部材にボイドが発生するのを抑えることが可能となる。   In particular, it is preferable to heat and melt at a temperature equal to or higher than the eutectic point of these Au and Sn. In this case, it is possible to suppress generation of voids in the conductive member by the filling step of the conductive member.

本発明にかかる圧電振動デバイスの封止部材、及び封止部材の製造方法によれば、封止部材に形成された貫通孔での導通状態を安定させることが可能となる。   According to the sealing member of the piezoelectric vibration device and the manufacturing method of the sealing member according to the present invention, it is possible to stabilize the conduction state in the through hole formed in the sealing member.

以下、本発明の実施の形態について図面を参照して説明する。なお、以下に示す実施例では、圧電振動を行う圧電振動デバイスとして水晶振動子に本発明を適用した場合を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, a case where the present invention is applied to a crystal resonator as a piezoelectric vibration device that performs piezoelectric vibration is shown.

本実施例にかかる水晶振動子1では、図1に示すように、水晶振動片2(本発明でいう圧電振動片)と、この水晶振動片2の一主面21に形成された励振電極23(下記参照)を気密封止する第1封止部材3(本発明でいう封止部材)と、この水晶振動片2の他主面22に形成された励振電極23(下記参照)を気密封止する第2封止部材4が設けられている。   In the crystal resonator 1 according to this example, as shown in FIG. 1, a crystal vibrating piece 2 (a piezoelectric vibrating piece referred to in the present invention) and an excitation electrode 23 formed on one main surface 21 of the crystal vibrating piece 2. The first sealing member 3 (sealing member referred to in the present invention) that hermetically seals (see below) and the excitation electrode 23 (see below) formed on the other main surface 22 of the crystal vibrating piece 2 are hermetically sealed. A second sealing member 4 to be stopped is provided.

この水晶振動子1では、水晶振動片2と第1封止部材3とが接合材7(接合部位13参照)により接合され、かつ、水晶振動片2と第2封止部材4とが接合材7(接合部位14参照)により接合されて、パッケージ11が構成される。そして、水晶振動片2を介して第1封止部材3と第2封止部材4とが接合されることで、パッケージ11の内部空間12が形成され、このパッケージ11の内部空間12に水晶振動片2の両主面21,22に形成された励振電極23がそれぞれの内部空間12で気密封止されている。   In the crystal resonator 1, the crystal vibrating piece 2 and the first sealing member 3 are bonded by the bonding material 7 (see the bonding portion 13), and the crystal vibrating piece 2 and the second sealing member 4 are bonded. 7 (refer to the bonding portion 14) to form the package 11. Then, the first sealing member 3 and the second sealing member 4 are joined via the crystal vibrating piece 2 to form an internal space 12 of the package 11, and crystal vibration is generated in the internal space 12 of the package 11. Excitation electrodes 23 formed on both main surfaces 21 and 22 of the piece 2 are hermetically sealed in the respective internal spaces 12.

次に、上記した水晶振動子1の各構成について図2を用いて説明する。なお、ここでは、水晶振動片2と第1封止部材3と第2封止部材4が接合されていないそれぞれ単体として構成されている各部材について説明を行う。   Next, each configuration of the above-described crystal resonator 1 will be described with reference to FIG. Here, each member configured as a single body in which the crystal vibrating piece 2, the first sealing member 3, and the second sealing member 4 are not joined will be described.

水晶振動片2は、圧電材料である水晶からなり、その両主面21,22が逆メサ形状となっている。そして、両主面21,22の逆メサ形状の薄肉部分に励振電極23が形成され、励振電極23から引出電極24が引出形成されている。なお、この引出電極24が第1封止部材3に形成される電極パッド33と電気的に接続される。   The quartz crystal resonator element 2 is made of quartz which is a piezoelectric material, and both main surfaces 21 and 22 have a reverse mesa shape. The excitation electrode 23 is formed on the thin portions of the reverse mesa shape of both the main surfaces 21 and 22, and the extraction electrode 24 is extracted from the excitation electrode 23. The extraction electrode 24 is electrically connected to the electrode pad 33 formed on the first sealing member 3.

この水晶振動片2では、両主面21,22の平面視外周端部26が第1封止部材3と第2封止部材4との接合面25として構成され、両主面21,22の平面視中央部分が振動領域27として構成される。振動領域27は、接合面25と一部分28(長手方向の一側部近傍)にて繋がっている。   In the crystal vibrating piece 2, the outer peripheral end portion 26 in plan view of both the main surfaces 21 and 22 is configured as a bonding surface 25 between the first sealing member 3 and the second sealing member 4. A central portion in plan view is configured as the vibration region 27. The vibration region 27 is connected to the joint surface 25 at a portion 28 (near one side portion in the longitudinal direction).

この水晶振動片2の一主面21の接合面25に第1封止部材3と接合するための第1接合材71が形成されている。また、水晶振動片2の他主面22の接合面25に第2封止部材4と接合するための第2接合材72が形成されている。   A first bonding material 71 for bonding to the first sealing member 3 is formed on the bonding surface 25 of the one main surface 21 of the crystal vibrating piece 2. A second bonding material 72 for bonding to the second sealing member 4 is formed on the bonding surface 25 of the other main surface 22 of the crystal vibrating piece 2.

これら第1接合材71と第2接合材72とは同一構成からなる。これら第1接合材71および第2接合材72は、複数の層が両主面21,22の平面視外周端部26の接合面25に積層して構成され、その最下層側からCr層(図示省略)とAu層(図示省略)とが蒸着形成され、その上にAuメッキ層711,721が積層して形成されている。なお、本実施例では、Cr層は0.05μmの厚みを有し、Au層は0.15μmの厚みを有する。   The first bonding material 71 and the second bonding material 72 have the same configuration. The first bonding material 71 and the second bonding material 72 are configured by laminating a plurality of layers on the bonding surface 25 of the outer peripheral end portion 26 in plan view of both the main surfaces 21 and 22, and the Cr layer ( An Au layer (not shown) and an Au layer (not shown) are formed by vapor deposition, and Au plating layers 711 and 721 are laminated thereon. In this embodiment, the Cr layer has a thickness of 0.05 μm, and the Au layer has a thickness of 0.15 μm.

第1封止部材3は、透過性材料であり、図2に示すように、1枚の水晶ウエハ6(下記参照)から形成された直方体の水晶Z板である。   The first sealing member 3 is a transparent material, and is a rectangular parallelepiped crystal Z plate formed from one crystal wafer 6 (see below) as shown in FIG.

この第1封止部材3には、水晶振動片2の励振電極23と電気的に接続する電極パッド33と、水晶振動片2と接合する接合部(具体的に接合面32)と、外部と電気的に接続する外部電極端子34とが設けられている。水晶振動片2との接合面32は、第1封止部材3の一主面31の平面視主面外周に設けられている。   The first sealing member 3 includes an electrode pad 33 that is electrically connected to the excitation electrode 23 of the crystal vibrating piece 2, a bonding portion (specifically a bonding surface 32) that is bonded to the crystal vibrating piece 2, An external electrode terminal 34 to be electrically connected is provided. The bonding surface 32 with the crystal vibrating piece 2 is provided on the outer periphery of the main surface 31 of the first sealing member 3 in plan view.

第1封止部材3の接合面32には、水晶振動片2と接合するための第3接合材73が形成されている。具体的に、第3接合材73は、複数の層が積層され、その最下層側からCr層(図示省略)とAu層731とが蒸着形成され、その上にSnメッキ層732が積層して形成され、その上にAuメッキ層733が積層して形成されてなる。なお、第3接合材73と電極パッド33とは同時に形成され、電極パッド33も第3接合材73と同一の構成となる。   A third bonding material 73 for bonding to the crystal vibrating piece 2 is formed on the bonding surface 32 of the first sealing member 3. Specifically, the third bonding material 73 is formed by laminating a plurality of layers, a Cr layer (not shown) and an Au layer 731 are vapor-deposited from the lowermost layer side, and an Sn plating layer 732 is laminated thereon. And an Au plating layer 733 is laminated thereon. The third bonding material 73 and the electrode pad 33 are formed at the same time, and the electrode pad 33 has the same configuration as the third bonding material 73.

また、第1封止部材3には、図2に示すように、水晶振動片2の励振電極23を外部と導通させるためのビア36(本発明でいう貫通孔)が形成され、このビア36内に導通部材5(下記参照)が充填されている。すなわち、このビア36は、第1封止部材3の基材の両主面31,38に形成される電極パターン(電極パッド33や外部電極端子34や電極パターン37など)を導通状態とするものであり、このビア36を介して、電極パターン37が第1封止部材3の一主面31の電極パッド33から他主面38の外部電極端子34にかけてパターン形成されている。   Further, as shown in FIG. 2, the first sealing member 3 is formed with a via 36 (through hole in the present invention) for electrically connecting the excitation electrode 23 of the crystal vibrating piece 2 to the outside. The inside is filled with a conducting member 5 (see below). That is, the via 36 makes the electrode pattern (the electrode pad 33, the external electrode terminal 34, the electrode pattern 37, etc.) formed on both main surfaces 31, 38 of the base material of the first sealing member 3 conductive. The electrode pattern 37 is patterned from the electrode pad 33 on the one main surface 31 of the first sealing member 3 to the external electrode terminal 34 on the other main surface 38 through the via 36.

また、図2に示すように、ビア36の内側面361は第1封止部材3の一主面31に対して傾斜を有しテーパー状に形成されている。また、ビア36の内側面361は第1封止部材3の他主面38に対して傾斜を有しテーパー状に形成されている。そして、ビア36は、第1封止部材3の厚さ方向の中間点から他主面38側に偏位した位置において狭小の径を有している。ちなみに、本実施例では、第1封止部材3の一主面31であるビア36の端部362(一端部)の径が最大径となる。   As shown in FIG. 2, the inner side surface 361 of the via 36 is inclined and tapered with respect to the one main surface 31 of the first sealing member 3. Further, the inner side surface 361 of the via 36 is inclined and tapered with respect to the other main surface 38 of the first sealing member 3. The via 36 has a small diameter at a position displaced from the intermediate point in the thickness direction of the first sealing member 3 toward the other main surface 38. Incidentally, in the present embodiment, the diameter of the end portion 362 (one end portion) of the via 36 which is one main surface 31 of the first sealing member 3 is the maximum diameter.

このビア36内では、下記する第1封止部材3の製造方法により少なくともAuとSnとの溶融拡散を行って、少なくともAu−Sn合金から構成される導通部材5が充填されている。なお、少なくともAuとSnとから構成される導通部材5は、少なくともAuとSnとの溶融拡散によりAuとSnとが均一に混在した化合物となる。   In the via 36, at least Au and Sn are melted and diffused by the manufacturing method of the first sealing member 3 described below, and the conductive member 5 made of at least an Au—Sn alloy is filled. The conducting member 5 composed of at least Au and Sn is a compound in which Au and Sn are uniformly mixed by melting and diffusion of at least Au and Sn.

なお、第1封止部材3の一主面31側における導通部材5の端面51は、第1封止部材3の一主面31に対して凹形状となる。この第1封止部材3の一主面31側における導通部材5の端面51は、Au53とSn52が溶融拡散により主面31の面方向に引っ張られて凹形状となる。このAu53とSn52の溶融拡散により第1封止部材3と導通部材5との接合を良好にし、第1封止部材3と導通部材5との間に隙間が生じるのを抑制して、第1封止部材3への導通部材5の充填不良を抑えることができる。   The end surface 51 of the conducting member 5 on the one main surface 31 side of the first sealing member 3 is concave with respect to the one main surface 31 of the first sealing member 3. The end surface 51 of the conducting member 5 on the one main surface 31 side of the first sealing member 3 has a concave shape as Au 53 and Sn 52 are pulled in the surface direction of the main surface 31 by melt diffusion. By melting and diffusing Au53 and Sn52, the first sealing member 3 and the conducting member 5 can be joined well, and the first sealing member 3 and the conducting member 5 can be prevented from generating a gap. Incomplete filling of the conductive member 5 into the sealing member 3 can be suppressed.

また、第1封止部材3の他主面38側における導通部材5の端面51は、第1封止部材3の他主面38まで形成されずに、ビア36の狭小の径となる位置が第1封止部材3の他主面38側における導通部材5の端面51の形成位置となっている。   In addition, the end surface 51 of the conducting member 5 on the other main surface 38 side of the first sealing member 3 is not formed up to the other main surface 38 of the first sealing member 3, and the position where the via 36 has a narrow diameter is provided. This is the formation position of the end surface 51 of the conducting member 5 on the other main surface 38 side of the first sealing member 3.

上記したように、導通部材5の両端面51は、同一形状ではなく異なる形状で、第1封止部材3の両主面31,38に対して凹状に形成されている(凹形状となっている)。   As described above, the both end surfaces 51 of the conducting member 5 are not the same shape but different shapes, and are formed in a concave shape with respect to both the main surfaces 31 and 38 of the first sealing member 3 (the concave shape). )

第2封止部材4は、透過性材料であり、図2に示すように、1枚の水晶ウエハから形成された直方体の水晶Z板である。   The second sealing member 4 is a transmissive material, and is a rectangular parallelepiped crystal Z plate formed from one crystal wafer as shown in FIG.

この第2封止部材4には、水晶振動片2と接合する接合部(具体的に接合面42)が設けられている。接合面42は、第2封止部材4の一主面41の平面視主面外周に設けられている。   The second sealing member 4 is provided with a bonding portion (specifically, a bonding surface 42) that is bonded to the crystal vibrating piece 2. The joint surface 42 is provided on the outer periphery of the main surface 41 of the second sealing member 4 in a plan view.

第2封止部材4の接合面42には、水晶振動片2と接合するための第4接合材74が形成されている。具体的に、第4接合材74は、複数の層が積層され、その最下層側からCr層(図示省略)とAu層741とが蒸着形成され、その上にSnメッキ層742が積層して形成され、その上にAuメッキ層743が積層して形成されてなる。   A fourth bonding material 74 for bonding to the crystal vibrating piece 2 is formed on the bonding surface 42 of the second sealing member 4. Specifically, the fourth bonding material 74 is formed by laminating a plurality of layers, a Cr layer (not shown) and an Au layer 741 are vapor-deposited from the lowermost layer side, and an Sn plating layer 742 is laminated thereon. And an Au plating layer 743 is laminated thereon.

なお、上記した水晶振動片2の接合面25における第1接合材71の接合領域(具体的にシールパス)と、第1封止部材3の接合面32における第3接合材73の接合領域(具体的にシールパス)は、同じ幅を有する。また、水晶振動片2の接合面25における第2接合材72の接合領域(具体的にシールパス)と、第2封止部材4の接合面42における第4接合材74の接合領域(具体的にシールパス)は、同じ幅を有する。   Note that the bonding region (specifically, the seal path) of the first bonding material 71 on the bonding surface 25 of the crystal vibrating piece 2 described above and the bonding region (specifically, the third bonding material 73 on the bonding surface 32 of the first sealing member 3). The seal paths) have the same width. Further, a bonding region (specifically a seal path) of the second bonding material 72 on the bonding surface 25 of the quartz crystal vibrating piece 2 and a bonding region (specifically, the bonding surface of the fourth bonding material 74 on the bonding surface 42 of the second sealing member 4). The seal pass) has the same width.

次に、この水晶振動子1および第1封止部材3の製造方法について図面を用いて説明する。   Next, a method for manufacturing the crystal unit 1 and the first sealing member 3 will be described with reference to the drawings.

第1封止部材3を多数個形成する水晶Z板のウエハ6の両主面61,62を洗浄する(図3参照)。   Both main surfaces 61 and 62 of the quartz Z-plate wafer 6 forming a large number of first sealing members 3 are cleaned (see FIG. 3).

ウエハ6の洗浄を終えると、図4に示すように、その両主面61,62にCr層(図示省略)を下地としたAu保護膜層81を蒸着形成する。   When the cleaning of the wafer 6 is finished, as shown in FIG. 4, an Au protective film layer 81 having a Cr layer (not shown) as a base is formed on both the main surfaces 61 and 62 by vapor deposition.

Au保護膜層81をウエハ6の両主面61,62に形成した後に、図5に示すように、Au保護膜層81上にレジストをスピンコート法により塗布し、ポジレジスト層82を形成する。   After forming the Au protective film layer 81 on both main surfaces 61 and 62 of the wafer 6, as shown in FIG. 5, a resist is applied on the Au protective film layer 81 by a spin coat method to form a positive resist layer 82. .

ポジレジスト層82をAu保護膜層81上に形成した後に、図6に示すように、予め設定したパターン形成(ビア36形成)を行うために露光および現像を行なう。なお、ここで形成するパターンは、下記するビア36の凹部363のパターンのことである。   After the positive resist layer 82 is formed on the Au protective film layer 81, exposure and development are performed to form a preset pattern (formation of the via 36) as shown in FIG. The pattern formed here is the pattern of the recess 363 of the via 36 described below.

露光および現像を行うことで露出したAu保護膜層81をメタルエッチングし(図7参照)、その後ポジレジスト層82を剥離除去する(図8参照)。   The Au protective film layer 81 exposed by exposure and development is subjected to metal etching (see FIG. 7), and then the positive resist layer 82 is peeled and removed (see FIG. 8).

図8に示すようにポジレジスト層82を除去した後に、ウエットエッチングによりウエハ6(第1封止部材3の基材)の一主面61からウエハ6(当該基材)をエッチングして、図9に示すように、ビア36の一部である一主面61側部分にあたる凹部363を形成する(本発明でいう第1の形成工程)。   After removing the positive resist layer 82 as shown in FIG. 8, the wafer 6 (the base material) is etched from one main surface 61 of the wafer 6 (the base material of the first sealing member 3) by wet etching. As shown in FIG. 9, a recess 363 corresponding to a part of one main surface 61 that is a part of the via 36 is formed (first forming step in the present invention).

ビア36の一部(凹部363)を形成した後に、図10に示すように、Au保護膜層81をメタルエッチングして除去する。   After forming a part of the via 36 (recess 363), the Au protective film layer 81 is removed by metal etching as shown in FIG.

Au保護膜層81をメタルエッチングしたウエハ6の両主面61,62にCr層(図示省略)を下地としたメッキシード層であるAu膜54をメッキ形成する(図11参照)。この工程を、本発明でいう第1の形成工程により形成した凹部363に金属膜(Au膜54)を形成する第1の充填工程という。   An Au film 54, which is a plating seed layer with a Cr layer (not shown) as a base, is formed by plating on both main surfaces 61 and 62 of the wafer 6 obtained by metal etching the Au protective film layer 81 (see FIG. 11). This process is referred to as a first filling process in which a metal film (Au film 54) is formed in the recess 363 formed by the first forming process referred to in the present invention.

Au膜54をウエハ6の両主面61,62に形成した後に、図12に示すように、Au膜54上にレジストをディップコート法により塗布し、ポジレジスト層82を形成する。   After the Au film 54 is formed on both main surfaces 61 and 62 of the wafer 6, as shown in FIG. 12, a resist is applied on the Au film 54 by a dip coating method to form a positive resist layer 82.

ポジレジスト層82をAu保護膜層81上に形成した後に、図13に示すように、予め設定したパターン形成(ビア36形成)を行うためにビア36の一部(凹部363)に対して露光および現像を行なう。   After the positive resist layer 82 is formed on the Au protective film layer 81, as shown in FIG. 13, a part of the via 36 (recess 363) is exposed to perform a preset pattern formation (formation of the via 36). And developing.

露光および現像を行うことで露出したビア36の一部(凹部363)に、Au53をメッキ形成し、メッキ形成したAu53上にSn52をメッキ形成して、Au53上にSn52を積層充填する(図14参照)。なお、本実施例では、図14において、Au53上にSn52を積層充填しているが、これに限定されるものではなく、Au−Sn合金からなるメッキをビア36の一部(凹部363)に充填してもよい。   Au 53 is plated on a portion (recess 363) of the via 36 exposed by exposure and development, Sn 52 is plated on the plated Au 53, and Sn 52 is stacked and filled on the Au 53 (FIG. 14). reference). In this embodiment, Sn52 is laminated and filled on Au53 in FIG. 14. However, the present invention is not limited to this, and plating made of an Au—Sn alloy is applied to part of via 36 (recess 363). It may be filled.

Au53上にSn52を積層充填した後に、図15に示すようにポジレジスト層82を除去し、ポジレジスト層82を除去したウエハ6にレジストをディップコート法により塗布し、ポジレジスト層82を形成する(図16参照)。   After the Sn 52 is stacked and filled on the Au 53, the positive resist layer 82 is removed as shown in FIG. 15, and the resist is applied to the wafer 6 from which the positive resist layer 82 has been removed by dip coating to form the positive resist layer 82. (See FIG. 16).

ポジレジスト層82をウエハ6上に形成した後に、図17に示すように、予め設定した領域(具体的にビア36の一部である凹部363)上に、ポジレジスト層82が残るように、露光および現像を行なう。   After the positive resist layer 82 is formed on the wafer 6, as shown in FIG. 17, the positive resist layer 82 remains on a predetermined region (specifically, a recess 363 that is a part of the via 36). Perform exposure and development.

露光および現像を行うことで露出したAu膜54をメタルエッチングし(図18参照)、その後ポジレジスト層82を剥離除去する(図19参照)。   The Au film 54 exposed by exposure and development is subjected to metal etching (see FIG. 18), and then the positive resist layer 82 is peeled and removed (see FIG. 19).

ポジレジスト層82を剥離除去した後に、Sn52の融点(232℃以上)で加熱を行ないAu53とSn52とを溶融させて、Au53とSn52との溶融拡散を行う(図20参照)。Au53とSn52との溶融拡散により導通部材5を構成する。すなわち、ビア36に導通部材5を充填させる。なお、この時、導通部材5は、Au53とSn52とが均一に混在した化合物となり、この第1封止部材3の一主面31側における導通部材5の端面51は、AuとSnが溶融拡散により主面31の面方向に引っ張られて凹形状となる。なお、ここでは、凹部363に導通部材5を配した(充填した)後に、導通部材5をウエハ6の他主面62(第1封止部材3の基材の他主面38)からレーザによって照射して導通部材5を加熱溶融させる。この工程を、本発明でいう第1の充填工程後に凹部363に導通部材5を充填する第2の充填工程という。また、以上の第1の充填工程と第2の充填工程を含む製造工程を、本発明でいうビア36に導通部材5を充填するための充填工程という。   After the positive resist layer 82 is peeled and removed, heating is performed at the melting point of Sn52 (232 ° C. or higher) to melt Au53 and Sn52, and Au53 and Sn52 are melted and diffused (see FIG. 20). The conducting member 5 is configured by melt diffusion of Au 53 and Sn 52. That is, the via 36 is filled with the conductive member 5. At this time, the conductive member 5 becomes a compound in which Au 53 and Sn 52 are uniformly mixed, and the end surface 51 of the conductive member 5 on the one main surface 31 side of the first sealing member 3 is melted and diffused by Au and Sn. Thus, it is pulled in the surface direction of the main surface 31 to form a concave shape. Here, after the conducting member 5 is disposed (filled) in the recess 363, the conducting member 5 is removed from the other main surface 62 of the wafer 6 (the other main surface 38 of the base material of the first sealing member 3) by laser. The conductive member 5 is heated and melted by irradiation. This step is referred to as a second filling step in which the conductive member 5 is filled in the recess 363 after the first filling step in the present invention. Further, the manufacturing process including the first filling process and the second filling process described above is referred to as a filling process for filling the conductive member 5 into the via 36 in the present invention.

ビア36の一部である凹部363に導通部材5を充填した後に、ウエハ6の他主面62側(第1封止部材3の他主面38側)からビア36を形成するウエハ6の他主面62側の位置をエッチングして、凹部363に充填した導通部材5をウエハ6の両主面61,62(第1封止部材3の両主面31,38側)から露出させる(図21参照)。この工程を、本発明でいう第1の形成工程後にウエハ6の他主面62(第1封止部材3の基材の他主面38)からエッチング法によりウエハ6(当該基材)をエッチングしてビア36の他主面側部分を形成してビア36を形成する第2の形成工程という。また、以上の第1の形成工程と第2の形成工程を含む製造工程を、本発明でいう第1封止部材3の基材の両主面31,38に形成される電極パターン(電極パッド33や外部電極端子34や電極パターン37など)を導通状態とするためのビア36を形成する形成工程という。   After filling the recess 363, which is a part of the via 36, with the conductive member 5, the other of the wafer 6 that forms the via 36 from the other main surface 62 side of the wafer 6 (the other main surface 38 side of the first sealing member 3). The position on the main surface 62 side is etched to expose the conductive member 5 filled in the recess 363 from both main surfaces 61 and 62 of the wafer 6 (both main surfaces 31 and 38 side of the first sealing member 3) (FIG. 21). In this step, the wafer 6 (the base material) is etched from the other main surface 62 of the wafer 6 (the other main surface 38 of the base material of the first sealing member 3) by the etching method after the first forming step referred to in the present invention. This is referred to as a second forming step in which the via 36 is formed by forming the other main surface side portion of the via 36. In addition, the manufacturing process including the first forming process and the second forming process described above is performed using electrode patterns (electrode pads) formed on both main surfaces 31 and 38 of the base material of the first sealing member 3 in the present invention. 33, the external electrode terminal 34, the electrode pattern 37, and the like) is referred to as a forming process for forming a via 36 for making the conductive state.

そして、ビア36を形成した後に、ビア36を含めたウエハ6の両主面61,62(第1封止部材3の両主面31,38)に、メッキ配線用のCr膜(図示省略)を下地とした金属膜であるAu膜54を蒸着形成する。   Then, after the via 36 is formed, a Cr film for plating wiring (not shown) is formed on both main surfaces 61 and 62 (both main surfaces 31 and 38 of the first sealing member 3) of the wafer 6 including the via 36. An Au film 54, which is a metal film with a base layer as a base, is formed by vapor deposition.

上記したように、第1の形成工程により形成した凹部363に充填工程により導通部材5を充填し、その後に導通部材5を加熱溶融させて導通部材5を凹部363に形成し(充填し)、凹部363に導通部材5を形成した後に第2の形成工程によりビア36の他主面側部分を形成してビア36を形成し、ビア36内の導通部材5をウエハ6の両主面61,62(第1封止部材3の両主面31,38)から露出させる。   As described above, the conductive member 5 is filled in the recess 363 formed in the first forming step, and then the conductive member 5 is heated and melted to form (fill) the conductive member 5 in the recess 363. After the conductive member 5 is formed in the recess 363, the other main surface side portion of the via 36 is formed by the second forming step to form the via 36, and the conductive member 5 in the via 36 is connected to both main surfaces 61, 61 of the wafer 6. It exposes from 62 (both main surfaces 31 and 38 of the 1st sealing member 3).

そして、図22に示すようにAu膜54をウエハ6全面に形成した後に、ウエハ6全面にレジストを塗布し、レジスト層(図示省略)を形成し、レジスト層をAu膜54上に形成した後に、予め設定したパターン形成(電極パッド33と電極パターン37と第3接合材73との形成)を行うために露光および現像を行なう。そして、露光および現像を行うことで露出したAu膜54をメタルエッチングして、電極パッド33と電極パターン37と第3接合材73それぞれにおけるAu膜を形成する。その後、電極パッド33のSnメッキ層およびAuメッキ層と、第3接合材73のSnメッキ層732およびAuメッキ層733を形成して、図2に示すように、第1封止部材1の電極パッド33と外部電極端子34と電極パターン37と第3接合材73を形成する。   Then, after the Au film 54 is formed on the entire surface of the wafer 6 as shown in FIG. 22, a resist is applied to the entire surface of the wafer 6 to form a resist layer (not shown), and after the resist layer is formed on the Au film 54. Then, exposure and development are performed to form a preset pattern (formation of the electrode pad 33, the electrode pattern 37, and the third bonding material 73). Then, the Au film 54 exposed by exposure and development is subjected to metal etching to form an Au film in each of the electrode pad 33, the electrode pattern 37, and the third bonding material 73. Thereafter, the Sn plating layer and the Au plating layer of the electrode pad 33 and the Sn plating layer 732 and the Au plating layer 733 of the third bonding material 73 are formed, and the electrode of the first sealing member 1 is formed as shown in FIG. The pad 33, the external electrode terminal 34, the electrode pattern 37, and the third bonding material 73 are formed.

次に、この水晶振動子1の製造方法について図1,2を用いて説明する。なお、本実施例ではウエハ6に多数個形成された状態の第1封止部材3に対して、個片とされた水晶振動片2を配し、その上に個片とされた第2封止部材4を配する製造方法について説明する。しかしながら、本発明は、本実施例で説明する方法に限定されるものではなく、水晶Z板のウエハに多数個形成された状態の第1封止部材3に対して、水晶ウエハに多数個形成された状態の水晶振動片2を配し、その上に水晶Z板のウエハに多数個形成された状態の第2封止部材4を配して、これら水晶振動片2と第1封止部材3と第2封止部材4とを接合し、その後に個片化を行う方法であってもよく、この場合、水晶振動子1の量産に好ましい。   Next, a method for manufacturing the crystal unit 1 will be described with reference to FIGS. In this embodiment, the crystal vibrating piece 2 is arranged as a single piece with respect to the first sealing member 3 formed in a large number on the wafer 6, and the second seal is formed as a single piece thereon. A manufacturing method for arranging the stop member 4 will be described. However, the present invention is not limited to the method described in this embodiment, and a large number of first sealing members 3 formed on the quartz Z-plate wafer are formed on the quartz wafer. The crystal vibrating piece 2 in a state of being formed is disposed, and a plurality of second sealing members 4 formed on a crystal Z plate wafer are disposed thereon, and the crystal vibrating piece 2 and the first sealing member are disposed. 3 and the 2nd sealing member 4 may be joined, and the method of separating into pieces after that may be sufficient, and in this case, it is preferable for the mass production of the crystal unit 1.

上記した構成からなる水晶Z板のウエハ6に多数個形成された状態の第1封止部材3の一主面31上に、個片とされた水晶振動片2を、画像認識手段により設定した位置に水晶振動片2の一主面21が第1封止部材3の一主面31と対向するように配する。   On the one main surface 31 of the first sealing member 3 in a state where a large number of quartz Z-plate wafers 6 having the above-described configuration are formed, the crystal vibrating piece 2 as a single piece is set by the image recognition means. The crystal resonator element 2 is disposed at a position such that the main surface 21 of the quartz vibrating piece 2 faces the main surface 31 of the first sealing member 3.

水晶振動片2を第1封止部材3に配した後に、水晶振動片2の他主面22上に、個片とされた第2封止部材4を、画像認識手段により設定した位置に第2封止部材4の一主面41が水晶振動片2の他主面22と対向するように配して、水晶振動片2と第1封止部材3と第2封止部材4とを積層する。   After the crystal vibrating piece 2 is arranged on the first sealing member 3, the second sealing member 4, which is an individual piece, is placed on the other main surface 22 of the crystal vibrating piece 2 at the position set by the image recognition means. 2 The quartz vibrating piece 2, the first sealing member 3, and the second sealing member 4 are laminated so that one main surface 41 of the sealing member 4 faces the other main surface 22 of the crystal vibrating piece 2. To do.

水晶振動片2と第1封止部材3と第2封止部材4とを積層した後に、FCB法によりこれら水晶振動片2と第1封止部材3と第2封止部材4の超音波を用いた仮止接合を行う。   After the crystal vibrating piece 2, the first sealing member 3, and the second sealing member 4 are stacked, the ultrasonic waves of the crystal vibrating piece 2, the first sealing member 3, and the second sealing member 4 are applied by the FCB method. The temporary bonding used is performed.

水晶振動片2と第1封止部材3と第2封止部材4の仮止接合を行なった後に、他の製造工程(内部空間12内のガス抜きや発振周波数調整など)を行ない、その後に加熱溶融接合を行う。なお、本製造工程は、真空雰囲気または不活性ガスの下において行っている。   After temporarily bonding the crystal vibrating piece 2, the first sealing member 3, and the second sealing member 4, other manufacturing processes (such as degassing the internal space 12 and adjusting the oscillation frequency) are performed, and thereafter Perform hot melt bonding. This manufacturing process is performed in a vacuum atmosphere or under an inert gas.

なお、加熱溶融接合を行い第1接合材71と第3接合材73とを接合することで接合材7を構成し、この接合材7により水晶振動片2と第1封止部材3を接合する(接合部位13参照)。また、第1接合材71と第3接合材73との接合と同時に、加熱溶融接合を行い第2接合材72と第4接合材74とを接合することで接合材7を構成し、この接合材7により水晶振動片2と第2封止部材4を接合する(接合部位14参照)。これら接合材7による水晶振動片2と第1封止部材3との接合、および接合材7による水晶振動片2と第2封止部材4との接合により、図1に示すように、水晶振動片2の両主面21,22に形成された振動領域の励振電極23が気密封止される。   The bonding material 7 is formed by bonding the first bonding material 71 and the third bonding material 73 by performing heat-melt bonding, and the crystal vibrating piece 2 and the first sealing member 3 are bonded by the bonding material 7. (See junction site 13). Further, simultaneously with the joining of the first joining material 71 and the third joining material 73, the joining material 7 is configured by performing the heat melting joining and joining the second joining material 72 and the fourth joining material 74. The quartz crystal resonator element 2 and the second sealing member 4 are joined by the material 7 (see the joining portion 14). As shown in FIG. 1, the crystal vibration piece 2 and the first sealing member 3 are bonded by the bonding material 7 and the crystal vibration piece 2 and the second sealing member 4 are bonded by the bonding material 7. Excitation electrodes 23 in the vibration region formed on both main surfaces 21 and 22 of the piece 2 are hermetically sealed.

上記したように、本実施例にかかる水晶振動子1や第1封止部材3、および第1封止部材3の製造方法によれば、第1封止部材3に形成されたビア36での導通状態を安定させることができる。   As described above, according to the crystal resonator 1, the first sealing member 3, and the manufacturing method of the first sealing member 3 according to the present embodiment, the vias 36 formed in the first sealing member 3 The conduction state can be stabilized.

すなわち、本実施例にかかる水晶振動子1や第1封止部材3の製造方法によれば、第1の形成工程と第2の形成工程とからなる形成工程と、充填工程とを有し、第1の形成工程により形成した凹部363に充填工程により導通部材5を充填し、その後に導通部材5を加熱溶融させて導通部材5を凹部363に形成し、凹部363に導通部材5を形成した後に第2の形成工程によりビア36の他主面側部分を形成してビア36に形成し、ビア36内の導通部材5を第1封止部材3の基材の両主面31,38から露出させるので、導通部材5をビア36に充填して加熱溶融する際のビア36のアスペクト比を低くすることができる。その結果、ビア36に導通部材5を形成する時にボイドが発生するのを抑制することができる。   That is, according to the manufacturing method of the crystal unit 1 and the first sealing member 3 according to the present embodiment, the method includes a forming step including a first forming step and a second forming step, and a filling step. The concave member 363 formed by the first forming step is filled with the conductive member 5 by the filling step, and then the conductive member 5 is heated and melted to form the conductive member 5 in the concave portion 363, and the conductive member 5 is formed in the concave portion 363. Later, the other main surface side portion of the via 36 is formed in the second forming step to form the via 36, and the conductive member 5 in the via 36 is connected to both the main surfaces 31 and 38 of the base material of the first sealing member 3. Since it is exposed, the aspect ratio of the via 36 when the conductive member 5 is filled in the via 36 and heated and melted can be reduced. As a result, the generation of voids when the conductive member 5 is formed in the via 36 can be suppressed.

また、充填工程が第1の充填工程と第2の充填工程とからなるので、充填工程が第2の充填工程のみからなる場合と比較して、導通部材5の凹部363への接着強度が良好になる。   In addition, since the filling process includes the first filling process and the second filling process, the bonding strength of the conductive member 5 to the recess 363 is better than in the case where the filling process includes only the second filling process. become.

また、第1封止部材3の基材は透過性材料であり、第2の充填工程では、凹部363に導通部材5を配した後に、導通部材5を基材の他主面38からレーザによって照射して導通部材5を加熱溶融させるので、導通部材5が基材の凹部363から飛散するのを防ぐことができる。   Further, the base material of the first sealing member 3 is a transmissive material. In the second filling step, after the conductive member 5 is disposed in the recess 363, the conductive member 5 is removed from the other main surface 38 of the base material by laser. Irradiation causes the conductive member 5 to be heated and melted, so that the conductive member 5 can be prevented from scattering from the concave portion 363 of the base material.

また、本実施例にかかる水晶振動子1や第1封止部材3によれば、上記した本実施例にかかる水晶振動子1の第1封止部材3の製造方法によって製造され、第1封止部材3の基材の両主面31,38に形成される電極パターン(電極パッド33や外部電極端子34や電極パターン37など)を導通状態とするためのビア36が形成され、ビア36内に導通部材5が充填されるので、導通部材5をビア36に充填して加熱溶融する際のビア36のアスペクト比を低くすることができる。その結果、ビア36に導通部材5を形成する時にボイドが発生するのを抑制することができる。   Further, according to the crystal resonator 1 and the first sealing member 3 according to the present embodiment, the first sealing member 3 is manufactured by the method for manufacturing the first sealing member 3 of the crystal resonator 1 according to the above-described embodiment. Vias 36 are formed in the vias 36 for bringing the electrode patterns (the electrode pads 33, the external electrode terminals 34, the electrode patterns 37, etc.) formed on both main surfaces 31, 38 of the base material of the fixing member 3 into a conductive state. Since the conductive member 5 is filled, the aspect ratio of the via 36 when the conductive member 5 is filled in the via 36 and heated and melted can be reduced. As a result, the generation of voids when the conductive member 5 is formed in the via 36 can be suppressed.

また、導通部材5の両端面51が、第1封止部材3の両主面31,38に対して凹形状となるので、水晶振動片2などの他の部材との接触による短絡を避けることができる。   Moreover, since both the end surfaces 51 of the conducting member 5 are concave with respect to both main surfaces 31 and 38 of the first sealing member 3, avoid a short circuit due to contact with other members such as the crystal vibrating piece 2. Can do.

また、導通部材5は、少なくともAu53とSn52とから構成され、これらAu53とSn52とが均一に混在した斑状の化合物であるので、ボイドやクラックの発生を抑えることができる。これらボイドやクラックは、Au53とSn52の熱膨張係数が異なることに起因し、導通部材5の加熱冷却を繰り返すことでこれらAu53とSn52の境界が破壊モードとなるために発生するが、本実施例のようにAu53とSn52とが均一に混在した斑状の化合物とすることでボイドやクラックの発生を抑えることができる。   Moreover, since the conducting member 5 is composed of at least Au53 and Sn52 and is a patchy compound in which these Au53 and Sn52 are uniformly mixed, generation of voids and cracks can be suppressed. These voids and cracks are caused by the fact that Au53 and Sn52 have different thermal expansion coefficients, and the heating and cooling of the conductive member 5 are repeated, so that the boundary between these Au53 and Sn52 is in a destruction mode. As described above, the occurrence of voids and cracks can be suppressed by using a patchy compound in which Au53 and Sn52 are uniformly mixed.

また、第1封止部材3の一主面31側の導通部材5の両端面51は、Au53とSn52が溶融拡散により主面31の面方向に引っ張られて凹形状となる。このAu53とSn52の引っ張りにより第1封止部材3と導通部材5との接合を良好にし、第1封止部材3と導通部材5との間に隙間が生じるのを抑制して、第1封止部材3への導通部材5の充填リークを抑えることができる。さらにAu53とSn52の溶融拡散による導通部材5の引っ張りは、Au53およびSn52の表面張力によるところが大きく、このAu53およびSn52の表面張力により導通部材5はビア36内部方向に引っ張られる。そのため、導通部材5のAu53とSn52がビア36(具体的に凹部363)に偏位した状態(偏って配された状態)で第1封止部材3に形成された場合であっても、Au53とSn52との溶融拡散により導通部材5はビア36の凹部363内に変位して凹部363内に充填される。すなわち、第1封止部材3のビア36の凹部363への導通部材5の充填位置の補正をAu53とSn52との溶融拡散により行うことができる。   In addition, both end surfaces 51 of the conducting member 5 on the one main surface 31 side of the first sealing member 3 have a concave shape as Au 53 and Sn 52 are pulled in the surface direction of the main surface 31 by melt diffusion. By pulling the Au 53 and the Sn 52, the first sealing member 3 and the conducting member 5 are favorably joined, and the formation of a gap between the first sealing member 3 and the conducting member 5 is suppressed. Filling leakage of the conducting member 5 to the stopping member 3 can be suppressed. Further, the pulling of the conducting member 5 due to the fusion diffusion of Au53 and Sn52 is largely due to the surface tension of Au53 and Sn52, and the conducting member 5 is pulled toward the inside of the via 36 by the surface tension of Au53 and Sn52. Therefore, even if the Au 53 and Sn 52 of the conductive member 5 are formed on the first sealing member 3 in a state where the Au 53 and Sn 52 are deviated from the via 36 (specifically, the concave portion 363), the Au 53 is formed. The conductive member 5 is displaced into the recess 363 of the via 36 by the melt diffusion of Sn 52 and is filled in the recess 363. That is, it is possible to correct the filling position of the conductive member 5 into the concave portion 363 of the via 36 of the first sealing member 3 by melt diffusion of Au 53 and Sn 52.

また、ビア36の内側面361はテーパー状に形成され、ビア36は、第1封止部材3の厚さ方向の中間点から他主面38側に偏位した位置において狭小の径を有しているので、ビア36内における導通部材5の接合にアンカー効果を生じ易くする。   In addition, the inner surface 361 of the via 36 is formed in a tapered shape, and the via 36 has a narrow diameter at a position displaced from the intermediate point in the thickness direction of the first sealing member 3 toward the other main surface 38 side. Therefore, the anchor effect is easily generated in the connection of the conductive member 5 in the via 36.

なお、本実施例でいうエッチングとは、化学的溶解や物理的研磨、化学物理的研磨などのことをいい、具体的にドライエッチングやウエットエッチングやCMP(Chemical Mechanical Polishing)などが挙げられる。   Etching in the present embodiment refers to chemical dissolution, physical polishing, chemical physical polishing, and the like, and specifically includes dry etching, wet etching, CMP (Chemical Mechanical Polishing), and the like.

なお、本実施例では、封止部材として第1封止部材3のみを用いているが、これに限定されるものではなく、第2封止部材4にビア36を形成して封止部材として用いてもよく、また、第1封止部材3および第2封止部材4を封止部材として用いてもよい。   In this embodiment, only the first sealing member 3 is used as the sealing member. However, the present invention is not limited to this, and the via 36 is formed in the second sealing member 4 as the sealing member. You may use and the 1st sealing member 3 and the 2nd sealing member 4 may be used as a sealing member.

また、本実施例では、ビア36内に充填する導通部材5としてAu53とSn52とを用いているが、その形状はメッキ層に限定されるものではなく、膜であっても他の形態であってもよい。   In this embodiment, Au 53 and Sn 52 are used as the conductive member 5 filled in the via 36. However, the shape is not limited to the plated layer, and the film may be in another form even if it is a film. May be.

また、本実施例では、充填工程において、ビア36の凹部363内にAu53を形成し、このAu53上にSn52を形成しているが(図14〜図19参照)、これらAu53およびSn52の形成位置は、ビア36内であれば、ウエハ6の一主面61(第1封止部材3の一主面31)にまで及んでいなくてもよい。すなわち、Au53およびSn52の平面視外周端が凹部363の内側面361に形成されてもよい。この場合、充填工程により形成した導通部材5はビア36の凹部363内とされ、導通部材5は第1封止部材3の一主面31上には形成されていない。このように、導通部材5をビア36の凹部363内にのみ形成することで、第1封止部材3の一主面31上に導通部材5の突起が形成されるのを防止することができる。その結果、水晶振動片2を第1封止部材3に接合する際に水晶振動片2に導通部材5の突起が接触するのを防止して、接合時の負荷が導通部材5の突起に集中して接合不良が起きるのを防止することができる。   In this embodiment, Au53 is formed in the recess 363 of the via 36 and Sn52 is formed on the Au53 in the filling process (see FIGS. 14 to 19). The positions where the Au53 and Sn52 are formed. As long as it is in the via 36, it does not have to reach the main surface 61 of the wafer 6 (the main surface 31 of the first sealing member 3). That is, the outer peripheral ends of Au 53 and Sn 52 in plan view may be formed on the inner side surface 361 of the recess 363. In this case, the conducting member 5 formed by the filling process is in the recess 363 of the via 36, and the conducting member 5 is not formed on the one main surface 31 of the first sealing member 3. In this way, by forming the conductive member 5 only in the recess 363 of the via 36, it is possible to prevent the protrusion of the conductive member 5 from being formed on the one main surface 31 of the first sealing member 3. . As a result, when the crystal vibrating piece 2 is joined to the first sealing member 3, the projection of the conducting member 5 is prevented from coming into contact with the crystal vibrating piece 2, and the load during joining is concentrated on the projection of the conducting member 5. As a result, it is possible to prevent a bonding failure from occurring.

また、本実施例では、ビア36の内側面361はテーパー状に形成されているが、これに限定されるものではなく、ビア36の内側面361が第1封止部材3の一主面31や他主面38に対して垂直に形成されてもよい。   In the present embodiment, the inner side surface 361 of the via 36 is formed in a tapered shape, but the present invention is not limited to this, and the inner side surface 361 of the via 36 is one main surface 31 of the first sealing member 3. Alternatively, it may be formed perpendicular to the other main surface 38.

また、本実施例では、ビア36に形成したAu53とSn52とを加熱溶融して導通部材5を形成しているが、導通部材5は、他の製造工程から形成されてもよい。例えば、加熱溶融前に、Au−Sn合金のメッキ層がビア36に形成されていてもよく、導通部材5は最初から化合物であってもよい。すなわち、充填工程において、ビア36内にAu−Sn合金のメッキ層を形成し、このAu−Sn合金のメッキ層を共晶点以上の温度(本実施例では300℃以上)により加熱溶融してAu53とSn52との溶融拡散を行ってもよい。このように、Au−Sn合金から導通部材5を形成する場合、既に(導通部材5を形成する前から)合金となっているため、溶融時間が短く、更にボイドの発生を抑制することができる。この場合、Au53とSn52の共晶点以上の温度により加熱溶融するので、導通部材5の充填工程によって導通部材5にボイドが発生するのを抑えるのに更に好適である。   In the present embodiment, Au 53 and Sn 52 formed in the via 36 are heated and melted to form the conductive member 5, but the conductive member 5 may be formed from another manufacturing process. For example, before heating and melting, a plated layer of Au—Sn alloy may be formed on the via 36, and the conductive member 5 may be a compound from the beginning. That is, in the filling step, an Au—Sn alloy plating layer is formed in the via 36, and this Au—Sn alloy plating layer is heated and melted at a temperature equal to or higher than the eutectic point (300 ° C. or higher in this embodiment). Melting and diffusion of Au53 and Sn52 may be performed. Thus, when forming the conducting member 5 from the Au—Sn alloy, since it is already an alloy (before the conducting member 5 is formed), the melting time is short and the generation of voids can be further suppressed. . In this case, since it is heated and melted at a temperature equal to or higher than the eutectic point of Au 53 and Sn 52, it is more preferable to suppress generation of voids in the conductive member 5 during the filling process of the conductive member 5.

また、本実施例では、第1封止部材3に水晶Z板を用いているが、これに限定されるものではなく他の水晶であってもよく、さらにガラスなどであってもよい。   In the present embodiment, a quartz crystal Z plate is used for the first sealing member 3, but the present invention is not limited to this, and other quartz crystals may be used, and glass may be used.

また、本実施例では、接合材7として、CrとAuとSnを用いているが、これに限定されるものではなく、接合材7を例えばCrとAuとGeとから構成してもよい。   In this embodiment, Cr, Au, and Sn are used as the bonding material 7, but the present invention is not limited to this, and the bonding material 7 may be made of, for example, Cr, Au, and Ge.

また、本実施例では、水晶振動片2の接合面25における第1接合材71の接合領域(具体的にシールパス)と、第1封止部材3の接合面32における第3接合材73の接合領域(具体的にシールパス)は、同じ幅を有し、水晶振動片2の接合面25における第2接合材72の接合領域(具体的にシールパス)と、第2封止部材4の接合面42における第4接合材74の接合領域(具体的にシールパス)は、同じ幅を有しているが、これに限定されるものではなく、例えば、水晶振動片2の接合面25における第1接合材71の接合領域(具体的にシールパス)を、第1封止部材3の接合面32における第3接合材73の接合領域(具体的にシールパス)に対して幅広に形成し、水晶振動片2の接合面25における第2接合材72の接合領域(具体的にシールパス)を、第2封止部材4の接合面42における第4接合材74の接合領域(具体的にシールパス)に対して幅広に形成してもよい。   Further, in the present embodiment, the bonding region (specifically the seal path) of the first bonding material 71 on the bonding surface 25 of the crystal vibrating piece 2 and the bonding of the third bonding material 73 on the bonding surface 32 of the first sealing member 3. The region (specifically, the seal path) has the same width, and the bonding region (specifically the seal path) of the second bonding material 72 on the bonding surface 25 of the crystal vibrating piece 2 and the bonding surface 42 of the second sealing member 4. The bonding region (specifically, the seal path) of the fourth bonding material 74 has the same width, but is not limited to this. For example, the first bonding material on the bonding surface 25 of the crystal vibrating piece 2 The bonding region 71 (specifically the seal path) is formed wider than the bonding region (specifically the seal path) of the third bonding material 73 on the bonding surface 32 of the first sealing member 3, Bonding region of the second bonding material 72 on the bonding surface 25 The Specifically Shirupasu), may be widely formed against the junction region of the fourth joining member 74 at the bonding surface 42 of the second sealing member 4 (specifically Shirupasu).

この場合、水晶振動片2の接合面25に形成した第1接合材71および第2接合材72の接合領域を、第1封止部材3の接合面32に形成した第3接合材73や第2封止部材4の接合面42に形成した第4接合材74の接合領域に対して幅広に形成しているので、水晶振動片2と第1封止部材3と第2封止部材4とを接合した際に、幅広に形成した第1接合材71および第2接合材72の接合領域に第3接合材73や第4接合材74が引っ張られるようになる。これは、第3接合材73や第4接合材74にSnを用いており、このSnが第1接合材71や第2接合材72のAuに引っ張られるために起こる現象であり、この現象を用いることで、接合材7が水晶振動子1の端面からはみ出すのを防止することができる。   In this case, the bonding region of the first bonding material 71 and the second bonding material 72 formed on the bonding surface 25 of the crystal vibrating piece 2 is replaced with the third bonding material 73 or the second bonding material formed on the bonding surface 32 of the first sealing member 3. 2 Since the bonding region of the fourth bonding material 74 formed on the bonding surface 42 of the sealing member 4 is formed wider, the crystal vibrating piece 2, the first sealing member 3, and the second sealing member 4 When the first bonding material 71 and the second bonding material 72 are joined together, the third bonding material 73 and the fourth bonding material 74 are pulled. This is a phenomenon that occurs because Sn is used for the third bonding material 73 and the fourth bonding material 74, and this Sn is pulled by Au of the first bonding material 71 and the second bonding material 72. By using it, it is possible to prevent the bonding material 7 from protruding from the end face of the crystal unit 1.

また、本実施例では、図21に示すように、ビア36の一部である凹部363に導通部材5を充填した後に、ウエハ6の他主面62側(第1封止部材3の他主面38側)からビア36を形成するウエハ6の他主面62側の位置をエッチングして、凹部363に充填した導通部材5をウエハ6の両主面61,62(第1封止部材3の両主面31,38側)から露出させているが、これに限定されるものではなく、図23に示すように、ウエハ6の他主面62(第1封止部材3の他主面38)をエッチングしてビア36を形成し、凹部363に充填した導通部材5をウエハ6の他主面62(第1封止部材3の他主面38)から露出させてもよい。そして、この場合も、上記した実施例と同様に、ビア36を形成した後に、ビア36を含めたウエハ6の両主面61,62(第1封止部材3の両主面31,38)に、メッキ配線用のCr膜(図示省略)を下地とした金属膜であるAu膜54を蒸着形成する(図24参照)。なお、この図24に示す例の場合、導通部材5の他端面51は、第1封止部材3の他主面38に対して面一に形成されている(平坦形状となっている)。   Further, in this embodiment, as shown in FIG. 21, after the conductive member 5 is filled in the recess 363 that is a part of the via 36, the other main surface 62 side of the wafer 6 (the other main surface of the first sealing member 3). Etching the position on the other main surface 62 side of the wafer 6 forming the via 36 from the surface 38 side), the conductive member 5 filled in the concave portion 363 is connected to both main surfaces 61 and 62 (first sealing member 3) of the wafer 6. However, the present invention is not limited to this. As shown in FIG. 23, the other main surface 62 of the wafer 6 (the other main surface of the first sealing member 3) is exposed. 38) may be etched to form the via 36, and the conducting member 5 filled in the recess 363 may be exposed from the other main surface 62 of the wafer 6 (the other main surface 38 of the first sealing member 3). Also in this case, as in the above-described embodiment, after the via 36 is formed, both main surfaces 61 and 62 of the wafer 6 including the via 36 (both main surfaces 31 and 38 of the first sealing member 3). Then, an Au film 54, which is a metal film with a Cr film for plating wiring (not shown) as a base, is formed by vapor deposition (see FIG. 24). In the case of the example shown in FIG. 24, the other end surface 51 of the conducting member 5 is formed flush with the other main surface 38 of the first sealing member 3 (has a flat shape).

また、第1封止部材3の製造方法は、上記した本実施例以外に、次に示す第1封止部材3の製造方法によっても上記した本実施例と同様の作用効果を有する。以下、本実施例の他の例にかかる第1封止部材3の製造方法について、以下に図面(具体的に、図3〜10,25〜30)を用いて説明する。なお、本実施例の他の例にかかる第1封止部材3の製造方法では、上記した本実施例にかかる第1封止部材3の製造方法と同一工程を有する。そのため、同一の工程については同じ図面を援用する。   Moreover, the manufacturing method of the 1st sealing member 3 has an effect similar to an above-described this Example also by the manufacturing method of the 1st sealing member 3 shown below other than an above-described this Example. Hereinafter, the manufacturing method of the 1st sealing member 3 concerning the other example of a present Example is demonstrated using drawing (specifically FIGS. 3-10, 25-30). In addition, in the manufacturing method of the 1st sealing member 3 concerning the other example of a present Example, it has the same process as the manufacturing method of the 1st sealing member 3 concerning an above-described this Example. Therefore, the same drawing is used for the same process.

第1封止部材3を多数個形成する水晶Z板のウエハ6の両主面61,62を洗浄する(図3参照)。   Both main surfaces 61 and 62 of the quartz Z-plate wafer 6 forming a large number of first sealing members 3 are cleaned (see FIG. 3).

ウエハ6の洗浄を終えると、図4に示すように、その両主面61,62にCr層(図示省略)を下地としたAu保護膜層81を蒸着形成する。   When the cleaning of the wafer 6 is finished, as shown in FIG. 4, an Au protective film layer 81 having a Cr layer (not shown) as a base is formed on both the main surfaces 61 and 62 by vapor deposition.

Au保護膜層81をウエハ6の両主面61,62に形成した後に、図5に示すように、Au保護膜層81上にレジストをスピンコート法により塗布し、ポジレジスト層82を形成する。   After forming the Au protective film layer 81 on both main surfaces 61 and 62 of the wafer 6, as shown in FIG. 5, a resist is applied on the Au protective film layer 81 by a spin coat method to form a positive resist layer 82. .

ポジレジスト層82をAu保護膜層81上に形成した後に、図6に示すように、予め設定したパターン形成(ビア36形成)を行うために露光および現像を行なう。なお、ここで形成するパターンは、下記するビア36の凹部363のパターンのことである。   After the positive resist layer 82 is formed on the Au protective film layer 81, exposure and development are performed to form a preset pattern (formation of the via 36) as shown in FIG. The pattern formed here is the pattern of the recess 363 of the via 36 described below.

露光および現像を行うことで露出したAu保護膜層81をメタルエッチングし(図7参照)、その後ポジレジスト層82を剥離除去する(図8参照)。   The Au protective film layer 81 exposed by exposure and development is subjected to metal etching (see FIG. 7), and then the positive resist layer 82 is peeled and removed (see FIG. 8).

図8に示すようにポジレジスト層82を除去した後に、ウエットエッチングによりウエハ6(第1封止部材3の基材)の一主面61からウエハ6(当該基材)をエッチングして、図9に示すように、ビア36の一部である一主面61側部分にあたる凹部363を形成する(本発明でいう第1の形成工程)。   After removing the positive resist layer 82 as shown in FIG. 8, the wafer 6 (the base material) is etched from one main surface 61 of the wafer 6 (the base material of the first sealing member 3) by wet etching. As shown in FIG. 9, a recess 363 corresponding to a part of one main surface 61 that is a part of the via 36 is formed (first forming step in the present invention).

ビア36の一部(凹部363)を形成した後に、図10に示すように、Au保護膜層81をメタルエッチングして除去する。   After forming a part of the via 36 (recess 363), the Au protective film layer 81 is removed by metal etching as shown in FIG.

Au保護膜層81をメタルエッチングして除去した後に、図25に示すように、導通部材5である球状のAu53とSn52とを含むろう材を凹部363に配する。本例では、ろう材として、AuSnボールろう材を用いる。なお、ろう材の形状は球状体に限定されるものではなく、他の形状であってもよい。例えば、ろう材が円柱状体であってもよい。   After the Au protective film layer 81 is removed by metal etching, as shown in FIG. 25, a brazing material containing spherical Au 53 and Sn 52 as the conductive member 5 is disposed in the recess 363. In this example, an AuSn ball brazing material is used as the brazing material. The shape of the brazing material is not limited to a spherical body, and may be other shapes. For example, the brazing material may be a cylindrical body.

ろう材を凹部363に配した後に、ろう材の融点(278℃以上)で加熱を行ない導通部材5であるろう材とを溶融させて、導通部材5を構成する(図26参照)。すなわち、ビア36に導通部材5を充填させる。なお、この時、導通部材5は、Au53とSn52とが均一に混在した化合物となり、この第1封止部材3の一主面31側における導通部材5の端面51は、AuとSnが溶融拡散により主面31の面方向に引っ張られて凹形状となる。なお、ここでは、凹部363に導通部材5を配した(充填した)後に、導通部材5をウエハ6の他主面62(第1封止部材3の基材の他主面38)からレーザによって照射して導通部材5を加熱溶融させる。この工程を、本発明でいう第1の充填工程後に凹部363に導通部材5を充填する第2の充填工程といい、本例では、この第2の充填工程が充填工程に対応する。   After the brazing material is disposed in the recess 363, heating is performed at the melting point (278 ° C. or higher) of the brazing material to melt the brazing material, which is the conducting member 5, and the conducting member 5 is configured (see FIG. 26). That is, the via 36 is filled with the conductive member 5. At this time, the conductive member 5 becomes a compound in which Au 53 and Sn 52 are uniformly mixed, and the end surface 51 of the conductive member 5 on the one main surface 31 side of the first sealing member 3 is melted and diffused by Au and Sn. Thus, it is pulled in the surface direction of the main surface 31 to form a concave shape. Here, after the conducting member 5 is disposed (filled) in the recess 363, the conducting member 5 is removed from the other main surface 62 of the wafer 6 (the other main surface 38 of the base material of the first sealing member 3) by laser. The conductive member 5 is heated and melted by irradiation. This step is referred to as a second filling step in which the conductive member 5 is filled in the recess 363 after the first filling step in the present invention. In this example, the second filling step corresponds to the filling step.

ビア36の一部である凹部363に導通部材5を充填した後に、ウエハ6の他主面62側(第1封止部材3の他主面38側)からビア36を形成するウエハ6の他主面62側の位置をエッチングして、凹部363に充填した導通部材5をウエハ6の両主面61,62(第1封止部材3の両主面31,38側)から露出させる(図27参照)。この工程を、本発明でいう第1の形成工程後にウエハ6の他主面62(第1封止部材3の基材の他主面38)からエッチング法によりウエハ6(当該基材)をエッチングしてビア36の他主面側部分を形成してビア36を形成する第2の形成工程という。また、以上の第1の形成工程と第2の形成工程を含む製造工程を、本発明でいう第1封止部材3の基材の両主面31,38に形成される電極パターン(電極パッド33や外部電極端子34や電極パターン37など)を導通状態とするためのビア36を形成する形成工程という。   After filling the recess 363, which is a part of the via 36, with the conductive member 5, the other of the wafer 6 that forms the via 36 from the other main surface 62 side of the wafer 6 (the other main surface 38 side of the first sealing member 3). The position on the main surface 62 side is etched to expose the conductive member 5 filled in the recess 363 from both main surfaces 61 and 62 of the wafer 6 (both main surfaces 31 and 38 side of the first sealing member 3) (FIG. 27). In this step, the wafer 6 (the base material) is etched from the other main surface 62 of the wafer 6 (the other main surface 38 of the base material of the first sealing member 3) by the etching method after the first forming step referred to in the present invention. This is referred to as a second forming step in which the via 36 is formed by forming the other main surface side portion of the via 36. In addition, the manufacturing process including the first forming process and the second forming process described above is performed using electrode patterns (electrode pads) formed on both main surfaces 31 and 38 of the base material of the first sealing member 3 in the present invention. 33, the external electrode terminal 34, the electrode pattern 37, and the like) is referred to as a forming process for forming a via 36 for making the conductive state.

そして、ビア36を形成した後に、ビア36を含めたウエハ6の両主面61,62(第1封止部材3の両主面31,38)に、メッキ配線用のCr膜(図示省略)を下地とした金属膜であるAu膜54を蒸着形成する。   Then, after the via 36 is formed, a Cr film for plating wiring (not shown) is formed on both main surfaces 61 and 62 (both main surfaces 31 and 38 of the first sealing member 3) of the wafer 6 including the via 36. An Au film 54, which is a metal film with a base layer as a base, is formed by vapor deposition.

上記したように、第1の形成工程により形成した凹部363に充填工程により導通部材5であるろう材を配し、その後に導通部材5を加熱溶融させて導通部材5を凹部363に形成し(充填し)、凹部363に導通部材5を形成した後に第2の形成工程によりビア36の他主面側部分を形成してビア36に形成し、ビア36内の導通部材5をウエハ6の両主面61,62(第1封止部材3の両主面31,38)から露出させる。   As described above, the brazing material which is the conductive member 5 is arranged in the concave portion 363 formed in the first forming step, and then the conductive member 5 is heated and melted to form the conductive member 5 in the concave portion 363 ( After the conductive member 5 is formed in the recess 363, the other main surface side portion of the via 36 is formed in the second formation step to form the via 36, and the conductive member 5 in the via 36 is formed on both the wafers 6. The main surfaces 61 and 62 (both main surfaces 31 and 38 of the first sealing member 3) are exposed.

そして、図28に示すようにAu膜54をウエハ6全面に形成した後に、ウエハ6全面にレジストを塗布し、レジスト層(図示省略)を形成し、レジスト層をAu膜54上に形成した後に、予め設定したパターン形成(電極パッド33と電極パターン37と第3接合材73との形成)を行うために露光および現像を行なう。そして、露光および現像を行うことで露出したAu膜54をメタルエッチングして、電極パッド33と電極パターン37と第3接合材73それぞれにおけるAu膜を形成する。その後、電極パッド33のSnメッキ層およびAuメッキ層と、第3接合材73のSnメッキ層732およびAuメッキ層733を形成して、図2に示すように、第1封止部材1の電極パッド33と外部電極端子34と電極パターン37と第3接合材73を形成する。   28, after forming the Au film 54 on the entire surface of the wafer 6, a resist is applied to the entire surface of the wafer 6, a resist layer (not shown) is formed, and the resist layer is formed on the Au film 54. Then, exposure and development are performed to form a preset pattern (formation of the electrode pad 33, the electrode pattern 37, and the third bonding material 73). Then, the Au film 54 exposed by exposure and development is subjected to metal etching to form an Au film in each of the electrode pad 33, the electrode pattern 37, and the third bonding material 73. Thereafter, the Sn plating layer and the Au plating layer of the electrode pad 33 and the Sn plating layer 732 and the Au plating layer 733 of the third bonding material 73 are formed, and the electrode of the first sealing member 1 is formed as shown in FIG. The pad 33, the external electrode terminal 34, the electrode pattern 37, and the third bonding material 73 are formed.

なお、本実施例の他の例にかかる第1封止部材3の製造方法では、図27に示すように、ビア36の一部である凹部363に導通部材5を充填した後に、ウエハ6の他主面62側(第1封止部材3の他主面38側)からビア36を形成するウエハ6の他主面62側の位置をエッチングして、凹部363に充填した導通部材5をウエハ6の両主面61,62(第1封止部材3の両主面31,38側)から露出させているが、これに限定されるものではなく、図29に示すように、ウエハ6の他主面62(第1封止部材3の他主面38)をエッチングしてビア36を形成し、凹部363に充填した導通部材5をウエハ6の他主面62(第1封止部材3の他主面38)から露出させてもよい。そして、この場合も、上記した本実施例の他の例と同様に、ビア36を形成した後に、ビア36を含めたウエハ6の両主面61,62(第1封止部材3の両主面31,38)に、メッキ配線用のCr膜(図示省略)を下地とした金属膜であるAu膜54を蒸着形成する(図30参照)。なお、この図30に示す例の場合、導通部材5の他端面51は、第1封止部材3の他主面38に対して面一に形成されている(平坦形状となっている)。   In the manufacturing method of the first sealing member 3 according to another example of the present embodiment, as shown in FIG. 27, the conductive member 5 is filled in the recess 363 that is a part of the via 36, and then the wafer 6 is formed. Etching the position on the other main surface 62 side of the wafer 6 forming the via 36 from the other main surface 62 side (the other main surface 38 side of the first sealing member 3), the conductive member 5 filled in the recess 363 is the wafer. 6 are exposed from both main surfaces 61 and 62 (both main surfaces 31 and 38 side of the first sealing member 3), but the present invention is not limited to this, and as shown in FIG. The other main surface 62 (the other main surface 38 of the first sealing member 3) is etched to form the via 36, and the conducting member 5 filled in the recess 363 is connected to the other main surface 62 (the first sealing member 3) of the wafer 6. The other main surface 38) may be exposed. Also in this case, as in the other examples of the present embodiment described above, after the via 36 is formed, both main surfaces 61 and 62 of the wafer 6 including the via 36 (both main surfaces of the first sealing member 3). An Au film 54, which is a metal film with a Cr film for plating wiring (not shown) as a base, is formed on the surfaces 31, 38) by vapor deposition (see FIG. 30). In the case of the example shown in FIG. 30, the other end surface 51 of the conducting member 5 is formed flush with the other main surface 38 of the first sealing member 3 (has a flat shape).

なお、本発明は、その精神や主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   It should be noted that the present invention can be implemented in various other forms without departing from the spirit, gist, or main features. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、封止部材に水晶を用いた圧電振動デバイス、および封止部材の製造方法に好適である。   The present invention is suitable for a piezoelectric vibration device using quartz as a sealing member and a method for manufacturing the sealing member.

図1は、本実施例にかかる水晶振動子の内部空間を公開した概略側面図である。FIG. 1 is a schematic side view showing the internal space of the crystal unit according to the present embodiment. 図2は、本実施例にかかる水晶振動子の各構成を示した概略構成図である。FIG. 2 is a schematic configuration diagram illustrating each configuration of the crystal resonator according to the present embodiment. 図3は、本実施例にかかる第1封止部材の製造工程の一工程であるウエハ洗浄を示す概略工程図である。FIG. 3 is a schematic process diagram illustrating wafer cleaning, which is one process of manufacturing the first sealing member according to the present embodiment. 図4は、本実施例にかかる第1封止部材の製造工程の一工程であるAu保護層形成を示す概略工程図である。FIG. 4 is a schematic process diagram showing Au protective layer formation, which is one process of manufacturing the first sealing member according to the present example. 図5は、本実施例にかかる第1封止部材の製造工程の一工程であるレジスト塗布を示す概略工程図である。FIG. 5 is a schematic process diagram showing resist coating which is one process of the manufacturing process of the first sealing member according to the present embodiment. 図6は、本実施例にかかる第1封止部材の製造工程の一工程である露光および現像を示す概略工程図である。FIG. 6 is a schematic process diagram showing exposure and development, which are one process of the manufacturing process of the first sealing member according to the present embodiment. 図7は、本実施例にかかる第1封止部材の製造工程の一工程であるメタルエッチングを示す概略工程図である。FIG. 7 is a schematic process diagram showing metal etching which is one process of the manufacturing process of the first sealing member according to this example. 図8は、本実施例にかかる第1封止部材の製造工程の一工程であるレジスト剥離を示す概略工程図である。FIG. 8 is a schematic process diagram showing resist stripping, which is one process of the manufacturing process of the first sealing member according to this example. 図9は、本実施例にかかる第1封止部材の製造工程の一工程である凹部形成工程を示す概略工程図である。FIG. 9 is a schematic process diagram showing a recess forming process which is a process of manufacturing the first sealing member according to the present embodiment. 図10は、本実施例にかかる第1封止部材の製造工程の一工程であるメタルエッチングを示す概略工程図である。FIG. 10 is a schematic process diagram illustrating metal etching, which is one process of manufacturing the first sealing member according to the present embodiment. 図11は、本実施例にかかる第1封止部材の製造工程の一工程であるAu膜形成を示す概略工程図である。FIG. 11 is a schematic process diagram illustrating Au film formation, which is one process of manufacturing the first sealing member according to the present example. 図12は、本実施例にかかる第1封止部材の製造工程の一工程であるレジスト塗布を示す概略工程図である。FIG. 12 is a schematic process diagram illustrating resist coating, which is one process of manufacturing the first sealing member according to the present embodiment. 図13は、本実施例にかかる第1封止部材の製造工程の一工程である露光および現像を示す概略工程図である。FIG. 13 is a schematic process diagram showing exposure and development, which are one process of the manufacturing process of the first sealing member according to the present embodiment. 図14は、本実施例にかかる第1封止部材の製造工程の一工程であるAuメッキおよびSnメッキの形成を示す概略工程図である。FIG. 14 is a schematic process diagram showing the formation of Au plating and Sn plating, which is one process of the manufacturing process of the first sealing member according to this example. 図16は、本実施例にかかる第1封止部材の製造工程の一工程であるレジスト剥離を示す概略工程図である。FIG. 16 is a schematic process diagram showing resist stripping, which is one process of manufacturing the first sealing member according to the present example. 図16は、本実施例にかかる第1封止部材の製造工程の一工程であるレジスト塗布を示す概略工程図である。FIG. 16 is a schematic process diagram showing resist coating as one process of the manufacturing process of the first sealing member according to the present example. 図17は、本実施例にかかる第1封止部材の製造工程の一工程である露光および現像を示す概略工程図である。FIG. 17 is a schematic process diagram showing exposure and development, which are one process of the manufacturing process of the first sealing member according to the present embodiment. 図18は、本実施例にかかる第1封止部材の製造工程の一工程であるメタルエッチングを示す概略工程図である。FIG. 18 is a schematic process diagram showing metal etching which is one process of the manufacturing process of the first sealing member according to the present example. 図19は、本実施例にかかる第1封止部材の製造工程の一工程であるレジスト剥離を示す概略工程図である。FIG. 19 is a schematic process diagram showing resist peeling which is one process of the manufacturing process of the first sealing member according to this example. 図20は、本実施例にかかる第1封止部材の製造工程の一工程であるAuメッキとSnメッキとの溶融を示す概略工程図である。FIG. 20 is a schematic process diagram illustrating melting of Au plating and Sn plating, which is one process of manufacturing the first sealing member according to the present example. 図21は、本実施例にかかる第1封止部材の製造工程の一工程であるビア形成工程を示す概略工程図である。FIG. 21 is a schematic process diagram showing a via forming process which is one process of manufacturing the first sealing member according to the present example. 図22は、本実施例にかかる第1封止部材の製造工程の一工程であるAu膜形成を示す概略工程図である。FIG. 22 is a schematic process diagram showing Au film formation, which is one process of manufacturing the first sealing member according to the present example. 図23は、本実施例の他の例にかかる第1封止部材の製造工程の一工程であるビア形成工程を示す概略工程図である。FIG. 23 is a schematic process diagram illustrating a via forming process which is one process of manufacturing the first sealing member according to another example of the present embodiment. 図24は、本実施例の他の例にかかる第1封止部材の製造工程の一工程であるAu膜形成を示す概略工程図である。FIG. 24 is a schematic process diagram illustrating Au film formation, which is one process of manufacturing the first sealing member according to another example of the present example. 図25は、本実施例の他の例にかかる第1封止部材の製造工程の一工程であるろう材の凹部への配置を示す概略工程図である。FIG. 25 is a schematic process diagram showing the arrangement of the brazing material in the recess, which is one process of the manufacturing process of the first sealing member according to another example of the present embodiment. 図26は、本実施例の他の例にかかる第1封止部材の製造工程の一工程であるろう材の溶融を示す概略工程図である。FIG. 26 is a schematic process diagram illustrating melting of the brazing material, which is one process of manufacturing the first sealing member according to another example of the present embodiment. 図27は、本実施例の他の例にかかる第1封止部材の製造工程の一工程であるビア形成工程を示す概略工程図である。FIG. 27 is a schematic process diagram illustrating a via forming process which is a process of manufacturing the first sealing member according to another example of the present embodiment. 図28は、本実施例の他の例にかかる第1封止部材の製造工程の一工程であるAu膜形成を示す概略工程図である。FIG. 28 is a schematic process diagram illustrating Au film formation, which is one process of manufacturing the first sealing member according to another example of the present example. 図29は、本実施例の他の例にかかる第1封止部材の製造工程の一工程であるビア形成工程を示す概略工程図である。FIG. 29 is a schematic process diagram illustrating a via forming process which is one process of manufacturing a first sealing member according to another example of the present embodiment. 図30は、本実施例の他の例にかかる第1封止部材の製造工程の一工程であるAu膜形成を示す概略工程図である。FIG. 30 is a schematic process diagram illustrating Au film formation, which is one process of manufacturing the first sealing member according to another example of the present embodiment.

符号の説明Explanation of symbols

1 水晶振動子(圧電振動デバイス)
12 内部空間
2 水晶振動片(圧電振動片)
23 励振電極
3 第1封止部材
31 第1封止部材の一主面
32 第1封止部材の接合面
33 電極パッド(電極パターンの一部)
34 外部電極端子(電極パターンの一部)
35 第1封止部材の基材内部
36 ビア(貫通孔)
361 ビアの内側面
362 ビアの両端部
37 電極パターン(電極パターンの一部)
38 第1封止部材の他主面
4 第2封止部材
5 導通部材
51 導通部材の両端面
52 Sn
53 Au
54 Au膜
6 水晶Z板のウエハ
61,62 水晶Z板のウエハの両主面
7 接合材
81 Au保護膜層
82 ポジレジスト層
1 Crystal resonator (piezoelectric vibration device)
12 Internal space 2 Crystal resonator element (piezoelectric resonator element)
23 Excitation electrode 3 First sealing member 31 One main surface 32 of the first sealing member Bonding surface 33 of the first sealing member Electrode pad (part of the electrode pattern)
34 External electrode terminal (part of electrode pattern)
35 Inside of base material of first sealing member 36 Via (through hole)
361 Via inner surface 362 Via both ends 37 Electrode pattern (part of electrode pattern)
38 Other main surface 4 of the first sealing member 4 Second sealing member 5 Conducting member 51 Both end surfaces 52 Sn of the conducting member
53 Au
54 Au film 6 Quartz Z plate wafers 61 and 62 Both main surfaces 7 of quartz Z plate wafer Bonding material 81 Au protective film layer 82 Positive resist layer

Claims (6)

圧電振動を行う圧電振動片の励振電極を気密封止する圧電振動デバイスの封止部材の製造方法において、
当該封止部材の基材の両主面に形成される電極パターンを導通状態とするための貫通孔を形成する形成工程と、
前記貫通孔に導通部材を充填するための充填工程と、を有し、
前記形成工程は、前記基材の一主面からエッチング法により基材をエッチングして貫通孔の一主面側部分にあたる凹部を形成する第1の形成工程と、第1の形成工程後に前記基材の他主面からエッチング法により基材をエッチングして貫通孔の他主面側部分を形成して貫通孔を形成する第2の形成工程とからなり、
前記第1の形成工程により形成した前記凹部に前記充填工程により前記導通部材を充填し、その後、前記導通部材を加熱溶融させて前記導通部材を前記凹部に形成し、前記凹部に前記導通部材を形成した後に前記第2の形成工程により前記貫通孔の前記他主面側部分を形成して前記貫通孔を形成し、前記貫通孔内の前記導通部材を前記基材の両主面から露出させることを特徴とする圧電振動デバイスの封止部材の製造方法。
In the manufacturing method of the sealing member of the piezoelectric vibrating device that hermetically seals the excitation electrode of the piezoelectric vibrating piece that performs piezoelectric vibration,
A forming step of forming through holes for bringing the electrode pattern formed on both main surfaces of the base material of the sealing member into a conductive state;
A filling step for filling the through hole with a conductive member,
The forming step includes a first forming step of etching a base material from one main surface of the base material by an etching method to form a recess corresponding to a main surface side portion of a through hole, and the base after the first forming step. A second forming step of forming a through hole by etching the base material from the other main surface of the material by an etching method to form the other main surface side portion of the through hole,
The conducting member is filled in the recess formed in the first forming step by the filling step, and then the conducting member is heated and melted to form the conducting member in the recess, and the conducting member is formed in the recess. After forming, the other main surface side portion of the through hole is formed by the second forming step to form the through hole, and the conducting member in the through hole is exposed from both main surfaces of the base material. A method for manufacturing a sealing member for a piezoelectric vibration device.
請求項1に記載の圧電振動デバイスの封止部材の製造方法において、
前記充填工程は、前記第1の形成工程により形成した前記凹部に金属膜を形成する第1の充填工程と、前記第1の充填工程後に前記凹部に導通部材を充填する第2の充填工程と、からなることを特徴とする圧電振動デバイスの封止部材の製造方法。
In the manufacturing method of the sealing member of the piezoelectric vibration device according to claim 1,
The filling step includes a first filling step of forming a metal film in the concave portion formed by the first forming step, and a second filling step of filling the concave portion with a conductive member after the first filling step. The manufacturing method of the sealing member of the piezoelectric vibration device characterized by comprising.
請求項1または2に記載の圧電振動デバイスの封止部材の製造方法において、
前記基材は、透過性材料であり、
前記第2の充填工程では、前記凹部に前記導通部材を配した後に、前記導通部材を前記基材の他主面からレーザによって照射して前記導通部材を加熱溶融させることを特徴とする圧電振動デバイスの封止部材の製造方法。
In the manufacturing method of the sealing member of the piezoelectric vibration device according to claim 1 or 2,
The substrate is a permeable material;
In the second filling step, the conductive member is disposed in the concave portion, and then the conductive member is irradiated with a laser from the other main surface of the base material to heat and melt the conductive member. A method for manufacturing a sealing member of a device.
圧電振動を行う圧電振動片の励振電極を気密封止する圧電振動デバイスの封止部材において、
請求項1乃至3のうちいずれか1つに記載の圧電振動デバイスの封止部材の製造方法によって製造され、
当該封止部材の基材の両主面に形成される電極パターンを導通状態とするための貫通孔が形成され、前記貫通孔内に導通部材が充填されたことを特徴とする圧電振動デバイスの封止部材。
In a sealing member of a piezoelectric vibrating device that hermetically seals an excitation electrode of a piezoelectric vibrating piece that performs piezoelectric vibration,
It is manufactured by the manufacturing method of the sealing member of the piezoelectric vibration device according to any one of claims 1 to 3.
A through-hole for making an electrode pattern formed on both main surfaces of the base material of the sealing member conductive is formed, and the conductive member is filled in the through-hole. Sealing member.
請求項4に記載の圧電振動デバイスの封止部材において、
前記導通部材の少なくとも一つの端面が、当該封止部材の主面に対して凹形状となることを特徴とする圧電振動デバイスの封止部材。
In the sealing member of the piezoelectric vibration device according to claim 4,
A sealing member for a piezoelectric vibration device, wherein at least one end surface of the conducting member has a concave shape with respect to a main surface of the sealing member.
請求項4または5に記載の圧電振動デバイスの封止部材において、
前記導通部材は、少なくともAuとSnとから構成され、これらAuとSnとが均一に混在した化合物であることを特徴とする圧電振動デバイスの封止部材。
In the sealing member of the piezoelectric vibration device according to claim 4 or 5,
The conductive member is composed of at least Au and Sn, and is a compound in which these Au and Sn are mixed uniformly.
JP2008238168A 2008-09-17 2008-09-17 Method for manufacturing sealing member of piezoelectric vibration device Expired - Fee Related JP5369570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008238168A JP5369570B2 (en) 2008-09-17 2008-09-17 Method for manufacturing sealing member of piezoelectric vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008238168A JP5369570B2 (en) 2008-09-17 2008-09-17 Method for manufacturing sealing member of piezoelectric vibration device

Publications (2)

Publication Number Publication Date
JP2010074396A true JP2010074396A (en) 2010-04-02
JP5369570B2 JP5369570B2 (en) 2013-12-18

Family

ID=42205796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008238168A Expired - Fee Related JP5369570B2 (en) 2008-09-17 2008-09-17 Method for manufacturing sealing member of piezoelectric vibration device

Country Status (1)

Country Link
JP (1) JP5369570B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029166A (en) * 2010-07-26 2012-02-09 Seiko Instruments Inc Package, method of manufacturing package, piezoelectric transducer, and oscillator

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353949A (en) * 1986-08-25 1988-03-08 Hitachi Ltd Method of forming metallic wiring
JPS63142835A (en) * 1986-11-28 1988-06-15 シーメンス、アクチエンゲゼルシヤフト Integrated semiconductor circuit and manufacture of the same
JPH04127524A (en) * 1990-09-19 1992-04-28 Fujitsu Ltd Method of filling contact hole with metal
JPH04320024A (en) * 1991-03-20 1992-11-10 Samsung Electron Co Ltd Manufacture of semiconductor device
JPH0613469A (en) * 1992-06-25 1994-01-21 Nec Corp Manufacture of semiconductor device
JPH06140393A (en) * 1992-03-24 1994-05-20 Toshiba Corp Manufacture of semiconductor device and semiconductor device
JPH07263548A (en) * 1994-03-18 1995-10-13 Fujitsu Ltd Manufacture of semiconductor device
JPH0922941A (en) * 1995-07-07 1997-01-21 Seiko Epson Corp Manufacturing for semiconductor device
JP2004200584A (en) * 2002-12-20 2004-07-15 Fujikura Ltd Method of forming penetration electrode and substrate having penetration electrode
JP2006108244A (en) * 2004-10-01 2006-04-20 Sharp Corp Method of manufacturing semiconductor device
JP2006165112A (en) * 2004-12-03 2006-06-22 Sharp Corp Through-electrode formation method and method for manufacturing semiconductor device using same, and semiconductor device obtained thereby
JP2006295246A (en) * 2005-04-05 2006-10-26 Matsushita Electric Ind Co Ltd Electronic component and manufacturing method thereof
JP2007267101A (en) * 2006-03-29 2007-10-11 Epson Toyocom Corp Piezoelectric device and manufacturing method thereof
JP2007305715A (en) * 2006-05-10 2007-11-22 Fujikura Ltd Manufacturing method for wiring board
JP2009194789A (en) * 2008-02-18 2009-08-27 Seiko Instruments Inc Method of manufacturing piezoelectric vibrator, the piezoelectric vibrator, oscillator, electronic equipment, and radio-controlled clock

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353949A (en) * 1986-08-25 1988-03-08 Hitachi Ltd Method of forming metallic wiring
JPS63142835A (en) * 1986-11-28 1988-06-15 シーメンス、アクチエンゲゼルシヤフト Integrated semiconductor circuit and manufacture of the same
JPH04127524A (en) * 1990-09-19 1992-04-28 Fujitsu Ltd Method of filling contact hole with metal
JPH04320024A (en) * 1991-03-20 1992-11-10 Samsung Electron Co Ltd Manufacture of semiconductor device
JPH06140393A (en) * 1992-03-24 1994-05-20 Toshiba Corp Manufacture of semiconductor device and semiconductor device
JPH0613469A (en) * 1992-06-25 1994-01-21 Nec Corp Manufacture of semiconductor device
JPH07263548A (en) * 1994-03-18 1995-10-13 Fujitsu Ltd Manufacture of semiconductor device
JPH0922941A (en) * 1995-07-07 1997-01-21 Seiko Epson Corp Manufacturing for semiconductor device
JP2004200584A (en) * 2002-12-20 2004-07-15 Fujikura Ltd Method of forming penetration electrode and substrate having penetration electrode
JP2006108244A (en) * 2004-10-01 2006-04-20 Sharp Corp Method of manufacturing semiconductor device
JP2006165112A (en) * 2004-12-03 2006-06-22 Sharp Corp Through-electrode formation method and method for manufacturing semiconductor device using same, and semiconductor device obtained thereby
JP2006295246A (en) * 2005-04-05 2006-10-26 Matsushita Electric Ind Co Ltd Electronic component and manufacturing method thereof
JP2007267101A (en) * 2006-03-29 2007-10-11 Epson Toyocom Corp Piezoelectric device and manufacturing method thereof
JP2007305715A (en) * 2006-05-10 2007-11-22 Fujikura Ltd Manufacturing method for wiring board
JP2009194789A (en) * 2008-02-18 2009-08-27 Seiko Instruments Inc Method of manufacturing piezoelectric vibrator, the piezoelectric vibrator, oscillator, electronic equipment, and radio-controlled clock

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029166A (en) * 2010-07-26 2012-02-09 Seiko Instruments Inc Package, method of manufacturing package, piezoelectric transducer, and oscillator

Also Published As

Publication number Publication date
JP5369570B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5447379B2 (en) Piezoelectric vibration device sealing member and manufacturing method thereof
JP5370371B2 (en) Method for manufacturing piezoelectric vibration device, and method for etching constituent member constituting piezoelectric vibration device
JP2009065520A (en) Piezoelectric device and manufacturing method thereof
WO2010001885A1 (en) Piezoelectric vibration device and method for manufacturing piezoelectric vibration device
JP2011188308A (en) Piezoelectric resonator, and method of manufacturing the same
TW201330186A (en) Electronic component package, sealing member for electronic component package, and method for manufacturing sealing member for electronic component package
JP2009022003A (en) Method of manufacturing crystal vibrator
JP5282392B2 (en) Direct bonding wafer
JP5278044B2 (en) Package member, method for manufacturing the package member, and piezoelectric vibration device using the package member
JP5251224B2 (en) Method for manufacturing piezoelectric vibration device and piezoelectric vibration device
JP5263475B2 (en) Piezoelectric device and manufacturing method thereof
JP2011142522A (en) Package manufacturing method, piezoelectric vibrator, and oscillator
JP6516399B2 (en) Electronic device
JP5369570B2 (en) Method for manufacturing sealing member of piezoelectric vibration device
JP5239784B2 (en) Piezoelectric vibration device
JP5573991B2 (en) Bonding wafer
JP2009118223A (en) Piezoelectric device
JP2012028454A (en) Partially plating method, metallic lid member and electronic component
JP2009124587A (en) Piezoelectric vibrating chip, piezoelectric vibration device, and method of manufacturing piezoelectric vibrating chip
JP5188836B2 (en) Manufacturing method of crystal unit
JP4398233B2 (en) Method for manufacturing piezoelectric oscillator
JP2013098701A (en) Piezoelectric vibration device and manufacturing method of piezoelectric vibration device
JP2012028453A (en) Metallic hermetic lid manufacturing method
JP2009118143A (en) Crystal device and manufacturing method thereof
JP2011114836A (en) Piezoelectric vibration device and method of manufacturing sealing member of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5369570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees