JP2010071941A - Inspection apparatus - Google Patents

Inspection apparatus Download PDF

Info

Publication number
JP2010071941A
JP2010071941A JP2008242717A JP2008242717A JP2010071941A JP 2010071941 A JP2010071941 A JP 2010071941A JP 2008242717 A JP2008242717 A JP 2008242717A JP 2008242717 A JP2008242717 A JP 2008242717A JP 2010071941 A JP2010071941 A JP 2010071941A
Authority
JP
Japan
Prior art keywords
imaging
solder
camera
substrate
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008242717A
Other languages
Japanese (ja)
Inventor
Shigeki Kobayashi
茂樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008242717A priority Critical patent/JP2010071941A/en
Publication of JP2010071941A publication Critical patent/JP2010071941A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection apparatus which achieves in practical inspection time high-resolution three-dimensional inspection of the cream solder printed board in which minute solder area and regular-sized solder area are mixed, and also solder area three-dimensional inspection of the whole board. <P>SOLUTION: In the inspection apparatus, a lighting system consists of the one-dimensional color image sensor cameras for both high-resolution imaging and the whole board imaging respectively beveled to the board, a third hue light optical source for overhead lighting of the board, a first hue light optical source positioned lower than the camera for high-resolution imaging to illuminate the cream solder from the same direction as the camera, and a second hue light optical source positioned lower than the camera for the whole board imaging to illuminate the cream solder from the same direction as the camera. High-resolution three-dimensional inspection by scan imaging is conducted for minute solder area, while three-dimensional inspection by scan imaging of the whole board is conducted for other regular-sized solder area, allowing inspection time to be covered within serviceable limit. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エレクトロニクス工場等において、イメージセンサカメラによりクリームはんだ印刷基板を3次元撮像して外観検査を行う検査装置に関する。   The present invention relates to an inspection apparatus for performing an appearance inspection by three-dimensionally imaging a cream solder printed board with an image sensor camera in an electronics factory or the like.

最近のプリント基板への部品組みつけ工法はほぼ表面実装方式になり、素基板にクリームはんだを謄写版式に印刷塗布し、その上に部品を自動マウントし、クリームはんだをリフロー炉で加熱溶融して、基板への部品のはんだ付を完了する。この方式における部品実装不良は、クリームはんだ印刷工程、部品マウント工程、はんだ溶融工程で発生し得るので、それぞれの工程において品質を検査・確認する必要性が一般的に認識されるようになった。
中でもクリームはんだ印刷工程における印刷不良は、重篤なはんだ付不良の原因になるため、検査装置によるはんだ印刷品質の自動検査が必須になってきている。従来のこの種検査装置は、大別、2次元検出方式と3次元計測方式とがあり、前者は基板に対して垂直方向から撮った平面画像で印刷の平面方向の不良を検出する。また後者は3次元計測により、印刷はんだの高さ計測を行う。
3次元計測法は、はんだに斜め方向からレーザ光を投射して高さによる反射スポットの位置変化量から算出する方法や、既知のパタンを持つ構造光を投光して、その変形分から算出する方法などが開示されている(特許文献1、2参照)。
特開2000−097631 特開2005−337943 特開2008−157749
The recent method of assembling parts on a printed circuit board is almost surface-mounting, and cream solder is printed on the base board in a photocopied form, then the parts are automatically mounted, and the cream solder is heated and melted in a reflow oven. Complete soldering of components to the board. Component mounting defects in this method can occur in the cream solder printing process, the component mounting process, and the solder melting process, so that the necessity to inspect and confirm the quality in each process has been generally recognized.
In particular, printing defects in the cream solder printing process cause serious soldering defects, and therefore automatic inspection of solder printing quality by an inspection apparatus has become essential. This type of conventional inspection apparatus is roughly classified into a two-dimensional detection method and a three-dimensional measurement method. The former detects a defect in the plane direction of printing from a plane image taken from the direction perpendicular to the substrate. In the latter case, the height of the printed solder is measured by three-dimensional measurement.
In the three-dimensional measurement method, a laser beam is projected onto the solder from an oblique direction and calculated from the position change amount of the reflected spot depending on the height, or a structural light having a known pattern is projected and calculated from the deformation. A method is disclosed (see Patent Documents 1 and 2).
JP 2000-097631 A JP-A-2005-337943 JP2008-157749

一方、本出願人は、先に傾斜カメラと角度と色相の異なる2種の光源を備えたクリームはんだ3次元検査技術を考案し、出願している。この技術は、基板に対して斜め撮像角度の1次元カラーイメージセンサが、第1色相光光源がほぼ真上から照明し、かつ第2色相光光源が撮像角度よりも浅い斜め角度で照明する基板を撮像して、第1色相光と第2色相光で二重照明されたクリームはんだ印刷基板の全面3次元画像を獲得し、基準基板画像と検体基板画像の差画像処理によって異常箇所を検出し、かつ異常箇所についてクリームはんだの3次元画像計測を行うものである(特許文献3参照)。   On the other hand, the present applicant has previously devised and applied for a cream solder three-dimensional inspection technique provided with two types of light sources having different angles and hues from the tilt camera. In this technology, a one-dimensional color image sensor having an oblique imaging angle with respect to a substrate illuminates the first hue light source from almost directly above, and the second hue light source illuminates at an oblique angle shallower than the imaging angle. To obtain a three-dimensional image of the entire surface of the cream solder printed board that is double-illuminated with the first hue light and the second hue light, and detect an abnormal portion by the difference image processing between the reference board image and the specimen board image. In addition, three-dimensional image measurement of cream solder is performed for an abnormal portion (see Patent Document 3).

ところが近年、携帯電話のような電子製品の小型化・薄型化に伴って、集積回路部品も極めて小型化しており、CSPと呼ばれるチップ規模のパッケージ部品では、はんだ接合部の直径が100マイクロメートル以下となるものが増加している。この部品も基板との接合にはクリームはんだを用いるため、微小なクリームはんだ印刷品質の外観検査を欠かすことができない。
しかしながら、そのために分解能5マイクロメートルの画像を獲得するようにすると、例えば330×250ミリメートル・スクエアの標準サイズ基板全面画像の画素数は33億画素となり、実用的な検査時間内に画像処理できるレベルをはるかに超えてしまう。このことから、従来の検査法では、今後増大することが確実になっている、基板上の微小はんだを外観検査することができない。
However, in recent years, along with the downsizing and thinning of electronic products such as mobile phones, integrated circuit parts have become extremely small. In a chip-scale package part called CSP, the diameter of the solder joint is 100 micrometers or less. The number that becomes is increasing. Since this component also uses cream solder for bonding to the substrate, it is indispensable to have a fine cream solder print quality appearance inspection.
However, if an image with a resolution of 5 micrometers is acquired for that purpose, the number of pixels of the standard size substrate entire surface image of, for example, 330 × 250 mm · square becomes 3.3 billion pixels, which can be processed within a practical inspection time. Is far exceeded. For this reason, with the conventional inspection method, it is impossible to inspect the appearance of the fine solder on the substrate, which is surely increased in the future.

解決しようとする問題点は、クリームはんだ3次元検査装置において、直径100マイクロメートル以下の微小はんだの3次元検査あるいは3次元計測をしようとすると、基板全面の他のはんだ付箇所の検査ができなかった点である。   The problem to be solved is that when a three-dimensional inspection or three-dimensional measurement of a micro solder having a diameter of 100 micrometers or less is attempted in a cream solder three-dimensional inspection apparatus, it is impossible to inspect other soldered portions on the entire surface of the substrate. It is a point.

本発明になる検査装置は、高分解能撮像用1次元カラーイメージセンサカメラと基板全面撮像用1次元カラーイメージセンサカメラとを備え、高分解能用1次元カラーイメージセンサカメラは、基板の微小はんだ領域を斜めに見下ろして3次元撮像し、基板全面撮像用1次元カラーイメージセンサカメラは、基板全面を斜めに見下ろして3次元撮像する撮像手段と、基板上のクリームはんだを上方から照明する第3色相光光源と、高分解能撮像用カメラよりも低い位置にあってそのカメラと同じ方向からクリームはんだの側方を照明する第1色相光光源と、基板全面撮像用カメラよりも低い位置にあってそのカメラと同じ方向からクリームはんだの側方を照明する第2色相光源とを備えた照明手段と、基板を載置して移動するXYテーブルと、基板上の微小はんだ領域を高分解能撮像用カメラの撮像範囲に移動してその領域をスキャン撮像する微小はんだ領域画像獲得ステップの動作と、基板全面撮像用カメラが基板全面をスキャン撮像する全面画像獲得ステップの動作とを統合的に制御する制御手段と、基準基板の微小はんだ領域画像と全面画像とをそれぞれ保存する保存手段と、保存した基準基板の微小はんだ領域画像と検体基板の同一領域画像との間で差分画像処理を行い、更に保存した基準基板の全面画像と検体基板の全面画像との間でも差分画像処理を行う画像処理手段と、微小はんだ領域画像の差分画像処理と全面画像の差分画像処理において、それぞれの設定閾値を超える差分のある画素を異同画素として検出する検出手段と、検出された微小はんだ領域と基板全面の異同画素から、それぞれのクリームはんだ印刷品質の良否判定を行う判定手段と、微小はんだ領域検査の結果と基板全面検査の結果とを統合して報告する報告手段とより成ることを主要な特徴とする。
また本発明になる検査装置の高分解能撮像用1次元カラーイメージセンサカメラ及び基板全面撮像用1次元カラーイメージセンサカメラは、それぞれ専用のテレセントリックレンズを備えることを主要な特徴とする。
The inspection apparatus according to the present invention includes a one-dimensional color image sensor camera for high-resolution imaging and a one-dimensional color image sensor camera for whole-surface imaging, and the high-resolution one-dimensional color image sensor camera has a small solder area on the substrate. The one-dimensional color image sensor camera for imaging the entire surface of the substrate by obliquely looking down and imaging the entire surface of the substrate is the third hue light that illuminates the cream solder on the substrate from above with the imaging means for obliquely looking down the entire surface of the substrate A light source, a first hue light source that illuminates the side of the cream solder from the same direction as the camera and a position lower than the camera for high resolution imaging; Illuminating means including a second hue light source that illuminates the side of the cream solder from the same direction, an XY table on which the substrate is placed and moved Moving the solder area on the board to the imaging range of the high-resolution imaging camera and scanning the area to capture the image of the solder area image acquisition step, and capturing the entire area of the board by the camera for imaging the entire area of the board Control means for comprehensively controlling the operation of the step, storage means for storing the micro solder area image and the entire image of the reference board, respectively, the stored micro solder area image of the reference board and the same area image of the sample board, Image processing means for performing difference image processing between the entire image of the reference substrate and the entire image of the specimen substrate, and difference image processing of the micro solder area image and the difference of the entire image In image processing, a detecting means for detecting pixels having a difference exceeding each set threshold as different pixels, a detected micro solder area, and the entire substrate surface The main feature is that it consists of judgment means for judging the quality of each cream solder print quality from different pixels and reporting means for reporting the result of the micro solder area inspection and the whole board inspection. .
Further, the one-dimensional color image sensor camera for high-resolution imaging and the one-dimensional color image sensor camera for whole-surface imaging of the inspection apparatus according to the present invention are mainly characterized by including a dedicated telecentric lens.

本発明の検査装置は、高分解能撮像用1次元カラーイメージセンサカメラが微小クリームはんだ領域を撮像して検査し、また基板全面撮像用1次元カラーイメージセンサカメラが基板全面のはんだを撮像して検査するので、微小はんだ領域を含む全はんだ箇所の自動検査を実用的な水準の検査処理時間で行うことができるという利点がある。   In the inspection apparatus of the present invention, a one-dimensional color image sensor camera for high-resolution imaging images and inspects a micro cream solder area, and a one-dimensional color image sensor camera for whole-surface imaging of a substrate images and inspects solder on the entire surface of the substrate. Therefore, there is an advantage that automatic inspection of all the solder locations including the minute solder region can be performed in a practical level of inspection processing time.

微小はんだ領域を含むクリームはんだ印刷基板の全はんだ箇所を自動検査するという目的を、高分解能撮像用1次元カラーイメージセンサカメラで微小はんだ領域を撮像検査し、基板全面撮像用1次元カラーイメージセンサカメラで基板全面のはんだ箇所を撮像検査することによって実現した。   The purpose of automatically inspecting all solder locations on a cream solder printed circuit board, including the micro solder area, is to inspect the micro solder area with a one-dimensional color image sensor camera for high resolution imaging, and a one-dimensional color image sensor camera for imaging the entire board surface. This was achieved by imaging and inspecting the solder spot on the entire surface of the board.

図1は、本発明検査装置の第1実施例の全体構成図であって、基板1上にはクリームはんだ2が印刷され、基板1はXYテーブル3に水平姿勢で保持されている。   FIG. 1 is an overall configuration diagram of a first embodiment of an inspection apparatus according to the present invention, in which cream solder 2 is printed on a substrate 1 and the substrate 1 is held on an XY table 3 in a horizontal posture.

基板1の上方には、撮像装置として高分解能撮像用1次元カラーイメージセンサカメラ4−1と基板全面撮像用1次元カラーイメージセンサカメラ4−2、および照明装置として第1色相光源5−1と第2色相光源5−2と第3色相光源5−3が配置されている。   Above the substrate 1, a high-resolution imaging one-dimensional color image sensor camera 4-1 as an imaging device, a substrate whole-surface imaging one-dimensional color image sensor camera 4-2, and a lighting device as a first hue light source 5-1. A second hue light source 5-2 and a third hue light source 5-3 are arranged.

カメラ4−1は高倍率テレセントリックレンズを備え、第1色相光源5−1がカメラ4−1よりも低い位置で同じカメラ4−1と方向から基板を照明し、第3色相光源5−3が基板を直上方向から照明する。   The camera 4-1 includes a high magnification telecentric lens, and the first hue light source 5-1 illuminates the substrate from the same direction as the camera 4-1 at a position lower than the camera 4-1, and the third hue light source 5-3 Illuminate the substrate from directly above.

カメラ4−2は基板全面用撮像用のテレセントリックレンズを備え、第2色相光源5−2がカメラ4−2よりも低い位置でカメラ4−2と同じ方向から基板を照明し、第3色相光源5−3が基板を直上方向から照明する。   The camera 4-2 includes a telecentric lens for imaging the entire surface of the substrate, the second hue light source 5-2 illuminates the substrate from the same direction as the camera 4-2 at a position lower than the camera 4-2, and a third hue light source. 5-3 illuminates the substrate from directly above.

図2(A)の光学配置模式図に示すように、照明・撮像系の構成は、下記のようになっている:
第1色相光源5−1は、カメラ4−1よりも下方に設置され、第1色相光例えば赤色の光束を基板に投射することによって、クリームはんだの側面を赤色に着色する。
第2色相光源5−2は、カメラ4−2よりも下方に設置され、第2色相光例えば緑色の光束を基板に投射することによって、クリームはんだの側面を緑色に着色する。
第3色相光源5−3は、カメラ視野直上に設置され、第3色相光例えば青色の光束を基板に投射することによって、クリームはんだの上面を青色に着色する。
As shown in the schematic diagram of the optical arrangement in FIG. 2A, the configuration of the illumination / imaging system is as follows:
The first hue light source 5-1 is installed below the camera 4-1, and projects the first hue light, for example, a red light flux, onto the substrate, thereby coloring the side surface of the cream solder in red.
The second hue light source 5-2 is installed below the camera 4-2, and projects the second hue light, for example, green luminous flux, onto the substrate, thereby coloring the side surface of the cream solder to green.
The third hue light source 5-3 is installed immediately above the camera field of view, and projects the third hue light, for example, blue light flux, onto the substrate, thereby coloring the upper surface of the cream solder in blue.

この幾何光学配置で、第1色相光源5−1と第3色相光源5−3の間に設置された斜め姿勢のカメラ4−1が基板をスキャン撮像すると、図2(B)の画像模式図に示すように、微小クリームはんだの3次元画像が得られ、はんだの上面は青色画像領域となり、また側面は赤色画像領域となる。
赤色領域の奥行き(図2(B)長方形領域の横幅に相当)は微小クリームはんだの側面画像の奥行きであるので、微小クリームはんだの高さに比例し、青色領域は微小クリームはんだの上面画像であるので、微小クリームはんだの面積に比例する。
In this geometric optical arrangement, when the camera 4-1 in an oblique posture installed between the first hue light source 5-1 and the third hue light source 5-3 scans and images the substrate, an image schematic diagram of FIG. As shown in FIG. 3, a three-dimensional image of the fine cream solder is obtained, and the upper surface of the solder is a blue image region and the side surface is a red image region.
Since the depth of the red region (corresponding to the width of the rectangular region in FIG. 2B) is the depth of the side image of the micro cream solder, it is proportional to the height of the micro cream solder, and the blue region is the top image of the micro cream solder. Because there is, it is proportional to the area of the fine cream solder.

又第2色相光源5−2と第3色相光源5−3の間に設置された斜め姿勢のカメラ4−2が基板をスキャン撮像すると、図2(B)の画像模式図に示すように、通常サイズのクリームはんだの3次元画像が得られ、はんだの上面は青色画像領域となり、また側面は緑色画像領域となる。
緑色領域の奥行き(図2(B)長方形領域の横幅に相当)はクリームはんだの側面画像の奥行きであるので、クリームはんだの高さに比例し、青色領域はクリームはんだの上面画像であるので、クリームはんだの面積に比例する。
Further, when the oblique camera 4-2 installed between the second hue light source 5-2 and the third hue light source 5-3 scans and images the substrate, as shown in the schematic diagram of FIG. A three-dimensional image of a normal size cream solder is obtained, with the top surface of the solder being a blue image region and the side surface being a green image region.
Since the depth of the green region (corresponding to the lateral width of the rectangular region in FIG. 2B) is the depth of the side image of the cream solder, it is proportional to the height of the cream solder, and the blue region is the top image of the cream solder. It is proportional to the area of cream solder.

以上の説明では、微小はんだ領域撮像用のカメラ4−1と基板全面撮像用のカメラ4−2が対向する構造を取り、第3光源を共通としている。しかしながら、カメラ4−1と4−2が、それぞれ専用の直上光源と側方光源とを備えてもよいことは勿論である。   In the above description, a structure in which the camera 4-1 for imaging a fine solder region and the camera 4-2 for imaging the entire surface of the board are opposed to each other is used in common. However, it goes without saying that the cameras 4-1 and 4-2 may be provided with dedicated light sources and side light sources, respectively.

クリームはんだのはみ出しやブリッジは、いずれのカメラの画像においても青色領域の広がり異常として検出される。   The protrusion or bridge of cream solder is detected as an abnormality in the spread of the blue region in any camera image.

図1の全体構成図において、カメラ4−1と4−2は、制御装置6に接続され、制御装置6は、高分解能撮像ユニット7、基板全面撮像ユニット8、画像データ保存ユニット9、画像処理ユニット10、はんだ良否判定ユニット11、及びシステム全体を制御する統合システム制御ユニット12を有し、各ユニット7乃至12は、バス17を通じてデータの交換を行う。   In the overall configuration diagram of FIG. 1, cameras 4-1 and 4-2 are connected to a control device 6, and the control device 6 includes a high-resolution imaging unit 7, a whole board imaging unit 8, an image data storage unit 9, and image processing. A unit 10, a solder pass / fail judgment unit 11, and an integrated system control unit 12 that controls the entire system, and the units 7 to 12 exchange data through a bus 17.

又、制御装置6には、教示データ等の入力を行う入力ユニット13と、検査結果等を印字する出力ユニット14と、外部装置との間でデータ送受を行う通信ユニット15と、画像や検査結果等を表示する表示ユニット16が接続されている。   The control device 6 includes an input unit 13 for inputting teaching data, an output unit 14 for printing inspection results, a communication unit 15 for transmitting / receiving data to / from an external device, and images and inspection results. A display unit 16 for displaying the above is connected.

次に、図3(A)のフロー図に従って、この実施例検査装置の教示ステップを説明する。まずクリームはんだが正しく印刷された基準基板1(図1)をテーブルに装填し(ST1)、基板のIDデータを教示し(ST2)、基板全面をカメラ4−2でスキャン撮像して画像データを保存する(ST3)。この画像において基板領域を教示する(ST4)。基板領域は、図4の基板模式図に示した分割用基板全面の領域である。   Next, the teaching steps of this embodiment inspection apparatus will be described with reference to the flowchart of FIG. First, the reference board 1 (FIG. 1) on which the cream solder is correctly printed is loaded on the table (ST1), the ID data of the board is taught (ST2), and the entire surface of the board is scanned and imaged by the camera 4-2. Save (ST3). In this image, the substrate area is taught (ST4). The substrate region is a region on the entire surface of the dividing substrate shown in the substrate schematic diagram of FIG.

次に基板上の微小はんだ領域を教示する(ST5)。微小はんだ領域は、例えば図4の10分割用基板においては、1〜10の数字で示した10個片に1個ずつCSP部品が搭載された場合、1基板あたり10の微小はんだ領域が存在する。この領域ははんだサイズが直径100マイクロメートル以下と微小であるため、例えば5マイクロメートルの分解能で撮像しなければ検査ができない。従ってこの実施例では、これらの10領域を高分解能撮像するための領域として、教示している。教示後、微小はんだ領域をカメラ4−1でスキャン撮像して画像データを保存し(ST6)、基準基板をステージから除去する(ST7)。   Next, a small solder area on the substrate is taught (ST5). For example, in the 10-divided board of FIG. 4, when the CSP parts are mounted one by one on 10 pieces indicated by numerals 1 to 10, there are 10 fine solder areas per board. . Since this area has a solder size as small as 100 micrometers or less in diameter, it cannot be inspected unless it is imaged with a resolution of 5 micrometers, for example. Therefore, in this embodiment, these 10 areas are taught as areas for high-resolution imaging. After the teaching, the micro solder area is scanned and imaged by the camera 4-1, image data is stored (ST6), and the reference substrate is removed from the stage (ST7).

以上の操作によって検査領域の教示が終了したので、次にテスト基板をステージに装填(ST8)し、まずカメラ4−2で基板全面をスキャン撮像した(ST9)後、保存していた基準基板全面画像との差画像処理を行い、その結果を見ながら差画像処理に適用する画像精度と検出感度を調整する(ST10)。   The teaching of the inspection area is completed by the above operation. Next, the test substrate is loaded on the stage (ST8). First, the entire surface of the substrate is scanned and imaged by the camera 4-2 (ST9), and then the stored entire reference substrate is stored. Difference image processing with the image is performed, and the image accuracy and detection sensitivity applied to the difference image processing are adjusted while viewing the result (ST10).

次に、テスト基板の微小はんだ領域をカメラ4−1でスキャン撮像した(ST11)後、保存していた基準基板微小はんだ領域画像との差画像処理を行い、その結果を見ながら差画像処理に適用する画像精度と検出感度を調整する(ST12)。   Next, after scanning and imaging the micro solder area of the test board with the camera 4-1 (ST11), the difference image processing with the stored reference board micro solder area image is performed, and the difference image processing is performed while viewing the result. The applied image accuracy and detection sensitivity are adjusted (ST12).

教示ステップが完了したら、テスト基板を除去する(ST13)。   When the teaching step is completed, the test substrate is removed (ST13).

次に、この実施例における自動検査の動作を、図3(B)のフロー図に沿って説明する。
まず、図1において検体基板1をXYテーブル3に装填し(ST21)、検体基板のIDデータを入力するか又は読取ると(ST22)、制御装置6の指令で検体基板1を1次元移動し、基板全面撮像ユニット8の制御によってカメラ4−2で検体基板1の全面をスキャン撮像する(ST23)。
Next, the automatic inspection operation in this embodiment will be described with reference to the flowchart of FIG.
First, in FIG. 1, the sample substrate 1 is loaded on the XY table 3 (ST21), and when the ID data of the sample substrate is input or read (ST22), the sample substrate 1 is moved one-dimensionally by the command of the control device 6, The entire surface of the sample substrate 1 is scanned and imaged by the camera 4-2 under the control of the entire substrate imaging unit 8 (ST23).

次に画像処理ユニット10が、保存した基準基板全面画像と検体基板全面画像の差画像処理を行い(ST24)、検出された異同画素についてはんだ良否判定ユニット11がはんだ品質を判定する(ST25)。   Next, the image processing unit 10 performs difference image processing between the stored reference substrate entire surface image and the specimen substrate entire image (ST24), and the solder quality determination unit 11 determines the solder quality for the detected different pixels (ST25).

次に、制御装置6の指令で検体基板1をXY移動して微小はんだ領域に到達したら、高分解能撮像ユニット7の制御によって検体基板1を1次元移動してカメラ4−1で微小はんだ領域をスキャン撮像する(ST26)。   Next, when the specimen substrate 1 is moved XY by the command of the control device 6 and reaches the fine solder area, the specimen board 1 is moved one-dimensionally by the control of the high resolution imaging unit 7 and the fine solder area is moved by the camera 4-1. Scan imaging is performed (ST26).

次に画像処理ユニット10が、保存した基準基板微小はんだ領域画像と検体基板微小はんだ領域画像の差画像処理を行い(ST27)、検出された異同画素についてはんだ良否判定ユニット11がはんだ品質を判定する(ST28)。
図4の基板模式図に示すように、検体基板1に微小はんだ領域が複数個存在する場合は、検体基板1をXY移動して各領域に到達し、上記撮像・差画像処理・良否判定の動作を繰返して行う。
Next, the image processing unit 10 performs difference image processing between the stored reference board micro solder area image and specimen board micro solder area image (ST27), and the solder quality determination unit 11 determines the solder quality for the detected different pixels. (ST28).
As shown in the schematic diagram of the substrate in FIG. 4, when there are a plurality of micro solder areas on the specimen substrate 1, the specimen board 1 is moved XY to reach each area, and the above-described imaging / difference image processing / good / bad judgment is performed. Repeat the operation.

基板の全面検査とすべての微小はんだ領域の検査が終了したら、その結果を統合して報告し(ST29)、検体基板を除去する(ST30)。   When the entire surface inspection of the substrate and the inspection of all the fine solder regions are completed, the results are integrated and reported (ST29), and the sample substrate is removed (ST30).

基板に対してそれぞれ斜め姿勢の高分解能撮像用1次元カラーイメージセンサカメラと基板全面撮像用1次元カラーイメージセンサカメラと、基板を直上方向から照明する第3色相光光源と、高分解能撮像用カメラよりも低い位置にあってカメラと同じ方向からクリームはんだを照明する第1色相光光源と、基板全面撮像用カメラよりも低い位置にあってカメラと同じ方向からクリームはんだを照明する第2色相光源によって照明装置を構成し、微小はんだ領域を高分解能検査した上、基板全面のその他のはんだ箇所をも全数検査する検査装置に適用できる。   A one-dimensional color image sensor camera for high-resolution imaging, a one-dimensional color image sensor camera for imaging the entire surface of the substrate, a third hue light source that illuminates the substrate from directly above, and a high-resolution imaging camera. A first hue light source that illuminates cream solder from the same direction as the camera at a lower position, and a second hue light source that illuminates cream solder from the same direction as the camera at a position lower than the camera for imaging the entire substrate surface The illuminating device can be configured by the above, and it can be applied to an inspection apparatus that inspects a small solder area at a high resolution and also inspects all other solder locations on the entire surface of the substrate.

検査装置の全体構成を示した説明図である。(実施例1)It is explanatory drawing which showed the whole structure of the test | inspection apparatus. (Example 1) 検査装置における撮像の幾何光学配置と差画像処理を説明する図である。(実施例1)It is a figure explaining the geometric optical arrangement | positioning and difference image process of imaging in a test | inspection apparatus. (Example 1) 検査装置における教示と自動検査の動作を示したフロー図である。(実施例1)It is the flowchart which showed the operation | movement of the teaching and automatic test | inspection in a test | inspection apparatus. (Example 1) 基板の微小はんだ領域とその他のはんだ箇所を示した説明図である。(実施例1)It is explanatory drawing which showed the micro solder area | region of the board | substrate and the other solder location. (Example 1)

符号の説明Explanation of symbols

1 基板
2 クリームはんだ
4 1次元カラーイメージセンサカメラ
5 照明装置
6 制御装置
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Cream solder 4 One-dimensional color image sensor camera 5 Illumination device 6 Control apparatus

Claims (2)

クリームはんだ印刷品質の検査を、微小はんだ領域の高分解能検査と基板全面検査に大別して行う検査装置であって、
高分解能撮像用1次元カラーイメージセンサカメラと基板全面撮像用1次元カラーイメージセンサカメラとを備え、高分解能用1次元カラーイメージセンサカメラは、基板の微小はんだ領域を斜めに見下ろして3次元撮像し、基板全面撮像用1次元カラーイメージセンサカメラは、基板全面を斜めに見下ろして3次元撮像する撮像手段と、
基板上のクリームはんだを上方から照明する第3色相光光源と、高分解能撮像用カメラよりも低い位置にあってそのカメラと同じ方向からクリームはんだの側方を照明する第1色相光光源と、基板全面撮像用カメラよりも低い位置にあってそのカメラと同じ方向からクリームはんだの側方を照明する第2色相光源とを備えた照明手段と、
基板を載置して移動するXYテーブルと、
基板上の微小はんだ領域を高分解能撮像用カメラの撮像範囲に移動してその領域をスキャン撮像する微小はんだ領域画像獲得ステップの動作と、基板全面撮像用カメラが基板全面をスキャン撮像する全面画像獲得ステップの動作とを統合的に制御する制御手段と、
基準基板の微小はんだ領域画像と全面画像とをそれぞれ保存する保存手段と、
保存した基準基板の微小はんだ領域画像と検体基板の同一領域画像との間で差分画像処理を行い、更に保存した基準基板の全面画像と検体基板の全面画像との間でも差分画像処理を行う画像処理手段と、
微小はんだ領域画像の差分画像処理と全面画像の差分画像処理において、それぞれの設定閾値を超える差分のある画素を異同画素として検出する検出手段と、
検出された微小はんだ領域と基板全面の異同画素から、それぞれのクリームはんだ印刷品質の良否判定を行う判定手段と、
微小はんだ領域検査の結果と基板全面検査の結果とを統合して報告する報告手段と
より成る検査装置。
Inspection device that performs cream solder printing quality inspection roughly divided into high-resolution inspection of micro solder area and whole surface inspection of the board,
It is equipped with a one-dimensional color image sensor camera for high-resolution imaging and a one-dimensional color image sensor camera for whole-surface imaging. The high-resolution one-dimensional color image sensor camera takes a three-dimensional image by looking down at a small solder area on the substrate. The one-dimensional color image sensor camera for imaging the entire surface of the substrate includes imaging means for performing three-dimensional imaging by looking down the entire surface of the substrate obliquely,
A third hue light source that illuminates the cream solder on the substrate from above; a first hue light source that illuminates the side of the cream solder from the same direction as the camera at a position lower than the high-resolution imaging camera; A second hue light source that illuminates the side of the cream solder from the same direction as the camera at a position lower than the camera for imaging the entire surface of the substrate;
An XY table on which a substrate is placed and moved;
Moving the solder area on the board to the imaging range of the high-resolution imaging camera and scanning the area to capture the image of the solder area image acquisition step, and capturing the entire area of the board by the camera for imaging the entire area of the board Control means for comprehensively controlling the operation of the step;
Storage means for storing the micro solder area image and the entire image of the reference board,
An image that performs differential image processing between the saved micro-solder area image of the reference board and the same area image of the specimen substrate, and further performs differential image processing between the entire image of the saved reference board and the entire specimen board image Processing means;
In the difference image processing of the micro solder region image and the difference image processing of the entire surface image, a detection unit that detects a pixel having a difference exceeding each setting threshold as a different pixel,
Judgment means for judging the quality of each cream solder printing quality from the detected minute solder area and the different pixels on the entire substrate surface,
An inspection apparatus comprising reporting means for reporting the result of the micro solder area inspection and the result of the entire board inspection.
前記高分解能撮像用1次元カラーイメージセンサカメラ及び基板全面撮像用1次元カラーイメージセンサカメラは、それぞれ専用のテレセントリックレンズを備えることを特徴とする請求項1記載の検査装置。   The inspection apparatus according to claim 1, wherein each of the one-dimensional color image sensor camera for high-resolution imaging and the one-dimensional color image sensor camera for whole-surface imaging includes a dedicated telecentric lens.
JP2008242717A 2008-09-22 2008-09-22 Inspection apparatus Pending JP2010071941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008242717A JP2010071941A (en) 2008-09-22 2008-09-22 Inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008242717A JP2010071941A (en) 2008-09-22 2008-09-22 Inspection apparatus

Publications (1)

Publication Number Publication Date
JP2010071941A true JP2010071941A (en) 2010-04-02

Family

ID=42203857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008242717A Pending JP2010071941A (en) 2008-09-22 2008-09-22 Inspection apparatus

Country Status (1)

Country Link
JP (1) JP2010071941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102539441A (en) * 2011-12-29 2012-07-04 中国科学院长春光学精密机械与物理研究所 Inspection method for inspecting welding correctness of the device of device on circuit board in batch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102539441A (en) * 2011-12-29 2012-07-04 中国科学院长春光学精密机械与物理研究所 Inspection method for inspecting welding correctness of the device of device on circuit board in batch

Similar Documents

Publication Publication Date Title
US6084663A (en) Method and an apparatus for inspection of a printed circuit board assembly
JP4434417B2 (en) Inspection equipment for printed wiring boards
JP4776197B2 (en) Wiring board inspection equipment
JP2009168453A (en) Inspection device
JP4877100B2 (en) Mounting board inspection apparatus and inspection method
KR101802843B1 (en) Automated Vision Inspection System
JP2011158363A (en) Soldering inspection device for pga mounting substrate
JP5272784B2 (en) Optical inspection method and optical inspection apparatus
WO2021033396A1 (en) Wafer appearance inspection device and method
KR20190050489A (en) 3d optical inspection device
EP0871027A2 (en) Inspection of print circuit board assembly
US8115973B2 (en) Imaging apparatus for fully automatic screen printer
JP2002107311A (en) Printed circuit board inspecting device and method
JP2010071941A (en) Inspection apparatus
JP4564312B2 (en) Imaging method, imaging apparatus, and pattern inspection apparatus
KR20230097145A (en) Mounted board inspection device and inspection device
JP2008157749A (en) Inspection device
JPH04166709A (en) Surface-state observing apparatus
JP2847351B2 (en) Automatic printed wiring board inspection system
JP2008134194A (en) Inspection system
JPH072912U (en) Printed circuit board inspection equipment
JP2005214659A (en) Foreign matter detection device and manufacturing method of wiring substrate
JP2004151010A (en) Soldering inspection device
JP2002296016A (en) Method for recognizing shape of protective layer of printed circuit board and method of inspection
KR20220044742A (en) Wafer appearance inspection apparatus and method