JP2010071845A - Inspection device - Google Patents

Inspection device Download PDF

Info

Publication number
JP2010071845A
JP2010071845A JP2008240647A JP2008240647A JP2010071845A JP 2010071845 A JP2010071845 A JP 2010071845A JP 2008240647 A JP2008240647 A JP 2008240647A JP 2008240647 A JP2008240647 A JP 2008240647A JP 2010071845 A JP2010071845 A JP 2010071845A
Authority
JP
Japan
Prior art keywords
sample
imaging
light irradiation
inspection apparatus
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008240647A
Other languages
Japanese (ja)
Inventor
Takahiro Kuki
崇弘 久喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2008240647A priority Critical patent/JP2010071845A/en
Publication of JP2010071845A publication Critical patent/JP2010071845A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection device capable of quickly and easily inspecting a product with the surface cone-shaped. <P>SOLUTION: The inspection device to inspect a flat and semitransparent sample 101 with at least one or more projection portions on one surface thereof, includes a first light irradiating means 104 to irradiate the sample with light from the parallel direction to the surface of the sample, a second light irradiating means 104 to irradiate the sample with light from the direction opposed to the first light irradiating direction, an imaging means 103 to image the sample, a distance measuring means 105 to measure the distance between the imaging means and the sample, a means of moving in the Z-direction 107 to move the imaging means to the focus position of the imaging means based on the distance obtained from the distance measuring means, an image processing means 110 to process image data imaged by the imaging means, and a displaying means 111 to display a result processed by the image processing means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、表面に錐形状を1つまたは複数有する製品に有効な検査装置に関する。   The present invention relates to an inspection apparatus effective for a product having one or a plurality of conical shapes on a surface.

表面に錐形状を有する製品として、代表的なものに特許文献1に示すマイクロレンズや特許文献2に示すマイクロニードル等が挙げられる。マイクロレンズは光学部材として幅広く利用されており、マイクロニードルは医療用等で使用されている。   Typical products having a conical shape on the surface include a microlens shown in Patent Document 1, a microneedle shown in Patent Document 2, and the like. Microlenses are widely used as optical members, and microneedles are used for medical purposes.

マイクロレンズはCCDカメラの集光やディスプレイの広視野のための拡散用途に使用されており、マイクロレンズの欠陥は使用されている製品の品質に直結する。またマイクロニードルに関しても、医療用という観点から欠陥、異物等の欠陥は重大な医療事故を引き起こす可能性もある。   Microlenses are used in diffusion applications for CCD camera focusing and display wide field of view, and microlens defects are directly related to the quality of the products used. Regarding microneedles, a defect such as a defect or a foreign substance may cause a serious medical accident from the viewpoint of medical use.

従来、マイクロレンズやマイクロニードルに代表されるような微小表面形状の検査方法としては、高性能な電子顕微鏡や三次元測定装置などを用いて計測されたものを元に行われたり、高倍率の顕微鏡での拡大画像を人間が目視で行っていた。   Conventionally, as a method for inspecting a micro surface shape typified by a microlens or a microneedle, it has been carried out based on a high-performance electron microscope or a three-dimensional measuring device, or a high magnification. A human was visually observing an enlarged image with a microscope.

しかしながら電子顕微鏡や三次元測定装置などを用いた検査方法は、測定そのものに時間がかかってしまい、量産的とは言いがたい。さらに目視検査であると個人能力差等により基準があいまいになってしまうなどの問題点もある。
特開2003−185803号公報 特開2005−246595号公報
However, the inspection method using an electron microscope, a three-dimensional measuring apparatus, etc. takes time for the measurement itself, and is not mass-produced. Furthermore, there is a problem that the standard becomes ambiguous due to a difference in personal ability or the like in the visual inspection.
JP 2003-185803 A JP 2005-246595 A

本発明は、この様な状況を鑑みてなされたものであり、表面に錐形状を有する製品に対し、迅速かつ容易に検査を行える検査装置を提供するものである。   The present invention has been made in view of such a situation, and provides an inspection apparatus capable of quickly and easily inspecting a product having a conical shape on the surface.

まず、請求項1に係る発明は、一方の面に少なくとも1以上の錐形状の突起部分を有する平板状の半透明の試料の検査装置であって、
前記試料に対し、前記試料の表面に平行な方向から光を照射する第1の光照射手段と、
前記第1の光照射手段に対向する方向から光を照射する第2の光照射手段と、
前記試料を撮像する撮像手段と、
前記撮像手段と前記試料との間の距離を測定する距離測定手段と、
前記距離測定手段により得られた距離を基に撮像手段の焦点位置へ撮像手段を移動させるZ方向移動手段と、
前記撮像手段により撮像された画像データを処理する画像処理手段と、
前記画像処理手段で処理された結果を表示する表示手段と、
を有することを特徴とする検査装置を提供する。
First, the invention according to claim 1 is a flat-plate semitransparent sample inspection apparatus having at least one or more cone-shaped protrusions on one surface,
First light irradiation means for irradiating the sample with light from a direction parallel to the surface of the sample;
Second light irradiation means for irradiating light from a direction facing the first light irradiation means;
Imaging means for imaging the sample;
Distance measuring means for measuring a distance between the imaging means and the sample;
Z-direction moving means for moving the imaging means to the focal position of the imaging means based on the distance obtained by the distance measuring means;
Image processing means for processing image data picked up by the image pickup means;
Display means for displaying the result processed by the image processing means;
There is provided an inspection apparatus characterized by comprising:

また、請求項2に係る発明は、前記試料の表面に、気体を吹き付ける為の気体噴出機構を有することを特徴とする請求項1に記載の検査装置を提供する。   The invention according to claim 2 provides the inspection apparatus according to claim 1, further comprising a gas ejection mechanism for blowing gas onto the surface of the sample.

また、請求項3に係る発明は、前記第1の光照射手段および第2の光照射手段が、互い
に対向した状態で前記試料の面内方向に移動可動であることを特徴とする請求項1又は2記載の検査装置を提供する。
The invention according to claim 3 is characterized in that the first light irradiation means and the second light irradiation means are movable in the in-plane direction of the sample while facing each other. Or the inspection apparatus of 2 description is provided.

また、請求項4に係る発明は、前記第1の光照射手段および第2の光照射手段が暗視野照明であることを特徴とした請求項1乃至3の何れか1項に記載の検査装置を提供する。   The invention according to claim 4 is the inspection apparatus according to any one of claims 1 to 3, wherein the first light irradiation means and the second light irradiation means are dark field illumination. I will provide a.

本発明は、表面に錐形状を有する製品に対し、迅速かつ容易に検査を行える検査装置を提供できる。   The present invention can provide an inspection apparatus capable of quickly and easily inspecting a product having a conical shape on the surface.

このため、本発明によると、表面に錐形状を有する製品を正確かつ迅速に検査でき、欠陥の無い良好な物のみを提供することが可能となる。   For this reason, according to the present invention, a product having a cone shape on the surface can be inspected accurately and quickly, and only good products without defects can be provided.

以下、本発明の一実施形態について、図面を参照して具体的に説明する。   Hereinafter, an embodiment of the present invention will be specifically described with reference to the drawings.

図1は、本発明の一実施形態である検査装置の概略を示している。   FIG. 1 schematically shows an inspection apparatus according to an embodiment of the present invention.

本実施形態においては、四角錐形状の突起を表面に有する試料を、検査対象物としている。ただし、他の錐形状の突起であっても良く、今回使用した試料に限定されるものではない。また、検査対象物としては、半透明なものが適している。   In this embodiment, a sample having a quadrangular pyramid-shaped protrusion on the surface is used as an inspection object. However, other cone-shaped protrusions may be used, and are not limited to the sample used this time. In addition, a translucent object is suitable as the inspection object.

図1に示すように、検査装置には、検査対象物の試料101を載置するステージ102があり、その上方に撮像部103が、さらにステージ102を挟む形で照明部104が設置されている。   As shown in FIG. 1, the inspection apparatus includes a stage 102 on which a sample 101 to be inspected is placed, an imaging unit 103 is provided above the stage 102, and an illumination unit 104 is further provided so as to sandwich the stage 102. .

撮像部103により撮像する際、試料101以外での反射光を極力防ぐ為、ステージ102はつや消し加工等を施し、試料101の周囲からの反射を防ぐ構造にする事が好ましい。   When imaging by the imaging unit 103, in order to prevent reflected light from other than the sample 101 as much as possible, the stage 102 is preferably subjected to a matte process or the like to prevent reflection from the periphery of the sample 101.

本実施形態の検査装置では、撮像部103にはエリアカメラを用いて撮像を行ったが、これは一実施形態に過ぎず、これに限定するものではない。例えばロールtoロールで搬送される試料の検査時にはライン型カメラや、半ピクセルずつ動かしながら撮像することにより高分解能を得る超解像技術などでもよい。   In the inspection apparatus of the present embodiment, the imaging unit 103 is imaged using an area camera, but this is only one embodiment and the present invention is not limited to this. For example, when inspecting a sample conveyed by a roll-to-roll, a line-type camera or a super-resolution technique for obtaining a high resolution by moving an image by moving half a pixel at a time may be used.

撮像部103には試料101との距離を一定に保ち画像のピントボケを防ぐ為、距離測定部である位置センサ105が設置されている。位置センサ105により測定された距離は制御部106へ送られ、撮像部103の焦点が合う高さを保つ為制御部106を介して駆動部107により撮像部103をZ軸方向に移動可能な構造となっている。   A position sensor 105 as a distance measuring unit is installed in the imaging unit 103 in order to keep the distance from the sample 101 constant and prevent the image from being out of focus. The distance measured by the position sensor 105 is sent to the control unit 106, and the imaging unit 103 can be moved in the Z-axis direction by the drive unit 107 via the control unit 106 in order to maintain the height at which the imaging unit 103 is focused. It has become.

照明部104は試料101と同じ高さにあり、試料101を挟んで互いに対向する方向から同時に照射する位置に設置されている。また試料101の錐形状により照明部104の位置を可動する機構となっている。   The illuminating unit 104 is at the same height as the sample 101, and is installed at a position where the sample 101 is irradiated simultaneously from the direction facing each other with the sample 101 in between. In addition, the illumination unit 104 is moved by the cone shape of the sample 101.

図2に示すように、試料101の錐形状の底面の多角形が偶数角の場合、一組の対向する頂点を結ぶ対角線を対称軸とする位置から照射部104によって照射する。また錐形状の底面の多角形が奇数角の場合、任意の頂点から対向する辺への垂線を対称軸とする位置から照射部104によって照射する。   As shown in FIG. 2, when the polygon of the bottom surface of the cone shape of the sample 101 is an even angle, the irradiation unit 104 irradiates from a position having a diagonal line connecting a pair of opposing vertices as a symmetry axis. When the polygonal shape of the bottom surface of the cone shape is an odd number, the irradiation unit 104 irradiates from a position having a perpendicular line from an arbitrary vertex to the opposite side as an axis of symmetry.

撮像部103の撮像エリア内のステージ102上に試料101を載置する。位置センサ
105の情報を元に制御部106を介して駆動部107によって撮像部103と試料101との焦点が合う位置まで移動させる。また、照明部104は予め制御部106に入力された情報を元に、試料101の錐形状にあった所定の位置まで移動する。
The sample 101 is placed on the stage 102 in the imaging area of the imaging unit 103. Based on the information of the position sensor 105, the driving unit 107 moves the imaging unit 103 and the sample 101 to a position where they are in focus through the control unit 106. Further, the illumination unit 104 moves to a predetermined position corresponding to the cone shape of the sample 101 based on information input in advance to the control unit 106.

照明部104の位置及び撮像部103の焦点高さが適正になった段階で、制御部106よりエアーコンプレッサー109を介して、エアー噴出口108よりエアーを噴出した後、撮像部103によって撮像を行う。エアー噴出後に撮像することにより軽異物の低減と共に、作業者による目視再検査も必要なくなる。本実施形態ではエアーを使用したが、気体であれば良く特に限定するものではない。   When the position of the illumination unit 104 and the focal height of the imaging unit 103 are appropriate, the control unit 106 ejects air from the air outlet 108 via the air compressor 109, and then the imaging unit 103 performs imaging. . By taking an image after the air is blown out, light foreign matter is reduced and visual re-inspection by an operator is not necessary. Although air is used in this embodiment, it is not particularly limited as long as it is a gas.

撮像部103で取得した画像データは画像処理部110に送られ、画像データ処理を行った後合否判定を操作部111に出力する。   The image data acquired by the imaging unit 103 is sent to the image processing unit 110, and a pass / fail judgment is output to the operation unit 111 after the image data processing is performed.

以下に、上述の検査装置を用い、撮像された画像データを処理することによる検査方法を説明する。   Hereinafter, an inspection method by processing captured image data using the above-described inspection apparatus will be described.

図3は、本実施形態の検査装置で撮像された画像データに対する処理のフローチャートである。このフローチャートのステップに従い以下に説明する。また図4には本実施形態の検査装置で撮像された試料の模式図を示す。   FIG. 3 is a flowchart of a process for image data captured by the inspection apparatus according to the present embodiment. This will be described below according to the steps of this flowchart. FIG. 4 shows a schematic diagram of a sample imaged by the inspection apparatus of the present embodiment.

まず、画像データを画像処理部110に読み込ませる事によりデータ読み取りを行う(S1)。本実施形態においては撮像部103により撮像された図4に示す試料101の模式図のデータが画像処理部110に送られる事によりデータ読み取りを行うが、予め撮像された画像をスキャナー等により取り込むなどの方法でもよく、PC、画像ボード、プロセッサーなどで処理する全ての方法で有効である。   First, data reading is performed by causing the image processing unit 110 to read image data (S1). In the present embodiment, data reading is performed by sending data of the schematic diagram of the sample 101 shown in FIG. 4 captured by the imaging unit 103 to the image processing unit 110. However, an image captured in advance is captured by a scanner or the like. This method is also effective, and is effective for all methods of processing using a PC, an image board, a processor, and the like.

次に、画像処理部110により読み込まれた画像データ、すなわち図4に示す試料模式図は、画像処理部110内で平滑化された(S2)後二値化される(S3)。この際操作部111により二値化の閾値を決定しても良いが、例えば公知のpタイル法やKittler判別法などのように、検査対象物が抽出できれば良く、これらに限定されるものではない。二値化された試料模式図を図5に示す。   Next, the image data read by the image processing unit 110, that is, the sample schematic diagram shown in FIG. 4, is smoothed in the image processing unit 110 (S2) and then binarized (S3). At this time, the threshold value for binarization may be determined by the operation unit 111. However, it is only necessary that the inspection object can be extracted, such as a known p-tile method or Kittler discrimination method, and the present invention is not limited thereto. . FIG. 5 shows a schematic diagram of the binarized sample.

二値化された画像に対し、ラベリング処理を行い(S4)特徴パラメータの算出・抽出を行い(S5、S6)、図6に示すように、特徴パラメータを元に錐形状部とそれ以外を分類する(S7、S8)。特徴パラメータに関しては、面積、重心等数々のパラメータがあるが、錐形状部や異物等を分離できれば良く、特に限定するものではない。   A labeling process is performed on the binarized image (S4), and feature parameters are calculated and extracted (S5 and S6). As shown in FIG. 6, the cone-shaped portion and the others are classified based on the feature parameters. (S7, S8). Regarding the characteristic parameters, there are a number of parameters such as the area and the center of gravity. However, the feature parameters are not particularly limited as long as the cone-shaped portion and the foreign matter can be separated.

分類された画像から錐形状部以外の部分で、特徴パラメータが算出・抽出されているかを判断し、無い場合において良品判定を、ある場合においては不良判定を行う。   It is determined whether or not the characteristic parameter is calculated / extracted from the classified image in a portion other than the cone-shaped portion.

不良判定されたもののみ、分離された画像を統合し、異物等の判定された場所にマーキングを行った後、良品、不良の判定を操作部111へ表示することにより、検査を終了する。   Only the images determined to be defective are integrated with the separated images, and marking is performed on the determined position of the foreign matter or the like, and then the non-defective / defective determination is displayed on the operation unit 111 to complete the inspection.

このようにして本発明の検査装置を用い、表面に錐形状を持つ試料の一つであるマイクロニードルを検査したところ、軽異物である塵などによる異常検出はなく、重大な影響を及ぼす欠陥や異物を検出することが可能であった。   In this way, when the microneedle, which is one of the samples having a cone shape on the surface, is inspected using the inspection apparatus of the present invention, there is no abnormality detection due to light foreign matters such as dust, It was possible to detect foreign matter.

試料検査装置の模式図。The schematic diagram of a sample inspection apparatus. 照明部方向説明図。Illumination part direction explanatory drawing. 試料検査フローチャート。Sample inspection flowchart. 撮像された試料模式図。The sample schematic diagram imaged. 二値化された試料模式図Binary sample schematic diagram 分離された試料模式図Schematic diagram of the separated sample

符号の説明Explanation of symbols

101…試料
102…ステージ
103…撮像部
104…光照射部
105…位置センサ
106…制御部
107…駆動部
108…エアー噴出口
109…エアーコンプレッサー
110…画像処理部
111…操作部
DESCRIPTION OF SYMBOLS 101 ... Sample 102 ... Stage 103 ... Imaging part 104 ... Light irradiation part 105 ... Position sensor 106 ... Control part 107 ... Drive part 108 ... Air jet outlet 109 ... Air compressor 110 ... Image processing part 111 ... Operation part

Claims (4)

一方の面に少なくとも1以上の錐形状の突起部分を有する平板状の半透明の試料の検査装置であって、
前記試料に対し、前記試料の表面に平行な方向から光を照射する第1の光照射手段と、
前記第1の光照射手段に対向する方向から光を照射する第2の光照射手段と、
前記試料を撮像する撮像手段と、
前記撮像手段と前記試料との間の距離を測定する距離測定手段と、
前記距離測定手段により得られた距離を基に撮像手段の焦点位置へ撮像手段を移動させるZ方向移動手段と、
前記撮像手段により撮像された画像データを処理する画像処理手段と、
前記画像処理手段で処理された結果を表示する表示手段と、
を有することを特徴とする検査装置。
A flat-plate semitransparent sample inspection device having at least one or more cone-shaped protrusions on one surface,
First light irradiation means for irradiating the sample with light from a direction parallel to the surface of the sample;
Second light irradiation means for irradiating light from a direction facing the first light irradiation means;
Imaging means for imaging the sample;
Distance measuring means for measuring a distance between the imaging means and the sample;
Z-direction moving means for moving the imaging means to the focal position of the imaging means based on the distance obtained by the distance measuring means;
Image processing means for processing image data picked up by the image pickup means;
Display means for displaying the result processed by the image processing means;
An inspection apparatus comprising:
前記試料の表面に、気体を吹き付ける為の気体噴出機構を有することを特徴とする請求項1に記載の検査装置。   The inspection apparatus according to claim 1, further comprising a gas ejection mechanism for blowing gas onto the surface of the sample. 前記第1の光照射手段および第2の光照射手段が、互いに対向した状態で前記試料の面内方向に移動可動であることを特徴とする請求項1又は2記載の検査装置。   3. The inspection apparatus according to claim 1, wherein the first light irradiation unit and the second light irradiation unit are movable in the in-plane direction of the sample in a state of facing each other. 前記第1の光照射手段および第2の光照射手段が暗視野照明であることを特徴とした請求項1乃至3の何れか1項に記載の検査装置。   The inspection apparatus according to claim 1, wherein the first light irradiation unit and the second light irradiation unit are dark field illumination.
JP2008240647A 2008-09-19 2008-09-19 Inspection device Pending JP2010071845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240647A JP2010071845A (en) 2008-09-19 2008-09-19 Inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240647A JP2010071845A (en) 2008-09-19 2008-09-19 Inspection device

Publications (1)

Publication Number Publication Date
JP2010071845A true JP2010071845A (en) 2010-04-02

Family

ID=42203767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240647A Pending JP2010071845A (en) 2008-09-19 2008-09-19 Inspection device

Country Status (1)

Country Link
JP (1) JP2010071845A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176349A (en) * 2011-12-21 2013-06-26 九骅科技股份有限公司 Lens detection device and method
JP2016166769A (en) * 2015-03-09 2016-09-15 富士フイルム株式会社 Method of inspecting microneedles
JP2017161487A (en) * 2016-03-11 2017-09-14 株式会社 メドレックス Visual inspection apparatus, visual inspection method, visual inspection program, and computer-readable storage medium, and recorded instrument
WO2018047596A1 (en) * 2016-09-06 2018-03-15 富士フイルム株式会社 Microneedle array imaging device and method, and microneedle array inspection device and method
JP2020031788A (en) * 2018-08-28 2020-03-05 凸版印刷株式会社 Needle-like body device
US11103259B2 (en) 2015-09-18 2021-08-31 Vaxxas Pty Limited Microprojection arrays with microprojections having large surface area profiles
US20210270599A1 (en) * 2017-06-13 2021-09-02 Vaxxas Pty Limited Quality control of substrate coatings
US11147954B2 (en) 2015-02-02 2021-10-19 Vaxxas Pty Limited Microprojection array applicator and method
JP2021528155A (en) * 2018-06-18 2021-10-21 キンデーバ ドラッグ デリバリー リミティド パートナーシップ Methods and equipment for inspecting microneedle arrays
US11179553B2 (en) 2011-10-12 2021-11-23 Vaxxas Pty Limited Delivery device
US11207086B2 (en) 2004-01-30 2021-12-28 Vaxxas Pty Limited Method of delivering material or stimulus to a biological subject
US11254126B2 (en) 2017-03-31 2022-02-22 Vaxxas Pty Limited Device and method for coating surfaces
US11464957B2 (en) 2017-08-04 2022-10-11 Vaxxas Pty Limited Compact high mechanical energy storage and low trigger force actuator for the delivery of microprojection array patches (MAP)
JP2022549523A (en) * 2020-10-20 2022-11-25 雲南中煙工業有限責任公司 Off-line Appearance Quality Inspection Apparatus and Method for Tobacco Circumference

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11207086B2 (en) 2004-01-30 2021-12-28 Vaxxas Pty Limited Method of delivering material or stimulus to a biological subject
US11179553B2 (en) 2011-10-12 2021-11-23 Vaxxas Pty Limited Delivery device
CN103176349B (en) * 2011-12-21 2015-11-18 九骅科技股份有限公司 Lens detection device and method
CN103176349A (en) * 2011-12-21 2013-06-26 九骅科技股份有限公司 Lens detection device and method
US11147954B2 (en) 2015-02-02 2021-10-19 Vaxxas Pty Limited Microprojection array applicator and method
JP2016166769A (en) * 2015-03-09 2016-09-15 富士フイルム株式会社 Method of inspecting microneedles
US11103259B2 (en) 2015-09-18 2021-08-31 Vaxxas Pty Limited Microprojection arrays with microprojections having large surface area profiles
US11653939B2 (en) 2015-09-18 2023-05-23 Vaxxas Pty Limited Microprojection arrays with microprojections having large surface area profiles
JP2017161487A (en) * 2016-03-11 2017-09-14 株式会社 メドレックス Visual inspection apparatus, visual inspection method, visual inspection program, and computer-readable storage medium, and recorded instrument
JP2018038509A (en) * 2016-09-06 2018-03-15 富士フイルム株式会社 Microneedle array imaging device and method, and microneedle array inspection device and method
US10922805B2 (en) 2016-09-06 2021-02-16 Fujifilm Corporation Microneedle array imaging device, microneedle array imaging method, microneedle array inspection device, and microneedle array inspection method
EP3511702A4 (en) * 2016-09-06 2019-09-04 FUJIFILM Corporation Microneedle array imaging device and method, and microneedle array inspection device and method
WO2018047596A1 (en) * 2016-09-06 2018-03-15 富士フイルム株式会社 Microneedle array imaging device and method, and microneedle array inspection device and method
US11254126B2 (en) 2017-03-31 2022-02-22 Vaxxas Pty Limited Device and method for coating surfaces
US20210270599A1 (en) * 2017-06-13 2021-09-02 Vaxxas Pty Limited Quality control of substrate coatings
US11175128B2 (en) 2017-06-13 2021-11-16 Vaxxas Pty Limited Quality control of substrate coatings
US11828584B2 (en) 2017-06-13 2023-11-28 Vaxxas Pty Limited Quality control of substrate coatings
US11464957B2 (en) 2017-08-04 2022-10-11 Vaxxas Pty Limited Compact high mechanical energy storage and low trigger force actuator for the delivery of microprojection array patches (MAP)
JP2021528155A (en) * 2018-06-18 2021-10-21 キンデーバ ドラッグ デリバリー リミティド パートナーシップ Methods and equipment for inspecting microneedle arrays
JP2020031788A (en) * 2018-08-28 2020-03-05 凸版印刷株式会社 Needle-like body device
JP2022549523A (en) * 2020-10-20 2022-11-25 雲南中煙工業有限責任公司 Off-line Appearance Quality Inspection Apparatus and Method for Tobacco Circumference
JP7296013B2 (en) 2020-10-20 2023-06-21 雲南中煙工業有限責任公司 Off-line Appearance Quality Inspection Apparatus and Method for Tobacco Circumference

Similar Documents

Publication Publication Date Title
JP2010071845A (en) Inspection device
JP2008139203A (en) Apparatus and method for detecting defect, apparatus and method for processing information, and its program
TWI440844B (en) Inspection system for inspecting the surface defects of the specimen and the method thereof
US20100220185A1 (en) Object Inspection System
US20080175466A1 (en) Inspection apparatus and inspection method
CN107003254A (en) Equipment, method and computer program product for the defects detection in workpiece
US7477370B2 (en) Method of detecting incomplete edge bead removal from a disk-like object
JP2010522441A (en) Semiconductor wafer foreign matter inspection and repair system and method
JP2007333491A (en) Visual insepction device of sheet member
WO2015174114A1 (en) Substrate inspection device
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
JP2013156173A (en) Inspection method for turbine blade and device therefor
JP5655045B2 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
JP2001209798A (en) Method and device for inspecting outward appearance
JP5042503B2 (en) Defect detection method
JP2009216485A (en) Defective shape determining/inspecting device of minute object
JP2009236760A (en) Image detection device and inspection apparatus
JP2008275496A (en) Defect detection method and device of foam roller
JP2012088199A (en) Method and apparatus for inspecting foreign matter
JP5281815B2 (en) Optical device defect inspection method and optical device defect inspection apparatus
JP4408902B2 (en) Foreign object inspection method and apparatus
JP2010175283A (en) Device for producing plane image
JP5679564B2 (en) Surface foreign matter inspection device
JP2007198762A (en) Flaw detection method and detector
JP2008026072A (en) Flaw inspection device and flaw inspection method