JP2010071587A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2010071587A
JP2010071587A JP2008241138A JP2008241138A JP2010071587A JP 2010071587 A JP2010071587 A JP 2010071587A JP 2008241138 A JP2008241138 A JP 2008241138A JP 2008241138 A JP2008241138 A JP 2008241138A JP 2010071587 A JP2010071587 A JP 2010071587A
Authority
JP
Japan
Prior art keywords
air
humidity
temperature
outside air
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008241138A
Other languages
Japanese (ja)
Other versions
JP5336133B2 (en
Inventor
Tetsuo Ishizuka
哲夫 石塚
Masafumi Sato
雅文 佐藤
Takashi Horiguchi
貴史 堀口
Shinobu Tezuka
忍 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2008241138A priority Critical patent/JP5336133B2/en
Publication of JP2010071587A publication Critical patent/JP2010071587A/en
Application granted granted Critical
Publication of JP5336133B2 publication Critical patent/JP5336133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently keep indoor temperature and humidity at a set temperature and a set humidity and to save energy by controlling the outside air supply amount, sensible heat treatment and latent heat treatment. <P>SOLUTION: This air conditioning system includes an air handling unit 3 receiving the return air RA from an air-conditioned room 2 and the outside air OA, performing heat exchange while supplying cold water cooled by a turbo refrigerating machine 6 as a refrigerant, and distributing the conditioned air SA into the room, ventilating equipment 4 for supplying the outside air to the air handling unit 3, a dehumidifier 5 for dehumidifying the outside air OA supplied to the air handling unit 3, and a control device 7. The control device 7 supplies the set amount of outside air OA, invertor-controls the dehumidifier 5, and controls a refrigerant evaporation temperature of the turbo refrigerating machine 6 on the basis of the temperature and humidity of the return air RA, the temperature and humidity of the outside air OA, and the set temperature and set humidity of the room 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、空調システムに関し、特に、除湿機能を有し、空調対象の室内から循環する還気および外気の温湿度と室内の設定温湿度によって外気の供給量と除湿機能および冷却機能を制御する機能を備えて、省エネルギーを図ることができる空調システムに関する。   The present invention relates to an air conditioning system, and in particular, has a dehumidifying function, and controls the supply amount of the outside air, the dehumidifying function, and the cooling function according to the temperature and humidity of the return air and outside air circulated from the air-conditioned room and the set temperature and humidity of the room. The present invention relates to an air conditioning system that has functions and can save energy.

従来、水を冷媒として熱交換を行う空気調和設備では、空調対象の室内の空気の冷却を行うには、室内の設定温度よりいくらか温度の低い冷水を冷媒として熱交換を行い、空気の除湿を行うには、湿り空気をその露点温度以下となるように露点温度よりも低い冷水を冷媒として熱交換を行い、湿り空気に含まれる水分を凝縮水として取り除いている。そして、この空気の冷却と除湿は1つの熱交換器で行われることが多い。
また、特許文献1では、冷却専用の冷凍機と除湿専用で外気系統の冷凍機を設置して、空気の顕熱冷却と除湿とを別々に制御する空気調和設備の省エネルギー改善方法が提案されている。
特開2005−214608号公報
Conventionally, in an air conditioner that performs heat exchange using water as a refrigerant, in order to cool the indoor air to be air-conditioned, heat exchange is performed using cold water that is somewhat lower in temperature than the indoor set temperature as a refrigerant to dehumidify the air. To do so, heat exchange is performed using cold water lower than the dew point temperature as a refrigerant so that the humid air is lower than the dew point temperature, and moisture contained in the humid air is removed as condensed water. And this air cooling and dehumidification are often performed by one heat exchanger.
Patent Document 1 proposes an energy-saving improvement method for an air-conditioning facility in which a refrigerator dedicated to cooling and a refrigerator in the outside air system dedicated to dehumidification are installed to separately control sensible heat cooling and dehumidification of air. Yes.
JP 2005-214608 A

しかしながら、従来の空気調和設備では以下のような問題があった。
1つの熱交換器で空気の冷却と除湿を行う空気調和設備では、除湿を行うための露点よりも低い冷水を冷媒として空気と熱交換を行うと室内の設定温度よりもかなり低い温度に空気が冷却されてしまい、エネルギーの無駄が生じているという問題があった。また、過剰に冷却された空気に再加熱を行う場合もありここでもエネルギーの無駄が生じている。
また、除湿を行う際に生じる凝縮水によって熱交換器の表面は濡れ面となり、風量の圧力損失が増加して空気調和設備の機能が低下しているという問題もあった。
However, the conventional air conditioning equipment has the following problems.
In an air-conditioning facility that cools and dehumidifies air with a single heat exchanger, if air is heat-exchanged using cold water lower than the dew point for dehumidification as the refrigerant, the air is much lower than the indoor set temperature. There was a problem that energy wasted due to cooling. In addition, reheating may be performed on the excessively cooled air, and energy is wasted here.
In addition, there is a problem that the surface of the heat exchanger becomes a wetted surface due to the condensed water generated when dehumidifying, and the pressure loss of the air volume increases and the function of the air-conditioning equipment is deteriorated.

本発明は、上述する問題点に鑑みてなされたもので、空調対象の室内の温度及び湿度を効率的に調整できて省エネルギーを図ることができる空調システムを提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an air conditioning system capable of efficiently adjusting the temperature and humidity of a room to be air-conditioned and saving energy.

上記目的を達成するため、本発明に係る空調システムは、空調対象の室内からの還気及び外気を受け入れて冷媒との熱交換を行い室内に調和空気を送気するエアハンドリングユニットと、エアハンドリングユニットへ外気を供給する換気部と、エアハンドリングユニットへ供給される外気を除湿する除湿部と、冷媒を冷却する冷却部と、換気部、除湿部及び冷却部を制御する制御部とを備え、制御部は還気の温度及び湿度と、外気の温度及び湿度と、室内の設定温度及び設定湿度とに基づいて換気部、除湿部及び冷却部を制御することを特徴とする。
本発明では、空調システムは外気を除湿する除湿部を備えて湿度調節を温度調節と分離して行うので、湿度調節のために空気を過剰に冷却することがなく、効率的に室内の温湿度調節ができて省エネルギーを図ることができる。また、エアハンドリングユニットは供給された外気が除湿されていて、顕熱のみの熱交換を行うので、潜熱も行う場合に比べて冷却部の冷媒蒸発温度を高くすることができて、また、熱交換による凝縮水が生じないので、凝縮水による風量の圧力損失を低減することができエネルギー効率が高まる。
また、制御部は還気の温度及び湿度と、外気の温度及び湿度と、室内の設定温度及び設定湿度とに基づいて換気部、除湿部及び冷却部を制御するので、外気を有効的に利用でき、室内の温度及び湿度を設定温湿度に保つことができて快適な空間を提供することができる。
In order to achieve the above object, an air conditioning system according to the present invention includes an air handling unit that receives return air and outside air from an air-conditioned room, exchanges heat with a refrigerant, and sends conditioned air into the room, and air handling. A ventilation unit for supplying outside air to the unit, a dehumidifying unit for dehumidifying outside air supplied to the air handling unit, a cooling unit for cooling the refrigerant, and a control unit for controlling the ventilation unit, the dehumidifying unit and the cooling unit, The control unit controls the ventilation unit, the dehumidifying unit, and the cooling unit based on the temperature and humidity of the return air, the temperature and humidity of the outside air, and the indoor set temperature and humidity.
In the present invention, the air conditioning system includes a dehumidifying unit that dehumidifies the outside air and performs humidity adjustment separately from temperature adjustment. Therefore, air is not excessively cooled for humidity adjustment, and the indoor temperature and humidity can be efficiently It can be adjusted to save energy. In addition, the air handling unit dehumidifies the supplied outside air and performs heat exchange only with sensible heat. Therefore, the refrigerant evaporating temperature of the cooling unit can be increased as compared with the case of performing latent heat, and the heat Since no condensed water is produced by the exchange, the pressure loss of the air volume due to the condensed water can be reduced, and the energy efficiency is increased.
In addition, the control unit controls the ventilation unit, dehumidification unit, and cooling unit based on the return air temperature and humidity, the outside air temperature and humidity, and the indoor set temperature and set humidity. The indoor temperature and humidity can be maintained at the set temperature and humidity, and a comfortable space can be provided.

また、本発明に係る空調システムでは、制御部は外気の温度及び湿度から外気エンタルピーを演算し、還気の温度及び湿度から還気エンタルピーを演算する演算手段を有し、外気エンタルピーが還気エンタルピーよりも大きい場合は、外気の供給量が最小となるように前記換気部を運転制御し、且つ除湿部を運転制御して、且つ前記冷却部を制御し、外気エンタルピーが還気エンタルピーよりも小さく、湿り空気線図において外気の温度及び湿度を示す点が還気の温度及び湿度を示す点と室内の設定温度の温度及び湿度を示す点とを結び、絶対湿度が0となる軸線まで延長させた直線よりも上にある場合は、外気の供給量が最大となるように換気部を運転制御し、且つ除湿部を運転制御して、且つ冷却部を停止制御し、外気エンタルピーが還気エンタルピーよりも小さく、湿り空気線図において外気の温度及び湿度を示す点が直線よりも下にある場合は、外気の供給量が最大となるように換気部を運転制御し、且つ除湿部を停止制御して、且つ冷却部を運転制御することすることを特徴とする。
本発明では、制御部は演算した外気エンタルピー及び還気エンタルピーと、外気および還気の温湿度によって、外気の供給量と、除湿部及び冷却部を効率的に制御するので、外気を有効的に利用でき、除湿部及び冷却部を必要に合わせて運転させることができて省エネルギーを図ることができる。
Further, in the air conditioning system according to the present invention, the control unit has an operation means for calculating the outside air enthalpy from the temperature and humidity of the outside air, and calculating the return air enthalpy from the temperature and humidity of the return air, and the outside air enthalpy is the return air enthalpy. Is greater than the outside air enthalpy, the outside air enthalpy is smaller than the return air enthalpy. In the wet air diagram, the point indicating the temperature and humidity of the outside air connects the point indicating the temperature and humidity of the return air and the point indicating the temperature and humidity of the indoor set temperature, and extends to the axis where the absolute humidity becomes zero. If it is above the straight line, the ventilation section is operated and controlled so that the supply amount of outside air is maximized, the dehumidification section is controlled and the cooling section is stopped, and the outside air enthalpy is returned. If the point indicating the temperature and humidity of the outside air in the wet air diagram is lower than the straight line, the ventilation section is controlled to operate at the maximum level, and the dehumidification section is stopped. And controlling the operation of the cooling unit.
In the present invention, the control unit efficiently controls the supply amount of the outside air, the dehumidifying unit, and the cooling unit according to the calculated outside air enthalpy and return air enthalpy and the temperature and humidity of the outside air and the return air. It can be used, and the dehumidifying unit and the cooling unit can be operated as necessary, thereby saving energy.

また、本発明に係る空調システムでは、除湿部はデシカントサイクルと圧縮式冷凍サイクルによって構成されたハイブリッド除湿機で、冷却部は冷媒蒸発温度の制御が可能であることが好ましい。
本発明では、除湿部がデシカントサイクルと圧縮式冷凍サイクルによって構成されたハイブリッド除湿機で、外気から吸着した水分を排気と共に外部へ排出するシステムなので、効率的に除湿を行うことができる。そしてエアハンドリングユニットへは顕熱のみの冷却処理を行えばよいので、除湿を行う場合に比べて冷却部の冷媒蒸発温度を上げることができるのでエネルギー効率を上げることができる。
In the air conditioning system according to the present invention, it is preferable that the dehumidifying unit is a hybrid dehumidifier configured by a desiccant cycle and a compression refrigeration cycle, and the cooling unit is capable of controlling the refrigerant evaporation temperature.
In the present invention, since the dehumidifying unit is a hybrid dehumidifier configured by a desiccant cycle and a compression refrigeration cycle, and is a system that discharges moisture adsorbed from outside air to the outside together with exhaust, dehumidification can be performed efficiently. Since the air handling unit only needs to be subjected to a cooling process with only sensible heat, the refrigerant evaporating temperature of the cooling unit can be increased as compared with the case where dehumidification is performed, so that the energy efficiency can be increased.

本発明によれば、空調システムに外気を除湿する除湿部を設けて、換気部、除湿部及び冷却部を制御する制御部を備えるので、効率的に室内の温湿度を設定温湿度に保つことができて快適な空間を提供できると共に、省エネルギーを実現することができる。   According to the present invention, the air conditioning system is provided with the dehumidifying unit that dehumidifies the outside air and includes the control unit that controls the ventilation unit, the dehumidifying unit, and the cooling unit, so that the indoor temperature and humidity can be efficiently maintained at the set temperature and humidity. Can provide a comfortable space and can save energy.

以下、本発明の実施の形態による空調システムについて、図1乃至図2に基づいて説明する。
図1は本発明の実施の形態による空調システムの構成を示す概略図、図2は図1に示す空調システムを構成するデシカントサイクルの概略を示す図である。
Hereinafter, an air conditioning system according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 is a schematic diagram showing a configuration of an air conditioning system according to an embodiment of the present invention, and FIG. 2 is a diagram showing an outline of a desiccant cycle constituting the air conditioning system shown in FIG.

図1に示すように、本実施の形態による空調システム1は、室内2の空調を行うもので、エアハンドリングユニット3と換気設備4と除湿機5とターボ冷凍機6と、換気設備4、除湿機5及びターボ冷凍機6を制御する制御装置7とから概略構成される。   As shown in FIG. 1, an air conditioning system 1 according to the present embodiment performs air conditioning of a room 2, and includes an air handling unit 3, a ventilation facility 4, a dehumidifier 5, a turbo refrigerator 6, a ventilation facility 4, and a dehumidifier. And a control device 7 for controlling the machine 5 and the turbo refrigerator 6.

エアハンドリングユニット3は、室内2からの還気RAと除湿機5を通過した外気OAとを受け入れて、冷媒蒸発温度の制御が可能なターボ冷凍機6によって冷却された冷水を冷媒として熱交換を行い、還気RA及び外気OAを室内2の設定温度に冷却して、この冷却された還気RA及び外気OAを調和空気SAとして室内2に供給する。
換気設備4は、エアハンドリングユニット3へ外気OAを供給すると共に、室内2から空気を排出するもので、室内2から排出される空気は還気RAと排気EAに分けられて、還気RAはエアハンドリングユニット3へ供給されて、排気EAは除湿機5を介して外部へ排出される。
The air handling unit 3 receives the return air RA from the room 2 and the outside air OA that has passed through the dehumidifier 5, and performs heat exchange using the cold water cooled by the turbo refrigerator 6 capable of controlling the refrigerant evaporation temperature as a refrigerant. The return air RA and the outside air OA are cooled to the set temperature of the room 2, and the cooled return air RA and the outside air OA are supplied to the room 2 as the conditioned air SA.
The ventilation facility 4 supplies outside air OA to the air handling unit 3 and exhausts air from the room 2. The air discharged from the room 2 is divided into return air RA and exhaust EA. Supplied to the air handling unit 3, the exhaust EA is discharged to the outside through the dehumidifier 5.

除湿機5は、エアハンドリングユニット3へ供給される外気OAを除湿するもので、水分吸着手段であるデシカントロータ11と、デシカントロータ11を稼動させるための駆動手段であるモータ12を備えるデシカントサイクル13と、冷凍手段である圧縮機14、凝縮器15、絞り装置である膨張弁16、蒸発器17を備える圧縮式冷凍サイクル18とによって構成されたインバータ制御が可能なハイブリッド除湿機である。
また、除湿機5は室内2から外部へ排出される排気EAが通過して、エアハンドリングユニット3へ供給される外気OAが通過すると領域と、室内2から外部へ排出される排気EAが通過する領域に分けられる。そして図2に示すように、デシカントロータ11は円柱形をしており、モータ12により図中の矢印の方向に回転し、エアハンドリングユニット3へ供給される外気OAが通過すると領域と、室内2から外部へ排出される排気EAが通過する領域とを時間と共に移動する。
The dehumidifier 5 dehumidifies the outside air OA supplied to the air handling unit 3. The desiccant cycle 13 includes a desiccant rotor 11 that is a moisture adsorbing unit and a motor 12 that is a driving unit for operating the desiccant rotor 11. And a compressor 14 as a refrigeration unit, a condenser 15, an expansion valve 16 as a throttling device, and a compression refrigeration cycle 18 including an evaporator 17.
Further, in the dehumidifier 5, when the exhaust air EA discharged from the room 2 to the outside passes and the outside air OA supplied to the air handling unit 3 passes, the area and the exhaust air EA discharged from the room 2 to the outside pass. Divided into areas. As shown in FIG. 2, the desiccant rotor 11 has a cylindrical shape and is rotated in the direction of the arrow in the figure by the motor 12, so that the outside air OA supplied to the air handling unit 3 passes through the region and the room 2. The exhaust gas EA discharged to the outside from the region moves with time.

制御装置7は外気温湿度センサー21、還気温湿度センサー22を備え、各センサー21、22によって計測された還気RA及び外気OAの温湿度の値により、外気OA及び還気RAのエンタルピーを演算する演算手段を有する。また、制御装置7には還気RAのCO2濃度を測定するCO濃度センサー23を備えられている。そして、外気OA及び還気RAのエンタルピーと外気OA及び還気RAの温湿度と設定温湿度、CO濃度に基づいて、外気OAの供給量を決定して外気OAの供給を行うと共に、除湿機5のインバータ制御と、ターボ冷凍機6の冷媒蒸発温度の制御を行う。 The control device 7 includes an outside air temperature / humidity sensor 21 and a return air temperature / humidity sensor 22, and calculates the enthalpy of the outside air OA and the return air RA based on the temperature and humidity values of the return air RA and the outside air OA measured by the sensors 21 and 22. Has a computing means. Further, the control device 7 is provided with a CO 2 concentration sensor 23 for measuring the CO 2 concentration of the return air RA. Then, based on the enthalpy of the outside air OA and the return air RA, the temperature and humidity of the outside air OA and the return air RA, the set temperature and humidity, and the CO 2 concentration, the supply amount of the outside air OA is determined and the outside air OA is supplied. The inverter control of the machine 5 and the refrigerant evaporation temperature of the turbo refrigerator 6 are controlled.

次に空調システム1の動作について図面を用いて説明する。
換気設備4によってエアハンドリングユニット3へ取り込まれる外気OAは、除湿機5を通過し、除湿機5内の圧縮式冷凍サイクル18によって冷却され、デシカントサイクル13によって外気OAの水分は吸着除去されて、温度、湿度の低い状態となってエアハンドリングユニット3へ供給される。そして、除湿された外気OAは室内2からの還気RAと共にエアハンドリングユニット3内で冷媒との熱交換を行う。このとき熱交換器は顕熱のみの処理を行い、外気OA及び還気RAは設定温度に冷却されて調和空気SAとして室内2へ供給される。
Next, operation | movement of the air conditioning system 1 is demonstrated using drawing.
The outside air OA taken into the air handling unit 3 by the ventilation equipment 4 passes through the dehumidifier 5, is cooled by the compression refrigeration cycle 18 in the dehumidifier 5, and the moisture of the outside air OA is adsorbed and removed by the desiccant cycle 13, The temperature and humidity are low and the air handling unit 3 is supplied. The dehumidified outside air OA exchanges heat with the refrigerant in the air handling unit 3 together with the return air RA from the room 2. At this time, the heat exchanger processes only sensible heat, and the outside air OA and the return air RA are cooled to a set temperature and supplied to the room 2 as conditioned air SA.

室内2から排出される空気は、エアハンドリングユニット3へ供給される還気RAと外部へ排出される排気EAに分けられて、還気RAは上述したように外気OAと共に冷却されて再度室内2へ供給される。そして、排気EAは除湿機5へ送られ、圧縮式冷凍サイクル18の排熱によって絶対湿度が一定の状態で加熱され、相対湿度が低い状態でデシカントロータへ供給される。このときデシカントロータ11は、外気OAの水分の吸着した部分がモータによって外気OAが通過すると領域から排気EAが通過する領域移動しているので、減湿された状態の排気EAが水分の吸着したデシカントロータ11を通過すると、デシカントロータ11内の水分は排気EA内に放出されて、排気EAと共に外部へ排出される。   The air exhausted from the room 2 is divided into return air RA supplied to the air handling unit 3 and exhaust EA exhausted to the outside. The return air RA is cooled together with the outside air OA as described above, and is again returned to the room 2. Supplied to. The exhaust EA is sent to the dehumidifier 5, heated by the exhaust heat of the compression refrigeration cycle 18 with a constant absolute humidity, and supplied to the desiccant rotor with a low relative humidity. At this time, the desiccant rotor 11 moves from a region where the moisture of the outside air OA is adsorbed by the motor to the region where the exhaust EA passes from the region when the outside air OA passes by the motor, so that the dehumidified exhaust EA adsorbs moisture. After passing through the desiccant rotor 11, the moisture in the desiccant rotor 11 is released into the exhaust EA and discharged to the outside together with the exhaust EA.

次に制御装置7の制御方法について図面を用いて説明する。
図3は本発明の実施の形態による空調システムに備える制御装置が行う制御方法を説明する湿り空気線図、図4は本発明の実施の形態による空調システムに備える制御装置が行う制御方法を示す制御ブロック図である。
制御装置7は外気温湿度センサー21、還気温湿度センサー22によって計測された外気OA及び還気RAの温湿度の値から、外気エンタルピーと還気エンタルピーを演算する。そして図3に示す湿り空気線図において、外気エンタルピーが還気エンタルピーよりも大きいゾーンをゾーンIとし、外気エンタルピーが還気エンタルピーよりも小さく、湿り空気線図において還気RAの温度及び湿度を示す点Rと室内2の設定温度の温度及び湿度を示す点Iとを結び、絶対湿度が0となる軸線(x軸線)まで延長させた直線Lよりも上のゾーンをゾーンIIとし、外気エンタルピーが還気エンタルピーよりも小さく、湿り空気線図において直線Lよりも下にあるゾーンをゾーンIIIとして区分し、外気OAの温湿度を示す点Oのあるゾーンによってそれぞれ制御を行う。
Next, the control method of the control apparatus 7 is demonstrated using drawing.
FIG. 3 is a moist air diagram illustrating a control method performed by the control device provided in the air conditioning system according to the embodiment of the present invention. FIG. 4 illustrates a control method performed by the control device provided in the air conditioning system according to the embodiment of the present invention. It is a control block diagram.
The control device 7 calculates the outside air enthalpy and the return air enthalpy from the values of the temperature and humidity of the outside air OA and the return air RA measured by the outside temperature humidity sensor 21 and the return temperature humidity sensor 22. In the wet air diagram shown in FIG. 3, the zone where the outside air enthalpy is larger than the return air enthalpy is set as zone I, the outside air enthalpy is smaller than the return air enthalpy, and the temperature and humidity of the return air RA are shown in the wet air diagram. The zone above the straight line L connecting the point R and the point I indicating the temperature and humidity of the set temperature in the room 2 and extending to the axis (x-axis) where the absolute humidity is 0 is defined as the zone II, and the outside air enthalpy is Zones smaller than the return air enthalpy and below the straight line L in the wet air diagram are classified as zones III, and control is performed by zones with points O indicating the temperature and humidity of the outside air OA.

図4に示すように、外気OAの温湿度を示す点OがゾーンIにある場合は、外気エンタルピーが還気エンタルピーよりも大きい状態なので、外気OAの供給量を最小にすると共に除湿機5のインバータ制御及びターボ冷凍機6の冷媒蒸発温度の制御を行う。
外気OAの温湿度を示す点OがゾーンIIにある場合は、外気エンタルピーが還気エンタルピーよりも小さく、外気OAは還気RAに比べて温度が低く湿度が高い状態なので、外気OAの供給量を最大にすると共に、除湿機5のインバータ制御と、ターボ冷凍機6の停止制御を行う。
外気OAの温湿度を示す点OがゾーンIIIにある場合は、外気エンタルピーが還気エンタルピーよりも小さく、外気OAが還気RAに比べて湿度が低い状態なので、外気OAの供給量を最大にすると共に、除湿機5の停止制御とターボ冷凍機6の冷媒蒸発温度の制御を行う。
また、制御装置7はCO2センサー23によって計測された室内2のCOの濃度によって外気OAの供給量を設定し、上述した各ゾーンによる外気OAの供給量と合わせて外気OAの供給量を設定する。
As shown in FIG. 4, when the point O indicating the temperature and humidity of the outside air OA is in the zone I, since the outside air enthalpy is larger than the return air enthalpy, the supply amount of the outside air OA is minimized and the dehumidifier 5 Inverter control and control of the refrigerant evaporation temperature of the turbo refrigerator 6 are performed.
When the point O indicating the temperature and humidity of the outside air OA is in the zone II, the outside air enthalpy is smaller than the return air enthalpy, and the outside air OA has a lower temperature and higher humidity than the return air RA. In addition, the inverter control of the dehumidifier 5 and the stop control of the turbo chiller 6 are performed.
When the point O indicating the temperature and humidity of the outside air OA is in the zone III, the outside air enthalpy is smaller than the return air enthalpy, and the outside air OA has a lower humidity than the return air RA, so the supply amount of the outside air OA is maximized. At the same time, stop control of the dehumidifier 5 and control of the refrigerant evaporation temperature of the turbo refrigerator 6 are performed.
Further, the control device 7 sets the supply amount of the outside air OA according to the concentration of CO 2 in the room 2 measured by the CO 2 sensor 23, and sets the supply amount of the outside air OA together with the supply amount of the outside air OA by the above-described zones. To do.

次に、上述した空調システム1の作用効果について図面を用いて説明する。
空調システム1は外気OAを除湿する除湿機5を備えて、湿度調節を温度調節と分離して行い、エアハンドリングユニット3では顕熱処理のみ行えばよいので、湿度調節のために過剰に冷媒を冷却することがなく効率的に室内2の温湿度調節ができて、エネルギー効率をあげることができる作用効果を奏する。
また、制御装置7が演算した外気エンタルピー及び還気エンタルピーと、外気OAおよび還気RAの温湿度、室内2の設定温度によって湿り空気線図のゾーン分けを行い、外気OAの温湿度を示す点Oのあるゾーンによって、制御装置7は外気OAの供給量を設定し、除湿機5のインバータ制御及びターボ冷凍機6の冷媒蒸発温度の制御を効率的に行うので、室内2の温湿度を設定温湿度に保つことができると共に、外気OAを有効利用できて除湿機5及びターボ冷凍機6の省エネルギー運転を行うことができる。
また、ターボ冷凍機6を停止する場合には、ターボ冷凍機6に備える冷水1次ポンプ及び2次ポンプとクーリングタワーの送風機を停止させることになるので大幅な少エネルギーを図ることができる。
Next, the effect of the air conditioning system 1 mentioned above is demonstrated using drawing.
The air conditioning system 1 includes a dehumidifier 5 that dehumidifies the outside air OA and performs humidity adjustment separately from temperature adjustment, and the air handling unit 3 only needs to perform sensible heat treatment. Therefore, the refrigerant is excessively cooled for humidity adjustment. Therefore, the temperature and humidity of the room 2 can be adjusted efficiently without any effect, and the energy and efficiency can be improved.
Further, the humid air diagram is divided into zones according to the outside air enthalpy and return air enthalpy calculated by the control device 7, the temperature and humidity of the outside air OA and the return air RA, and the set temperature of the room 2 to indicate the temperature and humidity of the outside air OA. The control device 7 sets the supply amount of the outside air OA according to the zone with O, and efficiently controls the inverter control of the dehumidifier 5 and the refrigerant evaporation temperature of the turbo chiller 6, so the temperature and humidity of the room 2 are set. The temperature and humidity can be maintained, and the outside air OA can be effectively used, and the energy saving operation of the dehumidifier 5 and the turbo refrigerator 6 can be performed.
Further, when the turbo chiller 6 is stopped, the cold water primary pump and the secondary pump provided in the turbo chiller 6 and the blower of the cooling tower are stopped, so that significant energy can be saved.

また、除湿機5はデシカントサイクル13と圧縮式冷凍サイクル18によって構成されたハイブリッド除湿機であるので、冷却式の除湿機に比べて省エネルギーを図ることができる。
また、ターボ冷凍機6は冷媒蒸発温度が制御可能で、冷媒は顕熱処理のみに使用されているので、潜熱処理を行う場合に比べてターボ冷凍機6の冷水を例えば10度以上で運転できて冷媒蒸発温度を高くすることができて、エネルギー効率を向上することができる。
また、エアハンドリングユニット3では顕熱処理のみを行うので、凝縮水の発生がないので結露の発生がなく、凝結水による風量の損失が低減して省エネルギーが図れる。
Further, since the dehumidifier 5 is a hybrid dehumidifier constituted by the desiccant cycle 13 and the compression refrigeration cycle 18, it can save energy compared to the cooling dehumidifier.
Moreover, since the refrigerant | coolant evaporation temperature is controllable and the refrigerant | coolant is used only for sensible heat processing, the centrifugal chiller 6 can operate the cold water of the turbo chiller 6 at 10 degree | times or more compared with the case where a latent heat processing is performed. The refrigerant evaporation temperature can be increased, and energy efficiency can be improved.
Further, since the air handling unit 3 performs only the sensible heat treatment, there is no generation of condensed water, so there is no condensation, and the loss of air volume due to the condensed water is reduced, thereby saving energy.

上述した本実施の形態による空調システム1では、潜熱処理と顕熱処理を分離して行い、外気OAの供給量を設定し除湿機5のインバータ制御およびターボ冷凍機6冷媒蒸発温度の制御を行うことができるので、空調システム1の省エネルギーが図れる。   In the air conditioning system 1 according to this embodiment described above, the latent heat treatment and the sensible heat treatment are performed separately, the supply amount of the outside air OA is set, the inverter control of the dehumidifier 5 and the control of the refrigerant evaporating temperature of the turbo refrigerator 6 are performed. Therefore, energy saving of the air conditioning system 1 can be achieved.

以上、本発明による空調システム1の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上述した実施の形態では、室内2からの還気RAはエアハンドリングユニット3へ供給されているが、外気OAと共に除湿機5を通過して除湿されてからエアハンドリングユニット3へ供給されてもよい。
また、上記の実施の形態では、還気RAの温湿度をエアハンドリングユニット3へ送気される直前で計測しているが、還気RAの温湿度として室内2の温湿度を計測してもよい。要は、本発明において所期の機能が得られればよいのである。
As mentioned above, although embodiment of the air conditioning system 1 by this invention was described, this invention is not limited to said embodiment, It can change suitably in the range which does not deviate from the meaning.
For example, in the above-described embodiment, the return air RA from the room 2 is supplied to the air handling unit 3, but after being dehumidified through the dehumidifier 5 together with the outside air OA, it is supplied to the air handling unit 3. Also good.
In the above embodiment, the temperature and humidity of the return air RA are measured immediately before being supplied to the air handling unit 3, but the temperature and humidity of the room 2 can be measured as the temperature and humidity of the return air RA. Good. In short, it is only necessary to obtain the desired function in the present invention.

本発明の実施の形態による空調システムの概要を示す図である。It is a figure showing an outline of an air-conditioning system by an embodiment of the invention. 図1に示す空調システムに備えるデシカントサイクルの概略を示す図である。It is a figure which shows the outline of the desiccant cycle with which the air conditioning system shown in FIG. 1 is equipped. 本発明の実施の形態による空調システムに備える制御装置が行う制御方法を説明する湿り空気線図である。It is a moist air line figure explaining the control method which the control apparatus with which the air-conditioning system by an embodiment of the invention is provided performs. 本発明の実施の形態による空調システムに備える制御装置が行う制御方法を示す制御ブロック図である。It is a control block diagram which shows the control method which the control apparatus with which the air-conditioning system by embodiment of this invention is equipped performs.

符号の説明Explanation of symbols

1 空調システム
2 室内
3 エアハンドリングユニット
4 換気設備
5 除湿機
6 ターボ冷凍機
7 制御装置
13 デシカントサイクル
18 圧縮式冷凍サイクル
OA 外気
RA 還気
SA 調和空気
DESCRIPTION OF SYMBOLS 1 Air conditioning system 2 Room 3 Air handling unit 4 Ventilation equipment 5 Dehumidifier 6 Turbo refrigerator 7 Control device 13 Desiccant cycle
18 Compression refrigeration cycle
OA outside air RA return air SA conditioned air

Claims (3)

空調対象の室内からの還気及び外気を受け入れて冷媒との熱交換を行い前記室内に調和空気を送気するエアハンドリングユニットと、
前記エアハンドリングユニットへ外気を供給する換気部と、
前記エアハンドリングユニットへ供給される外気を除湿する除湿部と、
前記冷媒を冷却する冷却部と
前記換気部、前記除湿部及び前記冷却部を制御する制御部と、
を備え、前記制御部は還気の温度及び湿度と、外気の温度及び湿度と、前記室内の設定温度及び設定湿度とに基づいて前記換気部、前記除湿部及び前記冷却部を制御することを特徴とする空調システム。
An air handling unit that receives return air and outside air from the air-conditioned room, exchanges heat with the refrigerant, and sends conditioned air into the room;
A ventilation section for supplying outside air to the air handling unit;
A dehumidifying unit for dehumidifying the outside air supplied to the air handling unit;
A cooling unit that cools the refrigerant; a control unit that controls the ventilation unit, the dehumidifying unit, and the cooling unit;
The control unit controls the ventilation unit, the dehumidifying unit, and the cooling unit based on the temperature and humidity of the return air, the temperature and humidity of the outside air, and the set temperature and set humidity of the room. A featured air conditioning system.
前記制御部は外気の温度及び湿度から外気エンタルピーを演算し、還気の温度及び湿度から還気エンタルピーを演算する演算手段を有し、
外気エンタルピーが還気エンタルピーよりも大きい場合は、外気の供給量が最小となるように前記換気部を制御し、且つ前記除湿部及び前記冷却部を運転制御して、
外気エンタルピーが還気エンタルピーよりも小さく、湿り空気線図において外気の温度及び湿度を示す点が還気の温度及び湿度を示す点と前記室内の設定温度の温度及び湿度を示す点とを結び絶対湿度が0となる軸線まで延長した直線よりも上にある場合は、外気の供給量が最大となるように前記換気部を運転制御し、且つ前記除湿部を運転制御して、且つ前記冷却部を停止制御し、
外気エンタルピーが還気エンタルピーよりも小さく、湿り空気線図において外気の温度及び湿度を示す点が前記直線よりも下にある場合は、外気の供給量が最大となるように前記換気部を運転制御し、且つ前記除湿部を停止制御して、且つ前記冷却部を運転制御することを特徴とする請求項1に記載の空調システム。
The control unit calculates the outside air enthalpy from the temperature and humidity of the outside air, and has a calculation means for calculating the return air enthalpy from the temperature and humidity of the return air,
When the outside air enthalpy is larger than the return air enthalpy, the ventilation section is controlled so that the supply amount of outside air is minimized, and the dehumidifying section and the cooling section are operated and controlled.
The point where the outside air enthalpy is smaller than the return air enthalpy, and the point indicating the temperature and humidity of the outside air in the wet air diagram shows the point indicating the temperature and humidity of the return air and the point indicating the temperature and humidity of the indoor set temperature. When the humidity is above the straight line extending to the axis where the humidity becomes 0, the ventilation unit is operated and controlled so that the supply amount of outside air is maximized, and the dehumidifying unit is operated and controlled, and the cooling unit Stop control and
When the outside air enthalpy is smaller than the return air enthalpy and the point indicating the temperature and humidity of the outside air in the wet air diagram is below the straight line, the ventilation section is controlled so that the supply amount of the outside air is maximized. The air conditioning system according to claim 1, wherein the dehumidifying unit is controlled to stop and the cooling unit is controlled to operate.
前記除湿部はデシカントサイクルと圧縮式冷凍サイクルによって構成されたハイブリッド除湿機で、前記冷却部は冷媒蒸発温度の制御が可能であることを特徴とする請求項1又は2に記載の空調システム。   The air conditioning system according to claim 1 or 2, wherein the dehumidifying unit is a hybrid dehumidifier configured by a desiccant cycle and a compression refrigeration cycle, and the cooling unit is capable of controlling a refrigerant evaporation temperature.
JP2008241138A 2008-09-19 2008-09-19 Air conditioning system Active JP5336133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008241138A JP5336133B2 (en) 2008-09-19 2008-09-19 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008241138A JP5336133B2 (en) 2008-09-19 2008-09-19 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2010071587A true JP2010071587A (en) 2010-04-02
JP5336133B2 JP5336133B2 (en) 2013-11-06

Family

ID=42203550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008241138A Active JP5336133B2 (en) 2008-09-19 2008-09-19 Air conditioning system

Country Status (1)

Country Link
JP (1) JP5336133B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069520A (en) * 2009-09-24 2011-04-07 Mazda Motor Corp Air conditioning device for coating and air-conditioning method
CN102734873A (en) * 2012-07-24 2012-10-17 上海龙创自控***有限公司 Distributed heat management device of communication machine room
JP2013053836A (en) * 2011-09-06 2013-03-21 Kimura Kohki Co Ltd Outdoor arrangement with air-conditioning function
JP2013217634A (en) * 2012-03-13 2013-10-24 Taisei Corp Energy saving air conditioning system
JP2014515468A (en) * 2011-05-26 2014-06-30 7142871・カナダ・インコーポレーテッド Microwave reactivation system for standard explosion-proof dehumidification systems.
WO2014136199A1 (en) * 2013-03-05 2014-09-12 三菱電機株式会社 Air-conditioning system
WO2014184883A1 (en) * 2013-05-14 2014-11-20 三菱電機株式会社 Air conditioning system
WO2015125251A1 (en) * 2014-02-20 2015-08-27 三菱電機株式会社 Air-conditioning device and method for controlling air-conditioning device
CN113551325A (en) * 2018-10-11 2021-10-26 松下知识产权经营株式会社 Air conditioning system and air conditioning system controller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101692240B1 (en) * 2015-03-12 2017-01-05 주식회사 경동나비엔 desiccant cooling operation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250414A (en) * 2005-03-09 2006-09-21 Sanyo Electric Co Ltd Air-conditioner
JP2006275507A (en) * 2006-07-07 2006-10-12 Mitsubishi Electric Corp Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250414A (en) * 2005-03-09 2006-09-21 Sanyo Electric Co Ltd Air-conditioner
JP2006275507A (en) * 2006-07-07 2006-10-12 Mitsubishi Electric Corp Air conditioner

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069520A (en) * 2009-09-24 2011-04-07 Mazda Motor Corp Air conditioning device for coating and air-conditioning method
JP2014515468A (en) * 2011-05-26 2014-06-30 7142871・カナダ・インコーポレーテッド Microwave reactivation system for standard explosion-proof dehumidification systems.
JP2013053836A (en) * 2011-09-06 2013-03-21 Kimura Kohki Co Ltd Outdoor arrangement with air-conditioning function
JP2013217634A (en) * 2012-03-13 2013-10-24 Taisei Corp Energy saving air conditioning system
CN102734873A (en) * 2012-07-24 2012-10-17 上海龙创自控***有限公司 Distributed heat management device of communication machine room
US10006649B2 (en) 2013-03-05 2018-06-26 Mitsubishi Electric Corporation Air-conditioning system
CN105026846B (en) * 2013-03-05 2018-03-06 三菱电机株式会社 Air-conditioning system
WO2014136199A1 (en) * 2013-03-05 2014-09-12 三菱電機株式会社 Air-conditioning system
CN105026846A (en) * 2013-03-05 2015-11-04 三菱电机株式会社 Air-conditioning system
GB2529329A (en) * 2013-05-14 2016-02-17 Mitsubishi Electric Corp Air conditioning system
JP5996107B2 (en) * 2013-05-14 2016-09-21 三菱電機株式会社 Air conditioning system
US9874360B2 (en) 2013-05-14 2018-01-23 Mitsubishi Electric Corporation Air-conditioning system
WO2014184883A1 (en) * 2013-05-14 2014-11-20 三菱電機株式会社 Air conditioning system
GB2529329B (en) * 2013-05-14 2020-01-01 Mitsubishi Electric Corp Air conditioning system
CN105940269A (en) * 2014-02-20 2016-09-14 三菱电机株式会社 Air-conditioning device and method for controlling air-conditioning device
JPWO2015125251A1 (en) * 2014-02-20 2017-03-30 三菱電機株式会社 Air conditioner and control method of air conditioner
WO2015125251A1 (en) * 2014-02-20 2015-08-27 三菱電機株式会社 Air-conditioning device and method for controlling air-conditioning device
CN105940269B (en) * 2014-02-20 2019-02-15 三菱电机株式会社 The control method of air-conditioning device and air-conditioning device
CN113551325A (en) * 2018-10-11 2021-10-26 松下知识产权经营株式会社 Air conditioning system and air conditioning system controller
CN113551325B (en) * 2018-10-11 2022-12-06 松下知识产权经营株式会社 Air conditioning system and air conditioning system controller

Also Published As

Publication number Publication date
JP5336133B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5336133B2 (en) Air conditioning system
JP5417213B2 (en) Indirect evaporative cooling type external air conditioning system
JP6494765B2 (en) Air conditioning system
US20100300123A1 (en) Hybrid desiccant dehumidifying apparatus and control method thereof
JP5822931B2 (en) Humidity control apparatus, air conditioning system, and control method of humidity control apparatus
JP5487857B2 (en) Air conditioning system
US20070180851A1 (en) Air conditioning system
JP4870843B1 (en) Air conditioning method and air conditioner using desiccant rotor
JPH11132506A (en) Dehumidification air conditioner and operation thereof
JP2013204899A (en) Air conditioning system
US20200179867A1 (en) Ventilation system
JP2010151337A (en) Air conditioning system
JP2006329471A (en) Air conditioning system
KR101363864B1 (en) Energy-saving air conditioner
JP2006300392A (en) Air-conditioning heat source facility for clean room
JP2005049059A (en) Air-conditioning system
JP5537832B2 (en) External air conditioner and external air conditioning system
JP2011058676A (en) Air conditioning system
JP2010127522A (en) Air conditioning system
EP3136022B1 (en) Hybrid heat pump apparatus
JP2003312474A (en) Method of controlling dehumidification in air-conditioner for rolling stock, and rolling stock air-conditioner
JP6784533B2 (en) Air conditioning system
EP3961112B1 (en) Air-conditioning device
JP3933264B2 (en) Dehumidification air conditioning system
CN110736161B (en) Outdoor air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130801

R150 Certificate of patent or registration of utility model

Ref document number: 5336133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250