JP2013204899A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2013204899A
JP2013204899A JP2012073400A JP2012073400A JP2013204899A JP 2013204899 A JP2013204899 A JP 2013204899A JP 2012073400 A JP2012073400 A JP 2012073400A JP 2012073400 A JP2012073400 A JP 2012073400A JP 2013204899 A JP2013204899 A JP 2013204899A
Authority
JP
Japan
Prior art keywords
air
ventilator
temperature
room
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012073400A
Other languages
Japanese (ja)
Other versions
JP5328951B2 (en
Inventor
Mamoru Hamada
守 濱田
Shinichi Ito
慎一 伊藤
Hidemoto Arai
秀元 荒井
Kazunobu Nishinomiya
一暢 西宮
Naomichi Tamura
直道 田村
Fumitake Unezaki
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012073400A priority Critical patent/JP5328951B2/en
Publication of JP2013204899A publication Critical patent/JP2013204899A/en
Application granted granted Critical
Publication of JP5328951B2 publication Critical patent/JP5328951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning system that ensures ventilation requirement during cooling operation and attains both improved amenity and high efficiency thereafter.SOLUTION: An air conditioning system includes: an air conditioner provided with a refrigerating cycle for processing indoor sensible heat load; a ventilator that is controlled for air volume to ensure ventilation requirement according to indoor environment and that ventilates a room and processes indoor latent heat load; and a centralized controller for controlling the refrigerating cycle so that evaporation temperature becomes target evaporation temperature. The centralized controller determines a maximum value Te_max in a predetermined evaporation temperature range for attaining target indoor humidity on the basis of human-body latent heat load Qlm, outside-air latent heat load Qlo by ventilation of the ventilator, ventilation air volume VA of the ventilator, temperature and humidity Ta_o/RH_o of inflow air of a cooler, and temperature efficiency ηt of a cooler for ventilator, and it determines the target evaporation temperature so that it increases within the predetermined evaporation temperature range as the sensible heat load (temperature difference ΔT) decreases.

Description

本発明は、換気装置を備えた空調システムに関するものである。   The present invention relates to an air conditioning system including a ventilation device.

従来より、冷凍サイクルを備えた空気調和装置と換気装置とを備えた空気調和システムがある。冷凍サイクルは、圧縮機、四方弁、室外熱交換器、減圧装置及び室内熱交換器が順次配管で接続されて冷媒が循環するように構成されている。冷房運転時は、圧縮機で圧縮された高温高圧のガス冷媒を室外熱交換器に送り込み、室外熱交換器で室内空気と熱交換することにより冷媒を液化する。液化した冷媒は、減圧装置で減圧されて気液二相状態となり、室内熱交換器に流入する。室内熱交換器に流入した冷媒は室内空気と熱交換し、室内空気から熱を吸収してガス化する。一方で、室内空気は熱を奪われるため室内空間が冷房される。ガス化した冷媒は圧縮機に戻る。   Conventionally, there is an air conditioning system including an air conditioner equipped with a refrigeration cycle and a ventilator. The refrigeration cycle is configured such that a refrigerant circulates by connecting a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, and an indoor heat exchanger in order by piping. During the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor is sent to the outdoor heat exchanger, and the refrigerant is liquefied by exchanging heat with the indoor air using the outdoor heat exchanger. The liquefied refrigerant is decompressed by the decompression device, becomes a gas-liquid two-phase state, and flows into the indoor heat exchanger. The refrigerant that has flowed into the indoor heat exchanger exchanges heat with room air and absorbs heat from the room air to gasify it. On the other hand, since indoor air is deprived of heat, indoor space is cooled. The gasified refrigerant returns to the compressor.

また、換気装置は、室内の空気を室外の新鮮空気と入れ換える運転を行っている。具体的には、室外の空気を室内に供給する一方、室内の空気を室外に排出している。このため、この種の換気装置を備えた空気調和システムでは、冷房負荷として室内で発生する熱負荷(=室内全熱負荷)や、建物壁面から進入する熱負荷(=貫流負荷)の他、換気装置から導入される外気からの熱負荷(=外気全熱負荷)も処理する必要がある。   The ventilator performs an operation of replacing indoor air with fresh outdoor air. Specifically, the outdoor air is supplied to the room while the indoor air is discharged to the outside. For this reason, in an air conditioning system equipped with this type of ventilator, in addition to the heat load generated indoors (= indoor total heat load) as a cooling load and the heat load entering from the building wall (= once-through load), ventilation It is also necessary to handle the heat load from the outside air introduced from the apparatus (= outdoor air total heat load).

室内の快適性を確保するには、室内温度を目標室内温度にする必要があり、そのためには外気全熱負荷及び室内全熱負荷のうちの顕熱負荷と、貫流負荷とを処理すればよい。冷房運転時は特に除湿も重視されていることから、顕熱負荷だけでなく潜熱負荷も処理して除湿量を確保する必要がある。除湿量は蒸発温度を下げる程、多くなるため、蒸発温度を低めにして運転を行っている。この場合、圧縮機入力が増大して運転効率が低下してしまうという課題があった。   In order to ensure indoor comfort, it is necessary to set the room temperature to the target room temperature. For this purpose, the sensible heat load of the outside air total heat load and the room total heat load and the once-through load may be processed. . Since dehumidification is particularly important during cooling operation, it is necessary to secure not only the sensible heat load but also the latent heat load to ensure the dehumidification amount. Since the dehumidification amount increases as the evaporation temperature is lowered, the operation is performed at a lower evaporation temperature. In this case, there has been a problem that the compressor input increases and the operation efficiency decreases.

そこで、従来より、外気温湿度に応じて換気量を変更し、除湿量を確保しつつ高効率運転を可能とした技術がある(例えば特許文献1参照)。   Therefore, conventionally, there is a technique that enables high-efficiency operation while changing the ventilation amount according to the outside air temperature humidity and ensuring the dehumidification amount (see, for example, Patent Document 1).

特開2006−329468号公報(要約)JP 2006-329468 A (summary)

しかしながら、特許文献1の技術では、冷房運転時に換気を行いつつ室内の快適性を確保するにあたり、換気により空調負荷が増加する場合は換気を行わないようにしている。つまり、高効率運転を行うために必要換気量を無視した運転を行っている。このため、換気量が不十分となり、室内のCO2濃度が上昇してしまうという問題があった。 However, in the technique of Patent Document 1, in order to ensure indoor comfort while performing ventilation during cooling operation, ventilation is not performed when the air conditioning load increases due to ventilation. In other words, in order to perform high-efficiency operation, the operation is performed while ignoring the necessary ventilation. Therefore, ventilation is insufficient, the CO 2 concentration in the chamber there is a problem that rises.

本発明はこのような点に鑑みなされたもので、冷房運転時に必要換気量を確保した上で、快適性向上と高効率化の両立を実現可能な空気調和システムを提供することを目的とする。   The present invention has been made in view of the above points, and an object thereof is to provide an air conditioning system capable of realizing both improvement in comfort and high efficiency while ensuring a necessary ventilation amount during cooling operation. .

本発明に係る空気調和システムは、圧縮機、凝縮器、膨張弁及び蒸発器を有し、冷房運転が可能な冷凍サイクルと、冷凍サイクルを備えて室内の顕熱負荷を処理する空気調和装置と、室内環境に応じた必要換気量を確保するように風量制御され、室内空気と室外空気を入れ換えて換気を行うと共に、室内の潜熱負荷を処理する換気装置と、室内の顕熱負荷が小さくなるに連れ、所定の蒸発温度範囲内で目標蒸発温度が上昇するように決定し、決定した目標蒸発温度となるように冷凍サイクルを制御する制御装置とを備え、換気装置は、室外空気を室内に供給する給気通風路と、室内空気を室外に排気する排気通風路と、給気通風路を流れる室外空気と排気通風路を流れる室内空気との間で全熱交換を行う全熱交換器と、冷凍サイクルの蒸発器に並列に接続された蒸発器で構成され、給気通風路において全熱交換器の下流に配置されて全熱交換器を通過後の空気を除湿して室内に供給する換気装置用冷却器とを備え、制御装置は、室内の在室人数に応じた人体潜熱負荷Qlmと、換気装置によって室外空気を室内に取り入れることによる外気潜熱負荷Qloと、換気装置における換気風量と、給気通風路において全熱交換器を通過後の空気である冷却器流入空気の温湿度と、換気装置用冷却器の温度効率とに基づいて所定の蒸発温度範囲の最大値を決定する。   An air conditioning system according to the present invention includes a compressor, a condenser, an expansion valve, and an evaporator, and can perform a cooling operation, and an air conditioning apparatus that includes the refrigeration cycle and processes an indoor sensible heat load. The air volume is controlled so as to ensure the necessary ventilation according to the indoor environment, and ventilation is performed by exchanging room air and outdoor air, and the indoor sensible heat load is reduced, and the indoor sensible heat load is reduced. And a control device that controls the refrigeration cycle so that the target evaporation temperature rises within a predetermined evaporation temperature range and controls the refrigeration cycle so that the determined target evaporation temperature is reached. A supply air ventilation path to be supplied; an exhaust ventilation path for exhausting indoor air to the outside; a total heat exchanger for performing total heat exchange between outdoor air flowing through the supply air ventilation path and indoor air flowing through the exhaust ventilation path; , Refrigeration cycle evaporator A ventilator cooler configured by evaporators connected in parallel, disposed downstream of the total heat exchanger in the supply air passage, and dehumidifying the air after passing through the total heat exchanger and supplying the air into the room; The controller includes a human latent heat load Qlm corresponding to the number of people in the room, an outdoor air latent heat load Qlo due to taking outdoor air into the room by the ventilator, the ventilation air volume in the ventilator, and the air supply ventilation path. The maximum value of the predetermined evaporation temperature range is determined based on the temperature and humidity of the cooler inflow air, which is the air after passing through the heat exchanger, and the temperature efficiency of the ventilator cooler.

本発明によれば、換気装置の風量制御を行って常に必要換気量を確保しているため、室内空気質を良好に保つことができる。そして、必要換気量を確保した上で、人体潜熱負荷Qlmと外気潜熱負荷Qloとを処理して目標室内湿度を実現できる最大蒸発温度を決定し、その最大蒸発温度以下の範囲で、顕熱負荷が小さくなるに連れ目標蒸発温度を上昇させるようにした。これにより、高効率に室内温湿度を目標値に近づけることが可能となり、快適性向上と高効率化の両立を実現できる。   According to the present invention, the air volume control of the ventilation device is performed to always ensure the necessary ventilation volume, so that the indoor air quality can be kept good. Then, after ensuring the necessary ventilation, the human body latent heat load Qlm and the outside air latent heat load Qlo are processed to determine the maximum evaporation temperature at which the target indoor humidity can be achieved, and the sensible heat load within the range below the maximum evaporation temperature The target evaporating temperature was increased as the value became smaller. As a result, the indoor temperature and humidity can be brought close to the target value with high efficiency, and both improvement in comfort and high efficiency can be realized.

本発明の一実施の形態における空気調和システムの概略図である。It is the schematic of the air conditioning system in one embodiment of this invention. 図1の空気調和システムの冷媒回路の概略図である。It is the schematic of the refrigerant circuit of the air conditioning system of FIG. 図1の空気調和装置に設置された各種検出装置を示す図である。It is a figure which shows the various detection apparatuses installed in the air conditioning apparatus of FIG. 図1の換気装置の概略構成を示す図である。It is a figure which shows schematic structure of the ventilation apparatus of FIG. 図1の換気装置の給気通風路における空気状態の変化を示す空気線図である。It is an air line figure which shows the change of the air state in the air supply ventilation path of the ventilation apparatus of FIG. 温度差ΔTに応じた目標蒸発温度Teの決定方法の説明図である。It is explanatory drawing of the determination method of target evaporation temperature Te according to temperature difference (DELTA) T. 図2の冷凍サイクルのp−h線図である。FIG. 3 is a ph diagram of the refrigeration cycle of FIG. 2. 図5に示した空気線図上に目標温湿度を示した空気線図である。FIG. 6 is an air diagram showing a target temperature and humidity on the air diagram shown in FIG. 5. 最大蒸発温度Te_maxの設定方法を説明するための空気線図である。It is an air line figure for demonstrating the setting method of maximum evaporation temperature Te_max. 目標室内空気と冷却器流入空気IAの空気状態を示す空気線図である。It is an air diagram which shows the air state of target indoor air and cooler inflow air IA. 本発明の一実施の形態の空気調和システムにおける制御フローを示す図である。It is a figure which shows the control flow in the air conditioning system of one embodiment of this invention. 図1の換気装置の変形例1を示す図である。It is a figure which shows the modification 1 of the ventilation apparatus of FIG. 図12の換気装置を用いる場合の制御フローを示す図である。It is a figure which shows the control flow in the case of using the ventilation apparatus of FIG. 図1の換気装置の変形例2を示す図である。It is a figure which shows the modification 2 of the ventilation apparatus of FIG. 図1の換気装置の変形例3を示す図である。It is a figure which shows the modification 3 of the ventilation apparatus of FIG.

図1は、本発明の一実施の形態における空気調和システムの概略図で、空気調和システムが設置された部屋の上面図を示している。図1及び後述の図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。
空気調和システム100は、空気調和装置1と、室内101の換気を行う換気装置13とを備えている。空気調和装置1は、複数(ここでは3台)の室内機11と室外機12とを備えている。室外機12は室外に設置され、室内機11は室内101に設置されており、室外機12及び各室内機11のそれぞれは、伝送線103により制御装置としての集中コントローラ102に接続されている。空気調和装置1は、主に室内101の顕熱負荷を処理し、換気装置14は室内101の換気と主に室内101の潜熱負荷の処理とを行うものであり、空気調和装置1と換気装置13の後述の換気装置用冷却器9とは冷媒配管104で接続されて冷凍サイクルを構成している。
FIG. 1 is a schematic diagram of an air conditioning system according to an embodiment of the present invention, and shows a top view of a room in which the air conditioning system is installed. In FIG. 1 and the drawings to be described later, the same reference numerals denote the same or corresponding parts, which are common throughout the entire specification.
The air conditioning system 100 includes the air conditioning apparatus 1 and a ventilation apparatus 13 that ventilates the room 101. The air conditioner 1 includes a plurality of (here, three) indoor units 11 and outdoor units 12. The outdoor unit 12 is installed outdoors, and the indoor unit 11 is installed in the room 101, and each of the outdoor unit 12 and each indoor unit 11 is connected to a centralized controller 102 as a control device by a transmission line 103. The air conditioner 1 mainly processes the sensible heat load of the room 101, and the ventilator 14 performs the ventilation of the room 101 and mainly the latent heat load of the room 101. The air conditioner 1 and the ventilator 13 and a later-described ventilator cooler 9 are connected by a refrigerant pipe 104 to constitute a refrigeration cycle.

また、空気調和システム100は、使用者が室内温度及び室内湿度(目標室内空気の温湿度)を設定する目標温湿度設定装置としての入力部102aを備えており、入力部102aで設定された目標温湿度に近づくように運転が行われる。また、換気装置13も集中コントローラ102に接続されている。   In addition, the air conditioning system 100 includes an input unit 102a as a target temperature / humidity setting device in which the user sets the room temperature and the room humidity (temperature / humidity of the target room air), and the target set by the input unit 102a. The operation is performed so as to approach the temperature and humidity. A ventilator 13 is also connected to the centralized controller 102.

図2は、図1の空気調和システムの冷媒回路の概略図である。
空気調和装置1は、圧縮機2と、四方弁3と、室外熱交換器4と、減圧装置としての膨張弁5と、室内熱交換器6と、順次配管で接続されて冷媒が循環するように構成された冷凍サイクルを備えている。空気調和装置1は更に、室外熱交換器用送風機7及び室内熱交換器用送風機8を備えている。そして、室外機12に、圧縮機2、四方弁3、室外熱交換器4及び室外熱交換器用送風機7が設置され、室内機11に、開度調整可能な膨張弁5、室内熱交換器6及び室内熱交換器用送風機8が設置されている。そして、互いに直列に接続された換気装置搭載膨張弁5a及び換気装置用冷却器9が、膨張弁5及び室内熱交換器6に並列に接続されており、これらは換気装置13に設置されている。換気装置13には更に、換気装置用冷却器9に空気を通過させるための給気用送風機10が設置されている。
FIG. 2 is a schematic diagram of a refrigerant circuit of the air conditioning system of FIG.
The air conditioner 1 is connected to the compressor 2, the four-way valve 3, the outdoor heat exchanger 4, the expansion valve 5 as a pressure reducing device, and the indoor heat exchanger 6 through a pipe so that the refrigerant circulates. The refrigeration cycle is configured. The air conditioner 1 further includes an outdoor heat exchanger blower 7 and an indoor heat exchanger blower 8. The outdoor unit 12 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, and an outdoor heat exchanger blower 7. The indoor unit 11 includes an expansion valve 5 and an indoor heat exchanger 6 that are adjustable in opening. And the fan 8 for indoor heat exchangers is installed. The ventilator-mounted expansion valve 5a and the ventilator cooler 9 connected in series to each other are connected in parallel to the expansion valve 5 and the indoor heat exchanger 6, and these are installed in the ventilator 13. . The ventilation device 13 is further provided with an air supply blower 10 for allowing air to pass through the ventilation device cooler 9.

このように構成された空気調和システム100は、圧縮機2から吐出した冷媒の流れ方向を四方弁3により切り換えて冷房運転又は暖房運転に切り換え可能となっている。四方弁3を図1の実線側に切り換えた場合、室内熱交換器6及び換気装置用冷却器9が蒸発器、室外熱交換器4が凝縮器となり冷房運転が実施され、四方弁3を図1の点線側に切り換えた場合、室内熱交換器6が凝縮器、室外熱交換器4が蒸発器となり暖房運転が実施される。なお、暖房運転時は換気装置搭載膨張弁5aを閉じ、換気装置用冷却器9には冷媒を流さないようにしても良いし、換気装置搭載膨張弁5aを開け、換気装置用冷却器9に高温高圧のガス冷媒を流して、凝縮器として使用しても良い。また、本発明の空気調和システムは、少なくとも冷房運転が可能であればよく、四方弁3は必ずしも必須の構成ではない。   The air conditioning system 100 configured as described above can be switched to the cooling operation or the heating operation by switching the flow direction of the refrigerant discharged from the compressor 2 by the four-way valve 3. When the four-way valve 3 is switched to the solid line side in FIG. 1, the indoor heat exchanger 6 and the ventilator cooler 9 serve as an evaporator, and the outdoor heat exchanger 4 serves as a condenser, and the cooling operation is performed. When switched to the dotted line side of 1, the indoor heat exchanger 6 becomes a condenser and the outdoor heat exchanger 4 becomes an evaporator, and heating operation is performed. During the heating operation, the ventilator mounted expansion valve 5a may be closed so that no refrigerant flows through the ventilator cooler 9, or the ventilator mounted expansion valve 5a is opened and the ventilator cooler 9 is opened. A high-temperature and high-pressure gas refrigerant may be flowed and used as a condenser. Moreover, the air conditioning system of this invention should just be a cooling operation at least, and the four-way valve 3 is not necessarily an essential structure.

次に、空気調和システム100の冷房運転時の動作を図2を参照して説明する。図2において矢印は冷房運転時の冷媒の流れを示している。   Next, the operation | movement at the time of the cooling operation of the air conditioning system 100 is demonstrated with reference to FIG. In FIG. 2, the arrows indicate the flow of the refrigerant during the cooling operation.

空気調和装置1において、冷房時は、圧縮機2で圧縮された冷媒は高温高圧のガス冷媒となり、四方弁3を通り室外熱交換器4に送り込まれる。室外熱交換器4に流入した冷媒は、室外熱交換器用送風機7で搬送される室外空気と熱交換し、放熱することにより液化する。液化した冷媒は膨張弁5で減圧されて気液二相状態となり、室内熱交換器6及び換気装置用冷却器9に流入する。室内熱交換器6に流入した冷媒は、室内熱交換器用送風機8から搬送される室内空気と熱交換し、吸熱することによりガス化し、換気装置用冷却器9に流入した冷媒は、給気用送風機10から搬送される冷却器流入空気IAと熱交換し、吸熱することによりガス化する。これらのガス化した冷媒は、圧縮機2へ戻される。以上のように冷媒が冷媒回路を循環することにより冷房運転を行う。   In the air conditioner 1, during cooling, the refrigerant compressed by the compressor 2 becomes a high-temperature and high-pressure gas refrigerant, which is sent to the outdoor heat exchanger 4 through the four-way valve 3. The refrigerant flowing into the outdoor heat exchanger 4 is liquefied by exchanging heat with the outdoor air conveyed by the outdoor heat exchanger blower 7 and dissipating heat. The liquefied refrigerant is decompressed by the expansion valve 5 to be in a gas-liquid two-phase state, and flows into the indoor heat exchanger 6 and the ventilator cooler 9. The refrigerant flowing into the indoor heat exchanger 6 exchanges heat with the indoor air conveyed from the indoor heat exchanger blower 8 and gasifies by absorbing heat, and the refrigerant flowing into the ventilator cooler 9 is used for supplying air. Heat exchange is performed with the cooler inflow air IA conveyed from the blower 10, and gasification is performed by absorbing heat. These gasified refrigerants are returned to the compressor 2. As described above, the refrigerant circulates through the refrigerant circuit to perform the cooling operation.

図3は、図1の空気調和装置に設置された各種検出装置を示す図である。
図1においては図示省略していたが、空気調和装置1には図3に示すように各種検出装置が設けられている。すなわち、室外機12に蒸発温度検出装置31が設けられ、各室内機11のそれぞれに、室内機11の吸込空気の温湿度を検出する吸込温湿度検出装置32が設けられている。これらの検出装置31、32の検出値は集中コントローラ102に出力される。なお、図3において33はインバータ駆動用モータで構成された圧縮機周波数調整装置であり、集中コントローラ102によって制御される。
FIG. 3 is a diagram showing various detection devices installed in the air conditioner of FIG.
Although not shown in FIG. 1, the air conditioner 1 is provided with various detection devices as shown in FIG. That is, the outdoor unit 12 is provided with an evaporation temperature detection device 31, and each indoor unit 11 is provided with a suction temperature and humidity detection device 32 that detects the temperature and humidity of the intake air of the indoor unit 11. The detection values of these detection devices 31 and 32 are output to the centralized controller 102. In FIG. 3, reference numeral 33 denotes a compressor frequency adjusting device composed of an inverter driving motor, which is controlled by the centralized controller 102.

図4は、図1の換気装置の概略構成を示す図である。
換気装置13は、本体ケーシング13a内に、換気装置用冷却器9と、全熱交換器22と、給気用送風機10と、排気用送風機21とを備えている。本体ケーシング13a内には、給気通風路Aと排気通風路Bとが互いに独立して形成されている。給気通風路Aは、給気用送風機10により室外空気OAを取り入れて全熱交換器22及び換気装置用冷却器9に通過させ、調整空気SAとして室内101に供給する通風路である。排気通風路Bは、排気用送風機21により室内空気RAを取り入れて全熱交換器22に通過させ、排気EAとして室外に排気する通風路である。なお、以下では、給気通風路Aにおいて全熱交換器22を通過した後、換気装置用冷却器9に流入する空気を冷却器流入空気IAという。
FIG. 4 is a diagram showing a schematic configuration of the ventilation device of FIG.
The ventilator 13 includes a ventilator cooler 9, a total heat exchanger 22, an air supply fan 10, and an exhaust fan 21 in the main body casing 13a. A supply air passage A and an exhaust air passage B are formed independently of each other in the main body casing 13a. The air supply ventilation path A is a ventilation path that takes in the outdoor air OA by the supply air blower 10 and passes it through the total heat exchanger 22 and the ventilator cooler 9 and supplies it to the room 101 as the regulated air SA. The exhaust ventilation path B is a ventilation path that takes in the indoor air RA by the exhaust blower 21 and passes it through the total heat exchanger 22 and exhausts it outside as the exhaust EA. In the following, the air that flows into the ventilator cooler 9 after passing through the total heat exchanger 22 in the air supply ventilation path A is referred to as cooler inflow air IA.

換気装置13には更に、冷却器流入空気IAの温度及び湿度を検出する冷却器流入温湿度検出装置23と、室内空気RAのCO2 濃度を検出するCO2 濃度検出装置24と、換気風量検出装置25とを備えており、これらの検出装置23〜25の検出値は、伝送線103を介して集中コントローラ102に出力される。集中コントローラ102は、空気調和装置1内の各検出装置31、32の検出値や、換気装置13の検出装置23〜25の検出値に基づいて後述の制御フローの処理を行う。 Furthermore the ventilator 13, a cooler inlet temperature and humidity detecting device 23 for detecting the temperature and humidity of the cooler incoming air from the Group IA, CO 2 concentration detector 24 for detecting a CO 2 concentration of the room air RA, ventilation power detection The detection values of these detection devices 23 to 25 are output to the centralized controller 102 via the transmission line 103. The centralized controller 102 performs a control flow process described later based on the detection values of the detection devices 31 and 32 in the air conditioner 1 and the detection values of the detection devices 23 to 25 of the ventilation device 13.

全熱交換器22は、例えば互いに直交する通風路が交互に積層された構造を成すものであって、その通風路に室内空気RAと室外空気OAとが通過することで両気流の間で全熱交換を行うものである。換気装置用冷却器9は、上述したように冷凍サイクルの蒸発器で構成され、自身を通過する空気を露点温度以下に冷却して除湿するものである。換気装置13は、換気の他に上述したように室内101の潜熱負荷を処理する役割を有しており、全熱交換器22と換気装置用冷却器9とにより室内101の潜熱負荷を処理する。この点については改めて説明する。   The total heat exchanger 22 has, for example, a structure in which ventilation paths orthogonal to each other are alternately stacked, and the indoor air RA and the outdoor air OA pass through the ventilation path, so that the entire air flow between the two airflows is totally reduced. Heat exchange is performed. The ventilator cooler 9 is composed of the evaporator of the refrigeration cycle as described above, and dehumidifies the air passing through itself by cooling it below the dew point temperature. In addition to ventilation, the ventilator 13 has a role of processing the latent heat load of the room 101 as described above, and processes the latent heat load of the room 101 by the total heat exchanger 22 and the cooler 9 for the ventilator. . This point will be described again.

給気用送風機10及び排気用送風機21はファンなどから構成されており、回転数制御により換気装置13内を流れる空気の風量を制御するものである。ファンを回転させるモータにDCモータを使用する場合には、電流値を変化させて回転数を制御することで風量を制御し、ACモータを使用する場合には、インバータ制御により電源周波数を変化させて回転数を制御することで風量を制御する。   The supply blower 10 and the exhaust blower 21 are composed of a fan or the like, and control the amount of air flowing through the ventilator 13 by controlling the rotational speed. When using a DC motor as the motor that rotates the fan, the air volume is controlled by changing the current value and controlling the number of revolutions. When using an AC motor, the power supply frequency is changed by inverter control. The air volume is controlled by controlling the rotation speed.

このように構成された換気装置13では、室内101の環境(空気質、例えばCO2濃度)を良好に保つ(例えば、CO2濃度を1000ppm以下に保つ)ための必要換気量(風量VA)で換気が行われるように、集中コントローラ102により給気用送風機10及び排気用送風機21の回転数が制御される。そして、室外空気OAを、給気通風路Aの全熱交換器22及び換気装置用冷却器9に通過させて除湿した上で室内101に供給する一方、室内空気RAを排気通風路Bに通過させて室外に排気することで、室内101の潜熱負荷を処理する。 In the ventilator 13 configured in this manner, the necessary ventilation volume (air volume VA) for keeping the environment (air quality, for example, CO 2 concentration) in the room 101 good (for example, keeping the CO 2 concentration at 1000 ppm or less). The central controller 102 controls the rotational speeds of the air supply blower 10 and the exhaust blower 21 so that ventilation is performed. Then, the outdoor air OA is passed through the total heat exchanger 22 and the ventilator cooler 9 in the air supply ventilation path A to be dehumidified and supplied to the room 101, while the room air RA is passed to the exhaust ventilation path B. The latent heat load in the room 101 is processed by exhausting the air to the outside.

次に、換気装置13の動作について図4及び図5を参照して説明する。ここでは、室外空気OAが室内空気RAよりも高温高湿の場合を例に説明する。
図5は、図1の換気装置の給気通風路Aにおける空気状態の変化を示す空気線図である。図5の空気線図の縦軸は空気の絶対湿度[kg/kg’]、横軸は空気の乾球温度[℃]である。なお、空気状態は、温度と湿度とから空気線図上で1点で表され、図5には、室外空気OA、冷却器流入空気IA、調整空気SAのそれぞれの空気状態を示している。また、図5においてTeは換気装置用冷却器9の蒸発温度である。
Next, operation | movement of the ventilator 13 is demonstrated with reference to FIG.4 and FIG.5. Here, the case where the outdoor air OA is hotter and humid than the indoor air RA will be described as an example.
FIG. 5 is an air diagram showing changes in the air state in the supply air passage A of the ventilator of FIG. The vertical axis of the air diagram of FIG. 5 is the absolute humidity [kg / kg ′] of the air, and the horizontal axis is the dry bulb temperature [° C.] of the air. The air state is represented by one point on the air diagram from temperature and humidity, and FIG. 5 shows the air states of the outdoor air OA, the cooler inflow air IA, and the adjustment air SA. In FIG. 5, Te is the evaporation temperature of the ventilator cooler 9.

室外空気OAは、全熱交換器22通過時に排気通風路Bからの室内空気RAと全熱交換し、図5に示すように冷却除湿されて換気装置用冷却器9に流入する。換気装置用冷却器9に流入した冷却器流入空気IAは、換気装置用冷却器9通過時に露点温度以下まで冷やされて冷却除湿され、調整空気SAとなって室内へ供給される。   The outdoor air OA undergoes total heat exchange with the room air RA from the exhaust ventilation path B when passing through the total heat exchanger 22, and is cooled and dehumidified and flows into the ventilator cooler 9 as shown in FIG. The cooler inflow air IA that has flowed into the ventilator cooler 9 is cooled to the dew point temperature or lower when passing through the ventilator cooler 9, is cooled and dehumidified, and is supplied into the room as adjusted air SA.

このように、給気通風路Aでは、室外空気OAを全熱交換器22で室内空気RAと全熱交換して冷却除湿し、更に換気装置用冷却器9で冷却除湿してから室内101に供給する。この調整空気SAは、室内湿度を、入力部102aから設定された目標湿度にすることが可能なように絶対湿度が調整された空気である。よって、その調整空気SAを室内101に供給することで、室内101を目標湿度にすることができる。   As described above, in the air supply and ventilation path A, the outdoor air OA is totally heat-exchanged with the room air RA by the total heat exchanger 22 to be cooled and dehumidified, and further cooled and dehumidified by the ventilator cooler 9 and then returned to the room 101. Supply. The adjusted air SA is air whose absolute humidity is adjusted so that the indoor humidity can be set to the target humidity set from the input unit 102a. Therefore, by supplying the adjusted air SA to the room 101, the room 101 can be set to the target humidity.

ところで、図5の空気線図上において、換気装置用冷却器9の蒸発温度Teの直線と飽和曲線との交点(1)と冷却器流入空気IAの点とを結ぶ線上の空気状態の空気が、換気装置用冷却器9から流出して調整空気SAとして室内へ供給されることになる。逆に言えば、点IAで示した温湿度の空気を換気装置用冷却器9に流入して、点SAで示した温湿度の空気を流出させたい場合には、点IAと点SAとを結んだ直線と飽和曲線との交点の温度Teの冷媒が換気装置用冷却器9に流れるようにすればよい。すなわち、換気装置用冷却器9における蒸発温度をTeとすればよい。よって、室内湿度を目標湿度にするにあたり調整空気SAの絶対湿度を調整するには、目標湿度に応じて蒸発温度を調整すればよい。換気装置用冷却器9の蒸発温度Teの設定については後述する。   By the way, on the air diagram of FIG. 5, the air in the air state on the line connecting the intersection (1) between the straight line of the evaporation temperature Te and the saturation curve of the cooler 9 for the ventilator and the point of the cooler inflow air IA is Then, the air flows out from the ventilator cooler 9 and is supplied into the room as the regulated air SA. In other words, when the air of temperature and humidity indicated by the point IA flows into the ventilator cooler 9 and the air of temperature and humidity indicated by the point SA is desired to flow out, the points IA and SA are What is necessary is just to make it the refrigerant | coolant of the temperature Te of the intersection of the connected straight line and a saturation curve flow into the cooler 9 for ventilators. That is, the evaporation temperature in the ventilator cooler 9 may be set to Te. Therefore, in order to adjust the absolute humidity of the adjusted air SA when the room humidity is set to the target humidity, the evaporation temperature may be adjusted according to the target humidity. The setting of the evaporation temperature Te of the ventilator cooler 9 will be described later.

また、図5より、Teが高くなれば絶対湿度が上がるため換気装置用冷却器9の潜熱処理能力は低下し、Teが低くなれば絶対湿度が下がるため換気装置用冷却器9の潜熱処理能力は上昇するということがわかる。   Further, as shown in FIG. 5, when Te increases, the absolute humidity increases, so the latent heat treatment capacity of the ventilator cooler 9 decreases. When Te decreases, the absolute humidity decreases, so the latent heat treatment capacity of the ventilator cooler 9 decreases. You can see that it rises.

以上説明したように、冷房運転時に換気のために室外空気OAを取り入れる際に、室外の高温高湿の空気をそのまま室内101に取り入れると、室内101の潜熱負荷が増してしまう。しかし、換気装置13では、室外空気OAを全熱交換器22及び換気装置用冷却器9を通過させて冷却除湿し、室内101を目標湿度にすることが可能な絶対湿度の空気に調整してから室内101に供給する。これにより、室内101の潜熱負荷が増すのを防止できるのはもちろんのこと、室内101の潜熱負荷を処理して室内101を目標湿度にすることが可能となる。なお、室内101を目標温湿度にするにあたり、顕熱負荷の処理は上述したように空気調和装置1側で行われる。   As described above, when the outdoor air OA is taken in for ventilation during the cooling operation, if the outdoor high-temperature and high-humidity air is directly taken into the room 101, the latent heat load in the room 101 increases. However, in the ventilator 13, the outdoor air OA is passed through the total heat exchanger 22 and the ventilator cooler 9 to be cooled and dehumidified, and adjusted to air of absolute humidity that can make the room 101 the target humidity. To the room 101. As a result, it is possible to prevent the latent heat load in the room 101 from increasing, and to process the latent heat load in the room 101 to bring the room 101 to the target humidity. Note that, when the room 101 is set to the target temperature and humidity, the sensible heat load process is performed on the air conditioner 1 side as described above.

次に、空気調和システム100における具体的な制御について説明する。
空気調和システム100は、吸込温湿度検出装置32で検出された室内温度Taと入力部102aで設定された目標室内温度Ta_in(℃)との温度差ΔT(顕熱負荷)に応じて目標蒸発温度(運転蒸発温度)Te[℃]を決定し、その目標蒸発温度Teになるように、冷凍サイクルの制御(圧縮機2の周波数制御、送風機10、21の回転数制御等)を行う。
Next, specific control in the air conditioning system 100 will be described.
The air conditioning system 100 has a target evaporation temperature according to a temperature difference ΔT (sensible heat load) between the room temperature Ta detected by the suction temperature / humidity detection device 32 and the target room temperature Ta_in (° C.) set by the input unit 102a. (Operating evaporation temperature) Te [° C.] is determined, and control of the refrigeration cycle (frequency control of the compressor 2, rotation speed control of the blowers 10 and 21, etc.) is performed so as to reach the target evaporation temperature Te.

図6は、温度差ΔTに応じた目標蒸発温度Teの決定方法の説明図である。図6において横軸は温度差ΔT、縦軸は目標蒸発温度Teである。図7は、図2の冷凍サイクルのp−h線図である。
目標蒸発温度Teは、図6に示す特性と温度差ΔTとを用いて決定する。
FIG. 6 is an explanatory diagram of a method for determining the target evaporation temperature Te according to the temperature difference ΔT. In FIG. 6, the horizontal axis represents the temperature difference ΔT, and the vertical axis represents the target evaporation temperature Te. FIG. 7 is a ph diagram of the refrigeration cycle of FIG.
The target evaporation temperature Te is determined using the characteristics shown in FIG. 6 and the temperature difference ΔT.

図6に示す特性は、T0と、Te_minと、Te_maxとに基づいて特定される特性であり、これらの3つの値のうち、T0及び最小蒸発温度Te_minは、予め設定されている。なお、T0は、予め設定された温度差であり例えば1℃である。最小蒸発温度Te_minは、十分な冷房能力を確保できる温度であり、例えば0℃等である。Te_maxは最大蒸発温度であり、室内湿度を目標室内湿度(相対湿度)RH_inにすることができる蒸発温度範囲の最大値である。つまり、除湿量は蒸発温度を上げるほど減少するため、最大蒸発温度Te_maxは、目標室内湿度RH_inを実現できる限界の蒸発温度に相当する。最大蒸発温度Te_maxの設定方法については後述する。   The characteristics shown in FIG. 6 are characteristics specified based on T0, Te_min, and Te_max, and among these three values, T0 and the minimum evaporation temperature Te_min are set in advance. T0 is a preset temperature difference, for example, 1 ° C. The minimum evaporation temperature Te_min is a temperature at which a sufficient cooling capacity can be secured, and is 0 ° C., for example. Te_max is the maximum evaporation temperature, and is the maximum value of the evaporation temperature range in which the indoor humidity can be set to the target indoor humidity (relative humidity) RH_in. That is, since the dehumidification amount decreases as the evaporation temperature increases, the maximum evaporation temperature Te_max corresponds to the limit evaporation temperature at which the target indoor humidity RH_in can be achieved. A method for setting the maximum evaporation temperature Te_max will be described later.

図6より明らかなように、温度差ΔTが小さくなるに連れ(顕熱負荷が小さくなるに連れ)、目標蒸発温度Teを上げる制御を行う。このように顕熱負荷の減少に伴い目標蒸発温度Teを上げることで、図7に示すように圧縮機2入口の冷媒状態が点aから点bに変化する。これにより、図7に示すp−h線図を見ても分かるように、圧縮機2入力が減少し、高効率運転とすることができる。通常の空気調和装置の運転は、温度差ΔTが小さいところ(低負荷)での運転時間が長いので、この高効率運転が省エネ効果向上に大きく影響する。   As is apparent from FIG. 6, as the temperature difference ΔT decreases (as the sensible heat load decreases), control is performed to increase the target evaporation temperature Te. Thus, by raising the target evaporation temperature Te with the decrease in the sensible heat load, the refrigerant state at the inlet of the compressor 2 changes from the point a to the point b as shown in FIG. Thereby, as can be seen from the ph diagram shown in FIG. 7, the input of the compressor 2 is reduced, and high-efficiency operation can be achieved. In the normal operation of the air conditioner, since the operation time is long at a small temperature difference ΔT (low load), this high-efficiency operation greatly affects the energy saving effect.

本実施の形態では、上述したように換気装置13により必要な換気量の確保も行うものであり、換気については、冷凍サイクルの制御とは別に換気装置13の風量制御により独立して行っている。よって、本実施の形態の空気調和システムでは、最小蒸発温度Te_minから最大蒸発温度Te_maxの蒸発温度範囲内で、図6により温度差ΔTに応じて目標蒸発温度Teを決定し、決定した目標蒸発温度Teとなるように冷凍サイクルを制御することで、必要換気量を確保した上で、必要な除湿量確保と高効率運転を実現できるのである。したがって、最大蒸発温度Te_maxを適切に設定することが重要であり、本実施の形態は、最大蒸発温度Te_maxの決定方法に特徴がある。   In the present embodiment, as described above, the necessary ventilation amount is also secured by the ventilator 13, and ventilation is performed independently by the air volume control of the ventilator 13 separately from the control of the refrigeration cycle. . Therefore, in the air conditioning system of the present embodiment, the target evaporation temperature Te is determined according to the temperature difference ΔT according to FIG. 6 within the evaporation temperature range from the minimum evaporation temperature Te_min to the maximum evaporation temperature Te_max, and the determined target evaporation temperature. By controlling the refrigeration cycle so as to be Te, it is possible to ensure the necessary dehumidification amount and achieve high-efficiency operation while ensuring the necessary ventilation amount. Therefore, it is important to appropriately set the maximum evaporation temperature Te_max, and this embodiment is characterized in a method for determining the maximum evaporation temperature Te_max.

図8は、図5に示した空気線図上に目標温湿度を示した空気線図である。図8において縦軸は絶対湿度[kg/kg’]、横軸は乾球温度[℃]である。
最大蒸発温度Te_maxの設定にあたっては、換気装置13の換気による室内101への潜熱負荷の影響を考慮する必要がある。図8に示されているように目標室内空気の絶対湿度xa_inが、冷却器流入温湿度検出装置23の検出値から求められる冷却器流入空気IAの絶対湿度xa_oよりも高い場合、目標湿度を実現するには室内の潜熱負荷(以下、人体潜熱負荷という)Qlmに加えて外気からの潜熱負荷(以下、外気潜熱負荷という)Qloも処理する必要がある。
FIG. 8 is an air diagram showing the target temperature and humidity on the air diagram shown in FIG. In FIG. 8, the vertical axis represents absolute humidity [kg / kg ′], and the horizontal axis represents dry bulb temperature [° C.].
In setting the maximum evaporation temperature Te_max, it is necessary to consider the influence of the latent heat load on the room 101 due to ventilation of the ventilation device 13. As shown in FIG. 8, when the absolute humidity xa_in of the target room air is higher than the absolute humidity xa_o of the cooler inflow air IA obtained from the detection value of the cooler inflow temperature and humidity detection device 23, the target humidity is realized. To this end, it is necessary to process the latent heat load Qlom from the outside air (hereinafter referred to as the outside air latent heat load) Qlo in addition to the indoor latent heat load (hereinafter referred to as the human body latent heat load) Qlm.

<<最大蒸発温度Te_maxの算出>>
以下、最大蒸発温度Te_maxの設定にあたっての考え方についてまず説明する。
図9は、最大蒸発温度Te_maxの設定方法を説明するための空気線図である。図9において縦軸は絶対湿度[kg/kg’]、横軸は乾球温度[℃]である。
<< Calculation of Maximum Evaporation Temperature Te_max >>
Hereinafter, the concept for setting the maximum evaporation temperature Te_max will be described first.
FIG. 9 is an air line diagram for explaining a method of setting the maximum evaporation temperature Te_max. In FIG. 9, the vertical axis represents absolute humidity [kg / kg ′], and the horizontal axis represents dry bulb temperature [° C.].

図9においてSA’は、潜熱負荷Ql(=Qlo+Qlm)を処理できる調整空気のうち絶対湿度が最大の調整空気である。目標調整空気SA’の絶対湿度をxa_f、温度をTfとする。なお、絶対湿度xa_f及び温度Tfは現段階では未知であり、図9上の点は仮にプロットした点である。目標調整空気SA’の点と冷却器流入空気IAの点とを結ぶ直線を延長した直線と飽和曲線との交点が最大蒸発温度Te_maxとなる。   In FIG. 9, SA ′ is the adjusted air having the maximum absolute humidity among the adjusted air that can handle the latent heat load Ql (= Qlo + Qlm). The absolute humidity of the target adjustment air SA 'is xa_f and the temperature is Tf. The absolute humidity xa_f and the temperature Tf are unknown at this stage, and the points on FIG. 9 are tentatively plotted points. The intersection of a straight line obtained by extending a straight line connecting the point of the target adjustment air SA 'and the point of the cooler inflow air IA and the saturation curve is the maximum evaporation temperature Te_max.

次に、調整空気SA’の絶対湿度xa_fの算出について説明する。絶対湿度xa_fの算出には潜熱負荷Qlが必要である。潜熱負荷Qlは外気潜熱負荷Qloと人体潜熱負荷Qlmとに分けられるため、ここではまず、外気潜熱負荷Qloと人体潜熱負荷Qlmのそれぞれの算出方法について説明する。   Next, calculation of the absolute humidity xa_f of the adjusted air SA ′ will be described. The calculation of the absolute humidity xa_f requires the latent heat load Ql. Since the latent heat load Ql is divided into an outside air latent heat load Qlo and a human body latent heat load Qlm, first, each calculation method of the outside air latent heat load Qlo and the human body latent heat load Qlm will be described.

(外気潜熱負荷Qlo)
本実施の形態においては、室外空気OAと室内空気RAとが全熱交換器22で熱交換するので、外気潜熱負荷Qlo[kW]は、水の蒸発潜熱を2500[kJ/kg]とすると式(1)で求まる。このように、冷却器流入空気IAの温度を検出することで、容易に外気潜熱負荷Qloが検出可能となる。
(Outside air latent heat load Qlo)
In the present embodiment, since the outdoor air OA and the indoor air RA exchange heat with the total heat exchanger 22, the outdoor air latent heat load Qlo [kW] is expressed by assuming that the latent heat of vaporization of water is 2500 [kJ / kg]. Obtained by (1). Thus, by detecting the temperature of the cooler inflow air IA, the outside air latent heat load Qlo can be easily detected.

Qlo=VA/3600×ρa×(xa_o−xa_in)×2500 ・・・(1)
ここで、
VA[m3 /h] :換気風量検出装置25の検出値
xa_o[kg/kg’] :全熱交換器22通過後の空気(冷却器流入空気IA)の絶対湿度
xa_in[kg/kg’]:目標室内空気の絶対湿度
ρa[kg/m3]:空気の密度
Qlo = VA / 3600 × ρa × (xa_o−xa_in) × 2500 (1)
here,
VA [m 3 / h]: Detected value of ventilation airflow detection device 25 xa_o [kg / kg ′]: Absolute humidity of air (cooler inflow air IA) after passing through total heat exchanger 22 xa_in [kg / kg ′] : Absolute humidity of target room air ρa [kg / m 3 ]: Air density

(人体潜熱負荷Qlm)
通常一人当りの潜熱負荷は例えば53[W/人]で与えられるため、在室人数Nが分かれば人体からの人体潜熱負荷Qlm[kW]が式(2)で求まる。一人当りの潜熱負荷については、53[W/人]ではなく、その状況に応じた値を用いても良い。
(Human body latent heat load Qlm)
Usually, the latent heat load per person is given by, for example, 53 [W / person], so if the number of people in the room N is known, the human body latent heat load Qlm [kW] from the human body can be obtained by Expression (2). As for the latent heat load per person, a value corresponding to the situation may be used instead of 53 [W / person].

Qlm=53×N/1000 ・・・(2)   Qlm = 53 × N / 1000 (2)

在室人数Nについては、CO2 濃度検出装置24の検出値X(ppm)、換気風量検出装置25の検出値VA[m3 /h]を用いて算出する。一般的に、外気のCO2 濃度は350ppm、人体からのCO2 発生量は0.02m3 /(人・h)であるため、在室人数Nは式(3)で求まる。外気のCO2 濃度、人体からのCO2 発生量については、その状況に応じた値を用いても良い。また、今回は、CO2 センサから在室人数Nを求めたが、別途人検出センサを用いても良いし、予め決められた値を用いても良いし、集中コントローラ102に使用者が入力する形としても良い。 The occupancy number N is calculated using the detection value X (ppm) of the CO 2 concentration detection device 24 and the detection value VA [m 3 / h] of the ventilation airflow detection device 25. In general, the CO 2 concentration in the outside air is 350 ppm, and the amount of CO 2 generated from the human body is 0.02 m 3 / (person · h). Therefore, the number of people in the room N can be obtained by Expression (3). Regarding the CO 2 concentration in the outside air and the amount of CO 2 generated from the human body, values according to the situation may be used. In addition, this time, the number N of people in the room is obtained from the CO 2 sensor, but a person detection sensor may be used separately, a predetermined value may be used, or the user inputs to the centralized controller 102. It may be a shape.

N =VA/0.02×(X−350)×10-6 ・・・(3) N = VA / 0.02 × (X−350) × 10 −6 (3)

以上より、外気潜熱負荷Qloと人体潜熱負荷Qlmとが求まり、換気装置13で処理すべき潜熱負荷Ql=Qlo+Qlmが求まる。   From the above, the outside air latent heat load Qlo and the human body latent heat load Qlm are obtained, and the latent heat load Ql = Qlo + Qlm to be processed by the ventilator 13 is obtained.

次に、以上のようにして求められた潜熱負荷Qlを処理することが可能な目標調整空気SA’の絶対湿度を算出する。調整空気SA’の絶対湿度xa_fは、式(4)で求められる。   Next, the absolute humidity of the target adjusted air SA 'that can process the latent heat load Ql obtained as described above is calculated. The absolute humidity xa_f of the adjusted air SA ′ is obtained by Expression (4).

xa_f=xa_o−3600×Ql/(VA・ρa・2500) ・・・(4)   xa_f = xa_o-3600 × Ql / (VA · ρa · 2500) (4)

式(4)により算出した絶対湿度xa_f以下の絶対湿度の調整空気を室内101に供給することにより、室内湿度を目標室内湿度RH_inにすることができる。   By supplying adjusted air having an absolute humidity equal to or lower than the absolute humidity xa_f calculated by Expression (4) to the room 101, the room humidity can be set to the target room humidity RH_in.

以上により絶対湿度xa_fの算出方法が明らかになったところで、続いて最大蒸発温度Te_maxの算出について説明する。本実施の形態では、最大蒸発温度Te_maxの算出にあたり、換気装置用冷却器9の温度効率ηt(=換気装置用冷却器9を通過前後の空気温度差/(冷却器流入空気IAの温度−蒸発温度Te))を使用する。   Now that the calculation method of the absolute humidity xa_f has been clarified, the calculation of the maximum evaporation temperature Te_max will be described. In the present embodiment, in calculating the maximum evaporation temperature Te_max, the temperature efficiency ηt of the ventilator cooler 9 (= the difference in air temperature before and after passing through the ventilator cooler 9 / (temperature of the cooler inflow air IA−evaporation). The temperature Te)) is used.

ところで、換気装置13の換気装置搭載膨張弁5aは、換気装置用冷却器9出口の過熱度が予め設定された適正値を維持するように開度調整されている。適正値を例えば2℃にした場合と2.5℃にした場合とでは、換気装置用冷却器9の温度効率ηtが異なる。具体的には、過熱度を高くする程、温度効率ηtが下がる関係があり、この関係における具体的な数値については換気装置用冷却器9の構造等に応じて決まっており、互いに一意に決まる。このため、適正値を例えば2.5℃に設定すると、換気装置用冷却器9の温度効率ηtも自ずと決まる。そして、換気装置用冷却器9における温度効率ηtの関係は、換気装置用冷却器9の通過前後の絶対湿度効率の関係に置き換えることができるため、換気装置用冷却器9の蒸発温度がTeの場合、以下の式(5)が成り立つ。   By the way, the opening degree of the ventilator-mounted expansion valve 5a of the ventilator 13 is adjusted so that the degree of superheat at the outlet of the ventilator cooler 9 maintains a preset appropriate value. The temperature efficiency ηt of the ventilator cooler 9 differs depending on whether the appropriate value is 2 ° C. or 2.5 ° C., for example. Specifically, there is a relationship in which the temperature efficiency ηt decreases as the degree of superheat increases, and specific numerical values in this relationship are determined according to the structure of the ventilator cooler 9 and are uniquely determined from each other. . For this reason, when an appropriate value is set to, for example, 2.5 ° C., the temperature efficiency ηt of the ventilator cooler 9 is naturally determined. The relationship of the temperature efficiency ηt in the ventilator cooler 9 can be replaced with the relationship of the absolute humidity efficiency before and after passing through the ventilator cooler 9, so that the evaporation temperature of the ventilator cooler 9 is Te. In this case, the following expression (5) is established.

(Ta_o−Tf)/(Ta_o−Te)=ηt=(xa_o−xa_f)/(xa_o−xa_e) ・・・(5)
ここで、
Ta_o:冷却器流入空気IAの温度[℃]
Tf :冷却器流出空気の温度[℃]
xa_f:冷却器流出空気の飽和絶対湿度[kg/kg’]
xa_e:蒸発温度Teの飽和絶対湿度[kg/kg’]
(Ta_o-Tf) / (Ta_o-Te) = ηt = (xa_o-xa_f) / (xa_o-xa_e) (5)
here,
Ta_o: temperature of cooler inflow air IA [° C.]
Tf: temperature of the cooler outflow air [° C.]
xa_f: Saturated absolute humidity of cooler outlet air [kg / kg ']
xa_e: saturation absolute humidity at the evaporation temperature Te [kg / kg ′]

この式において、TeをTe_maxに置き換えると、次の式(6)が成り立つ。
(Ta_o−Tf)/(Ta_o−Te_max)=ηt=(xa_o−xa_f)/(xa_o−xa_s) ・・・(6)
ここで、
xa_s:最大蒸発温度Te_maxの飽和絶対湿度[kg/kg’]
In this equation, when Te is replaced with Te_max, the following equation (6) is established.
(Ta_o-Tf) / (Ta_o-Te_max) = ηt = (xa_o-xa_f) / (xa_o-xa_s) (6)
here,
xa_s: saturation absolute humidity at the maximum evaporation temperature Te_max [kg / kg ′]

よって、式(6)の右側の等式(ηt=(xa_o−xa_f)/(xa_o−xa_s) )に、上記で算出したxa_fと、冷却器流入温湿度検出装置23の検出値により求められる冷却器流入空気IAの絶対湿度xa_oとを代入することでxa_sを求めることができる。絶対湿度と、その絶対湿度を飽和絶対湿度とする温度とは一意の関係があることから、xa_sを求めることで、最大蒸発温度Te_maxも求めることができる。なお、温度効率ηtは予め集中コントローラ102内に設定されている。   Therefore, in the equation (ηt = (xa_o−xa_f) / (xa_o−xa_s)) on the right side of the equation (6), the cooling obtained by the above calculated xa_f and the detected value of the cooler inflow temperature and humidity detection device 23. Xa_s can be obtained by substituting the absolute humidity xa_o of the inflow air IA. Since there is a unique relationship between absolute humidity and the temperature at which the absolute humidity is saturated absolute humidity, the maximum evaporation temperature Te_max can also be obtained by obtaining xa_s. The temperature efficiency ηt is set in the centralized controller 102 in advance.

このようにして求めた最大蒸発温度Te_max以下に目標蒸発温度Teを設定して運転することで、繰り返しの説明となるが、潜熱負荷を十分処理でき、室内湿度を目標室内湿度RH_inに到達可能となって快適性が向上し、且つ、負荷に応じて目標蒸発温度Teを上昇させた高効率運転が可能となり、省エネ性が向上する。   By setting the target evaporation temperature Te to be equal to or less than the maximum evaporation temperature Te_max determined in this way and operating, the explanation will be repeated. However, the latent heat load can be sufficiently processed, and the indoor humidity can reach the target indoor humidity RH_in. As a result, comfort is improved, and high-efficiency operation is possible in which the target evaporation temperature Te is increased according to the load, and energy saving is improved.

以上の説明により最大蒸発温度Te_maxの算出方法が明らかとなったところで、次に、換気装置搭載膨張弁5aの制御について説明する。
換気装置搭載膨張弁5aは、換気装置用冷却器9における過熱度が適正値を維持するように開度調整されていることは上述した通りである。この過熱度制御は、換気装置13で除湿を行う場合に行うものであり、換気装置13での除湿が不要な場合には、換気装置搭載膨張弁5aを閉じて冷媒を流さないようにし、除湿停止する。このようにすることで、過剰に除湿することによる消費電力増大を防止することが可能となる。このときの最大蒸発温度は、上述のようにして算出するのではなく、機器の信頼性が保証される予め決められた最大蒸発温度にしても良い。
Now that the calculation method of the maximum evaporation temperature Te_max has been clarified as described above, control of the ventilation device mounted expansion valve 5a will be described.
As described above, the opening degree of the ventilator-mounted expansion valve 5a is adjusted so that the degree of superheat in the ventilator cooler 9 maintains an appropriate value. This superheat degree control is performed when dehumidification is performed by the ventilator 13, and when dehumidification by the ventilator 13 is unnecessary, the ventilator-mounted expansion valve 5a is closed so that no refrigerant flows, and dehumidification is performed. Stop. By doing so, it becomes possible to prevent an increase in power consumption due to excessive dehumidification. The maximum evaporation temperature at this time is not calculated as described above, but may be a predetermined maximum evaporation temperature that guarantees the reliability of the device.

ここで、除湿が不要な場合とは、冷却器流入温湿度検出装置23の検出値から求まる冷却器流入空気IAの絶対湿度xa_oが、図10の空気線図に示すように目標室内空気における絶対湿度xa_inよりも低い場合が該当する。冷却器流入空気IAは、室内空気RAと全熱交換後の空気であるため、その冷却器流入空気IAの絶対湿度xa_oが目標室内絶対湿度xa_inより低い場合は、室内絶対湿度が目標室内絶対湿度xa_inよりも低くなっているか、室外空気OAの絶対湿度が目標室内絶対湿度よりも低いということになる。このため、換気装置用冷却器9で除湿せずにそのまま室外空気OAを室内101に取り込んでも構わない。よって、このような場合には、換気装置搭載膨張弁5aを閉じて冷媒を流さないようにする。なお、除湿停止の条件は、絶対湿度だけでなく乾球温度も加味して、xa_o<xa_in且つTa_o<Ta_inとしても良い。   Here, the case where the dehumidification is unnecessary means that the absolute humidity xa_o of the cooler inflow air IA obtained from the detection value of the cooler inflow temperature and humidity detection device 23 is an absolute value in the target indoor air as shown in the air diagram of FIG. This is the case when the humidity is lower than xa_in. Since the cooler inflow air IA is air after total heat exchange with the room air RA, when the absolute humidity xa_o of the cooler inflow air IA is lower than the target room absolute humidity xa_in, the room absolute humidity is the target room absolute humidity. That is, it is lower than xa_in, or the absolute humidity of the outdoor air OA is lower than the target indoor absolute humidity. For this reason, the outdoor air OA may be directly taken into the room 101 without being dehumidified by the ventilator cooler 9. Therefore, in such a case, the ventilation device mounted expansion valve 5a is closed to prevent the refrigerant from flowing. The dehumidification stop condition may be xa_o <xa_in and Ta_o <Ta_in in consideration of not only absolute humidity but also dry bulb temperature.

このように冷却器流入空気IAの温湿度を用いて除湿開始/除湿停止の判定も可能となる。よって、冷却器流入温湿度検出装置23は、最大蒸発温度Te_maxの決定だけでなく、除湿開始/除湿停止の判定にも使用できる。   In this way, it is possible to determine whether to start dehumidification / stop dehumidification using the temperature and humidity of the cooler inflow air IA. Therefore, the cooler inflow temperature / humidity detection device 23 can be used not only for determination of the maximum evaporation temperature Te_max but also for determination of dehumidification start / dehumidification stop.

除湿停止後、冷却器流入空気IAの絶対湿度xa_oが目標空気の絶対湿度xa_inよりも高くなったら、換気装置搭載膨張弁5aを開き、除湿開始させる。除湿開始後は過熱度制御に戻り、過熱度が適正値を維持するように換気装置搭載膨張弁5aの開度調整を行う。   After the dehumidification stop, when the absolute humidity xa_o of the cooler inflow air IA becomes higher than the absolute humidity xa_in of the target air, the ventilation device mounted expansion valve 5a is opened to start dehumidification. After the start of dehumidification, the control returns to the superheat degree control, and the opening degree of the ventilator-mounted expansion valve 5a is adjusted so that the superheat degree maintains an appropriate value.

図11は、本発明の一実施の形態の空気調和システムにおける制御フローを示す図である。
まず、目標室内温度Ta_inと目標室内湿度RH_inとを設定して冷房運転を開始する。このとき、初期設定で室内機11、室外機12及び換気装置13の運転を開始する(S1)。そして、目標室内温度Ta_inと目標室内湿度RH_inとから目標室内絶対湿度xa_inを算出する(S2)。ついで、冷却器流入温湿度検出装置23により冷却器流入空気IAの温度Ta_oと湿度RH_oとを検出し、これらの検出値から冷却器流入空気IAの絶対湿度xa_oを算出する(S3)。
FIG. 11 is a diagram showing a control flow in the air-conditioning system according to the embodiment of the present invention.
First, the target indoor temperature Ta_in and the target indoor humidity RH_in are set, and the cooling operation is started. At this time, the operation of the indoor unit 11, the outdoor unit 12, and the ventilator 13 is started in the initial setting (S1). Then, the target indoor absolute humidity xa_in is calculated from the target indoor temperature Ta_in and the target indoor humidity RH_in (S2). Next, the cooler inflow temperature / humidity detecting device 23 detects the temperature Ta_o and the humidity RH_o of the cooler inflow air IA, and calculates the absolute humidity xa_o of the cooler inflow air IA from these detected values (S3).

次に、ステップS3で算出した冷却器流入空気IAの絶対湿度xa_oとステップS2で算出した目標室内絶対湿度xa_inとを比較する(S4)。xa_oがxa_in以上であれば、換気風量VA及びCO2 濃度を検出し、これらの検出値と、冷却器流入空気IAの温度Ta_oと、冷却器流入空気IAの絶対湿度xa_oと、目標室内温度Ta_inと、目標室内空気の絶対湿度xa_inと、予め決められた温度効率ηtとから、上述のようにして最大蒸発温度Te_maxを算出する(S5)。 Next, the absolute humidity xa_o of the cooler inflow air IA calculated in step S3 is compared with the target indoor absolute humidity xa_in calculated in step S2 (S4). If xa_o is equal to or greater than xa_in, the ventilation air volume VA and CO 2 concentration are detected, and these detected values, the temperature Ta_o of the cooler inflow air IA, the absolute humidity xa_o of the cooler inflow air IA, and the target indoor temperature Ta_in From the absolute humidity xa_in of the target room air and the predetermined temperature efficiency ηt, the maximum evaporation temperature Te_max is calculated as described above (S5).

そして、最小蒸発温度を予め決められたTe_min、最大蒸発温度をステップS5で算出した最大蒸発温度Te_maxとした蒸発温度範囲内で図6により温度差ΔTに応じた目標蒸発温度Teを決定する(S6)。そして、換気装置用冷却器9における蒸発温度が目標蒸発温度Teとなるように冷凍サイクルの制御(圧縮機2の回転数制御、送風機7,8の制御等)を行う(S7)。と同時に、換気装置搭載膨張弁5aを、換気装置用冷却器9出口の過熱度が適正値を維持するように制御する(過熱度制御)(S8)。なお、空気調和装置1の膨張弁5も同様に、室内熱交換器6出口の過熱度が適正値を維持するように制御する。   Then, the target evaporation temperature Te corresponding to the temperature difference ΔT is determined according to FIG. 6 within the evaporation temperature range in which the minimum evaporation temperature is predetermined Te_min and the maximum evaporation temperature is the maximum evaporation temperature Te_max calculated in step S5 (S6). ). Then, control of the refrigeration cycle (control of the number of revolutions of the compressor 2, control of the fans 7 and 8, etc.) is performed so that the evaporation temperature in the cooler 9 for the ventilator becomes the target evaporation temperature Te (S7). At the same time, the ventilator-mounted expansion valve 5a is controlled so that the degree of superheat at the outlet of the ventilator cooler 9 maintains an appropriate value (superheat degree control) (S8). Similarly, the expansion valve 5 of the air conditioner 1 is controlled so that the degree of superheat at the outlet of the indoor heat exchanger 6 maintains an appropriate value.

そして、運転終了かどうかを判定し(S9)、運転終了でない場合はステップS3に戻る。冷凍サイクルの運転によって温度差ΔTが減少していれば、ステップS6では、図6に従って現状より高い目標蒸発温度Teが設定される。そして、同様にステップS7及びステップS8の処理を行いステップS3に戻る。   Then, it is determined whether or not the operation is finished (S9). If the operation is not finished, the process returns to step S3. If the temperature difference ΔT is reduced by the operation of the refrigeration cycle, in step S6, a target evaporation temperature Te higher than the current state is set according to FIG. Similarly, the processing of step S7 and step S8 is performed, and the process returns to step S3.

そして、換気装置13の運転により室内101の除湿が進んで室内絶対湿度が目標室内絶対湿度xa_inよりも低くなっている場合や、室外空気OAの絶対湿度が目標室内絶対湿度xa_inよりも低い場合には、上述したように冷却器流入空気IAの絶対湿度xa_oが目標室内絶対湿度xa_in以下となる。よって、ステップS4の判断でnoとなり、ステップS10に進む。ステップS10では、蒸発温度範囲の最大蒸発温度Te_maxを、機器の信頼性が保証される予め決められた最大蒸発温度に決定し、換気装置搭載膨張弁5aを全閉にし(S11)、冷媒の流れを止めて除湿を停止する。ステップS9の判断で運転終了と判断されれば、運転を終了する(S12)。   Then, when the dehumidification of the room 101 is advanced by the operation of the ventilation device 13 and the indoor absolute humidity is lower than the target indoor absolute humidity xa_in, or when the absolute humidity of the outdoor air OA is lower than the target indoor absolute humidity xa_in. As described above, the absolute humidity xa_o of the cooler inflow air IA is equal to or lower than the target indoor absolute humidity xa_in. Therefore, the determination in step S4 is no, and the process proceeds to step S10. In step S10, the maximum evaporation temperature Te_max in the evaporation temperature range is determined to be a predetermined maximum evaporation temperature at which the reliability of the equipment is guaranteed, the ventilation device mounted expansion valve 5a is fully closed (S11), and the refrigerant flow To stop dehumidification. If it is determined in step S9 that the operation has ended, the operation is ended (S12).

以上説明したように、本実施の形態によれば、換気装置13の風量制御を行って常に必要換気量を確保しているため、室内空気質を良好に保つことができる。そして、必要換気量を確保した上で、人体潜熱負荷Qlmと外気潜熱負荷Qloとを処理して目標室内湿度RH_inを実現できる最大蒸発温度Te_maxを決定し、その最大蒸発温度Te_max以下の範囲で、顕熱負荷(室内温度と目標室内温度Ta_inとの温度差ΔT)に応じて目標蒸発温度Teを上昇させるようにした。これにより、高効率に室内温湿度を目標値に近づけることが可能となり、快適性向上と高効率化の両立を実現できる。   As described above, according to the present embodiment, the air volume control of the ventilation device 13 is performed to always ensure the necessary ventilation volume, so that the indoor air quality can be kept good. Then, after ensuring the necessary ventilation, the human body latent heat load Qlm and the outside air latent heat load Qlo are processed to determine the maximum evaporation temperature Te_max that can achieve the target indoor humidity RH_in, and within the range below the maximum evaporation temperature Te_max, The target evaporation temperature Te is increased according to the sensible heat load (temperature difference ΔT between the room temperature and the target room temperature Ta_in). As a result, the indoor temperature and humidity can be brought close to the target value with high efficiency, and both improvement in comfort and high efficiency can be realized.

なお、本発明の空気調和システム100は、上記の構成に限定されるものではなく、本発明の要旨を逸脱しない範囲で例えば以下のように種々変形実施可能である。   In addition, the air conditioning system 100 of this invention is not limited to said structure, For example, various deformation | transformation implementation is possible as follows in the range which does not deviate from the summary of this invention.

(変形例1)
上記では換気装置13の除湿停止の判定を、冷却器流入温湿度検出装置23で検出した冷却器流入空気IAの温度湿度に基づいて判定するようにしていたが、次のようにしてもよい。すなわち、換気装置13に、図12に示すように室内温湿度を検出する室内温湿度検出装置26を設け、室内温湿度検出装置26で検出した室内温湿度(Ta_r、RH_r)と、冷却器流入温湿度検出装置23で検出した冷却器流入空気IAの温湿度(Ta_or、RH_o)との両方に基づいて判定してもよい。この場合の制御フローは図13のようになる。
(Modification 1)
In the above description, the dehumidification stop of the ventilation device 13 is determined based on the temperature and humidity of the cooler inflow air IA detected by the cooler inflow temperature and humidity detection device 23. However, the following may be performed. That is, as shown in FIG. 12, the ventilation device 13 is provided with an indoor temperature / humidity detection device 26 that detects the indoor temperature / humidity, and the indoor temperature / humidity (Ta_r, RH_r) detected by the indoor temperature / humidity detection device 26 and the inflow of the cooler The determination may be made based on both the temperature and humidity (Ta_or, RH_o) of the cooler inflow air IA detected by the temperature / humidity detection device 23. The control flow in this case is as shown in FIG.

図13は、ステップS3aとステップS4aの処理が図11と異なり、それ以外の処理は図11と同様である。すなわち、図13のステップS3aでは、冷却器流入温湿度検出装置23により冷却器流入空気IAの温度Ta_oと湿度RH_oとを検出し、これらの検出値から冷却器流入空気IAの絶対湿度xa_oを算出する。これに加えて更に、室内温湿度検出装置26により室内空気RAの温度Ta_rと湿度RH_rとを検出し、これらの検出値から室内空気RAの絶対湿度xa_rを算出する。   FIG. 13 differs from FIG. 11 in the processing of step S3a and step S4a, and the other processing is the same as that of FIG. That is, in step S3a of FIG. 13, the cooler inflow temperature / humidity detection device 23 detects the temperature Ta_o and the humidity RH_o of the cooler inflow air IA, and calculates the absolute humidity xa_o of the cooler inflow air IA from these detected values. To do. In addition, the room temperature / humidity detection device 26 detects the temperature Ta_r and the humidity RH_r of the room air RA, and calculates the absolute humidity xa_r of the room air RA from these detected values.

また、ステップS4aでは、ステップS3aで算出した、冷却器流入空気IAの絶対湿度xa_oと室内空気RAの絶対湿度xa_rとの両方が、目標室内絶対湿度xa_inよりも低い場合、除湿停止させる。   In step S4a, when both the absolute humidity xa_o of the cooler inflow air IA and the absolute humidity xa_r of the indoor air RA calculated in step S3a are lower than the target indoor absolute humidity xa_in, dehumidification is stopped.

このような処理とすることで、室内温湿度が目標温湿度に到達したか又は室外温湿度が目標室内温湿度よりも低い場合に除湿停止するので、確実に室内温湿度を目標値に到達させることができる。   With such processing, dehumidification is stopped when the indoor temperature / humidity reaches the target temperature / humidity or the outdoor temperature / humidity is lower than the target indoor temperature / humidity, so that the indoor temperature / humidity is surely reached the target value. be able to.

(変形例2)
図14に示すように、換気装置13に冷却器流入温湿度検出装置23を設けずに、室内温湿度を検出する室内温湿度検出装置26と、室外温湿度を検出する室外温湿度検出装置27とを設け、室内温湿度検出装置26及び室外温湿度検出装置27の検出値と全熱交換器22の効率とから冷却器流入空気IAの温湿度を予測するようにしても良い。
(Modification 2)
As shown in FIG. 14, without providing the cooler inflow temperature / humidity detection device 23 in the ventilation device 13, the indoor temperature / humidity detection device 26 that detects the indoor temperature / humidity, and the outdoor temperature / humidity detection device 27 that detects the outdoor temperature / humidity. And the temperature and humidity of the cooler inflow air IA may be predicted from the detection values of the indoor temperature and humidity detection device 26 and the outdoor temperature and humidity detection device 27 and the efficiency of the total heat exchanger 22.

(変形例3)
図15に示すように、換気装置13の本体ケーシング13a内の排気通風路B側に、全熱交換器22を迂回して全熱交換器22に室内空気RAを通さないようにするバイパス風路29と、このバイパス風路29を開閉するダンパー28とを設けた構成としてもよい。そして、除湿停止したときにダンパー28を切り換えてバイパス風路29を開放し、室内空気RAを全熱交換器22に通さずにバイパス風路29に流して排気するようにしてもよい。このようにすることで、除湿停止時に換気装置13内の圧力損失を減らすことができ、送風機動力を低減することが可能となり、省エネ性が向上する。
(Modification 3)
As shown in FIG. 15, a bypass air passage that bypasses the total heat exchanger 22 and prevents the indoor air RA from passing through the total heat exchanger 22 on the exhaust air passage B side in the main body casing 13 a of the ventilation device 13. 29 and a damper 28 that opens and closes the bypass air passage 29 may be provided. When the dehumidification is stopped, the damper 28 may be switched to open the bypass air passage 29, and the indoor air RA may be exhausted by flowing through the bypass air passage 29 without passing through the total heat exchanger 22. By doing in this way, the pressure loss in the ventilation apparatus 13 can be reduced at the time of dehumidification stop, it becomes possible to reduce fan power, and energy saving improves.

ダンパー28とバイパス風路29は、前述したように排気通風路B側だけに設けるようにしても良いし、給気通風路A側と排気通風路B側の両方に設けても良いし、給気通風路A側だけに設けても良い。   The damper 28 and the bypass air passage 29 may be provided only on the exhaust air passage B side as described above, or may be provided on both the air supply air passage A side and the exhaust air passage B side. You may provide only in the ventilation path A side.

1 空気調和装置、2 圧縮機、3 四方弁、4 室外熱交換器、5 膨張弁、5a 換気装置搭載膨張弁、6 室内熱交換器、7 室外熱交換器用送風機、8 室内熱交換器用送風機、9 換気装置用冷却器、10 給気用送風機、11 室内機、12 室外機、13 換気装置、13a 本体ケーシング、14 換気装置、21 排気用送風機、22 全熱交換器、23 冷却器流入温湿度検出装置、24 CO2濃度検出装置、25 換気風量検出装置、26 室内温湿度検出装置、27 室外温湿度検出装置、28 ダンパー、29 バイパス風路、31 蒸発温度検出装置、32 吸込温湿度検出装置、33 圧縮機周波数調整装置、100 空気調和システム、101 室内、102 集中コントローラ、102a 入力部、103 伝送線、104 冷媒配管、A 給気通風路、B 排気通風路。 DESCRIPTION OF SYMBOLS 1 Air conditioner, 2 Compressor, 3 Four way valve, 4 Outdoor heat exchanger, 5 Expansion valve, 5a Ventilation apparatus mounting expansion valve, 6 Indoor heat exchanger, 7 Outdoor heat exchanger blower, 8 Indoor heat exchanger blower, 9 Ventilator cooler, 10 Air supply fan, 11 Indoor unit, 12 Outdoor unit, 13 Ventilator, 13a Body casing, 14 Ventilator, 21 Exhaust fan, 22 Total heat exchanger, 23 Cooler inflow temperature and humidity Detection device, 24 CO 2 concentration detection device, 25 Ventilation air flow detection device, 26 Indoor temperature / humidity detection device, 27 Outdoor temperature / humidity detection device, 28 Damper, 29 Bypass air passage, 31 Evaporation temperature detection device, 32 Suction temperature / humidity detection device 33 Compressor frequency adjustment device, 100 air conditioning system, 101 indoors, 102 centralized controller, 102a input unit, 103 transmission line, 104 refrigerant piping, A air supply ventilation path, B Exhaust ventilation path.

Claims (8)

圧縮機、凝縮器、膨張弁及び蒸発器を有し、冷房運転が可能な冷凍サイクルと、
前記冷凍サイクルを備えて室内の顕熱負荷を処理する空気調和装置と、
室内環境に応じた必要換気量を確保するように風量制御され、室内空気と室外空気を入れ換えて換気を行うと共に、室内の潜熱負荷を処理する換気装置と、
前記室内の顕熱負荷が小さくなるに連れ、所定の蒸発温度範囲内で目標蒸発温度が上昇するように決定し、決定した前記目標蒸発温度となるように前記冷凍サイクルを制御する制御装置とを備え、
前記換気装置は、
室外空気を室内に供給する給気通風路と、
室内空気を室外に排気する排気通風路と、
前記給気通風路を流れる室外空気と前記排気通風路を流れる室内空気との間で全熱交換を行う全熱交換器と、
前記冷凍サイクルの前記蒸発器に並列に接続された蒸発器で構成され、前記給気通風路において前記全熱交換器の下流に配置されて前記全熱交換器を通過後の空気を除湿して前記室内に供給する換気装置用冷却器とを備え、
前記制御装置は、
前記室内の在室人数に応じた人体潜熱負荷Qlmと、前記換気装置によって室外空気を前記室内に取り入れることによる外気潜熱負荷Qloと、前記換気装置における換気風量と、前記給気通風路において前記全熱交換器を通過後の空気である冷却器流入空気の温湿度と、前記換気装置用冷却器の温度効率とに基づいて前記所定の蒸発温度範囲の最大値を決定する
ことを特徴とする空気調和システム。
A refrigeration cycle having a compressor, a condenser, an expansion valve and an evaporator, and capable of cooling operation;
An air conditioner that includes the refrigeration cycle and processes an indoor sensible heat load;
Ventilation control is performed to ensure the necessary ventilation volume according to the indoor environment, ventilating by exchanging room air and outdoor air, and processing the latent heat load in the room,
A controller that determines that the target evaporation temperature rises within a predetermined evaporation temperature range as the sensible heat load in the room decreases, and controls the refrigeration cycle so as to achieve the determined target evaporation temperature; Prepared,
The ventilator is
An air supply passage for supplying outdoor air into the room;
An exhaust ventilation path for exhausting indoor air to the outside;
A total heat exchanger that performs total heat exchange between outdoor air flowing through the air supply ventilation path and indoor air flowing through the exhaust ventilation path;
It is composed of an evaporator connected in parallel to the evaporator of the refrigeration cycle, and is disposed downstream of the total heat exchanger in the air supply ventilation path to dehumidify air after passing through the total heat exchanger. A ventilator cooler for supplying to the room,
The controller is
The human body latent heat load Qlm corresponding to the number of people in the room, the outdoor air latent heat load Qlo by taking outdoor air into the room by the ventilator, the ventilation air volume in the ventilator, and the total air flow in the supply air passage Air having a maximum value in the predetermined evaporating temperature range is determined based on temperature and humidity of cooler inflow air, which is air after passing through a heat exchanger, and temperature efficiency of the ventilator cooler Harmony system.
前記制御装置は、前記室内の在室人数に基づいて前記人体潜熱負荷Qlmを算出すると共に、前記冷却器流入空気の温湿度と目標室内空気の温湿度と前記換気装置における換気風量とに基づいて前記外気潜熱負荷Qloを算出することを特徴とする請求項1記載の空気調和システム。   The control device calculates the human body latent heat load Qlm based on the number of people in the room, and based on the temperature / humidity of the cooler inflow air, the temperature / humidity of the target indoor air, and the ventilation air volume in the ventilator. 2. The air conditioning system according to claim 1, wherein the outside air latent heat load Qlo is calculated. 前記室内のCO2濃度を検出するCO2濃度検出装置を備え、
前記制御装置は、前記CO2濃度検出装置により検出されたCO2濃度と、前記換気装置における換気風量とに基づいて前記室内の在室人数を求めることを特徴とする請求項2記載の空気調和システム。
A CO 2 concentration detection device for detecting the CO 2 concentration in the room;
The control device includes a CO 2 concentration detected by the CO 2 concentration measuring apparatus, an air conditioner according to claim 2, wherein the determination of the number of people of the chamber on the basis of the ventilation power of the ventilator system.
前記換気装置用冷却器に直列に接続された換気装置搭載膨張弁を備え、
前記制御装置は、前記換気装置用冷却器の出口の過熱度が、前記温度効率と一意に対応する過熱度を維持するように前記換気装置搭載膨張弁の開度を制御することを特徴とする請求項1乃至請求項3の何れか一項に記載の空気調和システム。
A ventilator-mounted expansion valve connected in series to the ventilator cooler;
The control device controls the opening degree of the expansion valve mounted on the ventilator so that the superheat degree at the outlet of the cooler for the ventilator maintains a superheat degree uniquely corresponding to the temperature efficiency. The air conditioning system according to any one of claims 1 to 3.
前記冷却器流入空気の絶対湿度が目標室内空気の絶対湿度よりも低い場合、前記換気装置搭載膨張弁を閉じて除湿を停止させることを特徴とする請求項4記載の空気調和システム。   The air conditioning system according to claim 4, wherein when the absolute humidity of the cooler inflow air is lower than the absolute humidity of the target indoor air, the dehumidification is stopped by closing the ventilation device mounted expansion valve. 前記冷却器流入空気の絶対湿度及び室内空気の絶対湿度の両方が目標室内空気の絶対湿度よりも低い場合、前記換気装置搭載膨張弁を閉じて除湿を停止させることを特徴とする請求項4記載の空気調和システム。   The dehumidification is stopped by closing the ventilator-equipped expansion valve when both the absolute humidity of the cooler inflow air and the absolute humidity of the room air are lower than the absolute humidity of the target room air. Air conditioning system. 前記換気装置の前記給気通風路及び前記排気通風路の少なくとも一方に、前記全熱交換器を迂回するバイパス風路と前記バイパス風路を開閉するダンパーとを設け、前記換気装置用冷却器での除湿停止時に前記ダンパーを切り換えて前記バイパス風路を開放し、前記全熱交換器を通過させずに前記バイパス風路を通過させるようにしたことを特徴とする請求項1乃至請求項6の何れか一項に記載の空気調和システム。   A bypass air passage that bypasses the total heat exchanger and a damper that opens and closes the bypass air passage are provided in at least one of the supply air passage and the exhaust air passage of the ventilator, and the cooler for the ventilator The damper is switched when the dehumidification is stopped to open the bypass air passage so that the bypass air passage is allowed to pass without passing through the total heat exchanger. The air conditioning system according to any one of the above. 前記圧縮機から吐出した冷媒の流れ方向を切り換えて暖房運転を可能とする四方弁を備えたことを特徴とする請求項1乃至請求項7の何れか一項に記載の空気調和システム。   The air conditioning system according to any one of claims 1 to 7, further comprising a four-way valve that enables a heating operation by switching a flow direction of the refrigerant discharged from the compressor.
JP2012073400A 2012-03-28 2012-03-28 Air conditioning system Active JP5328951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073400A JP5328951B2 (en) 2012-03-28 2012-03-28 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073400A JP5328951B2 (en) 2012-03-28 2012-03-28 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2013204899A true JP2013204899A (en) 2013-10-07
JP5328951B2 JP5328951B2 (en) 2013-10-30

Family

ID=49524184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073400A Active JP5328951B2 (en) 2012-03-28 2012-03-28 Air conditioning system

Country Status (1)

Country Link
JP (1) JP5328951B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126208A (en) * 2012-12-25 2014-07-07 Ohbayashi Corp Air conditioning method and air conditioning system
WO2015087423A1 (en) * 2013-12-12 2015-06-18 三菱電機株式会社 Outside air handler and air conditioner
WO2015173895A1 (en) * 2014-05-13 2015-11-19 三菱電機株式会社 Air conditioning system
WO2015173910A1 (en) * 2014-05-14 2015-11-19 三菱電機株式会社 Air conditioning system
WO2016002071A1 (en) * 2014-07-04 2016-01-07 三菱電機株式会社 Air-conditioning and ventilation apparatus
WO2016002073A1 (en) * 2014-07-04 2016-01-07 三菱電機株式会社 Ventilation device
JPWO2016071951A1 (en) * 2014-11-04 2017-04-27 三菱電機株式会社 Air conditioning system
CN106642605A (en) * 2016-12-23 2017-05-10 新智能源***控制有限责任公司 Water supply temperature changing control system based on load rate prediction
WO2017081820A1 (en) * 2015-11-13 2017-05-18 三菱電機株式会社 Air conditioning system and method for controlling air conditioning system
KR101767521B1 (en) * 2015-12-15 2017-08-11 한양대학교 산학협력단 Eco-friendly 100% outdoor air conditioning system and air conditioning method based on dew point indirect evaporative cooler
CN107726504A (en) * 2017-11-14 2018-02-23 科林贝思(深圳)科技有限公司 A kind of heat pump VMC and its control method with energy recovery function
JP2018194257A (en) * 2017-05-19 2018-12-06 ダイキン工業株式会社 Air conditioning system
WO2018220803A1 (en) * 2017-06-01 2018-12-06 三菱電機株式会社 Air conditioning system
CN109323421A (en) * 2018-09-30 2019-02-12 广东美的制冷设备有限公司 Air conditioner and its control method, device
CN109341014A (en) * 2018-09-30 2019-02-15 广东美的制冷设备有限公司 Air conditioner and its control method, device
CN109405405A (en) * 2018-10-10 2019-03-01 北京市京科伦冷冻设备有限公司 Temperature control method, device, computer storage medium and equipment
WO2019193639A1 (en) * 2018-04-02 2019-10-10 三菱電機株式会社 Air conditioning system
CN113959110A (en) * 2021-09-30 2022-01-21 珠海格力电器股份有限公司 Refrigeration system and dehumidification control method
CN115654704A (en) * 2022-09-30 2023-01-31 宁波奥克斯电气股份有限公司 Control method and control device for optimizing refrigeration effect of fresh air conditioner and fresh air conditioner
WO2023079709A1 (en) * 2021-11-05 2023-05-11 三菱電機株式会社 Air treatment system
US11662116B2 (en) 2017-10-24 2023-05-30 Mitsubishi Electric Corporation Ventilator
JP7457257B2 (en) 2022-01-31 2024-03-28 ダイキン工業株式会社 ventilation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108004A (en) * 2019-05-06 2019-08-09 青岛海尔空调器有限总公司 The method, apparatus and computer storage medium of airconditioning control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953852A (en) * 1995-08-11 1997-02-25 Daikin Ind Ltd Air-conditioning device
JP2006275399A (en) * 2005-03-29 2006-10-12 Mitsubishi Electric Corp Air conditioner
JP2010139164A (en) * 2008-12-11 2010-06-24 Daikin Ind Ltd Air conditioning system
JP2011106717A (en) * 2009-11-16 2011-06-02 Mitsubishi Electric Corp Air conditioning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953852A (en) * 1995-08-11 1997-02-25 Daikin Ind Ltd Air-conditioning device
JP2006275399A (en) * 2005-03-29 2006-10-12 Mitsubishi Electric Corp Air conditioner
JP2010139164A (en) * 2008-12-11 2010-06-24 Daikin Ind Ltd Air conditioning system
JP2011106717A (en) * 2009-11-16 2011-06-02 Mitsubishi Electric Corp Air conditioning device

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126208A (en) * 2012-12-25 2014-07-07 Ohbayashi Corp Air conditioning method and air conditioning system
WO2015087423A1 (en) * 2013-12-12 2015-06-18 三菱電機株式会社 Outside air handler and air conditioner
JP6009102B2 (en) * 2013-12-12 2016-10-19 三菱電機株式会社 Outside air processing machine and air conditioner
WO2015173895A1 (en) * 2014-05-13 2015-11-19 三菱電機株式会社 Air conditioning system
JPWO2015173895A1 (en) * 2014-05-13 2017-04-20 三菱電機株式会社 Air conditioning system
JPWO2015173910A1 (en) * 2014-05-14 2017-04-20 三菱電機株式会社 Air conditioning system
WO2015173910A1 (en) * 2014-05-14 2015-11-19 三菱電機株式会社 Air conditioning system
US10203122B2 (en) 2014-07-04 2019-02-12 Mitsubishi Electric Corporation Air-conditioning and ventilation apparatus
CN106662355A (en) * 2014-07-04 2017-05-10 三菱电机株式会社 Air-conditioning and ventilation apparatus
WO2016002073A1 (en) * 2014-07-04 2016-01-07 三菱電機株式会社 Ventilation device
JPWO2016002071A1 (en) * 2014-07-04 2017-04-27 三菱電機株式会社 Air conditioning ventilator
JPWO2016002073A1 (en) * 2014-07-04 2017-04-27 三菱電機株式会社 Ventilation equipment
CN106662355B (en) * 2014-07-04 2019-04-23 三菱电机株式会社 Air-conditioning air-breather equipment
CN106489055B (en) * 2014-07-04 2019-06-18 三菱电机株式会社 Air interchanger
WO2016002071A1 (en) * 2014-07-04 2016-01-07 三菱電機株式会社 Air-conditioning and ventilation apparatus
EP3165845A4 (en) * 2014-07-04 2018-04-04 Mitsubishi Electric Corporation Ventilation device
CN106489055A (en) * 2014-07-04 2017-03-08 三菱电机株式会社 Air interchanger
JPWO2016071951A1 (en) * 2014-11-04 2017-04-27 三菱電機株式会社 Air conditioning system
WO2017081820A1 (en) * 2015-11-13 2017-05-18 三菱電機株式会社 Air conditioning system and method for controlling air conditioning system
JPWO2017081820A1 (en) * 2015-11-13 2018-04-26 三菱電機株式会社 Air conditioning system and control method of air conditioning system
KR101767521B1 (en) * 2015-12-15 2017-08-11 한양대학교 산학협력단 Eco-friendly 100% outdoor air conditioning system and air conditioning method based on dew point indirect evaporative cooler
CN106642605A (en) * 2016-12-23 2017-05-10 新智能源***控制有限责任公司 Water supply temperature changing control system based on load rate prediction
CN106642605B (en) * 2016-12-23 2019-03-29 新智能源***控制有限责任公司 Water supply variable temperature control system based on load factor estimation
JP6989755B2 (en) 2017-05-19 2022-01-12 ダイキン工業株式会社 Air conditioning system
JP2018194257A (en) * 2017-05-19 2018-12-06 ダイキン工業株式会社 Air conditioning system
WO2018220803A1 (en) * 2017-06-01 2018-12-06 三菱電機株式会社 Air conditioning system
US11536474B2 (en) 2017-06-01 2022-12-27 Mitsubishi Electric Corporation Air-conditioning system controlling evaporating temperatures of indoor units and ventilator
CN110662925A (en) * 2017-06-01 2020-01-07 三菱电机株式会社 Air conditioning system
CN110662925B (en) * 2017-06-01 2021-05-25 三菱电机株式会社 Air conditioning system
JPWO2018220803A1 (en) * 2017-06-01 2019-12-12 三菱電機株式会社 Air conditioning system
US11662116B2 (en) 2017-10-24 2023-05-30 Mitsubishi Electric Corporation Ventilator
CN107726504A (en) * 2017-11-14 2018-02-23 科林贝思(深圳)科技有限公司 A kind of heat pump VMC and its control method with energy recovery function
CN107726504B (en) * 2017-11-14 2023-09-08 科林贝思(深圳)科技有限公司 Heat pump fresh air system with energy recovery function and control method thereof
JP7142682B2 (en) 2018-04-02 2022-09-27 三菱電機株式会社 air conditioning system
WO2019193639A1 (en) * 2018-04-02 2019-10-10 三菱電機株式会社 Air conditioning system
JPWO2019193639A1 (en) * 2018-04-02 2020-12-17 三菱電機株式会社 Air conditioning system
CN109341014B (en) * 2018-09-30 2021-05-25 广东美的制冷设备有限公司 Air conditioner and control method and device thereof
CN109341014A (en) * 2018-09-30 2019-02-15 广东美的制冷设备有限公司 Air conditioner and its control method, device
CN109323421A (en) * 2018-09-30 2019-02-12 广东美的制冷设备有限公司 Air conditioner and its control method, device
CN109323421B (en) * 2018-09-30 2021-04-20 广东美的制冷设备有限公司 Air conditioner and control method and device thereof
CN109405405A (en) * 2018-10-10 2019-03-01 北京市京科伦冷冻设备有限公司 Temperature control method, device, computer storage medium and equipment
CN113959110A (en) * 2021-09-30 2022-01-21 珠海格力电器股份有限公司 Refrigeration system and dehumidification control method
CN113959110B (en) * 2021-09-30 2022-11-01 珠海格力电器股份有限公司 Refrigeration system and dehumidification control method
WO2023079709A1 (en) * 2021-11-05 2023-05-11 三菱電機株式会社 Air treatment system
JP7457257B2 (en) 2022-01-31 2024-03-28 ダイキン工業株式会社 ventilation system
CN115654704A (en) * 2022-09-30 2023-01-31 宁波奥克斯电气股份有限公司 Control method and control device for optimizing refrigeration effect of fresh air conditioner and fresh air conditioner

Also Published As

Publication number Publication date
JP5328951B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5328951B2 (en) Air conditioning system
JP6300921B2 (en) Air conditioning ventilator
JP5355649B2 (en) Air conditioning system
JP6479210B2 (en) Air conditioning system and control method of air conditioning system
JP5984964B2 (en) Air conditioning system
WO2020003446A1 (en) Air conditioning device
JP6250148B2 (en) Air conditioning system
JP2019082308A (en) Ventilator
JP5425112B2 (en) Air conditioning apparatus and air conditioning system
WO2015087423A1 (en) Outside air handler and air conditioner
JP2006194570A (en) Air conditioner and air-conditioning system
JP5537832B2 (en) External air conditioner and external air conditioning system
JP7374633B2 (en) Air conditioners and air conditioning systems
JP2010078245A (en) Humidity control system
JP2018025337A (en) air conditioner
JP2015007484A (en) Air conditioning system
JP5827717B2 (en) Fan coil type radiant air conditioning panel air conditioner with heat pump
JP5543002B2 (en) Air conditioning apparatus and air conditioning system
JP6938950B2 (en) Air conditioning system
JP6745895B2 (en) Air conditioning system
JP2649986B2 (en) Clean room using a direct expansion type heat exchanger
JP7277839B1 (en) ventilator
JP2014137207A (en) Air conditioning system
JP2010019473A (en) Air conditioning system
JP2007192436A (en) Air conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

R150 Certificate of patent or registration of utility model

Ref document number: 5328951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250