JP2010070471A - Phenolic polymer, method of producing the same, and use therefor - Google Patents

Phenolic polymer, method of producing the same, and use therefor Download PDF

Info

Publication number
JP2010070471A
JP2010070471A JP2008237410A JP2008237410A JP2010070471A JP 2010070471 A JP2010070471 A JP 2010070471A JP 2008237410 A JP2008237410 A JP 2008237410A JP 2008237410 A JP2008237410 A JP 2008237410A JP 2010070471 A JP2010070471 A JP 2010070471A
Authority
JP
Japan
Prior art keywords
general formula
represented
phenol
epoxy resin
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008237410A
Other languages
Japanese (ja)
Inventor
Seiki Murata
清貴 村田
Yoshihisa Sone
嘉久 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2008237410A priority Critical patent/JP2010070471A/en
Publication of JP2010070471A publication Critical patent/JP2010070471A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a curing agent excellent in flame retardancy, curability, and having a high glass transition temperature (Tg), a method of producing the same, and a use thereof. <P>SOLUTION: There are provided a phenolic polymer represented by formula (1) [wherein R<SP>1</SP>represents H, an alkyl group or an aryl group; n+m is 2 to 6; and R<SP>2</SP>represents a group represented by formula (α)], and a method of producing the phenolic polymer including a process of subjecting a phenol represented by formula (2), a biphenyl compound represented by formula (3), and an aromatic aldehyde represented by formula (4): R<SP>2</SP>-CHO to a condensation reaction and a subsequent process of removing the unreacted phenol. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、成形材、各種バインダー、コーティング材、積層材などに有用なフェノール系重合体、およびその製法、並びにその用途に関する。さらに詳しくは、難燃性に優れ、かつ硬化性に優れ、高いガラス転移温度(Tg)を有する硬化剤に適したフェノール系重合体およびその製法、並びにその用途に関する。   The present invention relates to a phenolic polymer useful for a molding material, various binders, a coating material, a laminated material, a production method thereof, and an application thereof. More specifically, the present invention relates to a phenolic polymer suitable for a curing agent having excellent flame retardancy and excellent curability and having a high glass transition temperature (Tg), a production method thereof, and an application thereof.

半導体の封止材料としては、オルソクレゾールノボラック型エポキシ樹脂とフェノールノボラックを硬化剤に用い、シリカなどの充填剤を配合した樹脂封止が適用されてきた。LSIチップの大型化、パッケージの薄型/小型化、実装方式の変更などに伴い、封止材への要求が大きく変わってきた。   As a semiconductor sealing material, resin sealing using an ortho-cresol novolac type epoxy resin and a phenol novolac as a curing agent and a filler such as silica has been applied. With the increase in size of LSI chips, thinness / miniaturization of packages, and changes in mounting methods, the demand for sealing materials has changed greatly.

例えば、ハンダ付け時の熱処理時に、吸湿水分の急激な気化膨張に伴うパッケージのクラックや、剥離が発生し問題になっている。このため、吸湿性が低く、ハンダ付け温度における弾性率の低い、接着性に優れた硬化剤やエポキシ樹脂が望まれている。   For example, during heat treatment at the time of soldering, cracks or peeling of the package due to rapid vaporization and expansion of moisture absorption moisture occurs, which is a problem. For this reason, a curing agent or epoxy resin having low hygroscopicity, low elastic modulus at soldering temperature and excellent adhesiveness is desired.

さらに近年は鉛フリーのハンダが使用されるようになり、求められる特性はますます厳しくなってきている。一方で樹脂の難燃性に対する要求もますます高くなっているが、環境保全の観点から含臭素有機化合物や、アンチモン化合物などこれまで使用されてきた難燃剤の使用が制限され始めている。   In recent years, lead-free solder has been used, and the required characteristics have become increasingly severe. On the other hand, there is an increasing demand for flame retardancy of resins, but the use of flame retardants that have been used so far, such as bromine-containing organic compounds and antimony compounds, is beginning to be restricted from the viewpoint of environmental protection.

そのため上記の観点でビフェニル骨格を含有するフェノール系重合物が難燃性の高い樹脂として使用されている。ビフェニル型フェノールアラルキル樹脂は、そのような要求を満足しうる硬化剤として提案されている(例えば、特開2007-106928号公報)。しかしながら、提案されているようなビフェニル型フェノールアラルキル樹脂ではガラス転移温度(Tg)が低くなるという欠点があった。
特開2007-106928号公報
Therefore, from the above viewpoint, a phenol polymer containing a biphenyl skeleton is used as a highly flame retardant resin. Biphenyl type phenol aralkyl resins have been proposed as curing agents that can satisfy such requirements (for example, JP-A 2007-106928). However, the biphenyl type phenol aralkyl resin as proposed has a drawback of low glass transition temperature (Tg).
JP 2007-106928 A

従来公知のビフェニル型フェノールアラルキル樹脂は、難燃性に優れた硬化剤として使用されているが、ガラス転移温度(Tg)が低くなる欠点がある。Tgの低下は、一般に高温信頼性と耐熱性の低下を引き起こすため、この改善が必要である。   A conventionally known biphenyl type phenol aralkyl resin is used as a curing agent having excellent flame retardancy, but has a drawback of low glass transition temperature (Tg). Since a decrease in Tg generally causes a decrease in high temperature reliability and heat resistance, this improvement is necessary.

本発明者は、ガラス転移温度(Tg)が高い硬化剤の開発に努めた結果本発明に到達したものである。すなわち、本発明は、難燃性に優れ、かつ硬化性に優れ、高いガラス転移温度(Tg)を有する硬化剤に適したフェノール系重合体およびその製法を提供するものである。   The present inventor has reached the present invention as a result of striving to develop a curing agent having a high glass transition temperature (Tg). That is, the present invention provides a phenolic polymer that is excellent in flame retardancy, has excellent curability, and is suitable for a curing agent having a high glass transition temperature (Tg), and a process for producing the same.

本発明は、下記一般式(1)で示されるフェノール系重合体を提供する。   The present invention provides a phenolic polymer represented by the following general formula (1).

Figure 2010070471
(Rは、H、炭素数1〜6のアルキル基または炭素数6〜10のアリール基を表し、それぞれ同一であっても異なっていてもよく、n+mは2〜6の整数であり、Rは、以下の式のいずれかの基を表す。)
Figure 2010070471
(R 1 represents H, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms, which may be the same or different, and n + m is an integer of 2 to 6; 2 represents any group of the following formula:

Figure 2010070471
Figure 2010070471

本発明はまた、下記一般式(2)で示されるフェノール類と、下記一般式(3)で示されるビフェニル化合物と、下記一般式(4)で示される芳香族アルデヒド類を、縮合反応させた後、未反応のフェノール類を除去することを特徴とする前記一般式(1)で示されるフェノール系重合体の製造方法を提供する。   In the present invention, a phenol represented by the following general formula (2), a biphenyl compound represented by the following general formula (3), and an aromatic aldehyde represented by the following general formula (4) were subjected to a condensation reaction. Then, the manufacturing method of the phenol type polymer shown by the said General formula (1) characterized by removing unreacted phenols is provided.

Figure 2010070471
(Rは、H、炭素数1〜6のアルキル基または炭素数6〜10のアリール基を表す。)
Figure 2010070471
(R 1 represents H, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms.)

Figure 2010070471
(Xは、Cl、Br、I、OHまたはOCHを表し、それぞれ同一であっても異なっていてもよい。)
Figure 2010070471
(X represents Cl, Br, I, OH or OCH 3 and may be the same or different.)

−CHO (4)
(Rは、以下の式のいずれかの基を表す。)
R 2 —CHO (4)
(R 2 represents any group of the following formula.)

Figure 2010070471
Figure 2010070471

前記一般式(3)において、XがCl、BrまたはIであるとき、前記縮合反応を、触媒を添加することなく行う前記したフェノール系重合体の製造方法は、本発明の好ましい態様である。   In the general formula (3), when X is Cl, Br or I, the above-described method for producing a phenolic polymer in which the condensation reaction is performed without adding a catalyst is a preferred embodiment of the present invention.

本発明は、さらに前記一般式(1)のフェノール系重合体からなるエポキシ樹脂用硬化剤を提供する。   The present invention further provides a curing agent for epoxy resin comprising the phenolic polymer of the general formula (1).

本発明は、また前記一般式(1)のフェノール系重合体とエポキシ樹脂とを含むエポキシ樹脂組成物を提供する。   The present invention also provides an epoxy resin composition comprising the phenol polymer of the general formula (1) and an epoxy resin.

本発明は、また前記一般式(1)のフェノール系重合体、エポキシ樹脂、無機充填剤、硬化促進剤、シランカップリング剤およびワックスを含むエポキシ樹脂組成物。   The present invention also provides an epoxy resin composition comprising the phenolic polymer of the general formula (1), an epoxy resin, an inorganic filler, a curing accelerator, a silane coupling agent and a wax.

本発明は、また前記したエポキシ樹脂組成物を硬化させてなるエポキシ樹脂硬化物、並びにそのエポキシ樹脂硬化物で封止された半導体装置をも提供する。   The present invention also provides a cured epoxy resin obtained by curing the above-described epoxy resin composition, and a semiconductor device sealed with the cured epoxy resin.

本発明によって、従来のビフェニルアラルキル樹脂の優れた難燃性を維持したまま、硬化性、ガラス転移温度(Tg)を向上させた硬化剤に好適なフェノール系重合体が提供される。
また本発明によって、上記のように難燃性に優れ、かつ硬化性に優れ、高いガラス転移温度(Tg)を与え、硬化剤に好適なフェノール系重合体の製法が提供される。
The present invention provides a phenol polymer suitable for a curing agent having improved curability and glass transition temperature (Tg) while maintaining the excellent flame retardancy of conventional biphenyl aralkyl resins.
In addition, the present invention provides a method for producing a phenolic polymer that is excellent in flame retardancy, excellent in curability, has a high glass transition temperature (Tg), and is suitable for a curing agent as described above.

本発明は、下記一般式(1)で示されるフェノール系重合体を提供し、該フェノール系重合体の製造方法およびその用途を提供するものである。   The present invention provides a phenolic polymer represented by the following general formula (1), and provides a method for producing the phenolic polymer and its use.

Figure 2010070471
Figure 2010070471

式(1)中、Rは、H、炭素数1〜6のアルキル基または炭素数6〜10のアリール基を表す。(m+n+1)個のRは、それぞれ同一であっても異なっていてもよい。
アルキル基としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、t−ブチル、n−ペンチル、イソアミル、t−アミル、n−へキシルが好ましいが、特にはメチル基が好ましい。
アリール基の好ましい例としては、フェニル基、p−トリル基、ナフチル基などを挙げることができる。
式(1)で示されるフェノール系重合体において、とくにRがすべて水素のものは、原料が安価で、エポキシ樹脂の硬化剤として優れた性能を示すので好ましい。
In formula (1), R 1 represents H, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms. The (m + n + 1) R 1 s may be the same or different.
As the alkyl group, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isoamyl, t-amyl and n-hexyl are preferable, and a methyl group is particularly preferable.
Preferable examples of the aryl group include a phenyl group, a p-tolyl group, and a naphthyl group.
Of the phenolic polymers represented by the formula (1), those in which R 1 is all hydrogen are preferable because the raw materials are inexpensive and exhibit excellent performance as a curing agent for epoxy resins.

式(1)中、Rは、以下の式のいずれか基を表す。 In formula (1), R 2 represents any group of the following formulas.

Figure 2010070471
の好ましい例としては、ヒドロキシフェニル基、ヒドロキシナフチル基などを挙げることができる。中でもとくにヒドロキシフェニル基が好ましい。m個のRはそれぞれ同一でも異なっていてもよい。
Figure 2010070471
Preferable examples of R 2 include a hydroxyphenyl group and a hydroxynaphthyl group. Of these, a hydroxyphenyl group is particularly preferred. The m R 2 s may be the same or different.

n+mは2〜6の整数であり、好ましくは2〜4の整数である。
上記一般式(1)に示されるフェノール系重合体においてはまた、mおよびnはそれぞれ1以上の整数であり、mおよび/またはnの値が異なるものの2種以上の混合物であってもよい。溶融粘度を考慮すると、m+nの平均値は2〜6、好ましくは2〜4のものがよい。
n + m is an integer of 2 to 6, preferably an integer of 2 to 4.
In the phenolic polymer represented by the general formula (1), m and n are each an integer of 1 or more, and a mixture of two or more of them having different values of m and / or n may be used. Considering the melt viscosity, the average value of m + n is 2-6, preferably 2-4.

前記一般式(1)で示されるフェノール系重合体の好ましい製造方法として、下記一般式(2)で示されるフェノール類と、下記一般式(3)で示されるビフェニル化合物と、下記一般式(4)で示される芳香族アルデヒド類を、縮合反応させた後、未反応のフェノール類を除去することを特徴とする前記一般式(1)で示されるフェノール系重合体の製造方法を挙げることができる。   As a preferable production method of the phenol polymer represented by the general formula (1), a phenol represented by the following general formula (2), a biphenyl compound represented by the following general formula (3), and the following general formula (4) And a method for producing a phenol-based polymer represented by the general formula (1), wherein an unreacted phenol is removed after the condensation reaction of the aromatic aldehyde represented by .

Figure 2010070471
式(2)中、Rは、H、炭素数1〜6のアルキル基または炭素数6〜10のアリール基を表す。アルキル基およびアリール基の例としては、式(1)について記載したのと同じ基を挙げることができる。
Figure 2010070471
In formula (2), R 1 represents H, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms. Examples of alkyl groups and aryl groups include the same groups as described for formula (1).

Figure 2010070471
式(3)中、Xは、Cl、Br、I、OHまたはOCHを表し、それぞれ同一であっても異なっていてもよい。
Figure 2010070471
In the formula (3), X represents Cl, Br, I, OH or OCH 3, which may be the same or different.

−CHO (4)
式(4)中、Rは以下の式のいずれか基を表す。
R 2 —CHO (4)
In formula (4), R 2 represents any group of the following formulas.

Figure 2010070471
Figure 2010070471

前記一般式(2)で示されるフェノール類と、前記一般式(3)で示されるビフェニル化合物と、前記一般式(4)で示される芳香族アルデヒド類との反応において、好ましくは、フェノール類に対するビフェニル化合物と芳香族アルデヒドの和のモル比が0.05〜0.60、より好ましくは0.15〜0.40であり、ビフェニル化合物/芳香族アルデヒド(モル比)が80/20〜20/80、より好ましくは80/20〜30/70の割合で反応させることが望ましい。   In the reaction of the phenol represented by the general formula (2), the biphenyl compound represented by the general formula (3) and the aromatic aldehyde represented by the general formula (4), The molar ratio of the sum of the biphenyl compound and the aromatic aldehyde is 0.05 to 0.60, more preferably 0.15 to 0.40, and the biphenyl compound / aromatic aldehyde (molar ratio) is 80/20 to 20 / It is desirable to react at a ratio of 80, more preferably 80/20 to 30/70.

さらに前記一般式(4)で示される芳香族アルデヒドとして具体的には、2−ヒドロキシベンズアルデヒド、3−ヒドロキシベンズアルデヒド、4−ヒドロキシベンズアルデヒド、2−メチルベンズアルデヒド、3−メチルベンズアルデヒド、4−メチルベンズアルデヒド、2−メチル−1−ナフトアルデヒド、3−メチル−1−ナフトアルデヒド、4−メチル−1−ナフトアルデヒド、1−メチル−2−ナフトアルデヒド、3−メチル−2−ナフトアルデヒド、1−ヒドロキシ-2−ナフトアルデヒド、2-ヒドロキシ−1−ナフトアルデヒド、6-ヒドロキシ−2−ナフトアルデヒドなどである。とくに2−ヒドロキシベンズアルデヒドを使用するのが好ましい。   Specific examples of the aromatic aldehyde represented by the general formula (4) include 2-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, 2 -Methyl-1-naphthaldehyde, 3-methyl-1-naphthaldehyde, 4-methyl-1-naphthaldehyde, 1-methyl-2-naphthaldehyde, 3-methyl-2-naphthaldehyde, 1-hydroxy-2- Naphthaldehyde, 2-hydroxy-1-naphthaldehyde, 6-hydroxy-2-naphthaldehyde and the like. It is particularly preferable to use 2-hydroxybenzaldehyde.

前記一般式(2)で示されるフェノール類と、前記一般式(3)で示されるビフェニル化合物と、前記一般式(4)で示される芳香族アルデヒド類との縮合反応の反応条件としては、特に制限はなく、従来公知の縮合反応の条件から適宜選択して採用することができる。本発明の縮合反応は、酸触媒の存在下又は不存在下に、加熱処理することによって行なうことができる。この反応において使用可能な酸触媒としては、リン酸、硫酸、塩酸などの無機酸、蓚酸、ベンゼンスルホン酸、トルエンスルホン酸、メタンスルホン酸、フルオロメタンスルホン酸などの有機酸、塩化亜鉛、塩化第2錫、塩化第2鉄、ジエチル硫酸などのフリーデルクラフツ触媒を、単独で又は併用して用いることができる。また反応は、例えば70〜200℃程度の温度で、0.5〜10時間程度維持することによって行うことができる。   As the reaction conditions for the condensation reaction of the phenols represented by the general formula (2), the biphenyl compound represented by the general formula (3) and the aromatic aldehydes represented by the general formula (4), There is no restriction | limiting, It can select and employ | adopt suitably from the conditions of a conventionally well-known condensation reaction. The condensation reaction of the present invention can be carried out by heat treatment in the presence or absence of an acid catalyst. Acid catalysts that can be used in this reaction include inorganic acids such as phosphoric acid, sulfuric acid, and hydrochloric acid, organic acids such as oxalic acid, benzenesulfonic acid, toluenesulfonic acid, methanesulfonic acid, and fluoromethanesulfonic acid, zinc chloride, and chloride chloride. Friedel-Crafts catalysts such as 2 tin, ferric chloride and diethyl sulfate can be used alone or in combination. The reaction can be carried out, for example, by maintaining at a temperature of about 70 to 200 ° C. for about 0.5 to 10 hours.

前記一般式(3)において、XがCl、BrまたはIであるとき、前記縮合反応を、触媒を添加することなく行うことができる。触媒を添加することなく反応の行うことは、反応および生成物の精製などの操作が単純化できるので、好ましい態様である。   In the general formula (3), when X is Cl, Br or I, the condensation reaction can be carried out without adding a catalyst. Performing the reaction without adding a catalyst is a preferred embodiment because operations such as reaction and product purification can be simplified.

上記縮合反応によって得られる縮合反応混合物から、未反応原料(例えばフェノール類)、反応副生物(例えばハロゲン化水素やメタノール)、触媒(例えば塩酸)などを減圧下に除去することによって、反応生成物であるフェノール系重合体を分離することができる。このような反応生成物中には、すでに述べたように一般式(1)で示されるフェノール系重合体とともに、一般式(1)においてnが0又はmが0に該当するフェノール系重合体も含まれている。このような反応生成物から一般式(1)においてnが0又はmが0に該当するフェノール系重合体の一部又は全部を除去して、一般式(1)で示されるフェノール系重合体の純度を高めることはできる。しかしながらエポキシ樹脂の硬化剤としては、上記反応生成物であるフェノール系重合体をそのまま使用しても所望の性能を示すため、通常は上記のような高純度化の操作は必要でない。   By removing unreacted raw materials (for example, phenols), reaction by-products (for example, hydrogen halide and methanol), catalysts (for example, hydrochloric acid) and the like from the condensation reaction mixture obtained by the above condensation reaction under reduced pressure, a reaction product is obtained. It is possible to separate the phenolic polymer. In such a reaction product, as described above, in addition to the phenolic polymer represented by the general formula (1), there is also a phenolic polymer in which n is 0 or m is 0 in the general formula (1). include. From such a reaction product, a part or all of the phenolic polymer in which n is 0 or m is 0 in the general formula (1) is removed to obtain a phenolic polymer represented by the general formula (1). Purity can be increased. However, as a curing agent for the epoxy resin, even if the phenolic polymer that is the reaction product is used as it is, the desired performance is not usually required because the desired performance is exhibited.

本発明によって提供される前記一般式(1)で示されるフェノール系重合体は、成形材、各種バインダー、コーティング材、積層材などの用途に有用である。
本発明によって提供される該フェノール系重合体は、また高Tg、難燃性、速硬化性、低溶融粘度、を兼ね備えたエポキシ樹脂用硬化剤として有用であり、特に半導体封止用に好適に使用することができる。
The phenolic polymer represented by the general formula (1) provided by the present invention is useful for applications such as molding materials, various binders, coating materials, and laminated materials.
The phenolic polymer provided by the present invention is also useful as a curing agent for epoxy resins having high Tg, flame retardancy, fast curability, and low melt viscosity, and is particularly suitable for semiconductor encapsulation. Can be used.

以下に実施例および比較例を用いて本発明をより詳細に説明するが、本発明はこれらの例によって何ら制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.

(実施例1)
フェノール2022.3g(21.51モル)、4,4'−ジクロロメチルビフェニル540.0g(2.15モル)を、下部に抜出口のある4つ口フラスコに仕込み、温度を上昇させ内温50℃でサルチルアルデヒド262.5g(2.15モル)を30分かけて滴下する。滴下を開始すると、反応熱により温度が上昇し、HClの発生が始まった。80℃で3時間保持し、さらに150℃で1時間熱処理を加えた。反応で発生するHClはそのまま系外へ揮散させ、アルカリ水でトラップした。
この段階では未反応の4,4'−ジクロロメチルビフェニル及びサルチルアルデヒドは残存しておらず、全て反応したことをガスクロマトグラフィで確認した。反応終了後、減圧することにより、系内に残存するHCl及び未反応のフェノールを系外へ除去した。最終的に30torrで150℃まで減圧処理することで、残存フェノールがガスクロマトグラフィで検出されなくなった。
Example 1
Phenol 2022.3 g (21.51 mol) and 4,4′-dichloromethylbiphenyl 540.0 g (2.15 mol) were charged into a four-necked flask having an outlet at the bottom, and the temperature was raised to an internal temperature of 50. At 25 ° C., 262.5 g (2.15 mol) of salicylaldehyde is added dropwise over 30 minutes. When dripping was started, the temperature rose due to the heat of reaction, and generation of HCl began. It was kept at 80 ° C. for 3 hours, and further heat treated at 150 ° C. for 1 hour. HCl generated in the reaction was volatilized out of the system and trapped with alkaline water.
At this stage, unreacted 4,4′-dichloromethylbiphenyl and salicylaldehyde did not remain, and it was confirmed by gas chromatography that all had reacted. After completion of the reaction, the pressure was reduced to remove HCl remaining in the system and unreacted phenol out of the system. Finally, the residual phenol was no longer detected by gas chromatography by reducing the pressure to 150 ° C. at 30 torr.

得られた反応生成物を150℃に保持しながら、抜き出し、淡褐黄色で透明なフェノール系重合体(1)1278.5gを得た。フェノール系重合体(1)を、日本電子(株)製JMS−700高分解能質量検出器を用いてFD−MS法により分子量測定を行って得られたチャートを図1に示す。
図1における質量ピークから、フェノール系重合体(1)には、一般式(1)においてRが水素、Rがフェニルに該当して、m=1でn=1の重合体(分子量564)、m=2でn=1の重合体(分子量762)、m=1でn=2の重合体(分子量836)、m=2でn=2の重合体(分子量1034)、m=1でn=3の重合体(分子量1108)などが含まれているとともに、m=0でnが1以上(分子量366、638、910、1182)及びn=0でmが1以上(分子量292、490、688)に該当する各種重合体が含まれていることが判った。
このフェノール系重合体(1)のJIS K 2207に基づく軟化点は92℃であった。またICI溶融粘度計により測定した150℃における溶融粘度は270mPa・sであった。さらにアセチル化逆滴定法により測定した水酸基当量は139g/eqであった。
The obtained reaction product was withdrawn while maintaining at 150 ° C. to obtain 1278.5 g of a pale brown yellow and transparent phenolic polymer (1). A chart obtained by measuring the molecular weight of the phenol polymer (1) by FD-MS method using a JMS-700 high-resolution mass detector manufactured by JEOL Ltd. is shown in FIG.
From the mass peak in FIG. 1, the phenolic polymer (1) is a polymer (molecular weight 564) in which R 1 is hydrogen and R 2 is phenyl in the general formula (1), and m = 1 and n = 1. ), M = 2 and n = 1 polymer (molecular weight 762), m = 1 and n = 2 polymer (molecular weight 836), m = 2 and n = 2 polymer (molecular weight 1034), m = 1 N = 3 polymer (molecular weight 1108) and the like, and m = 0 and n is 1 or more (molecular weight 366, 638, 910, 1182) and n = 0 and m is 1 or more (molecular weight 292, 490, 688) were found to contain various polymers.
The softening point of this phenol polymer (1) based on JIS K 2207 was 92 ° C. The melt viscosity at 150 ° C. measured with an ICI melt viscometer was 270 mPa · s. Furthermore, the hydroxyl group equivalent measured by the acetylation back titration method was 139 g / eq.

(実施例2)
フェノールの仕込み量を1953.9g(20.78モル)、4,4'−ジクロロメチルビフェニルの仕込み量を600.0g(2.39モル)、サルチルアルデヒドの仕込み量を291.6g(2.39モル)とした以外は、実施例1と同様にして行い、淡褐黄色の透明な(結晶化による濁りのない)フェノール系重合体(2)1399.9gを得た。
得られたフェノール系重合体(2)のJIS K 2207に基づく軟化点は96℃であった。またICI溶融粘度計により測定した150℃における溶融粘度は380mPa・sであった。さらにアセチル化逆滴定法により測定した水酸基当量は140g/eqであった。
(Example 2)
The amount of phenol charged was 1953.9 g (20.78 mol), the amount of 4,4′-dichloromethylbiphenyl charged was 600.0 g (2.39 mol), and the amount of salicylaldehyde charged was 291.6 g (2.39). The reaction was carried out in the same manner as in Example 1 except that 1399.9 g of a pale brown yellow transparent (no turbidity due to crystallization) phenolic polymer (2) was obtained.
The softening point of the obtained phenol polymer (2) based on JIS K 2207 was 96 ° C. The melt viscosity at 150 ° C. measured with an ICI melt viscometer was 380 mPa · s. Furthermore, the hydroxyl group equivalent measured by the acetylation back titration method was 140 g / eq.

(実施例3)
フェノールの仕込み量を1783.3g(18.97モル)、4,4'−ジクロロメチルビフェニルの仕込み量を800.0g(3.18モル)、サルチルアルデヒドの仕込み量を166.6g(1.36モル)とした以外は、実施例1と同様にして行い、淡褐黄色の透明な(結晶化による濁りのない)フェノール系重合体(3)1415.6gを得た。
得られたフェノール系重合体(3)のJIS K 2207に基づく軟化点は84℃であった。またICI溶融粘度計により測定した150℃における溶融粘度は180mPa・sであった。さらにアセチル化逆滴定法により測定した水酸基当量は162g/eqであった
(Example 3)
The amount of phenol charged was 1783.3 g (18.97 mol), the amount of 4,4′-dichloromethylbiphenyl charged was 800.0 g (3.18 mol), and the amount of salicylaldehyde charged was 166.6 g (1.36 mol). The reaction was carried out in the same manner as in Example 1 except that 141 mol of a light brown yellow transparent (no turbidity due to crystallization) phenolic polymer (3) was obtained.
The resulting phenol polymer (3) had a softening point of 84 ° C. based on JIS K 2207. The melt viscosity at 150 ° C. measured by an ICI melt viscometer was 180 mPa · s. Furthermore, the hydroxyl group equivalent measured by the acetylation back titration method was 162 g / eq.

(実施例4)
下記式(5)に示すエポキシ樹脂(日本化薬(株)製NC−3000P、ビフェニルアラルキル型、エポキシ当量272g/eq)、実施例1で得たフェノール系重合体、溶融シリカ及びリン系硬化促進剤(2−(トリフェニルホスホニオ)フェノラート、以下同じ)を、表1に示す割合(単位は質量部)で配合し、充分混合した後、85℃±3℃の2本ロールで3分混練し、冷却、粉砕する事により、エポキシ樹脂組成物を得た。
次にトランスファー成型機で、上記成形用コンパウンドを、圧力100kgf/cm、温度175℃で2分間成形した後、温度180℃で6時間のポストキュアを行い、Tg用、及び難燃性試験用のテストピースを得た。
各々の試験は、下記に準じて実施した。
Example 4
Epoxy resin represented by the following formula (5) (Nippon Kayaku Co., Ltd. NC-3000P, biphenyl aralkyl type, epoxy equivalent 272 g / eq), phenolic polymer obtained in Example 1, fused silica, and phosphorus curing acceleration The agent (2- (triphenylphosphonio) phenolate, hereinafter the same) was blended in the proportions shown in Table 1 (units are parts by mass), mixed well, and then kneaded for 3 minutes with two rolls at 85 ° C. ± 3 ° C. Then, an epoxy resin composition was obtained by cooling and pulverizing.
Next, after molding the molding compound with a transfer molding machine at a pressure of 100 kgf / cm 2 and a temperature of 175 ° C. for 2 minutes, a post-cure at a temperature of 180 ° C. for 6 hours is performed for Tg and flame retardancy test. I got a test piece.
Each test was performed according to the following.

Figure 2010070471
Figure 2010070471

エポキシ樹脂組成物のコンパウンド評価は、次の方法により測定した。
(1)キュラストメーター硬化性
3mmアンダーに粉砕されたコンパウンド5.0gを25mmφのタブレット化してキュラストメーター(オリエンテック社VSP型)にセットし、175℃、加重3.5kgf/cm、振幅角度±1/4゜で6分間のトルク変化を測定した。トルクが感知されるまでの時間をゲル化時間とし、測定開始60秒、90秒および300秒のトルク
(kgf・cm)を求めた。
(2)ガラス転移温度Tg
TMA(熱機械分析装置)により、線膨張係数を測定し、線膨張係数の変曲点をTgとした。
昇温速度:5℃/分
(3)難燃性
サンプル形状:厚み1.6×幅10×長さ135mm
評価:UL-V94に準拠して残炎時間を測定し、難燃性を評価した。
The compound evaluation of the epoxy resin composition was measured by the following method.
(1) Curability meter curability 5.0g of compound ground to 3mm under is tableted with 25mmφ and set on curast meter (Orientec VSP type), 175 ° C, weight 3.5kgf / cm 2 , amplitude The torque change for 6 minutes was measured at an angle of ± 1/4 °. The time until the torque was sensed was defined as the gel time, and the torque (kgf · cm) at 60 seconds, 90 seconds and 300 seconds from the start of measurement was obtained.
(2) Glass transition temperature Tg
The linear expansion coefficient was measured by TMA (thermomechanical analyzer), and the inflection point of the linear expansion coefficient was defined as Tg.
Temperature increase rate: 5 ° C./min (3) Flame retardancy Sample shape: thickness 1.6 × width 10 × length 135 mm
Evaluation: Flame retardancy was evaluated by measuring after flame time in accordance with UL-V94.

(実施例5)
実施例4において、実施例1で得たフェノール系重合体に代えて、実施例2で得たフェノール系重合体用い、表1に示す割合(単位は質量部)で配合した以外は、実施例4と同様にしてエポキシ樹脂組成物を得、その評価を行った。結果を表1に併記する。
(Example 5)
In Example 4, instead of the phenolic polymer obtained in Example 1, the phenolic polymer obtained in Example 2 was used, except that the proportions shown in Table 1 (units are parts by mass) were used. In the same manner as in No. 4, an epoxy resin composition was obtained and evaluated. The results are also shown in Table 1.

(実施例6)
実施例4において、実施例1で得たフェノール系重合体に代えて、実施例3で得たフェノール系重合体用い、表1に示す割合(単位は質量部)で配合した以外は、実施例4と同様にしてエポキシ樹脂組成物を得、その評価を行った。結果を表1に併記する。
(Example 6)
In Example 4, instead of the phenolic polymer obtained in Example 1, the phenolic polymer obtained in Example 3 was used, and the proportions shown in Table 1 (unit: parts by mass) were used. In the same manner as in No. 4, an epoxy resin composition was obtained and evaluated. The results are also shown in Table 1.

(比較例1)
実施例4において、実施例1で得たフェノール系重合体に代えて、下記式(6)で示すフェノールビフェニルアラルキル樹脂(水酸基当量205g/eq)を使用して、表1に示す割合(単位は質量部)で配合した以外は、実施例4と同様にしてエポキシ樹脂組成物を得、その評価を行った。結果を表1に併記する。
(Comparative Example 1)
In Example 4, instead of the phenolic polymer obtained in Example 1, a phenol biphenyl aralkyl resin (hydroxyl equivalent: 205 g / eq) represented by the following formula (6) was used, and the proportions (unit: An epoxy resin composition was obtained and evaluated in the same manner as in Example 4 except that it was blended in (part by mass). The results are also shown in Table 1.

Figure 2010070471
Figure 2010070471

(比較例2)
実施例4において、実施例1で得たフェノール系重合体に代えて、下記式(7)で示すフェノールアラルキル樹脂(水酸基当量168g/eq)を使用して、表1に示す割合(単位は質量部)で配合した以外は、実施例4と同様にしてエポキシ樹脂組成物を得、その評価を行った。結果を表1に併記する。
(Comparative Example 2)
In Example 4, instead of the phenol-based polymer obtained in Example 1, a phenol aralkyl resin (hydroxyl equivalent: 168 g / eq) represented by the following formula (7) was used, and the proportions shown in Table 1 (unit: mass) Except for blending in (Part), an epoxy resin composition was obtained and evaluated in the same manner as in Example 4. The results are also shown in Table 1.

Figure 2010070471
Figure 2010070471

Figure 2010070471
Figure 2010070471

表1の結果から明らかなように、実施例4〜6と比較例1、2を対比すると、実施例1、2、3のフェノール系重合体を使用することで、優れた難燃性と高Tgを両立させることができることが判る。   As is clear from the results of Table 1, when Examples 4 to 6 and Comparative Examples 1 and 2 are compared, the use of the phenolic polymers of Examples 1, 2, and 3 results in excellent flame retardancy and high resistance. It turns out that Tg can be made compatible.

本発明によって、従来のビフェニルアラルキル樹脂の優れた難燃性を維持したまま、硬化性、ガラス転移温度(Tg)を向上させた硬化剤に好適なフェノール系重合体が提供される。
また本発明によって、上記のように難燃性に優れ、かつ硬化性に優れ、高いガラス転移温度(Tg)に硬化剤に好適なフェノール系重合体の製法が提供される。
本発明によって提供されるフェノール系重合体からなる硬化剤は、従来のビフェニルアラルキル樹脂の優れた難燃性を維持したまま、硬化性、ガラス転移温度(Tg)を向上させた硬化剤である。
本発明によって提供されるフェノール系重合体は、成形材、各種バインダー、コーティング材、積層材などの用途に有用である。
本発明によって提供されるフェノール系重合体からなる高Tg、難燃性、速硬化性、低溶融粘度を兼ね備えた硬化剤は、エポキシ樹脂用硬化剤として有用であり、特に半導体封止用に好適に使用することができる。
The present invention provides a phenol polymer suitable for a curing agent having improved curability and glass transition temperature (Tg) while maintaining the excellent flame retardancy of conventional biphenyl aralkyl resins.
In addition, the present invention provides a method for producing a phenol-based polymer that is excellent in flame retardancy and excellent in curability as described above and suitable for a curing agent at a high glass transition temperature (Tg).
The curing agent comprising a phenolic polymer provided by the present invention is a curing agent having improved curability and glass transition temperature (Tg) while maintaining the excellent flame retardancy of conventional biphenyl aralkyl resins.
The phenolic polymer provided by the present invention is useful for applications such as molding materials, various binders, coating materials, and laminated materials.
The curing agent having high Tg, flame retardancy, fast curability, and low melt viscosity made of the phenolic polymer provided by the present invention is useful as a curing agent for epoxy resin, and particularly suitable for semiconductor encapsulation. Can be used for

実施例1で得られたフェノール系重合体(1)のFD−MS法分子量測定のチャート。The FD-MS method molecular weight measurement chart of the phenol polymer (1) obtained in Example 1.

Claims (8)

下記一般式(1)で示されるフェノール系重合体。
Figure 2010070471

(Rは、H、炭素数1〜6のアルキル基または炭素数6〜10のアリール基を表し、それぞれ同一であっても異なっていてもよく、n+mは2〜6の整数であり、Rは、以下の式のいずれかの基を表す。)
Figure 2010070471
A phenolic polymer represented by the following general formula (1).
Figure 2010070471

(R 1 represents H, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms, which may be the same or different, and n + m is an integer of 2 to 6; 2 represents any group of the following formula:
Figure 2010070471
下記一般式(2)で示されるフェノール類と、下記一般式(3)で示されるビフェニル化合物と、下記一般式(4)で示される芳香族アルデヒド類を、縮合反応させた後、未反応のフェノール類を除去することを特徴とする前記一般式(1)で示されるフェノール系重合体の製造方法。
Figure 2010070471
(Rは、H、炭素数1〜6のアルキル基または炭素数6〜10のアリール基を表す。)
Figure 2010070471
(Xは、Cl、Br、I、OHまたはOCHを表し、それぞれ同一であっても異なっていてもよい。)
−CHO (4)
(Rは、以下の式のいずれかの基を表す。)
Figure 2010070471
A phenol compound represented by the following general formula (2), a biphenyl compound represented by the following general formula (3), and an aromatic aldehyde represented by the following general formula (4) were subjected to a condensation reaction, and then unreacted. A process for producing a phenol polymer represented by the general formula (1), wherein phenols are removed.
Figure 2010070471
(R 1 represents H, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms.)
Figure 2010070471
(X represents Cl, Br, I, OH or OCH 3 and may be the same or different.)
R 2 —CHO (4)
(R 2 represents any group of the following formula.)
Figure 2010070471
前記一般式(3)において、XがCl、BrまたはIであるとき、前記縮合反応を、触媒を添加することなく行うことを特徴とする請求項2に記載のフェノール系重合体の製造方法。   In the said General formula (3), when X is Cl, Br, or I, the said condensation reaction is performed without adding a catalyst, The manufacturing method of the phenolic polymer of Claim 2 characterized by the above-mentioned. 請求項1〜3のいずれかに記載の前記一般式(1)のフェノール系重合体からなるエポキシ樹脂用硬化剤。   The hardening | curing agent for epoxy resins which consists of a phenol type polymer of the said General formula (1) in any one of Claims 1-3. 請求項1〜3のいずれかに記載の前記一般式(1)のフェノール系重合体とエポキシ樹脂とを含むエポキシ樹脂組成物。   The epoxy resin composition containing the phenol polymer of the said General formula (1) in any one of Claims 1-3, and an epoxy resin. 請求項1〜3のいずれかに記載の一般式(1)のフェノール系重合体、エポキシ樹脂樹脂、無機充填剤、硬化促進剤、シランカップリング剤およびワックスを含むエポキシ樹脂組成物。   The epoxy resin composition containing the phenol type polymer of general formula (1) in any one of Claims 1-3, an epoxy resin resin, an inorganic filler, a hardening accelerator, a silane coupling agent, and a wax. 請求項6に記載の組成物を硬化させてなるエポキシ樹脂硬化物。   An epoxy resin cured product obtained by curing the composition according to claim 6. 請求項7に記載のエポキシ樹脂硬化物で封止された半導体装置。   A semiconductor device encapsulated with the cured epoxy resin according to claim 7.
JP2008237410A 2008-09-17 2008-09-17 Phenolic polymer, method of producing the same, and use therefor Pending JP2010070471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008237410A JP2010070471A (en) 2008-09-17 2008-09-17 Phenolic polymer, method of producing the same, and use therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008237410A JP2010070471A (en) 2008-09-17 2008-09-17 Phenolic polymer, method of producing the same, and use therefor

Publications (1)

Publication Number Publication Date
JP2010070471A true JP2010070471A (en) 2010-04-02

Family

ID=42202607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008237410A Pending JP2010070471A (en) 2008-09-17 2008-09-17 Phenolic polymer, method of producing the same, and use therefor

Country Status (1)

Country Link
JP (1) JP2010070471A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027101A (en) * 2014-07-04 2016-02-18 群栄化学工業株式会社 Novel aldehyde-containing resin
CN113004478A (en) * 2019-12-19 2021-06-22 彤程化学(中国)有限公司 Phenolic polymer and preparation method and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173023A (en) * 1988-12-24 1990-07-04 Sumitomo Chem Co Ltd Curing agent for epoxy resin
JPH08106159A (en) * 1994-10-05 1996-04-23 Japan Synthetic Rubber Co Ltd Radiation sensitive resin composition
JPH08337547A (en) * 1995-04-10 1996-12-24 Arakawa Chem Ind Co Ltd Production of phenolic resin oligomer
JPH1149846A (en) * 1997-08-01 1999-02-23 Nippon Kayaku Co Ltd Triphenylmethane type phenol resin, epoxy resin composition and cured products of the same
JP2002167416A (en) * 2000-11-30 2002-06-11 Hitachi Chem Co Ltd Phenolic resin, resin composition and resin molding material for sealing using the same, and electronic component device
JP2003113225A (en) * 2001-10-03 2003-04-18 Nippon Kayaku Co Ltd Phenolaralkyl resin, epoxy resin composition and cured material thereof
JP2003268081A (en) * 2002-03-13 2003-09-25 Nippon Kayaku Co Ltd Method for producing polyphenol resin
JP2004339277A (en) * 2003-05-13 2004-12-02 Japan Epoxy Resin Kk Phenol resin, curing agent for epoxy resin, and epoxy resin composition
WO2007007827A1 (en) * 2005-07-13 2007-01-18 Ube Industries, Ltd. Biphenylene-bridged phenol novolak resins and use thereof
JP2007106928A (en) * 2005-10-14 2007-04-26 Air Water Inc Phenolic polymer, its production method and its use
JP2008189708A (en) * 2007-02-01 2008-08-21 Ube Ind Ltd Low-melt viscosity phenol novolak resin, method for producing the same and cured product of epoxy resin using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173023A (en) * 1988-12-24 1990-07-04 Sumitomo Chem Co Ltd Curing agent for epoxy resin
JPH08106159A (en) * 1994-10-05 1996-04-23 Japan Synthetic Rubber Co Ltd Radiation sensitive resin composition
JPH08337547A (en) * 1995-04-10 1996-12-24 Arakawa Chem Ind Co Ltd Production of phenolic resin oligomer
JPH1149846A (en) * 1997-08-01 1999-02-23 Nippon Kayaku Co Ltd Triphenylmethane type phenol resin, epoxy resin composition and cured products of the same
JP2002167416A (en) * 2000-11-30 2002-06-11 Hitachi Chem Co Ltd Phenolic resin, resin composition and resin molding material for sealing using the same, and electronic component device
JP2003113225A (en) * 2001-10-03 2003-04-18 Nippon Kayaku Co Ltd Phenolaralkyl resin, epoxy resin composition and cured material thereof
JP2003268081A (en) * 2002-03-13 2003-09-25 Nippon Kayaku Co Ltd Method for producing polyphenol resin
JP2004339277A (en) * 2003-05-13 2004-12-02 Japan Epoxy Resin Kk Phenol resin, curing agent for epoxy resin, and epoxy resin composition
WO2007007827A1 (en) * 2005-07-13 2007-01-18 Ube Industries, Ltd. Biphenylene-bridged phenol novolak resins and use thereof
JP2007106928A (en) * 2005-10-14 2007-04-26 Air Water Inc Phenolic polymer, its production method and its use
JP2008189708A (en) * 2007-02-01 2008-08-21 Ube Ind Ltd Low-melt viscosity phenol novolak resin, method for producing the same and cured product of epoxy resin using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027101A (en) * 2014-07-04 2016-02-18 群栄化学工業株式会社 Novel aldehyde-containing resin
CN113004478A (en) * 2019-12-19 2021-06-22 彤程化学(中国)有限公司 Phenolic polymer and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5170493B2 (en) Phenol polymer, its production method and its use
JP5413488B2 (en) Phenol novolac resin, method for producing the same, epoxy resin composition and cured product using the same
JP5774021B2 (en) Phenol oligomer and method for producing the same
JP2008189708A (en) Low-melt viscosity phenol novolak resin, method for producing the same and cured product of epoxy resin using the same
JP3510869B2 (en) Phenolic polymer, its production method and its use
KR20180092934A (en) Epoxy resin composition, prepreg, epoxy resin composition molded article and cured product thereof
TWI478955B (en) Epoxy resin composition, manufacturing method for the same, and cured article thereof
JP2010070471A (en) Phenolic polymer, method of producing the same, and use therefor
JP2017115035A (en) Thermosetting molding material, method for producing the same, and semiconductor sealing material
JP5268404B2 (en) Phenol polymer, its production method and its use
JP5433294B2 (en) Dihydroxynaphthalene-based polymer, production method thereof and use thereof
JP4956879B2 (en) Epoxy resin, method for producing the same, and epoxy resin composition
JP2002275228A (en) Phenolic polymer, method for producing the same and epoxy resin curing agent using the same
JP2004123859A (en) Polyhydric hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition using the same and cured product
JP4096806B2 (en) Phenol resin, epoxy resin curing agent, and epoxy resin composition
JP4184109B2 (en) Curing agent for epoxy resin and epoxy resin composition
JP3502042B2 (en) Phenol / triazine derivative cocondensation resin and method for producing the same
JP3813105B2 (en) Epoxy resin composition having excellent curability, cured product thereof and use thereof
JP4956878B2 (en) Polyhydric phenol compound, curing agent for epoxy resin using the compound, and epoxy resin composition
JP2004244526A5 (en)
JP2006273897A (en) Phenol resin, epoxy resin-curing agent and epoxy resin composition
JP3888915B2 (en) Epoxy resin curing agent
JP4979251B2 (en) Phenol polymer, its production method and its use
JP2012172122A (en) Phenolic polymer, production method of the same and application of the same
JP2012097229A (en) Method for producing curing agent composition for epoxy resin, and method for producing thermosetting molding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A02 Decision of refusal

Effective date: 20140128

Free format text: JAPANESE INTERMEDIATE CODE: A02