JP2010069467A - Method of activating spent hydrogenation catalyst - Google Patents

Method of activating spent hydrogenation catalyst Download PDF

Info

Publication number
JP2010069467A
JP2010069467A JP2008243102A JP2008243102A JP2010069467A JP 2010069467 A JP2010069467 A JP 2010069467A JP 2008243102 A JP2008243102 A JP 2008243102A JP 2008243102 A JP2008243102 A JP 2008243102A JP 2010069467 A JP2010069467 A JP 2010069467A
Authority
JP
Japan
Prior art keywords
catalyst
spent
activating
oil
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008243102A
Other languages
Japanese (ja)
Inventor
Ryuichiro Iwamoto
隆一郎 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2008243102A priority Critical patent/JP2010069467A/en
Publication of JP2010069467A publication Critical patent/JP2010069467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of activating a spent hydrogenation catalyst capable of efficiently and stably carrying out a hydrogenation treatment for a long period of time even when treating heavy hydrocarbon oil of an inferior property detrimental to carrying out a hydrogenation treatment including hydrogenation desulfurization, metal removal by hydrogenation, hydrogenation decomposition, or the like. <P>SOLUTION: The method of activating a spent dehydrogenation catalyst includes heat-treating a spent catalyst extracted out of an apparatus for desulfurizing heavy oil, at a temperature of 400 to 600°C in the presence of an inert gas. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、使用済み水素化処理触媒の活性化方法に関し、特に重質炭化水素油の水素化脱硫触媒として有効に利用できる使用済み水素化処理触媒の活性化方法に関するものである。   The present invention relates to a method for activating a spent hydroprocessing catalyst, and more particularly to a method for activating a spent hydroprocessing catalyst that can be effectively used as a hydrodesulfurization catalyst for heavy hydrocarbon oils.

常圧残油や、減圧残油などの重質炭化水素油の硫黄化合物は、巨大分子中に取り込まれて存在しているため、その硫黄分を除去するための水素化処理は、過酷な高温条件で処理しなければならない。しかし通常このような条件で水素化処理を行うと水素化処理触媒表面にコ−クの生成が促進されることから、触媒が急激に劣化し、運転可能期間(触媒寿命)が短くなってしまうという欠点があった。この傾向は水素化処理をする重質炭化水素油の性状が劣質(高沸点、高硫黄分、高残炭分など)であるほど顕著である。
このような問題を解決するため、従来は水素化処理触媒を連続的あるいは定期的に交換したり、単位触媒あたりの処理量を低下させ負荷を低減するという方法が取られていた。しかし、これらの方法では、経済性が低下するため、実質的に劣質な重質炭化水素油の処理は困難であった。
そのため、劣化しにくい、すなわち、触媒寿命の長い水素化処理触媒の出現が求められていた。
Sulfur compounds of heavy hydrocarbon oils such as atmospheric residual oil and vacuum residual oil are present in macromolecules, so hydrotreatment to remove the sulfur content is a severe high temperature It must be handled with conditions. However, when hydrotreating is usually performed under such conditions, the production of cake is promoted on the surface of the hydrotreating catalyst, so that the catalyst is rapidly deteriorated and the operating period (catalyst life) is shortened. There was a drawback. This tendency becomes more prominent as the properties of the heavy hydrocarbon oil to be hydrotreated are inferior (high boiling point, high sulfur content, high residual carbon content, etc.).
In order to solve such problems, conventionally, a method has been employed in which the hydrotreating catalyst is continuously or periodically replaced, or the load per unit catalyst is reduced to reduce the load. However, in these methods, since economical efficiency is lowered, it has been difficult to treat substantially inferior heavy hydrocarbon oil.
Therefore, there has been a demand for the appearance of a hydrotreating catalyst that is not easily deteriorated, that is, has a long catalyst life.

重質炭化水素油の水素化処理、及び該水素化処理を長時間安定に行える触媒については、多くの研究が行われている。例えば、特許文献1では、耐火性酸化物担体に、触媒に対して、特定割合で酸化ニッケル、三酸化モリブデン、酸化マグネシウム及び五酸化リンを担持させた水素化脱硫触媒が開示されている。しかし、活性を高めるために、添加する塩基性物質の担持量を増大すると脱硫活性が低下することがあり好ましくなかった。
また、特許文献2は、原油や、減圧残油など水素化処理に関し、アルミナ含有担体に、周期表第6B族金属と第8族金属を担持し、それらの金属の分布を触媒粒子最外表面部より中心部により高濃度で担持させた水素化処理触媒を用いた水素化処理方法を開示している。この触媒は、活性金属の触媒担体上の担持分布を最適化することにより触媒被毒の低減を図るものであるが、触媒製造法が複雑で、工業的製造が困難であった。
さらに特許文献3は、モリブデン並びにリン、ホウ素又はフッ素を含有する重質油の水素化精製触媒であり、触媒被毒を抑制するためニッケルやコバルトを含有しない触媒を開示する。しかしながら、脱硫性能が極めて低い触媒であり、問題の根本的解決とはならなかった。
Much research has been conducted on hydrotreating heavy hydrocarbon oils and catalysts capable of performing the hydrotreating stably for a long time. For example, Patent Document 1 discloses a hydrodesulfurization catalyst in which nickel oxide, molybdenum trioxide, magnesium oxide, and phosphorus pentoxide are supported on a refractory oxide carrier at a specific ratio with respect to the catalyst. However, increasing the amount of the basic substance to be added to increase the activity is not preferable because the desulfurization activity may decrease.
Patent Document 2 relates to hydrotreating such as crude oil and vacuum residue, and supports a group 6B metal and a group 8 metal on the periodic table on an alumina-containing support, and the distribution of these metals is determined on the outermost surface of the catalyst particles. Discloses a hydrotreating method using a hydrotreating catalyst supported at a higher concentration in the central part than in the part. This catalyst is intended to reduce the poisoning of the catalyst by optimizing the distribution of the active metal supported on the catalyst carrier. However, the catalyst production method is complicated and industrial production is difficult.
Further, Patent Document 3 discloses a catalyst for hydrorefining heavy oil containing molybdenum and phosphorus, boron or fluorine, and does not contain nickel or cobalt in order to suppress catalyst poisoning. However, it is a catalyst with extremely low desulfurization performance and has not been a fundamental solution to the problem.

特開平11−319567号公報JP 11-319567 A 特開平6−184558号公報JP-A-6-184558 特開平2−35938号公報JP-A-2-35938

本発明は、水素化処理を行う上で劣質な性状を有する重質炭化水素油であっても水素化脱硫、水素化脱メタル、水素化分解などの水素化処理を効率的かつ長期間安定に実施できる使用済み水素化処理触媒の活性化方法を提供することを目的とするものである。   The present invention enables efficient and long-term stable hydroprocessing such as hydrodesulfurization, hydrodemetallation, and hydrocracking even for heavy hydrocarbon oils that have poor properties when performing hydroprocessing. An object of the present invention is to provide a method for activating a spent hydroprocessing catalyst that can be carried out.

本発明者は、前記の好ましい活性化方法を開発すべく鋭意研究を重ねた結果、使用済み水素化処理触媒を特定条件下で加熱処理することによって、目的を達し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。すなわち、本発明は、   As a result of intensive studies to develop the above preferred activation method, the present inventor has found that the object can be achieved by heat-treating the used hydroprocessing catalyst under specific conditions. The present invention has been completed based on such findings. That is, the present invention

〔1〕重油脱硫処理装置から抜き出した使用済み触媒を不活性ガス雰囲気下、400〜600℃で加熱処理することを特徴とする使用済み水素化処理触媒の活性化方法、
〔2〕さらに300〜400℃で空気中に暴露することを特徴とする前記〔1〕に記載の使用済み水素化処理触媒の活性化方法、
〔3〕前記活性化した使用済み水素化処理触媒が、触媒全量基準でコーク分を20〜40質量%、硫黄分を5〜10質量%含有し、かつ、コークのH/C(モル比)が0.5〜0.7であり、X線電子発光分析(XPS)のSp2が160.0〜163.0eVのピークを有することを特徴とする前記〔1〕又は〔2〕に記載の使用済み水素化処理触媒の活性化方法、
〔4〕前記〔1〕〜〔3〕のいずれかに記載の使用済み水素化処理触媒の活性化方法によって得られた水素化処理触媒と重質炭化水素油を接触させて水素化脱硫処理を行うことを特徴とする重質炭化水素油の水素化脱硫方法、
を提供するものである。
[1] A method for activating a spent hydrotreating catalyst, wherein the spent catalyst extracted from the heavy oil desulfurization treatment apparatus is heated at 400 to 600 ° C. in an inert gas atmosphere,
[2] The method for activating a spent hydroprocessing catalyst according to the above [1], which is further exposed to air at 300 to 400 ° C.,
[3] The activated spent hydrotreating catalyst contains 20 to 40% by mass of coke and 5 to 10% by mass of sulfur based on the total amount of the catalyst, and H / C (molar ratio) of coke. The use according to [1] or [2] above, wherein Sp2 of X-ray electroluminescence analysis (XPS) has a peak of 160.0 to 163.0 eV Method for activating spent hydrotreating catalyst,
[4] The hydrodesulfurization treatment is performed by bringing the hydrotreating catalyst obtained by the method for activating a spent hydrotreating catalyst according to any one of [1] to [3] above into contact with a heavy hydrocarbon oil. A method for hydrodesulfurization of heavy hydrocarbon oil, characterized by
Is to provide.

本発明によれば、水素化処理を行う上で劣質な性状を有する重質炭化水素油であっても水素化脱硫、水素化脱メタル、水素化分解などの水素化処理を効率的かつ長期間安定に実施できる使用済み水素化処理触媒の活性化方法を提供することができる。   According to the present invention, hydroprocessing such as hydrodesulfurization, hydrodemetallation, hydrocracking and the like can be carried out efficiently and for a long time even for heavy hydrocarbon oils having inferior properties when performing hydroprocessing. A method for activating a spent hydroprocessing catalyst that can be stably carried out can be provided.

本発明は、重油脱硫処理装置から抜き出した使用済み触媒を不活性ガス雰囲気下で、加熱処理することを特徴とする使用済み水素化処理触媒の活性化方法である。
前記重油脱硫処理装置から抜き出した使用済み触媒は、通常、未使用の重油脱硫触媒が、重油の水素化脱硫処理に使用された触媒である。もちろん、例えば、重油の水素化脱硫に使用された後に、空気雰囲気下で加熱処理などの一般的な再生処理がなされ、さらに重油の水素化脱硫処理に使用された触媒であってもよい。
このような、重油脱硫処理装置から抜き出した使用済み触媒は、通常、商業的石油精製装置の重油脱硫処理装置から抜き出したものであるが、商業的精製装置から抜き出したものに制限されることはない。
The present invention is a method for activating a spent hydrotreating catalyst characterized by heat-treating a spent catalyst extracted from a heavy oil desulfurization treatment apparatus in an inert gas atmosphere.
The used catalyst extracted from the heavy oil desulfurization treatment apparatus is usually a catalyst in which an unused heavy oil desulfurization catalyst is used for hydrodesulfurization treatment of heavy oil. Of course, for example, the catalyst may be a catalyst that has been used for hydrodesulfurization of heavy oil and then subjected to general regeneration treatment such as heat treatment in an air atmosphere, and further used for hydrodesulfurization of heavy oil.
Such spent catalyst extracted from heavy oil desulfurization processing equipment is usually extracted from heavy oil desulfurization processing equipment of commercial oil refinery equipment, but is not limited to that extracted from commercial refinery equipment. Absent.

上記重油脱硫処理装置から抜き出した使用済み触媒は、通常、次のような未使用の重油脱硫触媒が重油水素化脱硫装置に使用されて得られる触媒である。
未使用の重油脱硫触媒は、特に制限はないが、通常、以下のものが用いられる。例えば、耐火性酸化物担体に、触媒に対して、活性金属として、酸化ニッケル、三酸化モリブデン及び五酸化リンを担持させた触媒が挙げられる。この場合担持量は、所望する性能を確保し、活性金属の凝集が起こり活性の低下を招くことを避ける観点から、酸化ニッケル1〜10質量%、三酸化モリブデン5〜30質量%、五酸化リン3〜10質量%が好適である。
また、前記耐火性酸化物担体としては、アルミナ、シリカ、チタニア、ジルコニアあるいはこれらの複合酸化物担体等を挙げることができる。活性金属の分散性の観点からはアルミナが好ましい。
The spent catalyst extracted from the heavy oil desulfurization treatment apparatus is usually a catalyst obtained by using the following unused heavy oil desulfurization catalyst in the heavy oil hydrodesulfurization apparatus.
The unused heavy oil desulfurization catalyst is not particularly limited, but the following are usually used. For example, a catalyst in which nickel oxide, molybdenum trioxide, and phosphorus pentoxide are supported as active metals on a refractory oxide carrier with respect to the catalyst. In this case, the supported amount is 1 to 10% by mass of nickel oxide, 5 to 30% by mass of molybdenum trioxide, phosphorus pentoxide from the viewpoint of securing desired performance and avoiding active metal agglomeration and reducing the activity. 3-10 mass% is suitable.
Examples of the refractory oxide carrier include alumina, silica, titania, zirconia, and composite oxide carriers thereof. Alumina is preferred from the viewpoint of dispersibility of the active metal.

上記未使用の重油水素化脱硫触媒は、通常、耐火性酸化物担体に、ニッケル化合物、モリブデン化合物及びリン化合物を溶解させた含浸液を含浸担持し、その後400〜600℃で焼成することによって製造することができる。この担持処理では、有機酸化合物および分子量100以上のエチレングリコール類の共存下で担持処理を行うこと好ましい。
以上のようにして未使用の重油水素化脱硫触媒が得られる。
なお、前記コーク分を含まない重油脱硫触媒に担持する活性金属として、酸化ニッケル、三酸化モリブデンなどを挙げたが、それらとともに、又はそれらに代えて、酸化タングステン(好適担持量は5〜30質量%)や酸化コバルト(好適担持量は1〜10質量%)などを用いてもよい。例えば、前記酸化ニッケルとともに、又は酸化ニッケルに代えて酸化コバルトを用いたものも好適な例として挙げることができる。
The above-mentioned unused heavy oil hydrodesulfurization catalyst is usually produced by impregnating and supporting an impregnating solution in which a nickel compound, a molybdenum compound and a phosphorus compound are dissolved on a refractory oxide carrier, and then firing at 400 to 600 ° C. can do. In this supporting treatment, the supporting treatment is preferably performed in the presence of an organic acid compound and ethylene glycol having a molecular weight of 100 or more.
As described above, an unused heavy oil hydrodesulfurization catalyst can be obtained.
As the active metal supported on the heavy oil desulfurization catalyst not containing coke, nickel oxide, molybdenum trioxide and the like were mentioned, but together with or instead of them, tungsten oxide (preferably supported amount is 5 to 30 mass) %) Or cobalt oxide (preferably supported amount is 1 to 10% by mass). For example, those using cobalt oxide together with the nickel oxide or in place of nickel oxide can be cited as suitable examples.

本願発明の重油脱硫処理装置から抜き出した使用済み触媒は、未使用の重油水素化脱硫触媒を用いて、水素化脱硫処理反応を行うことによって得ることができる触媒である。この水素化脱硫処理反応は、通常の水素化脱硫反応条件で行えばよい。このような工程を経て重油脱硫処理装置から抜き出した使用済み触媒が得られる。本発明においては、このようにして得られた使用済み触媒を原料として使用する。   The used catalyst extracted from the heavy oil desulfurization treatment apparatus of the present invention is a catalyst that can be obtained by performing a hydrodesulfurization treatment reaction using an unused heavy oil hydrodesulfurization catalyst. This hydrodesulfurization treatment reaction may be performed under normal hydrodesulfurization reaction conditions. A used catalyst extracted from the heavy oil desulfurization treatment apparatus is obtained through such steps. In the present invention, the spent catalyst thus obtained is used as a raw material.

本発明は、原料である上記使用済み触媒を、不活性ガス雰囲気下、400〜600℃の温度で加熱処理することを特徴とする活性化方法である。
この活性化方法は、加熱処理に続いてさらに、300〜400℃で空気中に暴露する工程を加えることがより好ましい。
The present invention is an activation method characterized by heat-treating the used catalyst as a raw material at a temperature of 400 to 600 ° C. in an inert gas atmosphere.
In this activation method, it is more preferable to add a step of exposure to air at 300 to 400 ° C. following the heat treatment.

前記不活性ガス雰囲気下で加熱処理するというのは、具体的には、不活性ガス、例えば、窒素、アルゴン、ヘリウム、及び酸素の存在しない燃焼ガスなどの雰囲気下で加熱処理するものである。この加熱処理の温度は、400〜600℃であることを要する。加熱処理の温度が400℃以上で加熱処理すれば、付着コーク分の脱水素縮合化を良好に促進することができ、一方、600℃以下であれば、ハードコークの生成を抑制できる。加熱処理は、450〜550℃がより好ましい。加熱処理を行う時間は、通常0.5〜40時間の範囲で選択する。   Specifically, the heat treatment in the inert gas atmosphere is a heat treatment in an atmosphere of an inert gas such as nitrogen, argon, helium, and combustion gas in which oxygen is not present. The temperature of this heat treatment is required to be 400 to 600 ° C. If the heat treatment is carried out at a temperature of 400 ° C. or higher, the dehydrogenative condensation of the attached coke can be favorably promoted. As for heat processing, 450-550 degreeC is more preferable. The time for performing the heat treatment is usually selected in the range of 0.5 to 40 hours.

前記空気中に暴露する方法は、300〜400℃の温度で空気に暴露させるのが好ましく、350〜380℃の温度で空気に暴露させるのがより好ましい。これによって活性安定化効果と触媒細孔の閉塞による活性の低下抑制効果をより確実なものとすることができる。暴露時間は通常1〜10分が好ましい。   The method of exposing to air is preferably exposed to air at a temperature of 300 to 400 ° C., more preferably exposed to air at a temperature of 350 to 380 ° C. As a result, the activity stabilizing effect and the effect of suppressing the decrease in activity due to the clogging of the catalyst pores can be further ensured. The exposure time is usually preferably 1 to 10 minutes.

このような方法で得られた活性化した水素化処理触媒は、次の要件を満たすことが好ましい。
本発明の活性化した水素化処理触媒は、触媒全量基準でコーク分を20〜40質量%、硫黄分を5〜10質量%含有することが好ましい。コーク分が20質量%未満もしくは硫黄分が5質量%未満では、必要な活性安定化が得られず、一方、コーク分が40質量%を超えもしくは硫黄分が10質量%を超えると、触媒細孔が閉塞されて活性の低下を招くことがある。好ましいコーク分は25〜35質量%、硫黄分は7〜9質量%である。
なお、コーク分及び硫黄分は、炭素硫黄同時分析(赤外吸収法)によって測定した値である。
The activated hydrotreating catalyst obtained by such a method preferably satisfies the following requirements.
The activated hydrotreating catalyst of the present invention preferably contains 20 to 40% by mass of coke and 5 to 10% by mass of sulfur based on the total amount of the catalyst. If the coke content is less than 20% by mass or the sulfur content is less than 5% by mass, the necessary activity stabilization cannot be obtained. On the other hand, if the coke content exceeds 40% by mass or the sulfur content exceeds 10% by mass, The pores may be blocked, resulting in a decrease in activity. The preferable coke content is 25 to 35% by mass, and the sulfur content is 7 to 9% by mass.
The coke content and sulfur content are values measured by carbon sulfur simultaneous analysis (infrared absorption method).

本発明の活性化した水素化処理触媒は、コーク分のH/C(モル比)が、0.5〜0.7であることが好ましい。コーク分のH/C(モル比)がこの範囲を満たさない場合は、活性安定化効果と触媒細孔の閉塞による活性の低下抑制効果とを満たすことができないことがある。コーク分のH/C(モル比)は、0.55〜0.65であることが好ましい。
なお、H/Cは、CHN同時分析法で測定した値である。
The activated hydrotreating catalyst of the present invention preferably has a coke H / C (molar ratio) of 0.5 to 0.7. If the H / C (molar ratio) of the coke does not satisfy this range, it may not be possible to satisfy the activity stabilizing effect and the activity lowering suppressing effect due to clogging of the catalyst pores. The coke H / C (molar ratio) is preferably 0.55 to 0.65.
H / C is a value measured by the CHN simultaneous analysis method.

上記コーク分は、さらに、X線電子発光分析(XPS)のSp2が160.0〜163.0eVのピークを有することが好ましい。このようなピークを有すれば、活性安定化効果と触媒細孔の閉塞による活性の低下抑制効果をより確実に保つことができる。
なお、XPSは、以下の方法で行った。
The coke content preferably further has a peak of Sp2 of 160.0 to 163.0 eV in X-ray electroluminescence analysis (XPS). If such a peak is present, the activity stabilizing effect and the activity lowering suppressing effect due to the clogging of the catalyst pores can be more reliably maintained.
XPS was performed by the following method.

〔XPSの測定方法〕
(前処理)
触媒をメノウ乳鉢で粉砕し、XPS測定資料とした。
(測定条件)
アルミニウムのX線源を用いて150Wの出力にて測定した。またAl2p 74.8eVを規準の結合エネルギーとした。
[Measurement method of XPS]
(Preprocessing)
The catalyst was ground in an agate mortar and used as XPS measurement data.
(Measurement condition)
Measurements were made at an output of 150 W using an aluminum X-ray source. Al2p 74.8 eV was used as the standard binding energy.

本発明の上記活性化された水素化処理触媒は、以下のような条件を満たすものが好ましい。
例えば、耐火性酸化物担体の比表面積は、5〜500m2/gが好ましく、50〜300m2/gがより好ましい。比表面積が5m2/g未満では担持金属の分散性が低下することがあり、500m2/gを超えると反応物の拡散が阻害されることがある。また、細孔容積は、0.2〜1.5cm3/gが好ましく、0.3〜1.2cm3/gがより好ましい。細孔容積は、0.2cm3/g未満であると原料油中のメタル及びコークの析出により触媒細孔が閉塞することがあり、1.5cm3/gを超えると触媒強度が著しく低下し実用に耐えなくなることがある。また、細孔径は、細孔容積の50%点が100〜300Åの範囲にあるものが好ましい。
これらの物性は、反応物である石油留分の分子サイズに適した大きさであり、触媒細孔内部の反応活性点に拡散できる好適なサイズである。
なお、細孔容積及び細孔分布は、窒素による吸脱着法により測定し、BJH法[E.P.Barreff.L.G.Joyner and P.P.Halnda, J.Amer.Chem.Soc.,73,373(1951)]にて解析して得たものである。また、比表面積は、窒素によるB.E.T.法によって求めたものである。
The activated hydrotreatment catalyst of the present invention preferably satisfies the following conditions.
For example, the specific surface area of the refractory oxide support, preferably 5~500m 2 / g, 50~300m 2 / g is more preferable. When the specific surface area is less than 5 m 2 / g, the dispersibility of the supported metal may be lowered, and when it exceeds 500 m 2 / g, diffusion of the reactant may be inhibited. Further, the pore volume is preferably 0.2~1.5cm 3 / g, 0.3~1.2cm 3 / g is more preferable. If the pore volume is less than 0.2 cm 3 / g, catalyst pores may be clogged due to the deposition of metal and coke in the raw material oil, and if it exceeds 1.5 cm 3 / g, the catalyst strength will be significantly reduced. May not be practical. The pore diameter is preferably such that the 50% point of the pore volume is in the range of 100 to 300 mm.
These physical properties are sizes suitable for the molecular size of the petroleum fraction that is a reactant, and are suitable sizes that can diffuse to the reaction active sites inside the catalyst pores.
The pore volume and pore distribution were measured by an adsorption / desorption method using nitrogen, and the BJH method [E. P. Barref. L. G. Joyner and P.M. P. Halnda, J .; Amer. Chem. Soc. , 73, 373 (1951)]. Further, the specific surface area is determined by B.V. E. T. T. It was obtained by law.

本発明の水素化処理触媒の形状は特に限定されず、円柱、球状、三〜六葉、ハニカム等いずれであってもよい。例えば、固定床流通式反応装置では、通常円柱、三つ葉、四つ葉の形の触媒が好適に用いられる。   The shape of the hydrotreating catalyst of the present invention is not particularly limited, and may be any of a cylinder, a sphere, three to six leaves, a honeycomb, and the like. For example, in a fixed bed flow type reaction apparatus, a catalyst in the form of a cylinder, a three-leaf, or a four-leaf is usually preferably used.

本発明の水素化脱硫方法は、上記使用済み水素化処理を活性化した触媒と炭化水素油を接触させて水素化脱硫処理を行うことを特徴とする炭化水素油の水素化脱硫方法である。
水素化脱硫処理に用いられる炭化水素油としては、灯軽油等の軽質な含硫黄炭化水素油や、常圧残油、減圧残油等の重質炭化水素油が挙げられる。
特に、劣質な重質炭化水素油の水素化脱硫に好適に適用できる。劣質な重質炭化水素油は、例えば、API指数20以下の重質な原油から得られる、重質な原油の常圧残油及び減圧残油、溶剤脱歴油、熱分解油、アスファルテン油、タ−ルサンド及び粘度調整のため、これらを一旦予備的に水素化処理した原料油、またはこれらの重質油を軽質油で希釈したものが挙げられる。
The hydrodesulfurization method of the present invention is a hydrodesulfurization method for hydrocarbon oil, characterized in that the hydrodesulfurization treatment is performed by bringing the catalyst having activated the above-described spent hydrotreatment into contact with the hydrocarbon oil.
Examples of the hydrocarbon oil used in the hydrodesulfurization treatment include light sulfur-containing hydrocarbon oils such as kerosene, and heavy hydrocarbon oils such as atmospheric residual oil and vacuum residual oil.
In particular, it can be suitably applied to hydrodesulfurization of inferior heavy hydrocarbon oils. Inferior heavy hydrocarbon oils are, for example, heavy crude oil normal pressure residue and reduced pressure residue oil obtained from heavy crude oil having an API index of 20 or less, solvent history oil, pyrolysis oil, asphaltene oil, In order to adjust the tar sand and viscosity, there may be mentioned raw oils which have been pre-hydrogenated once or those heavy oils diluted with light oils.

なお、劣質な重質炭化水素油は、通常下記のような性状を有するものである。
〔劣質な重質炭化水素油の性状〕
・硫黄分: 0.5質量%以上
・窒素分: 200質量ppm以上
・バナジウム分:5質量ppm以上
・残炭分: 5質量%以上
Inferior heavy hydrocarbon oils usually have the following properties.
[Properties of inferior heavy hydrocarbon oil]
・ Sulfur content: 0.5 mass% or more ・ Nitrogen content: 200 mass ppm or more ・ Vanadium content: 5 mass ppm or more ・ Residual carbon content: 5 mass% or more

以下、本発明の実施例及びその比較例によって本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、触媒の物性は次の方法で測定した。
〔触媒の物性測定方法〕
(1)モリブデンの定量
誘導結合プラズマ発光分光法(ICP)で測定した。
(2)ニッケル及びリンの定量
蛍光X線分析法で測定した。
(3)平均細孔径
明細書に記載した方法で測定した。
(4)細孔容積
明細書に記載した方法で測定した。
(5)比表面積
明細書に記載した方法で測定した。
Hereinafter, the present invention will be described more specifically with reference to examples of the present invention and comparative examples thereof, but the present invention is not limited to these examples.
The physical properties of the catalyst were measured by the following method.
[Method for measuring physical properties of catalyst]
(1) Quantitative determination of molybdenum Measured by inductively coupled plasma emission spectroscopy (ICP).
(2) Measured by quantitative fluorescent X-ray analysis of nickel and phosphorus.
(3) Average pore diameter It measured by the method described in the specification.
(4) Pore volume It measured by the method described in the specification.
(5) Specific surface area It measured by the method described in the specification.

実施例1
(使用済み触媒の調製)
乾燥重量当たり、NiOとして2.9質量%、MoO3として13.4質量%、P25として3.6質量%を含有する重油水素化脱硫触媒Aを小型高圧固定床流通式反応装置の反応管に100cc充填した。ここに硫化剤としてジメチルジスルフィド(DMDS)を添加して硫黄濃度を2.5質量%に調整した軽質軽油を用いて、130kg/cm2、水素気流中、250℃でLHSV 1h-1の条件で21時間通油して予備硫化し、表1に示す代表性状の常圧残油(原料油A)を反応圧力130kg/cm2、液空間速度0.25h-1、水素/油比700Nm3/klで処理して脱硫重油の硫黄分が0.3質量%となるように反応温度を調整しながら約300日間処理し使用済み触媒A1を得た。
(使用済み触媒の後処理)
この使用済み触媒A1を反応管から抜き出し、窒素中で450℃、1時間加熱処理して、空気中で放冷し、コーク担持触媒A2を得た。この触媒の物性を表2に示す。
(触媒の性能評価)
小型高圧固定床流通式反応装置の反応管に、コーク担持触媒A2を100cc充填した。これを、硫化剤としてDMDSを添加して硫黄濃度を2.5質量%に調整した軽質軽油を、130kg/cm2、水素気流中、250℃でLHSV 1h-1、21時間、予備硫化した。続いて表1に示す常圧残油(原料油A)を反応圧力130kg/cm2、液空間速度0.5h-1、水素/油比740Nm3/klで通油して、生成油硫黄分が0.5質量%となるように温度を調整しながら1500時間処理した。この目標達成温度の変化を表3に示す。
Example 1
(Preparation of spent catalyst)
A heavy oil hydrodesulfurization catalyst A containing 2.9% by mass as NiO, 13.4% by mass as MoO 3 , and 3.6% by mass as P 2 O 5 per dry weight of a small high pressure fixed bed flow reactor The reaction tube was filled with 100 cc. Here, light diesel oil with dimethyl disulfide (DMDS) added as a sulfiding agent and adjusted to a sulfur concentration of 2.5 mass% was used under conditions of 130 kg / cm 2 , hydrogen stream, 250 ° C. and LHSV 1h −1 . Passed for 21 hours and presulfided, and atmospheric pressure residual oil (raw oil A) having the representative properties shown in Table 1 was reacted at 130 kg / cm 2 , liquid space velocity 0.25 h −1 , hydrogen / oil ratio 700 Nm 3 / The used catalyst A1 was obtained by treating for about 300 days while adjusting the reaction temperature so that the sulfur content of the desulfurized heavy oil was 0.3% by mass by treating with kl.
(Aftertreatment of spent catalyst)
This used catalyst A1 was extracted from the reaction tube, heat-treated in nitrogen at 450 ° C. for 1 hour, and allowed to cool in air to obtain a coke-supported catalyst A2. Table 2 shows the physical properties of this catalyst.
(Catalyst performance evaluation)
100 cc of the coke-supported catalyst A2 was filled in a reaction tube of a small high-pressure fixed bed flow type reactor. This was lightly sulfidized with LDSV 1h −1 for 21 hours at 250 ° C. in a hydrogen gas stream at 130 kg / cm 2 in a hydrogen gas stream by adding DMDS as a sulfiding agent to adjust the sulfur concentration to 2.5 mass%. Subsequently, the normal pressure residual oil (raw oil A) shown in Table 1 was passed at a reaction pressure of 130 kg / cm 2 , a liquid space velocity of 0.5 h −1 , and a hydrogen / oil ratio of 740 Nm 3 / kl to produce a sulfur content of the product oil. Was processed for 1500 hours while adjusting the temperature to be 0.5% by mass. Table 3 shows changes in the target achievement temperature.

比較例1
実施例1において、使用済み触媒A1の後処理を行なわなかった以外は実施例1と同様の操作を行なった。この使用済み触媒A1を用いて実施例1と同様の評価を行なった場合の目標達成温度の変化を表3に示す。
比較例2
実施例1において、使用済み触媒A1の後処理を670℃で行った以外は実施例1と同様の操作を行い、コーク担持触媒A3を得た。この触媒を用いて実施例1と同様の評価を行なった場合の目標達成温度の変化を表3に示す。
Comparative Example 1
In Example 1, the same operation as in Example 1 was performed, except that the post-treatment of the spent catalyst A1 was not performed. Table 3 shows changes in the target achievement temperature when the same evaluation as in Example 1 was performed using this used catalyst A1.
Comparative Example 2
In Example 1, except that the post-treatment of the used catalyst A1 was performed at 670 ° C., the same operation as in Example 1 was performed to obtain a coke-supported catalyst A3. Table 3 shows changes in the target achievement temperature when the same evaluation as in Example 1 was performed using this catalyst.

Figure 2010069467
Figure 2010069467

Figure 2010069467
Figure 2010069467

Figure 2010069467
Figure 2010069467

本発明は、水素化処理を行う上で劣質な性状を有する重質炭化水素油であっても水素化脱硫、水素化脱メタル、水素化分解などの水素化処理を効率的かつ長期間安定に実施できる使用済み水素化処理触媒の活性化方法を提供するものであり、水素化処理が困難な重質炭化水素油の精製に有効かつ経済的に有効に利用される。   The present invention enables efficient and long-term stable hydroprocessing such as hydrodesulfurization, hydrodemetallation, and hydrocracking even for heavy hydrocarbon oils that have poor properties when performing hydroprocessing. The present invention provides a method for activating a spent hydroprocessing catalyst that can be carried out, and is effective and economically effective for refining heavy hydrocarbon oils that are difficult to hydrotreat.

Claims (4)

重油脱硫処理装置から抜き出した使用済み触媒を不活性ガス雰囲気下、400〜600℃で加熱処理することを特徴とする使用済み水素化処理触媒の活性化方法。 A method for activating a spent hydrotreating catalyst characterized by heat-treating a spent catalyst extracted from a heavy oil desulfurization treatment apparatus at 400 to 600 ° C in an inert gas atmosphere. さらに300〜400℃で空気中に暴露することを特徴とする請求項1に記載の使用済み水素化処理触媒の活性化方法。 The method for activating a spent hydroprocessing catalyst according to claim 1, further comprising exposing to air at 300 to 400 ° C. 活性化した使用済み水素化処理触媒が、触媒全量基準でコーク分を20〜40質量%、硫黄分を5〜10質量%含有し、かつ、コークのH/C(モル比)が0.5〜0.7であり、X線電子発光分析(XPS)のSp2が160.0〜163.0eVのピークを有することを特徴とする請求項1又は2に記載の使用済み水素化処理触媒の活性化方法。 The activated spent hydrotreating catalyst contains 20 to 40% by mass of coke and 5 to 10% by mass of sulfur based on the total amount of catalyst, and H / C (molar ratio) of coke is 0.5. The activity of the spent hydroprocessing catalyst according to claim 1 or 2, wherein Sp2 of X-ray electroluminescence analysis (XPS) has a peak of 160.0 to 163.0 eV. Method. 請求項1〜3のいずれかに記載の使用済み水素化処理触媒の活性化方法によって得られた水素化処理触媒と重質炭化水素油を接触させて水素化脱硫処理を行うことを特徴とする重質炭化水素油の水素化脱硫方法。 The hydrodesulfurization treatment is performed by bringing the hydrotreating catalyst obtained by the method for activating a spent hydrotreating catalyst according to any one of claims 1 to 3 into contact with a heavy hydrocarbon oil. Hydrodesulfurization method for heavy hydrocarbon oil.
JP2008243102A 2008-09-22 2008-09-22 Method of activating spent hydrogenation catalyst Pending JP2010069467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008243102A JP2010069467A (en) 2008-09-22 2008-09-22 Method of activating spent hydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008243102A JP2010069467A (en) 2008-09-22 2008-09-22 Method of activating spent hydrogenation catalyst

Publications (1)

Publication Number Publication Date
JP2010069467A true JP2010069467A (en) 2010-04-02

Family

ID=42201743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008243102A Pending JP2010069467A (en) 2008-09-22 2008-09-22 Method of activating spent hydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP2010069467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147223A1 (en) * 2014-03-27 2015-10-01 出光興産株式会社 Method for regenerating and utilizing heavy-oil desulfurization catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147223A1 (en) * 2014-03-27 2015-10-01 出光興産株式会社 Method for regenerating and utilizing heavy-oil desulfurization catalyst
JP2015189772A (en) * 2014-03-27 2015-11-02 出光興産株式会社 Method for recycling heavy oil desulfurization catalyst

Similar Documents

Publication Publication Date Title
JP5015818B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP5060044B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP5228221B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JP6307072B2 (en) Improved residual hydrotreating catalyst containing titania
WO2006022419A1 (en) Process for hydrorefining heavy hydrocarbon oil
JP5439673B2 (en) Method for hydrotreating heavy hydrocarbon oil
JP4545328B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
RU2468864C1 (en) Catalyst, method of its preparation and method of hydrorefining diesel distillates
JP5537222B2 (en) Method for producing hydrogenated HAR oil
JP3553429B2 (en) Gas oil hydrotreating catalyst and gas oil hydrotreating method
JP2010069467A (en) Method of activating spent hydrogenation catalyst
JP2010069466A (en) Hydrogenation catalyst
JP4916370B2 (en) Process for hydrotreating diesel oil
JP4480120B2 (en) Gas oil hydrotreating catalyst and gas oil hydrotreating method
CN111100691B (en) Hydrocarbon oil hydrotreating method
US8921254B2 (en) Hydroprocessing catalyst and methods of making and using such a catalyst
JP5841480B2 (en) Method for hydrotreating heavy residual oil
JP3990676B2 (en) Hydrodesulfurization method of light oil
JP5611750B2 (en) Sulfurization method for hydrocarbon treatment catalyst
JP2010214297A (en) Carbon carrier catalyst for removing metal from heavy crude oil and residual oil
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
JP2005013848A (en) Carrier for hydrogenation catalyst, hydrogenation catalyst of hydrocarbon oil and hydrogenation method using the hydrogenation catalyst
JP2006342288A (en) Method for hydrogenation-treating hydrocarbon oil
JP5660672B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil