JP2010059001A - Cuprous oxide powder and method for producing the same - Google Patents

Cuprous oxide powder and method for producing the same Download PDF

Info

Publication number
JP2010059001A
JP2010059001A JP2008224488A JP2008224488A JP2010059001A JP 2010059001 A JP2010059001 A JP 2010059001A JP 2008224488 A JP2008224488 A JP 2008224488A JP 2008224488 A JP2008224488 A JP 2008224488A JP 2010059001 A JP2010059001 A JP 2010059001A
Authority
JP
Japan
Prior art keywords
cuprous oxide
oxide powder
reducing agent
chlorine
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008224488A
Other languages
Japanese (ja)
Other versions
JP5142891B2 (en
Inventor
Hidefumi Fujita
英史 藤田
Shinichi Konno
慎一 紺野
Shuichi Fujiyama
秀一 藤山
Hidenori Kawamoto
英則 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2008224488A priority Critical patent/JP5142891B2/en
Publication of JP2010059001A publication Critical patent/JP2010059001A/en
Application granted granted Critical
Publication of JP5142891B2 publication Critical patent/JP5142891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cuprous oxide powder in which the contents of carbon and chlorine are low and which is constituted of fine particles, and to provide a method for producing the same. <P>SOLUTION: In the method for producing the cuprous oxide powder, comprising adding an alkali solution and a reducing agent solution to an aqueous solution containing divalent copper ion to reduce and precipitate cuprous copper oxide particles, an alkali solution containing no carbon and no chlorine is used as the alkali solution and the solution of a reducing agent containing no carbon and no chlorine is used as the reducing agent solution. Thereby, a cuprous oxide powder having a 50% particle diameter of 0.05-1.0 μm, a carbon content of ≤0.1 mass%, a chlorine content of <0.01 mass%, and mixed shapes including a spherical shape, a nearly spherical shape and at least one shape of hexahedral shape and scale-like shape is produced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、亜酸化銅粉末およびその製造方法に関し、特に、電子材料用銅粉の原料などに使用するのに適した亜酸化銅粉末およびその製造方法に関する。   The present invention relates to a cuprous oxide powder and a method for producing the same, and more particularly to a cuprous oxide powder suitable for use as a raw material for copper powder for electronic materials and a method for producing the same.

亜酸化銅粉末は、電子材料用銅粉などの銅粉、船底塗料(防汚塗料)用の防腐剤、殺菌剤、農薬、導電塗料、銅めっき液、窯業関係の着色剤、触媒、整流器、太陽電池などの原料や材料として、種々の分野で使用されている。   Cuprous oxide powders include copper powders for electronic materials, antiseptics for ship bottom paints (antifouling paints), disinfectants, agricultural chemicals, conductive paints, copper plating solutions, ceramics-related colorants, catalysts, rectifiers, It is used in various fields as materials and materials for solar cells and the like.

亜酸化銅粉末を電子材料用銅粉の原料として使用する場合、例えば、積層セラミックコンデンサや積層セラミックインダクタなどの積層セラミック電子部品の内部電極、小型積層セラミックコンデンサや積層セラミックインダクタなどの外部電極などを形成する銅ペーストに使用する銅粉の原料として亜酸化銅粉末が使用されている。   When cuprous oxide powder is used as a raw material for copper powder for electronic materials, for example, internal electrodes of multilayer ceramic electronic components such as multilayer ceramic capacitors and multilayer ceramic inductors, external electrodes such as small multilayer ceramic capacitors and multilayer ceramic inductors, etc. Cuprous oxide powder is used as a raw material for copper powder used in the copper paste to be formed.

近年、積層セラミックコンデンサなどの高容量化や小型化に伴って、電極の薄層化が求められている。そのため、積層セラミックコンデンサなどの電極用の金属材料として、サブミクロン領域(約1μm以下の領域)の粒径で粒度分布がシャープな単分散の銅微粒子からなる銅粉が求められている。また、積層セラミックコンデンサなどの電子部品の電極が炭素などの不純物を含むと、電極の緻密性に影響するため、銅粉中の炭素含有量が低いことも求められている。特に、積層セラミックコンデンサなどの電子部品の電極が塩素を含むと、電子部品の信頼性が低下するため、銅粉中の塩素含有量が極めて低いことが求められている。   In recent years, with the increase in capacity and miniaturization of multilayer ceramic capacitors and the like, there has been a demand for thinner electrodes. Therefore, as a metal material for electrodes such as a multilayer ceramic capacitor, there is a demand for copper powder made of monodispersed copper fine particles having a particle size in the submicron region (region of about 1 μm or less) and a sharp particle size distribution. In addition, when an electrode of an electronic component such as a multilayer ceramic capacitor contains impurities such as carbon, the density of the electrode is affected, so that the carbon content in the copper powder is also required to be low. In particular, if the electrode of an electronic component such as a multilayer ceramic capacitor contains chlorine, the reliability of the electronic component is lowered, and therefore the chlorine content in the copper powder is required to be extremely low.

一般に、銅粉は、化学還元法やアトマイズ法により製造されている。化学還元法は、サブミクロン領域の粒径で粒度分布がシャープな単分散の銅微粒子からなる銅粉を製造するのに適しているが、還元剤、錯化剤、分散剤などの原料に由来する炭素や塩素などの不純物を銅粒子中に取り込んでしまうので、緻密な電極を得るには適していない。一方、アトマイズ法では、銅粉の原料の純度を高くすることによって銅粉中の不純物を少なくすることはできるが、サブミクロン領域の粒径で粒度分布がシャープな銅微粒子からなる銅粉を効率的に得る技術が確立されていない。   Generally, copper powder is manufactured by a chemical reduction method or an atomizing method. The chemical reduction method is suitable for producing copper powder consisting of monodispersed copper fine particles with a particle size in the submicron region and a sharp particle size distribution, but derived from raw materials such as reducing agents, complexing agents, and dispersing agents. Since impurities such as carbon and chlorine are taken into the copper particles, it is not suitable for obtaining a dense electrode. On the other hand, with the atomization method, impurities in the copper powder can be reduced by increasing the purity of the raw material of the copper powder, but copper powder consisting of copper fine particles with a particle size in the submicron region and a sharp particle size distribution is efficiently used. The technology to gain is not established.

そこで、本発明者らは、化学還元法によって炭素含有量および塩素含有量が低く且つサブミクロン領域の粒径で粒度分布がシャープな単分散の銅微粒子からなる銅粉を製造するために鋭意研究した結果、炭素含有量および塩素含有量が低く且つ微粒の亜酸化銅粉末を原料として使用すれば、炭素含有量および塩素含有量が低く且つサブミクロン領域の粒径で粒度分布がシャープな単分散の銅微粒子からなる銅粉を製造することができることを見出した。   Therefore, the present inventors have intensively studied to produce copper powder composed of monodispersed copper fine particles having a low carbon content and chlorine content, a particle size in the submicron region, and a sharp particle size distribution by a chemical reduction method. As a result, if carbon and chlorine contents are low and fine cuprous oxide powder is used as a raw material, monodispersion with a low carbon content and chlorine content and a particle size in the submicron region and a sharp particle size distribution It has been found that copper powder composed of copper fine particles can be produced.

また、亜酸化銅粉末を船底塗料(防汚塗料)などの塗料の原料として使用する場合には、塗布性や塗布量削減の観点から、微粒で表面積が大きい亜酸化銅粉末が求められている。また、亜酸化銅粉末を銅めっき液の材料として使用する場合にも、銅めっき液への溶解性を高くするために、微粒で表面積が大きい亜酸化銅粉末が求められている。さらに、亜酸化銅粉末を触媒の原料として使用する場合にも、少量で有効な効果を得られるように、微粒で表面積が大きい亜酸化銅粉末が求められている。また、これらの製品が不純物によって汚染されるのを防止する観点から、亜酸化銅粉末の純度が高いことも求められている。   Further, when cuprous oxide powder is used as a raw material for paints such as ship bottom paint (antifouling paint), cuprous oxide powder having a fine particle and a large surface area is required from the viewpoint of coating properties and reduction of coating amount. . Moreover, when using cuprous oxide powder as a material for a copper plating solution, a cuprous oxide powder having a fine particle size and a large surface area is required to increase the solubility in the copper plating solution. Furthermore, when using cuprous oxide powder as a catalyst raw material, a cuprous oxide powder having a fine particle size and a large surface area is required so that an effective effect can be obtained with a small amount. In addition, from the viewpoint of preventing these products from being contaminated by impurities, it is also required that the cuprous oxide powder has a high purity.

従来、亜酸化銅の製造方法として、銅塩含有溶液にアルカリ溶液と還元糖を添加して亜酸化銅粉末を製造する方法(例えば、特許文献1、2参照)、光触媒を用いて溶液中の銅イオンを還元して亜酸化銅粉末を製造する方法(例えば、特許文献3参照)、塩酸含有塩化銅溶液に金属銅などを溶解させて塩化第二銅を塩化第一銅に還元し、得られた溶液をアルカリ溶液と反応させて亜酸化銅を生成させる方法(例えば、特許文献4、5参照)、2価の銅の水溶液にホルマリン、亜硫酸ソーダ、転化糖などの還元剤とアルカリを添加して亜酸化銅を製造する方法(例えば、特許文献6参照)、塩素イオン含有溶液中で陽極を金属銅として電解する方法などが提案されている。   Conventionally, as a method for producing cuprous oxide, a method of producing a cuprous oxide powder by adding an alkaline solution and a reducing sugar to a copper salt-containing solution (see, for example, Patent Documents 1 and 2), A method for producing cuprous oxide powder by reducing copper ions (for example, see Patent Document 3), by dissolving metallic copper in a hydrochloric acid-containing copper chloride solution to reduce cupric chloride to cuprous chloride, A method in which the obtained solution is reacted with an alkali solution to produce cuprous oxide (for example, see Patent Documents 4 and 5). A reducing agent such as formalin, sodium sulfite, and invert sugar is added to a divalent copper aqueous solution and an alkali. Thus, a method for producing cuprous oxide (see, for example, Patent Document 6), a method for electrolyzing an anode as metallic copper in a chlorine ion-containing solution, and the like have been proposed.

特開2005−255445号公報(段落番号0024)Japanese Patent Laying-Open No. 2005-255445 (paragraph number 0024) 特開2005−255446号公報(段落番号0025)JP 2005-255446 A (paragraph number 0025) 特開2002−308620号公報(段落番号0008)JP 2002-308620 A (paragraph number 0008) 特開2003−165724号公報(段落番号0006)JP 2003-165724 A (paragraph number 0006) 特開2003−165725号公報(段落番号0006)JP2003-165725A (paragraph number 0006) 特開昭61−58816号公報(第1−2頁)JP-A-61-58816 (page 1-2)

しかし、特許文献1および2の方法では、得られる亜酸化銅粉末の粒径は1.5〜15μmであり、サブミクロン領域の粒径の亜酸化銅粉末を得ることができず、また、多量の還元糖を使用しているため、炭素含有量が低い亜酸化銅粉末を得るのは困難である。   However, in the methods of Patent Documents 1 and 2, the obtained cuprous oxide powder has a particle size of 1.5 to 15 μm, and a cuprous oxide powder having a particle size in the submicron region cannot be obtained. Therefore, it is difficult to obtain a cuprous oxide powder with a low carbon content.

また、特許文献3の方法では、得られる亜酸化銅粉末の粒径は1.0〜5.0μmであり、サブミクロン領域の粒径の亜酸化銅粉末を得ることができず、また、還元剤として光触媒を使用しているので還元剤由来の炭素などの不純物を含まないが、炭素を含む錯化剤を使用しているため、炭素含有量が低い亜酸化銅粉末を得るのは困難である。   Further, in the method of Patent Document 3, the obtained cuprous oxide powder has a particle size of 1.0 to 5.0 μm, and it is not possible to obtain a cuprous oxide powder having a particle size in the submicron region. Since photocatalyst is used as an agent, it does not contain impurities such as carbon derived from a reducing agent, but since a complexing agent containing carbon is used, it is difficult to obtain cuprous oxide powder with a low carbon content. is there.

また、特許文献4および5の方法では、得られる亜酸化銅粉末の粒径は4〜5μmであり、サブミクロン領域の粒径の亜酸化銅粉末を得ることができず、また、不純物としての塩素含有量が低い亜酸化銅粉末を得るのは困難である。   In addition, in the methods of Patent Documents 4 and 5, the obtained cuprous oxide powder has a particle size of 4 to 5 μm, and it is not possible to obtain a cuprous oxide powder having a particle size in the submicron region. It is difficult to obtain cuprous oxide powder with low chlorine content.

また、特許文献6の方法では、得られる亜酸化銅粉末の粒径は明確に記載されていないが、325Mの篩を使用していることからミクロン領域(約1μm以上の領域)から〜数十μm領域であると考えられ、また、不純物として0.4質量%の塩素分を含有しており、塩素含有量が低い亜酸化銅粉末を得るのは困難である。   Further, in the method of Patent Document 6, the particle size of the obtained cuprous oxide powder is not clearly described, but since a 325M sieve is used, from the micron region (a region of about 1 μm or more) to tens of tens. It is considered to be in the μm region, and 0.4% by mass of chlorine is contained as an impurity, and it is difficult to obtain a cuprous oxide powder having a low chlorine content.

さらに、塩素イオン含有溶液中で陽極を金属銅として電解する方法では、サブミクロン領域の粒径の亜酸化銅粉末を得ることができず、また、不純物としての塩素含有量が低い亜酸化銅粉末を得るのは困難である。   Furthermore, in the method of electrolyzing the anode as metallic copper in a chloride ion-containing solution, a cuprous oxide powder having a particle size in the submicron region cannot be obtained, and the cuprous oxide powder having a low chlorine content as an impurity. Is difficult to get.

したがって、本発明は、このような従来の問題点に鑑み、炭素含有量および塩素含有量が低く且つ微粒の亜酸化銅粉末およびその製造方法を提供することを目的とする。   Therefore, in view of such conventional problems, an object of the present invention is to provide a fine cuprous oxide powder having a low carbon content and a low chlorine content and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究した結果、2価の銅イオンを含有する水溶液にアルカリ溶液と還元剤溶液を添加して亜酸化銅粒子を還元析出させる亜酸化銅粉末の製造方法において、アルカリ溶液として炭素および塩素を含まないアルカリの溶液を使用するとともに、還元剤溶液として炭素および塩素を含まない還元剤の溶液を使用することにより、炭素含有量および塩素含有量が低く且つ微粒の亜酸化銅粉末を製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have added cupric oxide powder to reduce and precipitate cuprous oxide particles by adding an alkaline solution and a reducing agent solution to an aqueous solution containing divalent copper ions. In the production method of the present invention, by using an alkali solution containing no carbon and chlorine as the alkaline solution, and using a reducing agent solution containing no carbon and chlorine as the reducing agent solution, the carbon content and the chlorine content are reduced. It has been found that low and fine cuprous oxide powder can be produced, and the present invention has been completed.

すなわち、本発明による亜酸化銅粉末の製造方法は、2価の銅イオンを含有する水溶液にアルカリ溶液と還元剤溶液を添加して亜酸化銅粒子を還元析出させる亜酸化銅粉末の製造方法において、アルカリ溶液が炭素および塩素を含まないアルカリの溶液であり、還元剤溶液が炭素および塩素を含まない還元剤の溶液であることを特徴とする。この亜酸化銅粉末の製造方法において、2価の銅イオンを含有する水溶液にアルカリ溶液を添加した後に還元剤溶液を添加してもよいし、2価の銅イオンを含有する水溶液に還元剤溶液を添加した後にアルカリ溶液を添加してもよい。また、炭素および塩素を含まないアルカリが、アンモニア、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる1種以上のアルカリであるであるのが好ましい。また、炭素および塩素を含まない還元剤が、硫酸ヒドロキシルアミン、硝酸ヒドロキシルアミン、亜硫酸ナトリウム、亜硫酸水素ナトリウム、亜ジチオン酸ナトリウム、硫酸ヒドラジン、リン酸ヒドラジン、ヒドラジン、次亜リン酸および次亜リン酸ナトリウムからなる群から選ばれる1種以上の還元剤であるのが好ましく、特に、硫酸ヒドロキシルアミンであるのが好ましい。さらに、2価の銅イオンを含有する水溶液が、硫酸銅および硝酸銅の少なくとも一方を含む水溶液であるのが好ましい。   That is, the method for producing a cuprous oxide powder according to the present invention is a method for producing a cuprous oxide powder in which an alkaline solution and a reducing agent solution are added to an aqueous solution containing divalent copper ions to reduce and precipitate cuprous oxide particles. The alkaline solution is an alkaline solution containing no carbon and chlorine, and the reducing agent solution is a reducing agent solution containing no carbon and chlorine. In this method for producing cuprous oxide powder, a reducing agent solution may be added after adding an alkaline solution to an aqueous solution containing divalent copper ions, or a reducing agent solution may be added to an aqueous solution containing divalent copper ions. The alkaline solution may be added after adding. The alkali not containing carbon or chlorine is preferably one or more alkalis selected from the group consisting of ammonia, sodium hydroxide, potassium hydroxide and lithium hydroxide. Carbon and chlorine-free reducing agents are hydroxylamine sulfate, hydroxylamine nitrate, sodium sulfite, sodium hydrogen sulfite, sodium dithionite, hydrazine sulfate, hydrazine phosphate, hydrazine, hypophosphorous acid and hypophosphorous acid. One or more reducing agents selected from the group consisting of sodium are preferable, and hydroxylamine sulfate is particularly preferable. Furthermore, the aqueous solution containing divalent copper ions is preferably an aqueous solution containing at least one of copper sulfate and copper nitrate.

また、本発明による亜酸化銅粉末は、50%粒径が0.05〜1.0μm、炭素含有量が0.1質量%以下、塩素含有量が0.01質量%未満であることを特徴とする。この亜酸化銅粉末において、亜酸化銅粉末の形状が、球状と、略球状と、六面体状および鱗片状の少なくとも一方とを混合した形状であるのが好ましい。   The cuprous oxide powder according to the present invention is characterized in that a 50% particle size is 0.05 to 1.0 μm, a carbon content is 0.1% by mass or less, and a chlorine content is less than 0.01% by mass. And In the cuprous oxide powder, the cuprous oxide powder preferably has a shape in which a spherical shape, a substantially spherical shape, and at least one of a hexahedral shape and a scale shape are mixed.

さらに、本発明による銅粉の製造方法は、上記のいずれかに記載の亜酸化銅粉末を還元することを特徴とする。   Furthermore, the manufacturing method of the copper powder by this invention reduces the cuprous oxide powder in any one of said.

なお、本明細書中において、「炭素および塩素を含まない」とは、組成中に炭素(C)や塩素(Cl)を含まないことをいい、不可避不純物を除いて炭素および塩素を含まないことを意味する。   In this specification, “not containing carbon and chlorine” means that the composition does not contain carbon (C) or chlorine (Cl), and does not contain carbon or chlorine except for inevitable impurities. Means.

本発明によれば、2価の銅イオンを含有する水溶液にアルカリ溶液と還元剤溶液を添加して亜酸化銅粒子を還元析出させる亜酸化銅粉末の製造方法において、アルカリ溶液として炭素および塩素を含まないアルカリの溶液を使用するとともに、還元剤溶液として炭素および塩素を含まない還元剤の溶液を使用することにより、炭素含有量および塩素含有量が低く且つ微粒の亜酸化銅粉末を製造することができる。   According to the present invention, in a method for producing cuprous oxide powder in which an alkali solution and a reducing agent solution are added to an aqueous solution containing divalent copper ions to reduce and precipitate cuprous oxide particles, carbon and chlorine are used as the alkali solution. To produce a fine cuprous oxide powder with a low carbon content and a low chlorine content by using an alkaline solution that does not contain carbon and a reducing agent solution that does not contain carbon and chlorine as the reducing agent solution. Can do.

本発明による亜酸化銅粉末の製造方法の実施の形態では、2価の銅イオンを含有する水溶液にアルカリ溶液と還元剤溶液を添加して亜酸化銅粒子を還元析出させる亜酸化銅粉末の製造方法において、アルカリ溶液として炭素および塩素を含まないアルカリの溶液を使用するとともに、還元剤溶液として炭素および塩素を含まない還元剤の溶液を使用する。   Embodiment of the manufacturing method of the cuprous oxide powder by this invention manufacture of the cuprous oxide powder which adds an alkaline solution and a reducing agent solution to the aqueous solution containing a bivalent copper ion, and carries out reduction precipitation of the cuprous oxide particle. In the method, an alkaline solution containing no carbon and chlorine is used as the alkaline solution, and a reducing agent solution containing no carbon and chlorine is used as the reducing agent solution.

この亜酸化銅粉末の製造方法では、2価の銅イオンを含有する水溶液にアルカリ溶液を添加して懸濁液とした後に還元剤溶液を添加してもよいし、2価の銅イオンを含有する水溶液に還元剤溶液を添加した後にアルカリ溶液を添加してもよい。なお、2価の銅イオンを含有する水溶液にアルカリ溶液を添加して懸濁液とした後に還元剤溶液を添加する場合には、2価の銅イオンを含有する水溶液にアルカリ溶液を添加して、水酸化銅(Cu(OH))を生成している懸濁液に還元剤溶液を添加してもよいし、水酸化銅を加熱して脱水および分解させて、酸化銅(CuO)を生成している懸濁液に還元剤溶液を添加してもよい。 In this method for producing cuprous oxide powder, an alkaline solution may be added to an aqueous solution containing divalent copper ions to form a suspension, and then a reducing agent solution may be added, or divalent copper ions are contained. The alkaline solution may be added after the reducing agent solution is added to the aqueous solution. In addition, when adding a reducing agent solution after adding an alkaline solution to an aqueous solution containing divalent copper ions to make a suspension, the alkaline solution is added to an aqueous solution containing divalent copper ions. The reducing agent solution may be added to the suspension in which copper hydroxide (Cu (OH) 2 ) is generated, or copper hydroxide is heated to dehydrate and decompose to obtain copper oxide (CuO). A reducing agent solution may be added to the resulting suspension.

2価の銅イオンを使用するのは、水溶性反応系における取扱いが簡便になるからである。2価の銅イオンの供給源になる原料として、コスト、入手し易さ、取扱いの安全性などを考慮して、硫酸銅(硫酸銅水和物を含む)、硝酸銅(硝酸銅水和物を含む)、またはこれらの混合物を使用するのが好ましい。なお、1価の銅イオンを使用すると、水溶性反応系における取扱いが簡便ではない。例えば、シアン化銅(I)を使用すると、酸性溶液中では有毒なシアン化水素が発生するので、安全に反応させるための設備が必要になり、また、取扱上の制約も多くなる。   The divalent copper ion is used because the handling in the water-soluble reaction system becomes simple. Copper sulfate (including copper sulfate hydrate), copper nitrate (copper nitrate hydrate), considering the cost, easy availability, and safety of handling as raw materials to supply divalent copper ions Or a mixture thereof is preferably used. When monovalent copper ions are used, handling in a water-soluble reaction system is not easy. For example, when copper (I) cyanide is used, toxic hydrogen cyanide is generated in an acidic solution, so that a facility for safe reaction is required and handling restrictions are increased.

炭素および塩素を含まないアルカリ溶液としては、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどの一般に使用されている様々なアルカリの溶液を使用することができるが、水酸化ナトリウム溶液を使用するのが好ましい。アルカリの添加量は、(pHによって還元剤による還元の強さが異なるので)還元剤の添加量により異なるが、2価の銅イオンに対して1.0〜2.0当量にするのが好ましい。なお、空気中の二酸化炭素によって汚染されたアルカリ溶液を使用すると、生成する亜酸化銅が炭素を含有する場合があるので、アルカリ溶液が空気中の二酸化炭素によって汚染されないように注意する必要がある。   As the alkali solution containing no carbon and chlorine, various commonly used alkali solutions such as ammonia, sodium hydroxide, potassium hydroxide, lithium hydroxide can be used, but sodium hydroxide solution is used. It is preferable to do this. The amount of alkali added varies depending on the amount of reducing agent added (because the strength of reduction by the reducing agent varies depending on the pH), but is preferably 1.0 to 2.0 equivalents relative to the divalent copper ion. . If an alkaline solution contaminated with carbon dioxide in the air is used, the cuprous oxide produced may contain carbon, so care must be taken not to contaminate the alkaline solution with carbon dioxide in the air. .

炭素および塩素を含まない還元剤としては、硫酸ヒドロキシルアミン(硫酸ヒドロキシルアンモニウム)、硝酸ヒドロキシルアミン、亜硫酸ナトリウム、亜硫酸水素ナトリウム、亜ジチオン酸ナトリウム(ハイドロサルファイド)、硫酸ヒドラジン、リン酸ヒドラジン、ヒドラジン、次亜リン酸、次亜リン酸ナトリウムなどの様々な還元剤を使用することができる。これらの還元剤のうち、生成する亜酸化銅粒子の粒径を小さくすることができ且つ亜酸化銅粒子の粒径を制御し易くなることから、硫酸ヒドロキシルアミンを使用するのが好ましい。炭素および塩素を含まない還元剤を使用するのは、炭素や塩素を含む還元剤を使用すると、生成した亜酸化銅中に、還元反応により分解した微量の物質(酸化された還元剤)が混入するので好ましくないからである。還元剤の添加量は、化学量論的に2価の銅イオンを1価の銅まで(すなわち亜酸化銅まで)還元することができる量以上にする必要があるが、還元剤の添加量が多過ぎると、コスト的に不利であり、また、pHや還元剤の種類によって銅まで還元されてしまうので、1〜4当量であるのが好ましい。なお、還元剤溶液の添加後の溶液内の均一反応を実現するために、還元剤溶液を一挙に添加するのが好ましい。具体的には、反応溶液の攪拌方法(反応溶液の拡散速度)や反応スケールにより一概にはいえないが、還元剤溶液を速く添加する程よく、例えば、1分以内に添加するのが好ましい。   Carbon and chlorine-free reducing agents include hydroxylamine sulfate (hydroxylammonium sulfate), hydroxylamine nitrate, sodium sulfite, sodium hydrogen sulfite, sodium dithionite (hydrosulfide), hydrazine sulfate, hydrazine phosphate, hydrazine, Various reducing agents such as phosphorous acid and sodium hypophosphite can be used. Among these reducing agents, it is preferable to use hydroxylamine sulfate because the particle size of the cuprous oxide particles to be produced can be reduced and the particle size of the cuprous oxide particles can be easily controlled. The use of a reducing agent that does not contain carbon or chlorine means that if a reducing agent containing carbon or chlorine is used, a small amount of substance (oxidized reducing agent) decomposed by the reduction reaction is mixed in the produced cuprous oxide. This is because it is not preferable. The amount of the reducing agent added must be stoichiometrically greater than the amount capable of reducing divalent copper ions to monovalent copper (ie, to cuprous oxide). If it is too much, it is disadvantageous in terms of cost, and it is reduced to copper depending on the pH and the type of the reducing agent, so it is preferably 1 to 4 equivalents. In order to realize a uniform reaction in the solution after the addition of the reducing agent solution, it is preferable to add the reducing agent solution all at once. Specifically, the reaction solution stirring method (diffusion rate of the reaction solution) and the reaction scale cannot be generally specified, but the reducing agent solution is preferably added as quickly as possible, for example, within 1 minute.

また、還元反応の際に反応液が均一に混合するように反応液を攪拌するのが好ましく、攪拌方法としては、例えば、マグネットスターラーにより攪拌する方法や、羽根を備え付けた攪拌棒を反応液中に設置して外部モーターにより回転することにより攪拌する方法などが挙げられる。この還元時の反応温度は、10℃〜100℃程度であればよく、反応の制御性から25℃〜80℃であるのが好ましい。   Further, it is preferable to stir the reaction solution so that the reaction solution is uniformly mixed during the reduction reaction. Examples of the stirring method include a stirring method using a magnetic stirrer and a stirring rod equipped with blades in the reaction solution. And a method of stirring by rotating with an external motor. The reaction temperature during this reduction may be about 10 ° C. to 100 ° C., and is preferably 25 ° C. to 80 ° C. from the controllability of the reaction.

このようにして得られた亜酸化銅含有スラリーをろ過し、水洗することによって、塊状の亜酸化銅ケーキが得られる。ろ過および水洗の方法としては、フィルタープレスなどにより粉体を固定した状態で水洗する方法や、スラリーをデカントし、その上澄みを除去した後に純水を加えて攪拌し、その後、再びデカントして上澄み液を除去する操作を繰り返し行う方法や、ろ過後の亜酸化銅をリパルプした後に再度ろ過する操作を繰り返し行う方法などのいずれでもよいが、得られた亜酸化銅ケーキ中に局所的に残留している不純物をできる限り除去することができる方法が好ましい。また、得られた亜酸化銅ケーキを、銅まで還元させず、酸化銅(CuO)まで酸化させない雰囲気および温度で乾燥(例えば、真空状態における乾燥)することによって、亜酸化銅微粒子を得ることができる。また、必要に応じて、乾式解砕処理、篩分け、風力分級などの処理を行ってもよい。   The cuprous oxide-containing slurry thus obtained is filtered and washed with water to obtain a massive cuprous oxide cake. As a method of filtration and washing with water, a method of washing with powder fixed by a filter press or the like, or decanting the slurry, removing the supernatant, adding pure water and stirring, then decanting again and supernatant Either the method of repeatedly removing the liquid or the method of repeatedly filtering the filtered cuprous oxide and then refiltering it may be used, but it remains locally in the obtained cuprous oxide cake. A method that can remove as much impurities as possible is preferable. Moreover, cuprous oxide fine particles can be obtained by drying the obtained cuprous oxide cake in an atmosphere and temperature that does not reduce copper to copper and does not oxidize to copper oxide (CuO) (for example, drying in a vacuum state). it can. Moreover, you may perform processes, such as a dry crushing process, sieving, and an air classification, as needed.

上述した本発明による亜酸化銅粉末の製造方法の実施の形態によって、50%粒径(D50)が0.05〜1.0μm、好ましくは0.05〜0.60μm、炭素含有量が0.1質量%以下、好ましくは0.05質量%以下、さらに好ましくは0.01質量%以下、塩素含有量が0.01質量%未満の亜酸化銅粉末を製造することができる。なお、亜酸化銅粉末の50%粒径(D50)が1.0μmを越えると、亜酸化銅粉末を還元して得られる銅粉を電子材料用銅粉として使用する場合、例えば、積層セラミックコンデンサの内部電極用銅粉に使用する場合に、薄層の電極を作製するのが困難になり、また、小型の積層セラミックコンデンサの外部電極用銅粉に使用する場合に、外観形状に悪影響を与える可能性がある。また、亜酸化銅粉末中の炭素含有量が0.1質量%を超えると、亜酸化銅粉末を銅粉の原料として使用する場合に、亜酸化銅粉末中に取り込まれる炭素量が増加して、亜酸化銅粉末を還元して得られる銅粉を電極に使用する場合に電極の緻密性が悪化する。また、亜酸化銅粉末中の塩素含有量が0.01質量%を超えると、亜酸化銅粉末を還元して得られる銅粉を電子部品に使用する場合に電子部品の信頼性が悪化する。   Depending on the embodiment of the method for producing cuprous oxide powder according to the present invention described above, the 50% particle size (D50) is 0.05 to 1.0 μm, preferably 0.05 to 0.60 μm, and the carbon content is 0.1. It is possible to produce a cuprous oxide powder of 1% by mass or less, preferably 0.05% by mass or less, more preferably 0.01% by mass or less, and a chlorine content of less than 0.01% by mass. When the 50% particle size (D50) of the cuprous oxide powder exceeds 1.0 μm, when the copper powder obtained by reducing the cuprous oxide powder is used as the copper powder for electronic materials, for example, a multilayer ceramic capacitor When it is used for copper powder for internal electrodes, it becomes difficult to produce a thin layer electrode, and when it is used for copper powder for external electrodes of small multilayer ceramic capacitors, the appearance shape is adversely affected. there is a possibility. Moreover, when the carbon content in the cuprous oxide powder exceeds 0.1% by mass, the amount of carbon taken into the cuprous oxide powder increases when the cuprous oxide powder is used as a raw material for the copper powder. When the copper powder obtained by reducing cuprous oxide powder is used for an electrode, the denseness of the electrode deteriorates. On the other hand, when the chlorine content in the cuprous oxide powder exceeds 0.01% by mass, the reliability of the electronic component deteriorates when the copper powder obtained by reducing the cuprous oxide powder is used in the electronic component.

また、亜酸化銅粉末の形状は、球状、略球状、六面体状および鱗片状を任意の割合で混合した形状であるのが好ましく、球状と、略球状と、六面体状および鱗片状の少なくとも一方とを任意の割合で混合した形状であるのがさらに好ましい。この任意の割合は、亜酸化銅粉末の用途に応じて、例えば、亜酸化銅粉末を銅粉の原料として使用する場合には銅粉の特性に応じて、変化させるのが好ましい。なお、この亜酸化銅粉末の形状は、電界放出型走査電子顕微鏡(FE−SEM)によって観察したFE−SEM画像から判断し、本明細書中において、長軸/短軸の平均値が限りなく1に近い場合(具体的には1.0〜1.2の場合)に「球状」とし、長軸/短軸の平均値が1.2〜2で球状に対して表面の凹凸が見られるともに一部に角がある場合に「略球状」とし、長軸/厚さ(アスペクト比)の平均値が3以上の場合(上述した球状および略球状の場合は3未満)に「鱗片状」とする。   The shape of the cuprous oxide powder is preferably a shape in which a spherical shape, a substantially spherical shape, a hexahedral shape, and a scale shape are mixed in an arbitrary ratio, and the spherical shape, the substantially spherical shape, and at least one of the hexahedral shape and the scale shape. It is more preferable that the shape is a mixture of these at an arbitrary ratio. This arbitrary ratio is preferably changed according to the use of the cuprous oxide powder, for example, when the cuprous oxide powder is used as a raw material for the copper powder, depending on the characteristics of the copper powder. In addition, the shape of this cuprous oxide powder is judged from the FE-SEM image observed with a field emission scanning electron microscope (FE-SEM), and the average value of the major axis / minor axis is not limited in this specification. When it is close to 1 (specifically, 1.0 to 1.2), it is “spherical”, and the average value of the major axis / minor axis is 1.2 to 2 and surface irregularities are seen with respect to the spherical shape. Both are “substantially spherical” when some corners are present, and “scale-like” when the average value of the major axis / thickness (aspect ratio) is 3 or more (less than 3 for the above-mentioned spherical and substantially spherical shapes) And

上述した本発明による亜酸化銅粉末の製造方法の実施の形態によって製造された亜酸化銅粉末は、銅粉、船底塗料(防汚塗料)、導電塗料、銅めっき液、太陽電池などの原料や材料として種々の分野で使用することができる。   The cuprous oxide powder produced by the above-described embodiment of the method for producing cuprous oxide powder according to the present invention includes copper powder, ship bottom paint (antifouling paint), conductive paint, copper plating solution, solar cell and other raw materials. The material can be used in various fields.

亜酸化銅粉末を電子材料用銅粉などの銅粉の原料として使用する場合には、亜酸化銅粉末を還元することによって銅粉を得ることができる。この還元方法として、一酸化炭素、水素などの還元ガスを用いた乾式還元法や、水和ヒドラジン、水素化ホウ素ナトリウムなどの還元剤を用いた湿式還元法を使用することができる。   When using cuprous oxide powder as a raw material for copper powder such as copper powder for electronic materials, copper powder can be obtained by reducing the cuprous oxide powder. As this reduction method, a dry reduction method using a reducing gas such as carbon monoxide or hydrogen, or a wet reduction method using a reducing agent such as hydrated hydrazine or sodium borohydride can be used.

亜酸化銅粉末を船底塗料(防汚塗料)に使用する場合には、顔料、溶剤、可塑剤、充填剤、硬化促進剤などの塗料を調整するために一般に用いられる成分を適宜配合すればよい。また、防汚性を向上させるために、チオシアン銅、ロダン銅、ピリジン系銅化合物などの銅無機化合物や、有機化合物を混合してもよい。   When cuprous oxide powder is used for ship bottom paint (antifouling paint), ingredients generally used for adjusting paints such as pigments, solvents, plasticizers, fillers, and curing accelerators may be appropriately blended. . Moreover, in order to improve antifouling property, you may mix copper inorganic compounds, such as thiocyanic copper, rhodan copper, a pyridine type copper compound, and an organic compound.

亜酸化銅粉末を導電塗料に使用する場合には、用途に応じて各種の樹脂(例えば、アクリル系、セルロース系など)、溶剤(例えば、ターピネオールなど)、ガラスフリットなどを配合すればよい。また、導電塗料の添加剤として亜酸化銅粉末を少量だけ添加してもよい。   When cuprous oxide powder is used for the conductive paint, various resins (for example, acrylic and cellulose), solvents (for example, terpineol), glass frit and the like may be blended depending on the application. Further, a small amount of cuprous oxide powder may be added as an additive for the conductive paint.

亜酸化銅粉末を銅めっき液に使用する場合には、例えば、硫酸銅を使用しない無電解銅めっき液などの銅イオンの供給源として使用することができる。   When using cuprous oxide powder for a copper plating solution, for example, it can be used as a supply source of copper ions such as an electroless copper plating solution that does not use copper sulfate.

亜酸化銅粉末を太陽電池に使用する場合には、例えば、亜酸化銅粉末を含む薄膜を基板上に形成し、その薄膜上に透明電極膜を形成して、亜酸化銅ショットキー障壁太陽電池にすることができる。   When using cuprous oxide powder for solar cells, for example, a thin film containing cuprous oxide powder is formed on a substrate, a transparent electrode film is formed on the thin film, and a cuprous oxide Schottky barrier solar cell is formed. Can be.

以下、本発明による亜酸化銅粉末およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the cuprous oxide powder and the production method thereof according to the present invention will be described in detail.

[実施例1]
まず、1Lの反応槽内に硫酸銅5水和物(和光純薬工業株式会社製)49.9gと純水523gを入れ、反応槽の上部から1L/分の流量で窒素を供給して反応槽内を窒素雰囲気中に維持し、反応槽内の攪拌棒の回転数を630rpmに調整し、反応槽内の温度を30℃に調整して、硫酸銅5水和物を溶解させた。
[Example 1]
First, 49.9 g of copper sulfate pentahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 523 g of pure water are placed in a 1 L reaction tank, and nitrogen is supplied from the upper part of the reaction tank at a flow rate of 1 L / min for reaction. The inside of the tank was maintained in a nitrogen atmosphere, the number of revolutions of the stirring rod in the reaction tank was adjusted to 630 rpm, and the temperature in the reaction tank was adjusted to 30 ° C. to dissolve the copper sulfate pentahydrate.

次に、水酸化ナトリウム(和光純薬工業株式会社製)を純水に溶解させて作製した20質量%の水酸化ナトリウム水溶液96.0gを反応槽内の硫酸銅水溶液に添加した後、10分間攪拌しながら熟成させて水酸化銅を析出させた。   Next, after adding 96.0 g of 20 mass% sodium hydroxide aqueous solution prepared by dissolving sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) in pure water to the copper sulfate aqueous solution in the reaction vessel, 10 minutes. The mixture was aged with stirring to precipitate copper hydroxide.

次に、還元剤として硫酸ヒドロキシルアミン(和光純薬工業株式会社製)32.8gを純水200gに溶解させて作製した硫酸ヒドロキシルアミン水溶液を反応槽内の水溶液に添加し、1.8℃/分で60℃まで昇温させ、60℃の温度を30分間保持した後、攪拌を止め、ろ過し、洗浄し、乾燥させて、亜酸化銅微粒子を得た。   Next, a hydroxylamine sulfate aqueous solution prepared by dissolving 32.8 g of hydroxylamine sulfate (manufactured by Wako Pure Chemical Industries, Ltd.) as a reducing agent in 200 g of pure water was added to the aqueous solution in the reaction vessel, and the reaction solution was 1.8 ° C. / The temperature was raised to 60 ° C. in minutes, and the temperature of 60 ° C. was maintained for 30 minutes, and then stirring was stopped, filtered, washed, and dried to obtain cuprous oxide fine particles.

[実施例2]
2価の銅イオンの原料として硫酸銅5水和物の代わりに硝酸銅(II)3水和物(片山化学工業株式会社製)37.5gを使用した以外は、実施例1と同様の方法により、亜酸化銅微粒子を得た。
[Example 2]
The same method as in Example 1 except that 37.5 g of copper nitrate (II) trihydrate (manufactured by Katayama Chemical Co., Ltd.) was used instead of copper sulfate pentahydrate as a raw material for divalent copper ions. Thus, cuprous oxide fine particles were obtained.

[実施例3]
硫酸ヒドロキシルアミン水溶液と水酸化ナトリウム水溶液を添加する順序を逆にした、すなわち、硫酸ヒドロキシルアミン水溶液を添加した後に水酸化ナトリウム水溶液を添加した以外は、実施例1と同様の方法により、亜酸化銅微粒子を得た。
[Example 3]
In the same manner as in Example 1, except that the order of adding the hydroxylamine sulfate aqueous solution and the sodium hydroxide aqueous solution was reversed, that is, the sodium hydroxide aqueous solution was added after adding the hydroxylamine sulfate aqueous solution. Fine particles were obtained.

[実施例4]
硫酸ヒドロキシルアミン水溶液を反応槽内の水溶液に添加する前に、反応槽内の温度を70℃まで昇温させ、生成した水酸化銅の全量を脱水して酸化銅に分解し、この反応液の温度を30℃まで降温させた以外は、実施例1と同様の方法により、亜酸化銅微粒子を得た。
[Example 4]
Before adding the hydroxylamine sulfate aqueous solution to the aqueous solution in the reaction vessel, the temperature in the reaction vessel is raised to 70 ° C., and the total amount of the produced copper hydroxide is dehydrated and decomposed into copper oxide. Cuprous oxide fine particles were obtained by the same method as in Example 1 except that the temperature was lowered to 30 ° C.

[実施例5]
硫酸ヒドロキシルアミンの使用量を65.6gにした以外は、実施例1と同様の方法により、亜酸化銅微粒子を得た。
[Example 5]
Cuprous oxide fine particles were obtained by the same method as in Example 1 except that the amount of hydroxylamine sulfate used was 65.6 g.

[比較例1]
硫酸ヒドロキシルアミンの代わりにグルコース(和光純薬工業株式会社製)72.0gを使用した以外は、実施例1と同様の方法により、亜酸化銅微粒子を得た。
[Comparative Example 1]
Cuprous oxide fine particles were obtained by the same method as in Example 1 except that 72.0 g of glucose (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of hydroxylamine sulfate.

[比較例2]
水酸化ナトリウムの使用量を24gにするとともに、硫酸ヒドロキシルアミンの代わりにグルコース(和光純薬工業株式会社製)8.2gを使用した以外は、実施例1と同様の方法により、亜酸化銅微粒子を得た。
[Comparative Example 2]
In the same manner as in Example 1, except that the amount of sodium hydroxide used was 24 g, and 8.2 g of glucose (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of hydroxylamine sulfate, cuprous oxide fine particles Got.

これらの実施例および比較例で得られた亜酸化銅粒子の組成について、X線回折(XRD)装置(株式会社リガク製のRint−UltimaIII)によって、走査範囲10°〜90°において走査速度2°/分で評価したところ、X線回折データから、いずれもCuO単一組成であることがわかった。 About the composition of the cuprous oxide particles obtained in these examples and comparative examples, the scanning speed was 2 ° in a scanning range of 10 ° to 90 ° with an X-ray diffraction (XRD) apparatus (Rint-UltimaIII manufactured by Rigaku Corporation). As a result, it was found from the X-ray diffraction data that each had a single composition of Cu 2 O.

また、実施例および比較例で得られた亜酸化銅粒子の形状について、電界放出型走査電子顕微鏡(FE−SEM)(日立製作所製のS−4700型)によって観察した2万倍のFE−SEM画像から判断した。この粒子の形状の判断では、長軸/短軸の平均値が限りなく1に近い場合(具体的には1.0〜1.2の場合)に球状とし、長軸/短軸の平均値が1.2〜2で球状に対して表面の凹凸が見られるともに一部に角がある場合に略球状とし、長軸/厚さ(アスペクト比)の平均値が3以上の場合(上述した球状および略球状の場合は3未満)に鱗片状とした。その結果、実施例1、2および5では、球状と略球状と六面体状を混合した形状であり、実施例3では、球状と略球状と鱗片状を混合した形状であり、実施例4では、球状と略球状と六面体状と鱗片状を混合した形状であり、比較例1では、球状と略球状を混合した形状であり、比較例2では、八面体と六面体状を混合した形状であった。   Moreover, about the shape of the cuprous oxide particle obtained by the Example and the comparative example, 20,000 times FE-SEM observed with the field emission type | mold scanning electron microscope (FE-SEM) (S-4700 type made from Hitachi, Ltd.) Judged from the image. In determining the shape of the particles, when the average value of the major axis / minor axis is as close to 1 as possible (specifically, when the average value is 1.0 to 1.2), the average value of the major axis / minor axis is determined. Is 1.2 to 2, when the surface irregularities are seen with respect to the sphere and there are some corners, it is approximately spherical, and the average value of the major axis / thickness (aspect ratio) is 3 or more (described above) In the case of a spherical shape and a substantially spherical shape, the scale shape was less than 3). As a result, in Examples 1, 2 and 5, the shape is a mixture of a spherical shape, a substantially spherical shape and a hexahedral shape. In Example 3, the shape is a mixture of a spherical shape, a substantially spherical shape and a scale shape. The shape is a mixture of a spherical shape, a substantially spherical shape, a hexahedral shape, and a scale shape. In Comparative Example 1, the shape is a mixture of a spherical shape and a substantially spherical shape. In Comparative Example 2, the shape is a mixed shape of an octahedron and a hexahedral shape. .

また、実施例および比較例で得られた亜酸化銅粒子のBET比表面積、炭素含有量、塩素含有量および粒度分布を測定した結果を表1に示す。なお、BET比表面積は、比表面積測定器(ユアサアイオニクス製の4ソーブ)を用いて測定し、炭素含有量は、金属中炭素分析装置(堀場製作所製のEMIA1110型)を用いて測定し、塩素含有量は、分光光度計(日立制作所製のU−1500型)を用いて測定した。また、粒度分布については、2万倍のFE−SEM画像において画像解析式粒度分布測定ソフトウェア(マウンテック社のMac−View Ver4)を用いて100個の粒子のHeywood径(投影面積円相当径)、すなわち、FE−SEM画像上の粒子の面積と同一の面積の円の直径を求めて、それらを算術平均することにより、それぞれ10%粒径(D10)、25%粒径(D25)、50%粒径(D50)、75%粒径(D75)、90%粒径(D90)および最大粒径(Dmax)を求めた。なお、2万倍のFE−SEM画像では100個の粒子のHeywood径を求めることができない場合に、倍率を下げて撮影した画像を用いて粒子径を測定した。   Table 1 shows the results of measuring the BET specific surface area, carbon content, chlorine content, and particle size distribution of the cuprous oxide particles obtained in Examples and Comparative Examples. The BET specific surface area was measured using a specific surface area measuring device (4 Sorb made by Yuasa Ionics), and the carbon content was measured using a carbon-in-metal analyzer (EMIA 1110 manufactured by Horiba, Ltd.) The chlorine content was measured using a spectrophotometer (U-1500 type manufactured by Hitachi, Ltd.). As for the particle size distribution, the Heywood diameter (projected area circle equivalent diameter) of 100 particles using image analysis type particle size distribution measurement software (Mac-View Ver4 of Mountec Co., Ltd.) in a 20,000-fold FE-SEM image, That is, the diameter of a circle having the same area as the particle area on the FE-SEM image is obtained and arithmetically averaged to obtain a 10% particle diameter (D10), 25% particle diameter (D25), and 50%, respectively. Particle size (D50), 75% particle size (D75), 90% particle size (D90) and maximum particle size (Dmax) were determined. In addition, when the Heywood diameter of 100 particles cannot be calculated | required in a 20,000 times FE-SEM image, the particle diameter was measured using the image | photographed by reducing magnification.

Figure 2010059001
Figure 2010059001

表1に示すように、実施例1〜5で得られた亜酸化銅粉末では、50%粒径(D50)がサブミクロン領域であり、炭素含有量および塩素含有量が低いことがわかる。   As shown in Table 1, in the cuprous oxide powders obtained in Examples 1 to 5, it can be seen that the 50% particle size (D50) is in the submicron region, and the carbon content and chlorine content are low.

本発明による亜酸化銅粉末は、電子材料用銅粉などの銅粉、船底塗料(防汚塗料)用の防腐剤、殺菌剤、農薬、導電塗料、銅めっき液、窯業関係の着色剤、触媒、整流器、太陽電池などの原料や材料として利用することができる。電子材料用銅粉の原料として使用する場合には、例えば、積層セラミックコンデンサや積層セラミックインダクタなどの積層セラミック電子部品の内部電極、小型積層セラミックコンデンサや積層セラミックインダクタなどの外部電極などを形成する銅ペーストに使用する銅粉の原料として使用することができる。
The cuprous oxide powder according to the present invention is made of copper powder such as copper powder for electronic materials, antiseptic agent for ship bottom paint (antifouling paint), disinfectant, agricultural chemical, conductive paint, copper plating solution, ceramic industry-related colorant, catalyst It can be used as raw materials and materials for rectifiers, solar cells and the like. When used as a raw material for copper powder for electronic materials, for example, copper for forming internal electrodes of multilayer ceramic electronic components such as multilayer ceramic capacitors and multilayer ceramic inductors, external electrodes such as small multilayer ceramic capacitors and multilayer ceramic inductors, etc. It can be used as a raw material for copper powder used in paste.

Claims (10)

2価の銅イオンを含有する水溶液にアルカリ溶液と還元剤溶液を添加して亜酸化銅粒子を還元析出させる亜酸化銅粉末の製造方法において、前記アルカリ溶液が炭素および塩素を含まないアルカリの溶液であり、前記還元剤溶液が炭素および塩素を含まない還元剤の溶液であることを特徴とする、亜酸化銅粉末の製造方法。 In the method for producing cuprous oxide powder, in which an alkali solution and a reducing agent solution are added to an aqueous solution containing divalent copper ions to reduce and precipitate cuprous oxide particles, the alkali solution is an alkali solution containing no carbon and chlorine. And the reducing agent solution is a reducing agent solution containing no carbon and chlorine. 前記2価の銅イオンを含有する水溶液に前記アルカリ溶液を添加した後に前記還元剤溶液を添加することを特徴とする、請求項1に記載の亜酸化銅粉末の製造方法。 The method for producing a cuprous oxide powder according to claim 1, wherein the reducing agent solution is added after the alkaline solution is added to the aqueous solution containing the divalent copper ions. 前記2価の銅イオンを含有する水溶液に前記還元剤溶液を添加した後に前記アルカリ溶液を添加することを特徴とする、請求項1に記載の亜酸化銅粉末の製造方法。 The method for producing a cuprous oxide powder according to claim 1, wherein the alkaline solution is added after the reducing agent solution is added to the aqueous solution containing the divalent copper ions. 前記炭素および塩素を含まないアルカリが、アンモニア、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる1種以上のアルカリであることを特徴とする、請求項1乃至3のいずれかに記載の亜酸化銅粉末の製造方法。 The alkali not containing carbon and chlorine is at least one alkali selected from the group consisting of ammonia, sodium hydroxide, potassium hydroxide, and lithium hydroxide. The manufacturing method of the cuprous oxide powder described in 1. 前記炭素および塩素を含まない還元剤が、硫酸ヒドロキシルアミン、硝酸ヒドロキシルアミン、亜硫酸ナトリウム、亜硫酸水素ナトリウム、亜ジチオン酸ナトリウム、硫酸ヒドラジン、リン酸ヒドラジン、ヒドラジン、次亜リン酸および次亜リン酸ナトリウムからなる群から選ばれる1種以上の還元剤であることを特徴とする、請求項1乃至4のいずれかに記載の亜酸化銅粉末の製造方法。 The carbon and chlorine-free reducing agent is hydroxylamine sulfate, hydroxylamine nitrate, sodium sulfite, sodium hydrogen sulfite, sodium dithionite, hydrazine sulfate, hydrazine phosphate, hydrazine, hypophosphorous acid and sodium hypophosphite. The method for producing a cuprous oxide powder according to any one of claims 1 to 4, wherein the method is one or more reducing agents selected from the group consisting of: 前記炭素および塩素を含まない還元剤が、硫酸ヒドロキシルアミンであることを特徴とする、請求項1乃至4のいずれかに記載の亜酸化銅粉末の製造方法。 The method for producing a cuprous oxide powder according to any one of claims 1 to 4, wherein the reducing agent containing no carbon and chlorine is hydroxylamine sulfate. 前記2価の銅イオンを含有する水溶液が、硫酸銅および硝酸銅の少なくとも一方を含む水溶液であることを特徴とする、請求項1乃至6のいずれかに記載の亜酸化銅粉末の製造方法。 The method for producing a cuprous oxide powder according to any one of claims 1 to 6, wherein the aqueous solution containing divalent copper ions is an aqueous solution containing at least one of copper sulfate and copper nitrate. 50%粒径が0.05〜1.0μm、炭素含有量が0.1質量%以下、塩素含有量が0.01質量%未満であることを特徴とする、亜酸化銅粉末。 A cuprous oxide powder having a 50% particle size of 0.05 to 1.0 µm, a carbon content of 0.1 mass% or less, and a chlorine content of less than 0.01 mass%. 前記亜酸化銅粉末の形状が、球状と、略球状と、六面体状および鱗片状の少なくとも一方とを混合した形状であることを特徴とする、請求項8に記載の亜酸化銅粉末。 The cuprous oxide powder according to claim 8, wherein the cuprous oxide powder has a shape in which a spherical shape, a substantially spherical shape, and at least one of a hexahedral shape and a scale shape are mixed. 請求項1乃至9のいずれかに記載の亜酸化銅粉末を還元することを特徴とする、銅粉の製造方法。 A method for producing a copper powder, comprising reducing the cuprous oxide powder according to any one of claims 1 to 9.
JP2008224488A 2008-09-02 2008-09-02 Cuprous oxide powder and method for producing the same Active JP5142891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224488A JP5142891B2 (en) 2008-09-02 2008-09-02 Cuprous oxide powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224488A JP5142891B2 (en) 2008-09-02 2008-09-02 Cuprous oxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010059001A true JP2010059001A (en) 2010-03-18
JP5142891B2 JP5142891B2 (en) 2013-02-13

Family

ID=42186270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224488A Active JP5142891B2 (en) 2008-09-02 2008-09-02 Cuprous oxide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5142891B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047332A1 (en) * 2011-09-30 2013-04-04 Dowaエレクトロニクス株式会社 Cuprous oxide powder and method of producing same
JP2013107799A (en) * 2011-11-21 2013-06-06 Hitachi Chemical Co Ltd Copper oxide particle and production method thereof
WO2014203590A1 (en) * 2013-06-21 2014-12-24 日清エンジニアリング株式会社 Process for producing fine cuprous oxide particles, fine cuprous oxide particles, and process for producing conductor film
CN104591256A (en) * 2015-01-12 2015-05-06 广东光华科技股份有限公司 Method for preparing cuprous oxide in copper chloride system
CN111330600A (en) * 2020-03-14 2020-06-26 西安工业大学 Preparation method of cuprous oxide composite material with porous structure
JP2020111682A (en) * 2019-01-11 2020-07-27 Jx金属株式会社 Conductive composition
CN112742388A (en) * 2021-01-15 2021-05-04 新疆大学 Preparation method of organic pollutant reduction catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103395821B (en) * 2013-07-30 2014-11-26 太原理工大学 Quick preparation method for multi-shell cuprous oxide nano-spheres

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170824A (en) * 1981-04-09 1982-10-21 Tadao Yoshikawa Manufacture of copper suboxide
JPS5939721A (en) * 1982-08-27 1984-03-05 Nippon Chem Ind Co Ltd:The Manufacture of cuprous oxide
JPS6158816A (en) * 1984-08-21 1986-03-26 Mitsujiro Konishi Manufacture of cuprous oxide
JP2002308620A (en) * 2001-04-05 2002-10-23 Titan Kogyo Kk Method for producing copper suboxide
JP2003165725A (en) * 2001-11-29 2003-06-10 Furukawa Co Ltd Method for producing cuprous oxide
JP2003165724A (en) * 2001-11-29 2003-06-10 Furukawa Co Ltd Method for producing cuprous oxide
WO2004050559A1 (en) * 2002-12-03 2004-06-17 Asahi Kasei Kabushiki Kaisha Copper oxide ultrafine particle
JP2005255446A (en) * 2004-03-10 2005-09-22 Mitsui Mining & Smelting Co Ltd Cuprous oxide powder and method for producing the same
JP2005255445A (en) * 2004-03-10 2005-09-22 Mitsui Mining & Smelting Co Ltd Cuprous oxide powder and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170824A (en) * 1981-04-09 1982-10-21 Tadao Yoshikawa Manufacture of copper suboxide
JPS5939721A (en) * 1982-08-27 1984-03-05 Nippon Chem Ind Co Ltd:The Manufacture of cuprous oxide
JPS6158816A (en) * 1984-08-21 1986-03-26 Mitsujiro Konishi Manufacture of cuprous oxide
JP2002308620A (en) * 2001-04-05 2002-10-23 Titan Kogyo Kk Method for producing copper suboxide
JP2003165725A (en) * 2001-11-29 2003-06-10 Furukawa Co Ltd Method for producing cuprous oxide
JP2003165724A (en) * 2001-11-29 2003-06-10 Furukawa Co Ltd Method for producing cuprous oxide
WO2004050559A1 (en) * 2002-12-03 2004-06-17 Asahi Kasei Kabushiki Kaisha Copper oxide ultrafine particle
JP2005255446A (en) * 2004-03-10 2005-09-22 Mitsui Mining & Smelting Co Ltd Cuprous oxide powder and method for producing the same
JP2005255445A (en) * 2004-03-10 2005-09-22 Mitsui Mining & Smelting Co Ltd Cuprous oxide powder and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047332A1 (en) * 2011-09-30 2013-04-04 Dowaエレクトロニクス株式会社 Cuprous oxide powder and method of producing same
JP2014005188A (en) * 2011-09-30 2014-01-16 Dowa Electronics Materials Co Ltd Cuprous oxide powder and method of producing the same
US9211587B2 (en) 2011-09-30 2015-12-15 Dowa Electronics Materials Co., Ltd. Cuprous oxide powder and method for producing same
JP2013107799A (en) * 2011-11-21 2013-06-06 Hitachi Chemical Co Ltd Copper oxide particle and production method thereof
WO2014203590A1 (en) * 2013-06-21 2014-12-24 日清エンジニアリング株式会社 Process for producing fine cuprous oxide particles, fine cuprous oxide particles, and process for producing conductor film
KR20160021775A (en) 2013-06-21 2016-02-26 닛신 엔지니어링 가부시키가이샤 Process for producing fine cuprous oxide particles, fine cuprous oxide particles, and process for producing conductor film
KR102136444B1 (en) 2013-06-21 2020-07-21 닛신 엔지니어링 가부시키가이샤 Process for producing fine cuprous oxide particles
CN104591256A (en) * 2015-01-12 2015-05-06 广东光华科技股份有限公司 Method for preparing cuprous oxide in copper chloride system
JP2020111682A (en) * 2019-01-11 2020-07-27 Jx金属株式会社 Conductive composition
CN111330600A (en) * 2020-03-14 2020-06-26 西安工业大学 Preparation method of cuprous oxide composite material with porous structure
CN112742388A (en) * 2021-01-15 2021-05-04 新疆大学 Preparation method of organic pollutant reduction catalyst
CN112742388B (en) * 2021-01-15 2022-09-09 新疆大学 Preparation method of organic pollutant reduction catalyst

Also Published As

Publication number Publication date
JP5142891B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5142891B2 (en) Cuprous oxide powder and method for producing the same
JP5926644B2 (en) Cuprous oxide powder and method for producing the same
EP2026924B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
CN101554664B (en) Method for preparing nano-scale silver powder
JP2019517625A (en) Method for producing core-shell silver-coated copper nanowires using chemical reduction method
EP2311586A1 (en) Metal microparticle containing composition and process for production of the same
KR100713241B1 (en) Method of manufacturing silver powder by chemical reduction
CN103998379B (en) Mesoporous titania nano-particle and preparation method thereof
JP6130209B2 (en) Conductive film
KR20090045508A (en) An apparatus and a method for preparation of silver powder by double-jet type continuous solution reduction
JP2012526191A (en) Silver particles and method for producing the same
JP2013541640A (en) Silver particles and method for producing the same
JP2012525506A (en) Silver particles and method for producing the same
JP2007126744A (en) Fine nickel powder and process for producing the same
KR20190132351A (en) Copper particle and its manufacturing method
JP2005108734A (en) Conductive powder and its producing method
JP6199430B2 (en) Cuprous oxide powder and method for producing the same
KR101314990B1 (en) Manufacturing method of conductive copper powder
TW201338893A (en) Silver powder
JP4718111B2 (en) Conductive powder and method for producing the same
JP5285725B2 (en) Conductive powder
JP6106391B2 (en) Plate-shaped copper powder, method for producing the same, and conductive paste
Jiang et al. Hydrothermal synthesis of new CuVO2 delafossite hexagonal nanoplates
JP5136904B2 (en) Method for producing nickel powder
JP4493966B2 (en) Conductive powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5142891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250