JP2010058064A - Filter device and filtration method - Google Patents

Filter device and filtration method Download PDF

Info

Publication number
JP2010058064A
JP2010058064A JP2008227179A JP2008227179A JP2010058064A JP 2010058064 A JP2010058064 A JP 2010058064A JP 2008227179 A JP2008227179 A JP 2008227179A JP 2008227179 A JP2008227179 A JP 2008227179A JP 2010058064 A JP2010058064 A JP 2010058064A
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
temperature
supply
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008227179A
Other languages
Japanese (ja)
Inventor
Koichi Tawara
幸一 俵
Toru Oyama
徹 大山
Masatetsu Morikawa
昌哲 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Engineering Corp
Original Assignee
Asahi Kasei Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Engineering Corp filed Critical Asahi Kasei Engineering Corp
Priority to JP2008227179A priority Critical patent/JP2010058064A/en
Publication of JP2010058064A publication Critical patent/JP2010058064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter device which is hardly polluted by fungus without using a fungicide. <P>SOLUTION: The filter device is provided with a reverse osmosis membrane 7, a supply tank 4 for the reverse osmosis membrane in which a supply solution supplied to the reverse osmosis membrane 7 is stored, and a heater 10 which heats the supply solution stored in the supply tank 4 for the reverse osmosis membrane to a temperature of 39°C or more and the heat-resistant temperature or less of the reverse osmosis membrane 7. It has been discovered that the supply solution becomes hard to be polluted by fungus when being heated to 39°C or more. Thus, the reverse osmosis membrane 7 becomes hard to be polluted by fungus by heating the supply solution to a temperature of 39°C or more. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はろ過技術に関し、特にろ過装置及びろ過方法に関する。   The present invention relates to a filtration technique, and more particularly to a filtration apparatus and a filtration method.

逆浸透膜は、微粒子、金属イオン、有機物、非金属イオン、及びコロイド状物質等の除去が可能であり、純水及び超純水の製造等に用いられている(例えば特許文献1参照)。しかし、逆浸透膜を使用していると、一般細菌や糸状菌等により、逆浸透膜にバイオファウリング(生物付着)が生じるという問題がある。そのため、殺菌剤を用いてバイオファウリングの防止する方法が提案されている。
特開2006-89402号公報
The reverse osmosis membrane can remove fine particles, metal ions, organic substances, non-metal ions, colloidal substances, and the like, and is used for the production of pure water and ultrapure water (see, for example, Patent Document 1). However, when a reverse osmosis membrane is used, there is a problem that biofouling (biological adhesion) occurs in the reverse osmosis membrane due to general bacteria or filamentous fungi. Therefore, a method for preventing biofouling using a bactericide has been proposed.
JP 2006-89402 A

しかし、次亜塩素酸ナトリウムのような強力な殺菌剤は、逆浸透膜自体を損傷するという問題がある。また臭素系の殺菌剤は、逆浸透膜を損傷しないといわれているが、糸状菌には効果がない。さらに、逆浸透膜を損傷せず、糸状菌にも効果があるとされる殺菌剤を用いると、殺菌剤に含まれると思われる油分によって、逆浸透膜に目詰まりが生じるという問題がある。そこで、本発明は、殺菌剤を用いることなく、菌類で汚染されにくいろ過装置及びろ過方法を提供することを目的とする。   However, a strong disinfectant such as sodium hypochlorite has a problem of damaging the reverse osmosis membrane itself. Brominated fungicides are said not to damage the reverse osmosis membrane, but are ineffective against filamentous fungi. Furthermore, when a bactericidal agent that does not damage the reverse osmosis membrane and is also effective against filamentous fungi is used, there is a problem that the reverse osmosis membrane is clogged with oil that is considered to be contained in the bactericidal agent. Then, an object of this invention is to provide the filtration apparatus and filtration method which are hard to be contaminated with fungi, without using a disinfectant.

本発明の特徴は、(イ)逆浸透膜と、(ロ)逆浸透膜に供給される供給溶液が溜められる供給槽と、(ハ)供給槽に溜められる供給溶液を39℃以上、逆浸透膜の耐熱温度以下に加熱する加熱器と、を備えるろ過装置であることを要旨とする。また、本発明の他の特徴は、(イ)逆浸透膜に供給される供給溶液を39℃以上、逆浸透膜の耐熱温度以下に加熱するステップと、(ロ)加熱された供給溶液を逆浸透膜でろ過するステップと、を含むろ過方法であることを要旨とする。発明者らは、供給溶液を39℃以上に加熱すると、供給溶液が菌類で汚染されにくくなることを見出した。したがって、本発明に係るろ過装置及びろ過方法によれば、供給溶液が39℃以上に加熱されるため、逆浸透膜が菌類で汚染されにくくなる。   The features of the present invention are (a) a reverse osmosis membrane, (b) a supply tank for storing a supply solution supplied to the reverse osmosis membrane, and (c) a reverse osmosis at 39 ° C. or higher for the supply solution stored in the supply tank. The gist of the present invention is a filtration device comprising a heater that is heated to a temperature lower than the heat resistant temperature of the membrane. In addition, another feature of the present invention is that (a) the step of heating the supply solution supplied to the reverse osmosis membrane to 39 ° C. or more and the heat resistance temperature of the reverse osmosis membrane, or (b) the heated supply solution is reversed. And a step of filtering with an osmotic membrane. The inventors have found that when the feed solution is heated to 39 ° C. or higher, the feed solution is less likely to be contaminated with fungi. Therefore, according to the filtration apparatus and the filtration method according to the present invention, since the supply solution is heated to 39 ° C. or higher, the reverse osmosis membrane is hardly contaminated with fungi.

本発明によれば、殺菌剤を用いることなく、菌類で汚染されにくいろ過装置及びろ過方法を提供可能である。   According to the present invention, it is possible to provide a filtration device and a filtration method that are not easily contaminated with fungi without using a bactericide.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(第1の実施の形態)
本発明の第1の実施の形態に係るろ過装置は、図1に示すように、逆浸透(RO : Reverse Osmosis)膜7、逆浸透膜7に供給される供給溶液が溜められる逆浸透膜用供給槽4、及び逆浸透膜用供給槽4に溜められる供給溶液を39℃以上、逆浸透膜の耐熱温度以下に加熱する加熱器10を備える。
(First embodiment)
The filtration device according to the first embodiment of the present invention is a reverse osmosis (RO) membrane 7, as shown in FIG. 1, for a reverse osmosis membrane in which a supply solution supplied to the reverse osmosis membrane 7 is stored. A heater 10 is provided that heats the supply solution stored in the supply tank 4 and the reverse osmosis membrane supply tank 4 to 39 ° C. or higher and lower than the heat resistant temperature of the reverse osmosis membrane.

ろ過装置は、さらに、ろ過される原液を通すための送液管101を備える。送液管101には、原液を溜めるためのろ過膜用供給槽1が接続されている。ろ過膜用供給槽1には、原液を粗ろ過するためのろ過膜3が、送液管102、ろ過膜用供給ポンプ2、及び送液管103を介して接続されている。ろ過膜用供給ポンプ2は、送液管102及び送液管103を介して、ろ過膜用供給槽1内の原液を、ろ過膜3に供給する。   The filtration device further includes a liquid feeding tube 101 for passing the stock solution to be filtered. A filtration membrane supply tank 1 for storing the stock solution is connected to the liquid feeding pipe 101. A filtration membrane 3 for roughly filtering the stock solution is connected to the filtration membrane supply tank 1 via a liquid feed tube 102, a filtration membrane supply pump 2, and a liquid feed tube 103. The filtration membrane supply pump 2 supplies the stock solution in the filtration membrane supply tank 1 to the filtration membrane 3 through the liquid supply tube 102 and the liquid supply tube 103.

ろ過膜3には、例えば限外ろ過(UF : Ultra Filtration)膜又は精密ろ過 (MF : Micro Filtration) 膜が使用可能である。ろ過膜3が限外ろ過膜である場合、ろ過膜3には、0.001μm乃至0.01μmの孔径の孔が多数設けられている。また、ろ過膜3が精密ろ過膜である場合、ろ過膜3には、0.1μm乃至数μmの孔径の孔が多数設けられている。ろ過膜3は、例えば中空糸状であり、ケースに収納され、モジュール化されていてもよい。   As the filtration membrane 3, for example, an ultrafiltration (UF) membrane or a microfiltration (MF) membrane can be used. When the filtration membrane 3 is an ultrafiltration membrane, the filtration membrane 3 is provided with a large number of pores having a pore diameter of 0.001 μm to 0.01 μm. Further, when the filtration membrane 3 is a microfiltration membrane, the filtration membrane 3 is provided with a large number of holes having a pore diameter of 0.1 μm to several μm. The filtration membrane 3 has, for example, a hollow fiber shape, and may be housed in a case and modularized.

ろ過膜3には、送液管104及び送液管105が接続されている。ろ過膜用供給ポンプ2によって、原液はろ過膜3表面を一定方向に流され、透過液が送液管104に、不純物等の溶質が濃縮された濃縮水が送液管105に排出される。送液管104に、逆浸透膜用供給槽4が接続されている。ろ過膜3から送液管104に排出された透過液は、逆浸透膜用供給槽4に、逆浸透膜7への供給液として溜められる。   A liquid feeding pipe 104 and a liquid feeding pipe 105 are connected to the filtration membrane 3. The filtration membrane supply pump 2 causes the undiluted solution to flow on the surface of the filtration membrane 3 in a certain direction, and the permeate is discharged to the liquid feeding tube 104 and the concentrated water in which solutes such as impurities are concentrated is discharged to the liquid feeding tube 105. A reverse osmosis membrane supply tank 4 is connected to the liquid feeding pipe 104. The permeate discharged from the filtration membrane 3 to the liquid feeding pipe 104 is stored in the reverse osmosis membrane supply tank 4 as a supply solution to the reverse osmosis membrane 7.

送液管104に、逆浸透膜用供給槽4に溜められる供給溶液を39℃以上逆浸透膜の耐熱温度以下に加熱する加熱器10が設けられている。加熱器10には、インラインヒータ等が使用可能である。加熱器10には、加熱器10に加熱された蒸気を供給するための蒸気管50が接続されている。また蒸気管50には、加熱器10に供給される加熱蒸気の量を調節することにより、加熱器10が送液管104内部の透過液に与える熱を制御するための温度制御弁11が設けられている。なお、加熱器10の加熱源は、電気や熱水であってもよい。   The liquid feeding pipe 104 is provided with a heater 10 that heats the supply solution stored in the reverse osmosis membrane supply tank 4 to 39 ° C. or more and the heat resistance temperature of the reverse osmosis membrane. An inline heater or the like can be used for the heater 10. A steam pipe 50 for supplying steam heated to the heater 10 is connected to the heater 10. Further, the steam pipe 50 is provided with a temperature control valve 11 for controlling the heat that the heater 10 gives to the permeate in the liquid feeding pipe 104 by adjusting the amount of the heating steam supplied to the heater 10. It has been. The heating source of the heater 10 may be electricity or hot water.

逆浸透膜用供給槽4には、逆浸透膜用供給槽4に溜められた供給液の温度を計測するための温度センサ20が設けられている。温度センサ20には、逆浸透膜用供給槽4に溜められた供給液の温度を設定温度に保つための制御機構21が接続されている。例えば、設定温度が39℃であり、温度センサ20で計測された供給液の温度が38℃であった場合、制御機構21は温度制御弁11を緩め、加熱器10から供給液に、より多くの熱を与えさせ、供給液の温度を39℃に近づける。また例えば、設定温度が逆浸透膜7の耐熱温度と同じであり、温度センサ20で計測された供給液の温度が耐熱温度より高かった場合、制御機構21は温度制御弁11を閉めることによって、加熱器10から供給液に与えられる熱を減らし、供給液の温度を耐熱温度に近づける。   The reverse osmosis membrane supply tank 4 is provided with a temperature sensor 20 for measuring the temperature of the supply liquid stored in the reverse osmosis membrane supply tank 4. The temperature sensor 20 is connected to a control mechanism 21 for keeping the temperature of the supply liquid stored in the reverse osmosis membrane supply tank 4 at a set temperature. For example, when the set temperature is 39 ° C. and the temperature of the supply liquid measured by the temperature sensor 20 is 38 ° C., the control mechanism 21 loosens the temperature control valve 11 and more from the heater 10 to the supply liquid. The temperature of the feed solution is brought close to 39 ° C. Further, for example, when the set temperature is the same as the heat resistance temperature of the reverse osmosis membrane 7 and the temperature of the supply liquid measured by the temperature sensor 20 is higher than the heat resistance temperature, the control mechanism 21 closes the temperature control valve 11, The heat given to the supply liquid from the heater 10 is reduced, and the temperature of the supply liquid is brought close to the heat resistance temperature.

逆浸透膜7は、送液管108、逆浸透膜用供給ポンプ5、送液管109、逆浸透膜用加圧ポンプ6、及び送液管110を介して、逆浸透膜用供給槽4に接続されている。逆浸透膜7は、例えば中空糸状であり、ケースに収納され、モジュール化されていてもよい。逆浸透膜7は、例えばポリアミド又は酢酸セルロースからなる。逆浸透膜用供給ポンプ5は、逆浸透膜用供給槽4内の供給液を、逆浸透膜7に供給する。また、逆浸透膜用加圧ポンプ6は、逆浸透膜7に供給される供給液に、浸透圧の差を超える圧力をかける。逆浸透膜用供給ポンプ5及び逆浸透膜用加圧ポンプ6によって、供給液は逆浸透膜7表面を圧力をかけられながら一定方向に流され、透過液が送液管111に、不純物等の溶質が濃縮された濃縮水が送液管112に排出される。   The reverse osmosis membrane 7 is supplied to the reverse osmosis membrane supply tank 4 via the liquid feed pipe 108, the reverse osmosis membrane supply pump 5, the liquid feed pipe 109, the reverse osmosis membrane pressure pump 6, and the liquid feed pipe 110. It is connected. The reverse osmosis membrane 7 has a hollow fiber shape, for example, and may be housed in a case and modularized. The reverse osmosis membrane 7 is made of, for example, polyamide or cellulose acetate. The reverse osmosis membrane supply pump 5 supplies the reverse osmosis membrane 7 with the supply liquid in the reverse osmosis membrane supply tank 4. Further, the reverse osmosis membrane pressure pump 6 applies a pressure exceeding the difference in osmotic pressure to the supply liquid supplied to the reverse osmosis membrane 7. The reverse osmosis membrane supply pump 5 and the reverse osmosis membrane pressure pump 6 cause the supply liquid to flow in a certain direction while applying pressure to the surface of the reverse osmosis membrane 7, and the permeate flows into the liquid supply pipe 111, such as impurities. The concentrated water in which the solute is concentrated is discharged to the liquid feeding pipe 112.

ここで、供給液の温度を、25℃、37℃、39℃、又は45℃に設定した場合の、逆浸透膜用供給槽4中の一般細菌及び糸状菌の数の時間経過の例を図2に示す。図2及び一般細菌数をグラフ化した図3に示すように、供給液を39℃に加熱すると、一般細菌の数は24時間後に2個/mlにまで減少し、48時間後には0になった。また、供給液を、ポリアミド製の逆浸透膜7の耐熱温度である45℃に加熱した場合も、一般細菌の数は24時間後に2個/mlにまで減少し、48時間後には0になった。これに対し、供給液を37℃に加熱すると、一般細菌の数は24時間後に56,000個/mlにむしろ増加し、48時間後には910,000個/mlにさらに増加した。ただし、一般細菌の数は、72時間後には若干減少した。減少した理由は、一般細菌の餌となる有機物の減少によると考えられる。   Here, when the temperature of the supply liquid is set to 25 ° C., 37 ° C., 39 ° C., or 45 ° C., an example of time passage of the number of general bacteria and filamentous fungi in the reverse osmosis membrane supply tank 4 is shown. Shown in 2. As shown in Fig. 2 and Fig. 3 which graphs the number of general bacteria, when the feed solution is heated to 39 ° C, the number of general bacteria decreases to 2 / ml after 24 hours and becomes zero after 48 hours. It was. In addition, when the feed solution was heated to 45 ° C, which is the heat resistant temperature of polyamide reverse osmosis membrane 7, the number of general bacteria decreased to 2 / ml after 24 hours and became 0 after 48 hours. It was. In contrast, when the feed solution was heated to 37 ° C., the number of general bacteria increased rather to 56,000 / ml after 24 hours and further increased to 910,000 / ml after 48 hours. However, the number of general bacteria decreased slightly after 72 hours. The reason for the decrease is thought to be due to a decrease in organic matter that feeds on general bacteria.

また、図2及び糸状菌数をグラフ化した図4に示すように、供給液を39℃に加熱すると、糸状菌の数はすぐさま0になった。また、供給液を、逆浸透膜7の耐熱温度である45℃に加熱した場合も、糸状菌の数は24時間後に0になった。なお、供給液を25℃及び37℃に加熱した場合も糸状菌は減少した。供給液を25℃又は37℃に加熱した場合にも糸状菌が減少した理由は、増加した一般細菌により、糸状菌が駆逐されたためと考えられる。   In addition, as shown in FIG. 2 and FIG. 4 which graphed the number of filamentous fungi, when the feed solution was heated to 39 ° C., the number of filamentous fungi immediately became zero. Also, when the feed solution was heated to 45 ° C., which is the heat resistant temperature of the reverse osmosis membrane 7, the number of filamentous fungi became 0 after 24 hours. The filamentous fungi also decreased when the feed solution was heated to 25 ° C and 37 ° C. The reason why the filamentous fungus decreased even when the feed solution was heated to 25 ° C. or 37 ° C. is considered to be that the filamentous fungus was driven out by the increased general bacteria.

また、図5に示すように、39℃で9日間、供給液を保存した後、供給液の温度を25℃に下げても、一般細菌及び糸状菌はほとんど増殖しなかった。したがって、図1に示す加熱器10は、菌数が0になった後は、供給液を常時39℃以上に加熱しなくともよい。   In addition, as shown in FIG. 5, even when the feed solution was stored at 39 ° C. for 9 days and the temperature of the feed solution was lowered to 25 ° C., general bacteria and filamentous fungi hardly grew. Therefore, the heater 10 shown in FIG. 1 does not have to constantly heat the supply liquid to 39 ° C. or higher after the number of bacteria becomes zero.

従来においては、図6に示す比較例に係るろ過装置のように、ろ過膜3の透過液は、加熱されることなく逆浸透膜用供給槽4に溜められていた。そのため、逆浸透膜用供給槽4内に菌類が繁殖し、逆浸透膜7のバイオファウリングの原因となっていた。これに対し、第1の実施の形態に係るろ過装置によれば、図1に示す加熱器10によって逆浸透膜用供給槽4に溜められる供給液が39℃以上、逆浸透膜7の耐熱温度以下に加熱されるため、供給液中の一般細菌及び糸状菌がほぼ全滅する。そのため、逆浸透膜7のバイオファウリングを効果的に抑制することが可能となる。   Conventionally, the permeated liquid of the filtration membrane 3 was stored in the reverse osmosis membrane supply tank 4 without being heated, as in the filtration device according to the comparative example shown in FIG. For this reason, fungi grew in the reverse osmosis membrane supply tank 4 and caused biofouling of the reverse osmosis membrane 7. On the other hand, according to the filtration device according to the first embodiment, the supply liquid stored in the reverse osmosis membrane supply tank 4 by the heater 10 shown in FIG. Since it is heated below, general bacteria and filamentous fungi in the feed solution are almost completely destroyed. Therefore, biofouling of the reverse osmosis membrane 7 can be effectively suppressed.

(第1の実施の形態の実施例)
半導体工場の銅(Cu)含有廃液を精密ろ過膜でろ過し、銅の析出物を除去した。さらに精密ろ過膜でろ過された廃液を逆浸透膜でろ過し、イオン成分を除去した。図7に示すように、廃液に殺菌剤を加えず、逆浸透膜に供給される廃液の温度を25乃至32℃に設定した比較例1では、生物汚染により逆浸透膜が詰まり、3日でろ過装置が停止した。
(Example of the first embodiment)
The copper (Cu) -containing waste liquid from the semiconductor factory was filtered through a microfiltration membrane to remove copper deposits. Furthermore, the waste liquid filtered with the microfiltration membrane was filtered with the reverse osmosis membrane, and the ionic component was removed. As shown in FIG. 7, in Comparative Example 1 in which the temperature of the waste liquid supplied to the reverse osmosis membrane was set to 25 to 32 ° C. without adding a bactericidal agent to the waste liquid, the reverse osmosis membrane was clogged due to biological contamination, and in 3 days The filtration device stopped.

廃液に殺菌剤として8ppmのブロノポール(分子式:C3H6BrNO4、学術名:2-ブロモ-2-ニトロプロパン-1, 3-ジオール)を加え、逆浸透膜に供給される廃液の温度を25乃至32℃に設定した比較例2では、7乃至10日後に供給槽内に糸状菌が発生し、逆浸透膜が詰まった。 Add 8 ppm bronopol (molecular formula: C 3 H 6 BrNO 4 , scientific name: 2-bromo-2-nitropropane-1, 3-diol) as a disinfectant to the waste liquid, and adjust the temperature of the waste liquid supplied to the reverse osmosis membrane In Comparative Example 2 set to 25 to 32 ° C., filamentous fungi were generated in the supply tank after 7 to 10 days, and the reverse osmosis membrane was clogged.

廃液に殺菌剤として4ppmのブロノポール及び4ppmのダイマー38(防菌防黴剤、学術名:N-N’ヘキサメチレンビス(4-カルバモイル-1-デシルピリジニウムアセテート))を加え、逆浸透膜に供給される廃液の温度を25乃至32℃に設定した比較例3では、1日で逆浸透膜に油膜が発生し、ろ過装置が停止した。   Add 4ppm bronopol and 4ppm dimer 38 (antibacterial and antifungal agent, scientific name: N-N 'hexamethylenebis (4-carbamoyl-1-decylpyridinium acetate)) as a bactericidal agent to the waste liquid and supply it to the reverse osmosis membrane In Comparative Example 3 in which the temperature of the waste liquid was set to 25 to 32 ° C., an oil film was generated on the reverse osmosis membrane in one day, and the filtration device was stopped.

廃液に殺菌剤として1ppmのブロノポール及び1ppmのダイマー38を加え、逆浸透膜に供給される廃液の温度を25乃至32℃に設定した比較例4では、8日程度で逆浸透膜に油膜が発生し、ろ過装置が停止した。   In Comparative Example 4 where 1 ppm bronopol and 1 ppm dimer 38 were added to the waste liquid as a disinfectant, and the temperature of the waste liquid supplied to the reverse osmosis membrane was set to 25 to 32 ° C, an oil film was generated on the reverse osmosis membrane in about 8 days. The filtration device stopped.

これに対し、廃液に殺菌剤を加えず、逆浸透膜に供給される廃液の温度を39乃至41℃に設定した実施例では、菌類が発生することなく、26日間連続して逆浸透膜の目詰まりなくろ過装置を稼動可能であった。   On the other hand, in the example in which the temperature of the waste liquid supplied to the reverse osmosis membrane was set to 39 to 41 ° C. without adding a bactericidal agent to the waste liquid, the fungus was not generated and the reverse osmosis membrane was continuously used for 26 days. The filtration device could be operated without clogging.

(第2の実施の形態)
第2の実施の形態に係るろ過装置は、図8に示すように、ろ過膜3の透過液が流れる送液管104に、透過液用熱交換器8が接続されている。透過液用熱交換器8は、送液管111内を流れる逆浸透膜7の透過液の熱を、ろ過膜3の透過液に移動させる。透過液用熱交換器8には、送液管106を介して濃縮液用熱交換器9が接続されている。濃縮液用熱交換器9は、送液管112内を流れる逆浸透膜7の濃縮液の熱を、ろ過膜3の透過液に移動させる。濃縮液用熱交換器9には送液管107が接続され、送液管107内を流れるろ過膜3の透過液は、加熱器10で加熱される。
(Second embodiment)
In the filtration device according to the second embodiment, as shown in FIG. 8, a permeate heat exchanger 8 is connected to a liquid feed pipe 104 through which the permeate of the filtration membrane 3 flows. The permeate heat exchanger 8 moves the heat of the permeate through the reverse osmosis membrane 7 flowing in the liquid feeding pipe 111 to the permeate through the filtration membrane 3. A concentrate heat exchanger 9 is connected to the permeate heat exchanger 8 via a liquid feed pipe 106. The concentrate heat exchanger 9 moves the heat of the concentrate of the reverse osmosis membrane 7 flowing in the liquid feeding pipe 112 to the permeate of the filtration membrane 3. A liquid feeding pipe 107 is connected to the concentrate heat exchanger 9, and the permeate of the filtration membrane 3 flowing in the liquid feeding pipe 107 is heated by the heater 10.

第2の実施の形態に係るろ過装置によれば、逆浸透膜7の透過液及び濃縮液の熱が、透過液用熱交換器8及び濃縮液用熱交換器9によって、供給液の加熱に再利用される。そのため、加熱器10の消費エネルギを抑制することが可能となる。なお、ろ過膜3の透過液を先に濃縮液用熱交換器9に送り、その後、透過液用熱交換器8に送ってもよい。第2の実施の形態に係るろ過装置のその他の構成要素は、第1の実施の形態と同様であるので、説明は省略する。   According to the filtration device according to the second embodiment, the heat of the permeated liquid and the concentrated liquid of the reverse osmosis membrane 7 is heated by the permeated liquid heat exchanger 8 and the concentrated liquid heat exchanger 9 to heat the supplied liquid. Reused. Therefore, it is possible to suppress the energy consumption of the heater 10. The permeate of the filtration membrane 3 may be sent to the concentrate heat exchanger 9 first, and then sent to the permeate heat exchanger 8. Since the other components of the filtration device according to the second embodiment are the same as those of the first embodiment, description thereof will be omitted.

(その他の実施の形態)
上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば第1の実施の形態においては、図1に示す温度センサ20を逆浸透膜用供給槽4に設ける例を示したが、温度センサを、送液管111又は送液管112に設けてもよい。逆浸透膜7の透過液又は濃縮液の温度を計測しても、同様の効果が得られる。この様に、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
(Other embodiments)
Although the present invention has been described by the embodiments as described above, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art. For example, in the first embodiment, the example in which the temperature sensor 20 shown in FIG. 1 is provided in the reverse osmosis membrane supply tank 4 is shown, but the temperature sensor may be provided in the liquid feeding pipe 111 or the liquid feeding pipe 112. Good. The same effect can be obtained by measuring the temperature of the permeate or concentrate of the reverse osmosis membrane 7. Thus, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters in the scope of claims reasonable from this disclosure.

本発明の第1の実施の形態に係るろ過装置の模式図である。It is a mimetic diagram of a filtration device concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る供給液温度と菌数の関係を示す第1の表である。It is a 1st table | surface which shows the relationship between the supply liquid temperature which concerns on the 1st Embodiment of this invention, and the number of bacteria. 本発明の第1の実施の形態に係る供給液温度と一般細菌の菌数の関係を示すグラフである。It is a graph which shows the relationship between the supply liquid temperature which concerns on the 1st Embodiment of this invention, and the number of bacteria of a general bacteria. 本発明の第1の実施の形態に係る供給液温度と糸状菌の菌数の関係を示すグラフである。It is a graph which shows the relationship between the supply liquid temperature which concerns on the 1st Embodiment of this invention, and the number of filamentous fungi. 本発明の第1の実施の形態に係る供給液温度と菌数の関係を示す第2の表である。It is a 2nd table | surface which shows the relationship between the supply liquid temperature which concerns on the 1st Embodiment of this invention, and the number of bacteria. 本発明の第1の実施の形態の比較例に係るろ過装置の模式図である。It is a schematic diagram of the filtration apparatus which concerns on the comparative example of the 1st Embodiment of this invention. 本発明の第1の実施の形態の実施例の結果を示す表である。It is a table | surface which shows the result of the Example of the 1st Embodiment of this invention. 本発明の第2の実施の形態に係るろ過装置の模式図である。It is a schematic diagram of the filtration apparatus which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1・・・ろ過膜用供給槽
2・・・ろ過膜用供給ポンプ
3・・・ろ過膜
4・・・逆浸透膜用供給槽
5・・・逆浸透膜用供給ポンプ
6・・・逆浸透膜用加圧ポンプ
7・・・逆浸透膜
8・・・透過液用熱交換器
9・・・濃縮液用熱交換器
10・・・加熱器
11・・・温度制御弁
20・・・温度センサ
21・・・制御機構
50・・・蒸気管
1 ... Supply tank for filtration membrane
2 ... Supply pump for filtration membrane
3 ... filtration membrane
4 ... Reverse osmosis membrane supply tank
5 ... Reverse osmosis membrane supply pump
6 ... Pressure pump for reverse osmosis membrane
7 ... Reverse osmosis membrane
8 ... Heat exchanger for permeate
9 ... Heat exchanger for concentrate
10 ... heater
11 ... Temperature control valve
20 ... Temperature sensor
21 ... Control mechanism
50 ... Steam pipe

Claims (10)

逆浸透膜と、
前記逆浸透膜に供給される供給溶液が溜められる供給槽と、
前記供給槽に溜められる供給溶液を39℃以上、前記逆浸透膜の耐熱温度以下に加熱する加熱器と、
を備えることを特徴とするろ過装置。
A reverse osmosis membrane,
A supply tank in which a supply solution supplied to the reverse osmosis membrane is stored;
A heater for heating a supply solution stored in the supply tank to 39 ° C. or more and a heat resistant temperature of the reverse osmosis membrane or less;
A filtration apparatus comprising:
前記供給槽に溜められた供給溶液の温度を検出する温度センサと、
前記温度センサで検出された温度に基づいて、前記加熱器を制御する制御機構と、
を更に備えることを特徴とする請求項1に記載のろ過装置。
A temperature sensor for detecting the temperature of the supply solution stored in the supply tank;
A control mechanism for controlling the heater based on the temperature detected by the temperature sensor;
The filtration device according to claim 1, further comprising:
前記逆浸透膜から排出される透過液の温度を検出する温度センサと、
前記温度センサで検出された温度に基づいて、前記加熱器を制御する制御機構と、
を更に備えることを特徴とする請求項1に記載のろ過装置。
A temperature sensor for detecting the temperature of the permeate discharged from the reverse osmosis membrane;
A control mechanism for controlling the heater based on the temperature detected by the temperature sensor;
The filtration device according to claim 1, further comprising:
前記逆浸透膜から排出される濃縮液の温度を検出する温度センサと、
前記温度センサで検出された温度に基づいて、前記加熱器を制御する制御機構と、
を更に備えることを特徴とする請求項1に記載のろ過装置。
A temperature sensor for detecting the temperature of the concentrate discharged from the reverse osmosis membrane;
A control mechanism for controlling the heater based on the temperature detected by the temperature sensor;
The filtration device according to claim 1, further comprising:
前記逆浸透膜から排出される透過液から前記供給溶液に熱を移動させる透過液用熱交換器を更に備えることを特徴とする請求項1乃至4のいずれか1項に記載のろ過装置。   The filtration device according to any one of claims 1 to 4, further comprising a permeate heat exchanger for transferring heat from the permeate discharged from the reverse osmosis membrane to the supply solution. 前記逆浸透膜から排出される濃縮液から前記供給溶液に熱を移動させる濃縮液用熱交換器を更に備えることを特徴とする請求項1乃至5のいずれか1項に記載のろ過装置。   The filtration apparatus according to any one of claims 1 to 5, further comprising a heat exchanger for concentrated liquid that transfers heat from the concentrated liquid discharged from the reverse osmosis membrane to the supply solution. 前記逆浸透膜がポリアミドからなることを特徴とする請求項1乃至6のいずれか1項に記載のろ過装置。   The filtration device according to any one of claims 1 to 6, wherein the reverse osmosis membrane is made of polyamide. 逆浸透膜に供給される供給溶液を39℃以上、前記逆浸透膜の耐熱温度以下に加熱するステップと、
前記加熱された供給溶液を前記逆浸透膜でろ過するステップと、
を含むことを特徴とするろ過方法。
Heating the feed solution supplied to the reverse osmosis membrane to 39 ° C. or higher and lower than the heat resistance temperature of the reverse osmosis membrane;
Filtering the heated feed solution through the reverse osmosis membrane;
The filtration method characterized by including.
前記逆浸透膜から排出される透過液から前記供給溶液に熱を移動させるステップを更に含むことを特徴とする請求項8に記載のろ過方法。   The filtration method according to claim 8, further comprising a step of transferring heat from the permeate discharged from the reverse osmosis membrane to the supply solution. 前記逆浸透膜から排出される濃縮液から前記供給溶液に熱を移動させるステップを更に含むことを特徴とする請求項8又は9に記載のろ過方法。   The filtration method according to claim 8, further comprising a step of transferring heat from the concentrated liquid discharged from the reverse osmosis membrane to the supply solution.
JP2008227179A 2008-09-04 2008-09-04 Filter device and filtration method Pending JP2010058064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008227179A JP2010058064A (en) 2008-09-04 2008-09-04 Filter device and filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008227179A JP2010058064A (en) 2008-09-04 2008-09-04 Filter device and filtration method

Publications (1)

Publication Number Publication Date
JP2010058064A true JP2010058064A (en) 2010-03-18

Family

ID=42185479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008227179A Pending JP2010058064A (en) 2008-09-04 2008-09-04 Filter device and filtration method

Country Status (1)

Country Link
JP (1) JP2010058064A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258700A (en) * 1987-04-15 1988-10-26 Toray Ind Inc Ultrapure water making system
JPS6443304A (en) * 1987-08-06 1989-02-15 Maruyama Mfg Co Method for heating feed water in reverse osmosis process
JPH0463755A (en) * 1990-07-03 1992-02-28 Nippondenso Co Ltd Brake pressure controller for vehicle
JPH1028844A (en) * 1996-07-15 1998-02-03 Nitto Denko Corp Treatment method by dual reverse osmosis membrane
JPH10309575A (en) * 1997-05-09 1998-11-24 Kurita Water Ind Ltd Pure water production device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258700A (en) * 1987-04-15 1988-10-26 Toray Ind Inc Ultrapure water making system
JPS6443304A (en) * 1987-08-06 1989-02-15 Maruyama Mfg Co Method for heating feed water in reverse osmosis process
JPH0463755A (en) * 1990-07-03 1992-02-28 Nippondenso Co Ltd Brake pressure controller for vehicle
JPH1028844A (en) * 1996-07-15 1998-02-03 Nitto Denko Corp Treatment method by dual reverse osmosis membrane
JPH10309575A (en) * 1997-05-09 1998-11-24 Kurita Water Ind Ltd Pure water production device

Similar Documents

Publication Publication Date Title
CA2788246C (en) Membrane treatment of cooling tower blow down water
JP6020168B2 (en) Membrane filtration method and membrane filtration apparatus
JP5804228B1 (en) Water treatment method
EP2276705B1 (en) Environmentally friendly hybrid microbiological control technologies for cooling towers
JP6269241B2 (en) Forward osmosis processing system
WO2020179594A1 (en) Zero liquid discharge system
TWI699235B (en) Water treatment method and device
JP7102706B2 (en) Seawater desalination method and seawater desalination system
JPWO2016199725A1 (en) Fresh water production apparatus and method for operating fresh water production apparatus
US11186499B2 (en) Methods of inhibiting fouling in liquid systems
US20180104652A1 (en) Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning apparatus
JP4650740B2 (en) Operation method of water treatment system
KR20180017149A (en) Biocidal compositions and methods
JP4544020B2 (en) Operation method of membrane filtration system
JP6087667B2 (en) Desalination method and desalination apparatus
WO2014007262A1 (en) Fresh-water manufacturing device and fresh-water manufacturing method
JP5377553B2 (en) Membrane filtration system and its operation method
JP2010058064A (en) Filter device and filtration method
WO2021125002A1 (en) Concentration system
Maddah Simulating fouling impact on the permeate flux in high-pressure membranes
JP2008132400A (en) Operation method of water treatment system
JP7427890B2 (en) Concentration system
JP2014061488A (en) Water treatment system and water treatment method
JP2014140794A (en) Fresh water generator and fresh water generation metho
JP5003993B2 (en) Membrane filtration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120720

A02 Decision of refusal

Effective date: 20130107

Free format text: JAPANESE INTERMEDIATE CODE: A02